Partition function and base pairing probabilities for RNA–RNA interaction prediction

Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restriction...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 25; no. 20; pp. 2646 - 2654
Main Authors Huang, Fenix W. D., Qin, Jing, Reidys, Christian M., Stadler, Peter F.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.10.2009
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btp481

Cover

Abstract Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA–RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N6) time and O(N4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of ‘tight structures’. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics.MOTIVATIONThe RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics.We present here an O(N(6)) time and O(N(4)) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs.RESULTSWe present here an O(N(6)) time and O(N(4)) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs.The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html.AVAILABILITYThe program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html.
Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA–RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N6) time and O(N4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of ‘tight structures’. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online.
The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. We present here an O(N(6)) time and O(N(4)) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html.
Motivation: The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA-RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N 6) time and O(N 4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of 'tight structures'. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model allows secondary structures in both partners as well as additional base pairs between the two RNAs subject to certain restrictions that ensure that RIP is solvabale by a polynomial time dynamic programming algorithm. RNA–RNA binding, like RNA folding, is typically not dominated by the ground state structure. Instead, a large ensemble of alternative structures contributes to the interaction thermodynamics. Results: We present here an O(N6) time and O(N4) dynamics programming algorithm for computing the full partition function for RIP which is based on the combinatorial notion of ‘tight structures’. Albeit equivalent to recent work by H. Chitsaz and collaborators, our approach in addition provides a full-fledged computation of the base pairing probabilities, which relies on the notion of a decomposition tree for joint structures. In practise, our implementation is efficient enough to investigate, for instance, the interactions of small bacterial RNAs and their target mRNAs. Availability: The program rip is implemented in C. The source code is available for download from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact:  duck@santafe.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
Author Huang, Fenix W. D.
Qin, Jing
Stadler, Peter F.
Reidys, Christian M.
Author_xml – sequence: 1
  givenname: Fenix W. D.
  surname: Huang
  fullname: Huang, Fenix W. D.
  organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA
– sequence: 2
  givenname: Jing
  surname: Qin
  fullname: Qin, Jing
  organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA
– sequence: 3
  givenname: Christian M.
  surname: Reidys
  fullname: Reidys, Christian M.
  organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA
– sequence: 4
  givenname: Peter F.
  surname: Stadler
  fullname: Stadler, Peter F.
  organization: Center for Combinatorics, LPMC-TJKLC, College of Life Science, Nankai University Tianjin 300071, P.R. China, Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1,D-04103 Leipzig, Germany, Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria and The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22005585$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19671692$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9uFSEUh0lT03_2ETSzMa7GwgDDJa7axlpjtdW0xnRDDgw01LnMCEyiO9_BN_RJpJ3rTexGN3ASvg8Ov7OLNsMQLEJPCH5BsKQH2g8-uCEuIXuTDnQe2YJsoB3CWlw3mMvNUtNW1GyB6TbaTekWY04YY1tom8hWkFY2O-jTBcTssx9C5aZg7gsIXaUh2WoEH324qcY4aNC-L5xNVXm0-vj-8NePn2WtfMg2wiyO0Xb-vnyMHjnok91f7Xvo6uTV5fFpfXb--s3x4VltOMW51lIa01InidGmgQ6AG8E6yxpDmGO8lRhTqQUXugGiHRONKcdGdMThllG6h57P95YWv042ZbX0ydi-h2CHKSlBGV6UMEghn67ISS9tp8bolxC_qz9RFODZCoBkoHcRgvFpzTVNiY8veOFezpyJQ0rROmV8hrtP5wi-VwSruwGpvwek5gEVmz-w1438w8OzN0zjfyv1rPiU7be1BPGLagUVXJ1-vlb84uTd26PrS_WB_gYNJr6x
CitedBy_id crossref_primary_10_1093_bioinformatics_bts461
crossref_primary_10_4161_rna_28647
crossref_primary_10_1093_bioinformatics_bty208
crossref_primary_10_1371_journal_pone_0163454
crossref_primary_10_1109_TCBB_2018_2890519
crossref_primary_10_1016_j_genrep_2018_01_001
crossref_primary_10_1016_j_ymeth_2016_04_004
crossref_primary_10_1186_1748_7188_5_22
crossref_primary_10_1109_TCBB_2014_2326155
crossref_primary_10_1089_cmb_2013_0003
crossref_primary_10_1089_cmb_2012_0282
crossref_primary_10_1093_nar_gkx115
crossref_primary_10_1186_1471_2105_13_101
crossref_primary_10_1016_j_gpb_2012_09_004
crossref_primary_10_1016_j_tcs_2016_05_032
crossref_primary_10_1093_bioinformatics_btp635
crossref_primary_10_1261_rna_026658_111
crossref_primary_10_1002_wrna_1147
crossref_primary_10_1002_cpz1_661
crossref_primary_10_1016_j_tcs_2014_04_018
crossref_primary_10_1109_TNB_2015_2402591
crossref_primary_10_1261_rna_037630_112
crossref_primary_10_1093_bib_bbad421
crossref_primary_10_1261_rna_045088_114
crossref_primary_10_1016_j_jbiotec_2017_07_007
crossref_primary_10_1007_s00285_011_0423_7
crossref_primary_10_1093_bioinformatics_btq372
crossref_primary_10_4161_rna_20294
crossref_primary_10_1093_nar_gky577
crossref_primary_10_1093_bioinformatics_btq659
crossref_primary_10_1093_nar_gkv1477
crossref_primary_10_1186_1471_2105_16_S19_S2
crossref_primary_10_1042_BST20120280
crossref_primary_10_1109_TCBB_2013_7
crossref_primary_10_1089_cmb_2011_0308
crossref_primary_10_1093_bioinformatics_btq634
crossref_primary_10_1142_S0219720011005628
crossref_primary_10_1261_rna_043976_113
crossref_primary_10_1261_rna_071662_119
crossref_primary_10_1016_j_mbs_2011_04_009
crossref_primary_10_1101_gad_190173_112
crossref_primary_10_3390_s17091990
crossref_primary_10_1093_nar_gky270
crossref_primary_10_1128_microbiolspec_RWR_0001_2017
Cites_doi 10.1137/060651100
10.1006/jmbi.2000.3942
10.1073/pnas.110533697
10.1093/bioinformatics/btp212
10.1093/nar/9.1.133
10.1007/BF00419661
10.1038/sj.emboj.7600058
10.1371/journal.pcbi.0030193
10.1038/nrg908
10.1101/gad.447207
10.1016/j.gene.2004.11.043
10.1046/j.1365-2958.2002.03203.x
10.1002/bies.10046
10.1006/jmbi.1999.2700
10.1529/biophysj.103.020743
10.1007/3-540-45719-4_24
10.4161/rna.4.3.5308
10.1016/j.jmb.2004.10.082
10.1002/cbic.200400219
10.1261/rna.2230605
10.1002/bip.360290621
10.1186/1748-7188-1-3
10.1007/BF00818163
10.1089/cmb.2006.13.267
10.1016/S0166-218X(00)00186-4
10.1093/bioinformatics/btn544
10.1006/jmbi.1998.2436
10.1016/S0300-9084(02)01402-5
10.1002/jcc.10296
ContentType Journal Article
Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
2009 INIST-CNRS
Copyright_xml – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bioinformatics/btp481
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2654
ExternalDocumentID 19671692
22005585
10_1093_bioinformatics_btp481
10.1093/bioinformatics/btp481
ark_67375_HXZ_5PFMKBZT_Q
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
ADRIX
BCRHZ
KOP
ROX
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RIG
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
NTWIH
O~Y
RNI
RZF
RZO
VH1
ZGI
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
ID FETCH-LOGICAL-c530t-b99cc63f91cbc2adaa5c74de42c14f45690039b757b2a1bf472c4dec7d1f06433
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Sep 04 17:37:56 EDT 2025
Thu Apr 03 07:05:25 EDT 2025
Mon Jul 21 09:13:56 EDT 2025
Tue Jul 01 03:27:00 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Aug 28 03:24:18 EDT 2024
Tue Aug 05 16:47:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Partition
Partition function
RNA
Interaction
Prediction
Probability
Base pairing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-b99cc63f91cbc2adaa5c74de42c14f45690039b757b2a1bf472c4dec7d1f06433
Notes ArticleID:btp481
istex:C88077A326C7408C76A8949D01D1D374344A5896
To whom correspondence should be addressed.
Associate Editor: Ivo Hofacker
ark:/67375/HXZ-5PFMKBZT-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/25/20/2646/48995537/bioinformatics_25_20_2646.pdf
PMID 19671692
PQID 734080591
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_734080591
pubmed_primary_19671692
pascalfrancis_primary_22005585
crossref_citationtrail_10_1093_bioinformatics_btp481
crossref_primary_10_1093_bioinformatics_btp481
oup_primary_10_1093_bioinformatics_btp481
istex_primary_ark_67375_HXZ_5PFMKBZT_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-15
PublicationDateYYYYMMDD 2009-10-15
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2009
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Busch (2023013112124787300_B9) 2008; 24
Dimitrov (2023013112124787300_B12) 2004; 87
McCaskill (2023013112124787300_B27) 1990; 29
Chitsaz (2023013112124787300_B11) 2009; 25
Qin (2023013112124787300_B35) 2007
Gago (2023013112124787300_B16) 2005; 11
Zuker (2023013112124787300_B40) 1981; 9
Benne (2023013112124787300_B7) 1992; 16
Isambert (2023013112124787300_B23) 2000; 97
Mathews (2023013112124787300_B26) 1999; 288
Giegerich (2023013112124787300_B18) 2002
Mneimneh (2023013112124787300_B30) 2007
Rehmsmeier (2023013112124787300_B36) 2004; 10
Akutsu (2023013112124787300_B1) 2000; 104
Hofacker (2023013112124787300_B21) 1994; 125
Rivas (2023013112124787300_B37) 1999; 285
Argaman (2023013112124787300_B4) 2000; 300
Banerjee (2023013112124787300_B6) 2002; 24
Kugel (2023013112124787300_B24) 2007; 3
Gabow (2023013112124787300_B15) 1973
Mückstein (2023013112124787300_B32) 2006
Bachellerie (2023013112124787300_B5) 2002; 84
Meisner (2023013112124787300_B29) 2004; 5
Sharma (2023013112124787300_B38) 2007; 21
Dirks (2023013112124787300_B14) 2007; 49
Andronescu (2023013112124787300_B3) 2005; 345
Bernhart (2023013112124787300_B8) 2006; 1
Havgaard (2023013112124787300_B20) 2007; 3
Hackermüller (2023013112124787300_B19) 2005; 345
Geissmann (2023013112124787300_B17) 2004; 23
Alkan (2023013112124787300_B2) 2006; 13
Cary (2023013112124787300_B10) 1995; 3
Pervouchine (2023013112124787300_B34) 2004; 15
Narberhaus (2023013112124787300_B33) 2007; 4
Majdalani (2023013112124787300_B25) 2002; 46
Tafer (2023013112124787300_B39) 2009
McManus (2023013112124787300_B28) 2002; 3
Huang (2023013112124787300_B22) 2009
Mückstein (2023013112124787300_B31) 2008
Dirks (2023013112124787300_B13) 2003; 24
References_xml – volume: 49
  start-page: 65
  year: 2007
  ident: 2023013112124787300_B14
  article-title: Thermodynamic analysis of interacting nucleic acid strands
  publication-title: SIAM Rev.
  doi: 10.1137/060651100
– start-page: 114
  volume-title: BioInformatics Research and Development — BIRD 2008
  year: 2008
  ident: 2023013112124787300_B31
  article-title: Translational control by RNA-RNA interaction: improved computation of RNA-RNA binding thermodynamics
– volume: 300
  start-page: 1101
  year: 2000
  ident: 2023013112124787300_B4
  article-title: fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3942
– volume: 97
  start-page: 6515
  year: 2000
  ident: 2023013112124787300_B23
  article-title: Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.110533697
– volume: 25
  start-page: i365
  year: 2009
  ident: 2023013112124787300_B11
  article-title: A partition function algorithm for interacting nucleic acid strands
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp212
– volume: 3
  start-page: 89
  year: 2007
  ident: 2023013112124787300_B24
  article-title: An RNA transcriptional regulator templates its own regulatory RNA
  publication-title: Nat. Struct. Mol. Biol.
– volume: 10
  start-page: 1507
  year: 2004
  ident: 2023013112124787300_B36
  article-title: Fast and effective prediction of microRNA/target duplexes
  publication-title: Gene
– volume: 9
  start-page: 133
  year: 1981
  ident: 2023013112124787300_B40
  article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/9.1.133
– volume: 16
  start-page: 217
  year: 1992
  ident: 2023013112124787300_B7
  article-title: RNA editing in trypanosomes. The use of guide RNAs
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/BF00419661
– start-page: 1177
  volume-title: Bioinformatics
  year: 2006
  ident: 2023013112124787300_B32
  article-title: Thermodynamics of RNA-RNA binding
– year: 2007
  ident: 2023013112124787300_B35
  article-title: A combinatorial framework for RNA tertiary interaction
  publication-title: Technical Report 0710.3523
– volume: 23
  start-page: 396
  year: 2004
  ident: 2023013112124787300_B17
  article-title: Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600058
– volume: 3
  start-page: 1896
  year: 2007
  ident: 2023013112124787300_B20
  article-title: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030193
– volume: 15
  start-page: 92
  year: 2004
  ident: 2023013112124787300_B34
  article-title: IRIS: intermolecular RNA interaction search
  publication-title: Proc. Genome Inform.
– volume: 3
  start-page: 737
  year: 2002
  ident: 2023013112124787300_B28
  article-title: Gene silencing in mammals by small interfering RNAs
  publication-title: Nat. Rev.
  doi: 10.1038/nrg908
– year: 2009
  ident: 2023013112124787300_B22
  article-title: Target prediction and a statistical sampling algorithm for RNA-RNA interaction
  publication-title: Technical Report 0908.0597
– volume: 21
  start-page: 2804
  year: 2007
  ident: 2023013112124787300_B38
  article-title: A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites
  publication-title: Genes Dev.
  doi: 10.1101/gad.447207
– volume: 345
  start-page: 3
  year: 2005
  ident: 2023013112124787300_B19
  article-title: The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model
  publication-title: Gene
  doi: 10.1016/j.gene.2004.11.043
– volume: 46
  start-page: 813
  year: 2002
  ident: 2023013112124787300_B25
  article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.03203.x
– year: 2007
  ident: 2023013112124787300_B30
  article-title: On the approximation of optimal structures for RNA-RNA interaction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 24
  start-page: 119
  year: 2002
  ident: 2023013112124787300_B6
  article-title: Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression
  publication-title: Bioessays
  doi: 10.1002/bies.10046
– volume: 288
  start-page: 911
  year: 1999
  ident: 2023013112124787300_B26
  article-title: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.2700
– volume: 87
  start-page: 215
  year: 2004
  ident: 2023013112124787300_B12
  article-title: Prediction of hybridization and melting for double-stranded nucleic acids
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.020743
– start-page: 349
  volume-title: Algebraic Methodology And Software Technology
  year: 2002
  ident: 2023013112124787300_B18
  article-title: Algebraic dynamic programming
  doi: 10.1007/3-540-45719-4_24
– volume: 4
  start-page: 160
  year: 2007
  ident: 2023013112124787300_B33
  article-title: Sensory and regulatory RNAs in prokaryotes: a new german research focus
  publication-title: RNA Biol.
  doi: 10.4161/rna.4.3.5308
– volume: 345
  start-page: 1101
  year: 2005
  ident: 2023013112124787300_B3
  article-title: Secondary structure prediction of interacting RNA molecules
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.10.082
– volume: 5
  start-page: 1432
  year: 2004
  ident: 2023013112124787300_B29
  article-title: mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure
  publication-title: Chembiochem.
  doi: 10.1002/cbic.200400219
– volume: 11
  start-page: 1073
  year: 2005
  ident: 2023013112124787300_B16
  article-title: A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability
  publication-title: RNA
  doi: 10.1261/rna.2230605
– volume: 29
  start-page: 1105
  year: 1990
  ident: 2023013112124787300_B27
  article-title: The equilibrium partition function and base pair binding probabilities for RNA secondary structure
  publication-title: Biopolymers
  doi: 10.1002/bip.360290621
– volume: 1
  start-page: 3
  year: 2006
  ident: 2023013112124787300_B8
  article-title: Partition function and base pairing probabilities of RNA heterodimers
  publication-title: Algorithms Mol. Biol.
  doi: 10.1186/1748-7188-1-3
– volume: 125
  start-page: 167
  year: 1994
  ident: 2023013112124787300_B21
  article-title: Fast folding and comparison of RNA secondary structures
  publication-title: Monatsh. Chem.
  doi: 10.1007/BF00818163
– volume-title: Technical report
  year: 2009
  ident: 2023013112124787300_B39
  article-title: RNAsnoop: Efficient target prediction for box H/ACA snoRNAs
– volume: 13
  start-page: 267
  year: 2006
  ident: 2023013112124787300_B2
  article-title: RNA-RNA interaction prediction and antisense RNA target search
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2006.13.267
– volume: 3
  start-page: 75
  year: 1995
  ident: 2023013112124787300_B10
  article-title: Graph-theoretic approach to RNA modeling using comparative data
  publication-title: Proc. Intl Conf. Intell. Syst. Mol. Biol.
– start-page: 248
  volume-title: PhD Thesis
  year: 1973
  ident: 2023013112124787300_B15
  article-title: Implementation of algorithms for maximum matching on nonbipartite graphs
– volume: 104
  start-page: 45
  year: 2000
  ident: 2023013112124787300_B1
  article-title: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots
  publication-title: Disc. Appl. Math.
  doi: 10.1016/S0166-218X(00)00186-4
– volume: 24
  start-page: 2849
  year: 2008
  ident: 2023013112124787300_B9
  article-title: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn544
– volume: 285
  start-page: 2053
  year: 1999
  ident: 2023013112124787300_B37
  article-title: A dynamic programming algorithms for RNA structure prediction including pseudoknots
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2436
– volume: 84
  start-page: 775
  year: 2002
  ident: 2023013112124787300_B5
  article-title: The expanding snoRNA world
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(02)01402-5
– volume: 24
  start-page: 1664
  year: 2003
  ident: 2023013112124787300_B13
  article-title: A partition function algorithm for nucleoic acid secondary structure inluding pseudoknots
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10296
SSID ssj0051444
ssj0005056
Score 2.2495847
Snippet Motivation: The RNA–RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The...
Motivation: The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The...
The RNA-RNA interaction problem (RIP) consists in finding the energetically optimal structure of two RNA molecules that bind to each other. The standard model...
SourceID proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2646
SubjectTerms Algorithms
Base Pairing
Biological and medical sciences
Computational Biology - methods
Databases, Genetic
Fundamental and applied biological sciences. Psychology
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Nucleic Acid Conformation
RNA - chemistry
RNA - metabolism
Thermodynamics
Title Partition function and base pairing probabilities for RNA–RNA interaction prediction
URI https://api.istex.fr/ark:/67375/HXZ-5PFMKBZT-Q/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19671692
https://www.proquest.com/docview/734080591
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DEQQRv50fIw8i-FDXNkljHqc4huInG4y9hCRtQZRuzAn633vXrJMJoj4UUpqk4e7K_ZrL_Y6QI2nPDMB8GViRKUzJSQMbSRaEDLApfH2AmjGie3ObdHr8qi_6NRJWuTDfQ_iKNe3TcEoiisTFTTsZ8TLXGhwxGnb3rv91piNEZhh_A0iA-5K2yOx9FrIqf-enKec80yIK-b3KelsZmVcQWe5rXfwMRkun1F4jq1M0SVte_euklhUbZMnXl_zYJN17NAwUPUX_VTZMkVJ0XXRknnBPj2JJGU_WDT_NFJZLH29bAVwUqSTGPvEBemFEB5tbpNe-7F50gmkZhcAJFk4Cq5RzCctV5KyLTWqMcJKnGY9dxHMAULiZqawU0sYmsjmXsYPHTqZRjoCFbZOFYlhku4QyK4QxUZTkKeAsqyxP0jQRzkWA4rJM1gmvRKjdlGMcS128aB_rZnpe8tpLvk5OZ8NGnmTjtwHHpX5mvc34GU-oSaE7_YEW9-2b6_NBVz_UyQko8K-TNubUPBsV484bmG6d0ErvGj5CjKyYIhu-vWrJOCBvoWCOHW8PX69UCRISxXv_WMk-WS6DVnhwRhyQhcn4LTsE7DOxjdLePwEmFAWK
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partition+function+and+base+pairing+probabilities+for+RNA-RNA+interaction+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Huang%2C+Fenix+W+D&rft.au=Qin%2C+Jing&rft.au=Reidys%2C+Christian+M&rft.au=Stadler%2C+Peter+F&rft.date=2009-10-15&rft.eissn=1367-4811&rft.volume=25&rft.issue=20&rft.spage=2646&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp481&rft_id=info%3Apmid%2F19671692&rft.externalDocID=19671692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon