Partition function and base pairing probabilities for RNA–RNA interaction prediction
Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restriction...
Saved in:
Published in | Bioinformatics Vol. 25; no. 20; pp. 2646 - 2654 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
15.10.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
DOI | 10.1093/bioinformatics/btp481 |
Cover
Abstract | Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA–RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N6) time and O(N4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of ‘tight structures’. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics.MOTIVATIONThe RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics.We present here an O(N(6)) time and O(N(4)) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs.RESULTSWe present here an O(N(6)) time and O(N(4)) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs.The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html.AVAILABILITYThe program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA–RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N6) time and O(N4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of ‘tight structures’. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online. The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. We present here an O(N(6)) time and O(N(4)) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Motivation: The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N 6) time and O(N 4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA–RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N6) time and O(N4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of ‘tight structures’. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
Author | Huang, Fenix W. D. Qin, Jing Stadler, Peter F. Reidys, Christian M. |
Author_xml | – sequence: 1 givenname: Fenix W. D. surname: Huang fullname: Huang, Fenix W. D. organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA – sequence: 2 givenname: Jing surname: Qin fullname: Qin, Jing organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA – sequence: 3 givenname: Christian M. surname: Reidys fullname: Reidys, Christian M. organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA – sequence: 4 givenname: Peter F. surname: Stadler fullname: Stadler, Peter F. organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22005585$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19671692$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9uFSEUh0lT03_2ETSzMa7GwgDDJa7axlpjtdW0xnRDDgw01LnMCEyiO9_BN_RJpJ3rTexGN3ASvg8Ov7OLNsMQLEJPCH5BsKQH2g8-uCEuIXuTDnQe2YJsoB3CWlw3mMvNUtNW1GyB6TbaTekWY04YY1tom8hWkFY2O-jTBcTssx9C5aZg7gsIXaUh2WoEH324qcY4aNC-L5xNVXm0-vj-8NePn2WtfMg2wiyO0Xb-vnyMHjnok91f7Xvo6uTV5fFpfXb--s3x4VltOMW51lIa01InidGmgQ6AG8E6yxpDmGO8lRhTqQUXugGiHRONKcdGdMThllG6h57P95YWv042ZbX0ydi-h2CHKSlBGV6UMEghn67ISS9tp8bolxC_qz9RFODZCoBkoHcRgvFpzTVNiY8veOFezpyJQ0rROmV8hrtP5wi-VwSruwGpvwek5gEVmz-w1438w8OzN0zjfyv1rPiU7be1BPGLagUVXJ1-vlb84uTd26PrS_WB_gYNJr6x |
CitedBy_id | crossref_primary_10_1093_bioinformatics_bts461 crossref_primary_10_4161_rna_28647 crossref_primary_10_1093_bioinformatics_bty208 crossref_primary_10_1371_journal_pone_0163454 crossref_primary_10_1109_TCBB_2018_2890519 crossref_primary_10_1016_j_genrep_2018_01_001 crossref_primary_10_1016_j_ymeth_2016_04_004 crossref_primary_10_1186_1748_7188_5_22 crossref_primary_10_1109_TCBB_2014_2326155 crossref_primary_10_1089_cmb_2013_0003 crossref_primary_10_1089_cmb_2012_0282 crossref_primary_10_1093_nar_gkx115 crossref_primary_10_1186_1471_2105_13_101 crossref_primary_10_1016_j_gpb_2012_09_004 crossref_primary_10_1016_j_tcs_2016_05_032 crossref_primary_10_1093_bioinformatics_btp635 crossref_primary_10_1261_rna_026658_111 crossref_primary_10_1002_wrna_1147 crossref_primary_10_1002_cpz1_661 crossref_primary_10_1016_j_tcs_2014_04_018 crossref_primary_10_1109_TNB_2015_2402591 crossref_primary_10_1261_rna_037630_112 crossref_primary_10_1093_bib_bbad421 crossref_primary_10_1261_rna_045088_114 crossref_primary_10_1016_j_jbiotec_2017_07_007 crossref_primary_10_1007_s00285_011_0423_7 crossref_primary_10_1093_bioinformatics_btq372 crossref_primary_10_4161_rna_20294 crossref_primary_10_1093_nar_gky577 crossref_primary_10_1093_bioinformatics_btq659 crossref_primary_10_1093_nar_gkv1477 crossref_primary_10_1186_1471_2105_16_S19_S2 crossref_primary_10_1042_BST20120280 crossref_primary_10_1109_TCBB_2013_7 crossref_primary_10_1089_cmb_2011_0308 crossref_primary_10_1093_bioinformatics_btq634 crossref_primary_10_1142_S0219720011005628 crossref_primary_10_1261_rna_043976_113 crossref_primary_10_1261_rna_071662_119 crossref_primary_10_1016_j_mbs_2011_04_009 crossref_primary_10_1101_gad_190173_112 crossref_primary_10_3390_s17091990 crossref_primary_10_1093_nar_gky270 crossref_primary_10_1128_microbiolspec_RWR_0001_2017 |
Cites_doi | 10.1137/060651100 10.1006/jmbi.2000.3942 10.1073/pnas.110533697 10.1093/bioinformatics/btp212 10.1093/nar/9.1.133 10.1007/BF00419661 10.1038/sj.emboj.7600058 10.1371/journal.pcbi.0030193 10.1038/nrg908 10.1101/gad.447207 10.1016/j.gene.2004.11.043 10.1046/j.1365-2958.2002.03203.x 10.1002/bies.10046 10.1006/jmbi.1999.2700 10.1529/biophysj.103.020743 10.1007/3-540-45719-4_24 10.4161/rna.4.3.5308 10.1016/j.jmb.2004.10.082 10.1002/cbic.200400219 10.1261/rna.2230605 10.1002/bip.360290621 10.1186/1748-7188-1-3 10.1007/BF00818163 10.1089/cmb.2006.13.267 10.1016/S0166-218X(00)00186-4 10.1093/bioinformatics/btn544 10.1006/jmbi.1998.2436 10.1016/S0300-9084(02)01402-5 10.1002/jcc.10296 |
ContentType | Journal Article |
Copyright | The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 2009 INIST-CNRS |
Copyright_xml | – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 – notice: 2009 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bioinformatics/btp481 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 2654 |
ExternalDocumentID | 19671692 22005585 10_1093_bioinformatics_btp481 10.1093/bioinformatics/btp481 ark_67375_HXZ_5PFMKBZT_Q |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | -~X .2P .I3 482 48X 5GY AAMVS ABJNI ABPTD ACGFS ACUFI ADZXQ ALMA_UNASSIGNED_HOLDINGS BSCLL CZ4 EE~ F5P F9B H5~ HAR HW0 IOX KSI KSN NGC Q5Y RD5 ROZ RXO TLC TN5 TOX WH7 ~91 ADRIX BCRHZ KOP ROX --- -E4 .DC 0R~ 1TH 23N 2WC 4.4 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 DAKXR DIK DILTD DU5 D~K EBD EBS EJD EMOBN FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 HVGLF HZ~ J21 JXSIZ KAQDR KQ8 M-Z MK~ ML0 N9A NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PB- PEELM PQQKQ Q1. R44 RIG RNS ROL RPM RUSNO RW1 SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~KM .-4 .GJ ABEFU AI. AQDSO ATTQO ELUNK IQODW NTWIH O~Y RNI RZF RZO VH1 ZGI ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 |
ID | FETCH-LOGICAL-c530t-b99cc63f91cbc2adaa5c74de42c14f45690039b757b2a1bf472c4dec7d1f06433 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Sep 04 17:37:56 EDT 2025 Thu Apr 03 07:05:25 EDT 2025 Mon Jul 21 09:13:56 EDT 2025 Tue Jul 01 03:27:00 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Wed Aug 28 03:24:18 EDT 2024 Tue Aug 05 16:47:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | Partition Partition function RNA Interaction Prediction Probability Base pairing |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-b99cc63f91cbc2adaa5c74de42c14f45690039b757b2a1bf472c4dec7d1f06433 |
Notes | ArticleID:btp481 istex:C88077A326C7408C76A8949D01D1D374344A5896 To whom correspondence should be addressed. Associate Editor: Ivo Hofacker ark:/67375/HXZ-5PFMKBZT-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/25/20/2646/48995537/bioinformatics_25_20_2646.pdf |
PMID | 19671692 |
PQID | 734080591 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_734080591 pubmed_primary_19671692 pascalfrancis_primary_22005585 crossref_citationtrail_10_1093_bioinformatics_btp481 crossref_primary_10_1093_bioinformatics_btp481 oup_primary_10_1093_bioinformatics_btp481 istex_primary_ark_67375_HXZ_5PFMKBZT_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-10-15 |
PublicationDateYYYYMMDD | 2009-10-15 |
PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2009 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Busch (2023013112124787300_B9) 2008; 24 Dimitrov (2023013112124787300_B12) 2004; 87 McCaskill (2023013112124787300_B27) 1990; 29 Chitsaz (2023013112124787300_B11) 2009; 25 Qin (2023013112124787300_B35) 2007 Gago (2023013112124787300_B16) 2005; 11 Zuker (2023013112124787300_B40) 1981; 9 Benne (2023013112124787300_B7) 1992; 16 Isambert (2023013112124787300_B23) 2000; 97 Mathews (2023013112124787300_B26) 1999; 288 Giegerich (2023013112124787300_B18) 2002 Mneimneh (2023013112124787300_B30) 2007 Rehmsmeier (2023013112124787300_B36) 2004; 10 Akutsu (2023013112124787300_B1) 2000; 104 Hofacker (2023013112124787300_B21) 1994; 125 Rivas (2023013112124787300_B37) 1999; 285 Argaman (2023013112124787300_B4) 2000; 300 Banerjee (2023013112124787300_B6) 2002; 24 Kugel (2023013112124787300_B24) 2007; 3 Gabow (2023013112124787300_B15) 1973 Mückstein (2023013112124787300_B32) 2006 Bachellerie (2023013112124787300_B5) 2002; 84 Meisner (2023013112124787300_B29) 2004; 5 Sharma (2023013112124787300_B38) 2007; 21 Dirks (2023013112124787300_B14) 2007; 49 Andronescu (2023013112124787300_B3) 2005; 345 Bernhart (2023013112124787300_B8) 2006; 1 Havgaard (2023013112124787300_B20) 2007; 3 Hackermüller (2023013112124787300_B19) 2005; 345 Geissmann (2023013112124787300_B17) 2004; 23 Alkan (2023013112124787300_B2) 2006; 13 Cary (2023013112124787300_B10) 1995; 3 Pervouchine (2023013112124787300_B34) 2004; 15 Narberhaus (2023013112124787300_B33) 2007; 4 Majdalani (2023013112124787300_B25) 2002; 46 Tafer (2023013112124787300_B39) 2009 McManus (2023013112124787300_B28) 2002; 3 Huang (2023013112124787300_B22) 2009 Mückstein (2023013112124787300_B31) 2008 Dirks (2023013112124787300_B13) 2003; 24 |
References_xml | – volume: 49 start-page: 65 year: 2007 ident: 2023013112124787300_B14 article-title: Thermodynamic analysis of interacting nucleic acid strands publication-title: SIAM Rev. doi: 10.1137/060651100 – start-page: 114 volume-title: BioInformatics Research and Development — BIRD 2008 year: 2008 ident: 2023013112124787300_B31 article-title: Translational control by RNA-RNA interaction: improved computation of RNA-RNA binding thermodynamics – volume: 300 start-page: 1101 year: 2000 ident: 2023013112124787300_B4 article-title: fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3942 – volume: 97 start-page: 6515 year: 2000 ident: 2023013112124787300_B23 article-title: Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.110533697 – volume: 25 start-page: i365 year: 2009 ident: 2023013112124787300_B11 article-title: A partition function algorithm for interacting nucleic acid strands publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp212 – volume: 3 start-page: 89 year: 2007 ident: 2023013112124787300_B24 article-title: An RNA transcriptional regulator templates its own regulatory RNA publication-title: Nat. Struct. Mol. Biol. – volume: 10 start-page: 1507 year: 2004 ident: 2023013112124787300_B36 article-title: Fast and effective prediction of microRNA/target duplexes publication-title: Gene – volume: 9 start-page: 133 year: 1981 ident: 2023013112124787300_B40 article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information publication-title: Nucleic Acids Res. doi: 10.1093/nar/9.1.133 – volume: 16 start-page: 217 year: 1992 ident: 2023013112124787300_B7 article-title: RNA editing in trypanosomes. The use of guide RNAs publication-title: Mol. Biol. Rep. doi: 10.1007/BF00419661 – start-page: 1177 volume-title: Bioinformatics year: 2006 ident: 2023013112124787300_B32 article-title: Thermodynamics of RNA-RNA binding – year: 2007 ident: 2023013112124787300_B35 article-title: A combinatorial framework for RNA tertiary interaction publication-title: Technical Report 0710.3523 – volume: 23 start-page: 396 year: 2004 ident: 2023013112124787300_B17 article-title: Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator publication-title: EMBO J. doi: 10.1038/sj.emboj.7600058 – volume: 3 start-page: 1896 year: 2007 ident: 2023013112124787300_B20 article-title: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030193 – volume: 15 start-page: 92 year: 2004 ident: 2023013112124787300_B34 article-title: IRIS: intermolecular RNA interaction search publication-title: Proc. Genome Inform. – volume: 3 start-page: 737 year: 2002 ident: 2023013112124787300_B28 article-title: Gene silencing in mammals by small interfering RNAs publication-title: Nat. Rev. doi: 10.1038/nrg908 – year: 2009 ident: 2023013112124787300_B22 article-title: Target prediction and a statistical sampling algorithm for RNA-RNA interaction publication-title: Technical Report 0908.0597 – volume: 21 start-page: 2804 year: 2007 ident: 2023013112124787300_B38 article-title: A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites publication-title: Genes Dev. doi: 10.1101/gad.447207 – volume: 345 start-page: 3 year: 2005 ident: 2023013112124787300_B19 article-title: The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model publication-title: Gene doi: 10.1016/j.gene.2004.11.043 – volume: 46 start-page: 813 year: 2002 ident: 2023013112124787300_B25 article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.03203.x – year: 2007 ident: 2023013112124787300_B30 article-title: On the approximation of optimal structures for RNA-RNA interaction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 24 start-page: 119 year: 2002 ident: 2023013112124787300_B6 article-title: Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression publication-title: Bioessays doi: 10.1002/bies.10046 – volume: 288 start-page: 911 year: 1999 ident: 2023013112124787300_B26 article-title: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.2700 – volume: 87 start-page: 215 year: 2004 ident: 2023013112124787300_B12 article-title: Prediction of hybridization and melting for double-stranded nucleic acids publication-title: Biophys. J. doi: 10.1529/biophysj.103.020743 – start-page: 349 volume-title: Algebraic Methodology And Software Technology year: 2002 ident: 2023013112124787300_B18 article-title: Algebraic dynamic programming doi: 10.1007/3-540-45719-4_24 – volume: 4 start-page: 160 year: 2007 ident: 2023013112124787300_B33 article-title: Sensory and regulatory RNAs in prokaryotes: a new german research focus publication-title: RNA Biol. doi: 10.4161/rna.4.3.5308 – volume: 345 start-page: 1101 year: 2005 ident: 2023013112124787300_B3 article-title: Secondary structure prediction of interacting RNA molecules publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.10.082 – volume: 5 start-page: 1432 year: 2004 ident: 2023013112124787300_B29 article-title: mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure publication-title: Chembiochem. doi: 10.1002/cbic.200400219 – volume: 11 start-page: 1073 year: 2005 ident: 2023013112124787300_B16 article-title: A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability publication-title: RNA doi: 10.1261/rna.2230605 – volume: 29 start-page: 1105 year: 1990 ident: 2023013112124787300_B27 article-title: The equilibrium partition function and base pair binding probabilities for RNA secondary structure publication-title: Biopolymers doi: 10.1002/bip.360290621 – volume: 1 start-page: 3 year: 2006 ident: 2023013112124787300_B8 article-title: Partition function and base pairing probabilities of RNA heterodimers publication-title: Algorithms Mol. Biol. doi: 10.1186/1748-7188-1-3 – volume: 125 start-page: 167 year: 1994 ident: 2023013112124787300_B21 article-title: Fast folding and comparison of RNA secondary structures publication-title: Monatsh. Chem. doi: 10.1007/BF00818163 – volume-title: Technical report year: 2009 ident: 2023013112124787300_B39 article-title: RNAsnoop: Efficient target prediction for box H/ACA snoRNAs – volume: 13 start-page: 267 year: 2006 ident: 2023013112124787300_B2 article-title: RNA-RNA interaction prediction and antisense RNA target search publication-title: J. Comput. Biol. doi: 10.1089/cmb.2006.13.267 – volume: 3 start-page: 75 year: 1995 ident: 2023013112124787300_B10 article-title: Graph-theoretic approach to RNA modeling using comparative data publication-title: Proc. Intl Conf. Intell. Syst. Mol. Biol. – start-page: 248 volume-title: PhD Thesis year: 1973 ident: 2023013112124787300_B15 article-title: Implementation of algorithms for maximum matching on nonbipartite graphs – volume: 104 start-page: 45 year: 2000 ident: 2023013112124787300_B1 article-title: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots publication-title: Disc. Appl. Math. doi: 10.1016/S0166-218X(00)00186-4 – volume: 24 start-page: 2849 year: 2008 ident: 2023013112124787300_B9 article-title: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn544 – volume: 285 start-page: 2053 year: 1999 ident: 2023013112124787300_B37 article-title: A dynamic programming algorithms for RNA structure prediction including pseudoknots publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2436 – volume: 84 start-page: 775 year: 2002 ident: 2023013112124787300_B5 article-title: The expanding snoRNA world publication-title: Biochimie doi: 10.1016/S0300-9084(02)01402-5 – volume: 24 start-page: 1664 year: 2003 ident: 2023013112124787300_B13 article-title: A partition function algorithm for nucleoic acid secondary structure inluding pseudoknots publication-title: J. Comput. Chem. doi: 10.1002/jcc.10296 |
SSID | ssj0051444 ssj0005056 |
Score | 2.2495847 |
Snippet | Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The... Motivation: The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The... The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model... |
SourceID | proquest pubmed pascalfrancis crossref oup istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2646 |
SubjectTerms | Algorithms Base Pairing Biological and medical sciences Computational Biology - methods Databases, Genetic Fundamental and applied biological sciences. Psychology General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Nucleic Acid Conformation RNA - chemistry RNA - metabolism Thermodynamics |
Title | Partition function and base pairing probabilities for RNA–RNA interaction prediction |
URI | https://api.istex.fr/ark:/67375/HXZ-5PFMKBZT-Q/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19671692 https://www.proquest.com/docview/734080591 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DEQQRv50fIw8i-FDXNkljHqc4huInG4y9hCRtQZRuzAn633vXrJMJoj4UUpqk4e7K_ZrL_Y6QI2nPDMB8GViRKUzJSQMbSRaEDLApfH2AmjGie3ObdHr8qi_6NRJWuTDfQ_iKNe3TcEoiisTFTTsZ8TLXGhwxGnb3rv91piNEZhh_A0iA-5K2yOx9FrIqf-enKec80yIK-b3KelsZmVcQWe5rXfwMRkun1F4jq1M0SVte_euklhUbZMnXl_zYJN17NAwUPUX_VTZMkVJ0XXRknnBPj2JJGU_WDT_NFJZLH29bAVwUqSTGPvEBemFEB5tbpNe-7F50gmkZhcAJFk4Cq5RzCctV5KyLTWqMcJKnGY9dxHMAULiZqawU0sYmsjmXsYPHTqZRjoCFbZOFYlhku4QyK4QxUZTkKeAsqyxP0jQRzkWA4rJM1gmvRKjdlGMcS128aB_rZnpe8tpLvk5OZ8NGnmTjtwHHpX5mvc34GU-oSaE7_YEW9-2b6_NBVz_UyQko8K-TNubUPBsV484bmG6d0ErvGj5CjKyYIhu-vWrJOCBvoWCOHW8PX69UCRISxXv_WMk-WS6DVnhwRhyQhcn4LTsE7DOxjdLePwEmFAWK |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partition+function+and+base+pairing+probabilities+for+RNA-RNA+interaction+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Huang%2C+Fenix+W+D&rft.au=Qin%2C+Jing&rft.au=Reidys%2C+Christian+M&rft.au=Stadler%2C+Peter+F&rft.date=2009-10-15&rft.eissn=1367-4811&rft.volume=25&rft.issue=20&rft.spage=2646&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp481&rft_id=info%3Apmid%2F19671692&rft.externalDocID=19671692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |