Progenitor/Stem Cells Give Rise to Liver Cancer Due to Aberrant TGF-β and IL-6 Signaling

Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regeneratin...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 7; pp. 2445 - 2450
Main Authors Tang, Yi, Kitisin, Krit, Jogunoori, Wilma, Li, Cuiling, Deng, Chu-Xia, Mueller, Susette C., Ressom, Habtom W., Rashid, Asif, He, Aiwu Ruth, Mendelson, Jonathan S., Jessup, John M., Shetty, Kirti, Zasloff, Michael, Mishra, Bibhuti, Reddy, E. P., Johnson, Lynt, Mishra, Lopa
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.02.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. $elf^{+/-}$ mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in $elf^{+/-}$ mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway.
AbstractList Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ “cancer stem cells,” such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000–50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf +/− mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf +/− mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway.
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-beta-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-beta pathway.
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. $elf^{+/-}$ mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in $elf^{+/-}$ mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway.
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF- beta -receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf super(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF- beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf super(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF- beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF- beta pathway.
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf⁺/⁻ mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf⁺/⁻ mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway.
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ “cancer stem cells,” such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000–50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf +/− mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf +/− mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. hepatocellular cancer spectrin embryonic liver fodrin Smads Stat3
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-beta-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-beta pathway.Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-beta-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-beta pathway.
Author Mueller, Susette C.
Ressom, Habtom W.
Mendelson, Jonathan S.
Jessup, John M.
Johnson, Lynt
Kitisin, Krit
Mishra, Lopa
Zasloff, Michael
Reddy, E. P.
Li, Cuiling
Shetty, Kirti
Jogunoori, Wilma
Rashid, Asif
Mishra, Bibhuti
Deng, Chu-Xia
Tang, Yi
He, Aiwu Ruth
Author_xml – sequence: 1
  givenname: Yi
  surname: Tang
  fullname: Tang, Yi
– sequence: 2
  givenname: Krit
  surname: Kitisin
  fullname: Kitisin, Krit
– sequence: 3
  givenname: Wilma
  surname: Jogunoori
  fullname: Jogunoori, Wilma
– sequence: 4
  givenname: Cuiling
  surname: Li
  fullname: Li, Cuiling
– sequence: 5
  givenname: Chu-Xia
  surname: Deng
  fullname: Deng, Chu-Xia
– sequence: 6
  givenname: Susette C.
  surname: Mueller
  fullname: Mueller, Susette C.
– sequence: 7
  givenname: Habtom W.
  surname: Ressom
  fullname: Ressom, Habtom W.
– sequence: 8
  givenname: Asif
  surname: Rashid
  fullname: Rashid, Asif
– sequence: 9
  givenname: Aiwu Ruth
  surname: He
  fullname: He, Aiwu Ruth
– sequence: 10
  givenname: Jonathan S.
  surname: Mendelson
  fullname: Mendelson, Jonathan S.
– sequence: 11
  givenname: John M.
  surname: Jessup
  fullname: Jessup, John M.
– sequence: 12
  givenname: Kirti
  surname: Shetty
  fullname: Shetty, Kirti
– sequence: 13
  givenname: Michael
  surname: Zasloff
  fullname: Zasloff, Michael
– sequence: 14
  givenname: Bibhuti
  surname: Mishra
  fullname: Mishra, Bibhuti
– sequence: 15
  givenname: E. P.
  surname: Reddy
  fullname: Reddy, E. P.
– sequence: 16
  givenname: Lynt
  surname: Johnson
  fullname: Johnson, Lynt
– sequence: 17
  givenname: Lopa
  surname: Mishra
  fullname: Mishra, Lopa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18263735$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhS1URNPCmhXIK1hN47_rGW-QqtCGSpFAtCxYWZ4ZT3A1sYPtVPS1eBCeiRkS0oJAXV3Z97tH59rnCB344C1Czyk5oaTk07U36YSUBLgCSuARmlCiaCGFIgdoQggri0owcYiOUromhCioyBN0SCsmeclhgj5_iGFpvcshTi-zXeGZ7fuE5-7G4o8uWZwDXgyHiGfGN0N5u_l1d1rbGI3P-Gp-Xvz4jo1v8cWikPjSLb3pnV8-RY870yf7bFeP0afzs6vZu2Lxfn4xO10UDXCSC9NBrWrVUWEqBUQ2FExbVZ1STEjbKCJr1sqWlyCtErbpWNXyWgBvlJK1ovwYvdnqrjf1yraN9TmaXq-jW5l4q4Nx-s-Od1_0MtxoxmRFQQ4Cr3YCMXzd2JT1yqVmeAbjbdgkXRLOCOfwIChKAFmVDytSJUCxagRf3ve-N_37fwYAtkATQ0rRdrpx2WQXxlVcrynRYw70mAN9l4NhbvrX3F76vxOvd1bGxh0NutRMCNDdpu-z_Zbvmf43OQAvtsB1GmK1JxgIoGLY-iel1dWp
CitedBy_id crossref_primary_10_1111_j_1582_4934_2011_01290_x
crossref_primary_10_1016_j_clinre_2014_04_015
crossref_primary_10_1111_gbb_12505
crossref_primary_10_1002_path_2453
crossref_primary_10_1002_hep_27968
crossref_primary_10_1002_jcp_28975
crossref_primary_10_3892_mmr_2017_6566
crossref_primary_10_1007_s43152_024_00053_6
crossref_primary_10_18632_oncotarget_5578
crossref_primary_10_1016_j_jhep_2009_02_022
crossref_primary_10_1002_hep_28951
crossref_primary_10_3390_cancers14102381
crossref_primary_10_1016_j_cbi_2020_109055
crossref_primary_10_3923_ijcr_2014_65_73
crossref_primary_10_3390_cancers11081076
crossref_primary_10_3390_cancers10060161
crossref_primary_10_1186_gm307
crossref_primary_10_1016_j_stem_2011_06_005
crossref_primary_10_1159_000343863
crossref_primary_10_3390_ijms15069422
crossref_primary_10_1007_s13402_013_0132_x
crossref_primary_10_1016_j_yexcr_2018_03_025
crossref_primary_10_3390_cancers12102746
crossref_primary_10_1089_jir_2014_0197
crossref_primary_10_1016_j_jhep_2010_05_003
crossref_primary_10_1155_2010_518674
crossref_primary_10_1038_nrgastro_2012_114
crossref_primary_10_1002_hep_23703
crossref_primary_10_1038_cdd_2015_129
crossref_primary_10_1155_2016_1065230
crossref_primary_10_3390_cancers10060199
crossref_primary_10_1016_j_omto_2018_12_006
crossref_primary_10_1093_nsr_nwu038
crossref_primary_10_1016_j_ebiom_2016_09_001
crossref_primary_10_1002_ijc_28445
crossref_primary_10_1016_j_canlet_2015_07_018
crossref_primary_10_1039_c0mb00219d
crossref_primary_10_3389_fnut_2019_00148
crossref_primary_10_1016_j_canlet_2013_12_024
crossref_primary_10_1002_hep_24252
crossref_primary_10_1016_j_jconrel_2021_06_027
crossref_primary_10_1002_hep_27886
crossref_primary_10_1007_s11033_020_06090_2
crossref_primary_10_1074_jbc_M116_773085
crossref_primary_10_1002_stem_67
crossref_primary_10_3390_cancers11101428
crossref_primary_10_1002_hep_22625
crossref_primary_10_1053_j_gastro_2016_06_052
crossref_primary_10_3390_cancers13092190
crossref_primary_10_1371_journal_pone_0144433
crossref_primary_10_1007_s00428_009_0783_1
crossref_primary_10_18632_oncotarget_8515
crossref_primary_10_1186_1471_2407_11_396
crossref_primary_10_1111_jgh_16040
crossref_primary_10_1016_j_canlet_2018_01_001
crossref_primary_10_1186_s12943_016_0572_9
crossref_primary_10_1002_path_2498
crossref_primary_10_1016_j_ejphar_2019_172597
crossref_primary_10_3390_ijms18061274
crossref_primary_10_1002_hep_24144
crossref_primary_10_1093_intimm_dxaa078
crossref_primary_10_1021_acs_jmedchem_3c02241
crossref_primary_10_1038_s41467_021_21828_7
crossref_primary_10_1155_2010_710381
crossref_primary_10_4236_ojim_2012_23024
crossref_primary_10_1002_hep_24814
crossref_primary_10_1111_j_1440_1746_2009_05815_x
crossref_primary_10_5604_16652681_1198813
crossref_primary_10_3390_v2092108
crossref_primary_10_1016_j_jhep_2012_04_024
crossref_primary_10_1158_1940_6207_CAPR_15_0339
crossref_primary_10_1016_j_jcmgh_2023_01_007
crossref_primary_10_1007_s12072_014_9545_5
crossref_primary_10_2119_molmed_2014_00173
crossref_primary_10_1186_s11658_018_0078_0
crossref_primary_10_3892_ijo_2014_2347
crossref_primary_10_1021_am506388q
crossref_primary_10_1002_bdrc_20205
crossref_primary_10_3390_cancers12061663
crossref_primary_10_1016_j_canlet_2015_07_041
crossref_primary_10_1080_1354750X_2016_1252966
crossref_primary_10_1007_s12253_017_0285_4
crossref_primary_10_3389_fonc_2021_790358
crossref_primary_10_1101_cshperspect_a022129
crossref_primary_10_1007_s13346_012_0115_x
crossref_primary_10_1016_j_canlet_2012_05_001
crossref_primary_10_2147_OTT_S262089
crossref_primary_10_3390_cancers6020741
crossref_primary_10_1126_sciadv_aba7381
crossref_primary_10_1016_j_ymthe_2021_02_016
crossref_primary_10_1038_srep25557
crossref_primary_10_1074_jbc_M110_162347
crossref_primary_10_1002_hep_22791
crossref_primary_10_1002_cncr_25861
crossref_primary_10_1186_1471_2407_11_506
crossref_primary_10_1186_1471_2164_10_S1_S15
crossref_primary_10_1089_scd_2012_0703
crossref_primary_10_1063_1_4922488
crossref_primary_10_1038_cdd_2014_131
crossref_primary_10_1158_1078_0432_CCR_13_3274
crossref_primary_10_1016_j_canlet_2014_12_019
crossref_primary_10_1101_cshperspect_a041389
crossref_primary_10_1053_j_gastro_2021_04_064
crossref_primary_10_1155_2013_187204
crossref_primary_10_1038_s41388_020_01584_6
crossref_primary_10_1093_abbs_gmx118
crossref_primary_10_1002_hep_23769
crossref_primary_10_1111_j_1478_3231_2012_02812_x
crossref_primary_10_2140_involve_2018_11_361
crossref_primary_10_4252_wjsc_v6_i5_579
crossref_primary_10_1172_JCI65859
crossref_primary_10_1007_s11010_014_2096_1
crossref_primary_10_1111_j_1440_1746_2011_07010_x
crossref_primary_10_3390_biomedicines11102623
crossref_primary_10_4254_wjh_v2_i3_114
crossref_primary_10_1111_j_1474_9726_2010_00585_x
crossref_primary_10_1111_j_1582_4934_2011_01282_x
crossref_primary_10_1038_onc_2008_448
crossref_primary_10_1016_j_radonc_2017_01_001
crossref_primary_10_1002_hep_26007
crossref_primary_10_1172_JCI66024
crossref_primary_10_1517_14728222_2013_782287
crossref_primary_10_1093_carcin_bgu163
crossref_primary_10_1186_s40001_024_02073_2
crossref_primary_10_18632_genesandcancer_234
crossref_primary_10_1016_j_bbi_2016_08_016
crossref_primary_10_4161_epi_6_6_15856
crossref_primary_10_1016_j_neo_2016_04_002
crossref_primary_10_1111_j_1349_7006_2011_01932_x
crossref_primary_10_1186_2045_3701_1_5
crossref_primary_10_1016_j_isci_2023_106254
crossref_primary_10_1007_s13277_015_3920_2
crossref_primary_10_1016_j_dld_2019_07_014
crossref_primary_10_1155_2010_984248
crossref_primary_10_1002_hep_23544
crossref_primary_10_1002_jcp_30529
crossref_primary_10_1186_s12885_015_1127_y
crossref_primary_10_1158_0008_5472_CAN_10_3951
crossref_primary_10_1002_jcp_22219
crossref_primary_10_1016_j_vetimm_2021_110221
crossref_primary_10_1053_j_gastro_2017_09_007
crossref_primary_10_1158_0008_5472_CAN_15_1548
crossref_primary_10_18632_oncotarget_9677
crossref_primary_10_1053_j_seminoncol_2012_05_011
crossref_primary_10_1097_RCT_0b013e31820bad61
crossref_primary_10_1016_j_canlet_2009_04_027
crossref_primary_10_4061_2011_486954
crossref_primary_10_1073_pnas_1114438109
crossref_primary_10_3892_or_2012_2082
crossref_primary_10_1016_j_cct_2013_03_013
crossref_primary_10_1158_0008_5472_CAN_11_1982
crossref_primary_10_18632_oncotarget_12424
crossref_primary_10_1002_hep_22902
crossref_primary_10_1007_s12029_017_9960_7
crossref_primary_10_1002_stem_2472
crossref_primary_10_1038_srep24397
crossref_primary_10_1016_j_jfma_2016_08_009
crossref_primary_10_3389_fcell_2021_691410
crossref_primary_10_1002_ijc_26312
crossref_primary_10_1186_1476_4598_9_267
crossref_primary_10_1007_s40139_015_0088_9
crossref_primary_10_1007_s00595_011_0058_8
crossref_primary_10_1002_hep_25745
crossref_primary_10_1002_hep_23449
crossref_primary_10_1007_s12015_008_9035_z
crossref_primary_10_1111_j_1440_1746_2009_06121_x
crossref_primary_10_5009_gnl_2012_6_1_29
crossref_primary_10_1586_17474124_2013_846826
crossref_primary_10_3390_ijms222111765
crossref_primary_10_1097_01_XEJ_0000421475_16823_a3
crossref_primary_10_1002_hep_24675
crossref_primary_10_1146_annurev_pathmechdis_012419_032824
crossref_primary_10_1002_hep_23697
crossref_primary_10_18632_oncotarget_12569
crossref_primary_10_1002_hep_22369
crossref_primary_10_1016_j_canlet_2016_11_023
crossref_primary_10_1053_j_gastro_2012_02_009
crossref_primary_10_18632_genesandcancer_156
crossref_primary_10_1111_j_1538_7836_2010_03932_x
crossref_primary_10_18632_oncotarget_13530
crossref_primary_10_1038_s41419_018_0456_6
crossref_primary_10_1111_j_1440_1746_2011_06762_x
crossref_primary_10_1158_0008_5472_CAN_09_1482
crossref_primary_10_1517_14728220903074588
crossref_primary_10_1186_s12885_022_10195_1
crossref_primary_10_1007_s11010_010_0509_3
crossref_primary_10_1007_s11033_021_06334_9
crossref_primary_10_1016_j_canlet_2013_09_017
crossref_primary_10_3748_wjg_v23_i37_6750
crossref_primary_10_1002_hep_25890
crossref_primary_10_3109_07357907_2012_732161
crossref_primary_10_1038_srep17564
crossref_primary_10_1002_hep_23474
crossref_primary_10_3390_cancers12030684
crossref_primary_10_1186_s12885_019_5825_8
crossref_primary_10_1002_hep4_1062
crossref_primary_10_1016_j_bbcan_2023_188870
crossref_primary_10_3748_wjg_v24_i39_4436
crossref_primary_10_1186_s12885_015_1166_4
crossref_primary_10_1159_000327908
crossref_primary_10_1016_j_vetimm_2016_07_010
crossref_primary_10_1111_j_1478_3231_2009_02040_x
crossref_primary_10_1016_j_clinbiochem_2014_05_002
crossref_primary_10_3389_fphys_2022_903302
crossref_primary_10_1111_j_1365_2036_2010_04332_x
crossref_primary_10_1002_ijc_24281
crossref_primary_10_3389_fimmu_2023_1204907
crossref_primary_10_4252_wjsc_v6_i5_606
crossref_primary_10_1097_PPO_0000000000000682
crossref_primary_10_1002_hep_28927
crossref_primary_10_1002_path_4060
crossref_primary_10_1002_hep_22704
crossref_primary_10_1371_journal_pone_0096698
crossref_primary_10_1371_journal_pone_0095486
crossref_primary_10_1007_s11684_023_1049_z
crossref_primary_10_1016_j_etp_2013_11_007
Cites_doi 10.1016/S0168-8278(99)80303-1
10.1126/science.1092436
10.1002/hep.20375
10.1385/SCR:1:3:253
10.1016/S0092-8674(03)00392-1
10.1038/sj.onc.1203551
10.1016/S0305-7372(75)80015-6
10.1101/gad.14.6.627
10.1016/S0092-8674(00)00121-5
10.1038/sj.onc.1208924
10.1093/carcin/bgh321
10.1038/sj.onc.1209211
10.1038/sj.onc.1204544
10.1093/emboj/17.19.5588
10.1158/1078-0432.1110.11.3
10.1101/gad.12.13.2048
10.1038/sj.onc.1202313
10.1016/S0002-9440(10)65605-2
10.1038/nature04956
10.1172/JCI0215650
10.1016/S1359-6101(99)00028-3
10.1073/pnas.94.8.3801
10.1038/sj.onc.1208915
10.1158/0008-5472.CAN-05-3447
10.1038/nrc1934
10.1111/j.1365-2559.2006.02468.x
10.1038/sj.onc.1209558
10.1016/j.cell.2006.07.024
10.1016/S0046-8177(88)80205-3
10.1016/j.cell.2006.05.030
10.1002/dvdy.1235
10.1016/j.surg.2005.12.011
10.1161/01.ATV.0000021412.56621.A2
10.1053/j.gastro.2005.07.055
10.1002/hep.21227
10.1002/hep.20969
10.1038/sj.onc.1209281
10.1136/ard.2004.032243
10.1126/science.1075994
10.1126/science.1118389
10.1373/clinchem.2005.065722
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: 2008 by The National Academy of Sciences of the USA
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
8FD
FR3
H94
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0705395105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Genetics Abstracts
CrossRef
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2450
ExternalDocumentID PMC2268156
18263735
10_1073_pnas_0705395105
105_7_2445
25451486
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK056111
– fundername: NIDDK NIH HHS
  grantid: R01 DK58637
– fundername: NCI NIH HHS
  grantid: R01 CA4285718A
– fundername: NCI NIH HHS
  grantid: R01 CA106614
– fundername: NIDDK NIH HHS
  grantid: R01 DK56111
– fundername: NCI NIH HHS
  grantid: R01 CA106614A
– fundername: NCI NIH HHS
  grantid: R01 CA042857
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
8FD
FR3
H94
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c530t-af5b9b9f14a89506c15ad88f99246ec906b2d6d3756e94ecf28d3b453c996b913
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:50:56 EDT 2025
Fri Jul 11 05:39:17 EDT 2025
Fri Jul 11 03:20:03 EDT 2025
Fri Jul 11 14:38:34 EDT 2025
Fri May 30 11:01:15 EDT 2025
Tue Jul 01 02:38:53 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Wed Nov 11 00:29:27 EST 2020
Thu May 30 08:50:29 EDT 2019
Thu May 29 08:42:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c530t-af5b9b9f14a89506c15ad88f99246ec906b2d6d3756e94ecf28d3b453c996b913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Raymond L. White, University of California, San Francisco, Emeryville, CA, and approved December 10, 2007
Author contributions: Y.T. and K.K. contributed equally to this work; Y.T., K.K., K.S., J.M.J., B.M., L.J., and L.M. designed research; Y.T., K.K., W.J., C.L., C.-X.D., and J.S.M. performed research; C.L., C.-X.D., S.C.M., and H.W.R. contributed new reagents/analytic tools; Y.T., K.K., S.C.M., H.R., A.R., A.R.H., K.S., J.M.J., M.Z., B.M., E.P.R., L.J., and L.M. analyzed data; and Y.T., K.K., A.R.H., J.M.J., K.S., M.Z., B.M., E.P.R., L.J., and L.M. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.0705395105
PMID 18263735
PQID 19459286
PQPubID 23462
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_0705395105
proquest_miscellaneous_47556876
pubmed_primary_18263735
proquest_miscellaneous_70320335
pnas_primary_105_7_2445_fulltext
proquest_miscellaneous_19459286
crossref_primary_10_1073_pnas_0705395105
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268156
pnas_primary_105_7_2445
jstor_primary_25451486
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-19
PublicationDateYYYYMMDD 2008-02-19
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-19
  day: 19
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Bergsagel DE (e_1_3_3_1_2) 1968; 28
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Braun L (e_1_3_3_37_2) 1989; 49
Koomen JM (e_1_3_3_30_2) 2005; 11
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
18508299 - Hepatology. 2008 Jun;47(6):2134-6. doi: 10.1002/hep.22369.
References_xml – ident: e_1_3_3_38_2
  doi: 10.1016/S0168-8278(99)80303-1
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1092436
– ident: e_1_3_3_17_2
  doi: 10.1002/hep.20375
– volume: 49
  start-page: 1554
  year: 1989
  ident: e_1_3_3_37_2
  publication-title: Cancer Res
– ident: e_1_3_3_13_2
  doi: 10.1385/SCR:1:3:253
– ident: e_1_3_3_22_2
  doi: 10.1016/S0092-8674(03)00392-1
– ident: e_1_3_3_27_2
  doi: 10.1038/sj.onc.1203551
– ident: e_1_3_3_2_2
  doi: 10.1016/S0305-7372(75)80015-6
– ident: e_1_3_3_36_2
  doi: 10.1101/gad.14.6.627
– ident: e_1_3_3_6_2
  doi: 10.1016/S0092-8674(00)00121-5
– ident: e_1_3_3_7_2
  doi: 10.1038/sj.onc.1208924
– ident: e_1_3_3_21_2
  doi: 10.1093/carcin/bgh321
– ident: e_1_3_3_43_2
  doi: 10.1038/sj.onc.1209211
– ident: e_1_3_3_11_2
  doi: 10.1038/sj.onc.1204544
– ident: e_1_3_3_25_2
  doi: 10.1093/emboj/17.19.5588
– volume: 11
  start-page: 1110
  year: 2005
  ident: e_1_3_3_30_2
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.1110.11.3
– ident: e_1_3_3_24_2
  doi: 10.1101/gad.12.13.2048
– ident: e_1_3_3_8_2
  doi: 10.1038/sj.onc.1202313
– ident: e_1_3_3_26_2
  doi: 10.1016/S0002-9440(10)65605-2
– ident: e_1_3_3_3_2
  doi: 10.1038/nature04956
– ident: e_1_3_3_28_2
  doi: 10.1172/JCI0215650
– ident: e_1_3_3_10_2
  doi: 10.1016/S1359-6101(99)00028-3
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.94.8.3801
– ident: e_1_3_3_41_2
  doi: 10.1038/sj.onc.1208915
– ident: e_1_3_3_42_2
  doi: 10.1158/0008-5472.CAN-05-3447
– volume: 28
  start-page: 2187
  year: 1968
  ident: e_1_3_3_1_2
  publication-title: Cancer Res
– ident: e_1_3_3_12_2
  doi: 10.1038/nrc1934
– ident: e_1_3_3_15_2
  doi: 10.1111/j.1365-2559.2006.02468.x
– ident: e_1_3_3_39_2
  doi: 10.1038/sj.onc.1209558
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_3_3_16_2
  doi: 10.1016/S0046-8177(88)80205-3
– ident: e_1_3_3_14_2
  doi: 10.1016/j.cell.2006.05.030
– ident: e_1_3_3_29_2
  doi: 10.1002/dvdy.1235
– ident: e_1_3_3_19_2
  doi: 10.1016/j.surg.2005.12.011
– ident: e_1_3_3_33_2
  doi: 10.1161/01.ATV.0000021412.56621.A2
– ident: e_1_3_3_35_2
  doi: 10.1053/j.gastro.2005.07.055
– ident: e_1_3_3_40_2
  doi: 10.1002/hep.21227
– ident: e_1_3_3_18_2
  doi: 10.1002/hep.20969
– ident: e_1_3_3_31_2
  doi: 10.1038/sj.onc.1209281
– ident: e_1_3_3_34_2
  doi: 10.1136/ard.2004.032243
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1075994
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1118389
– ident: e_1_3_3_32_2
  doi: 10.1373/clinchem.2005.065722
– reference: 18508299 - Hepatology. 2008 Jun;47(6):2134-6. doi: 10.1002/hep.22369.
SSID ssj0009580
Score 2.419606
Snippet Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2445
SubjectTerms Animals
Apoptosis
Biological Sciences
Calcium-Binding Proteins - deficiency
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - metabolism
Cell growth
Cell Line
Cell lines
Cell Proliferation
Cell Separation
Cellular differentiation
Down-Regulation
Embryonic stem cells
foregut
Gene Expression Profiling
genes
Glycoproteins - deficiency
Glycoproteins - genetics
Glycoproteins - metabolism
Hepatocellular carcinoma
Hepatocytes
hepatoma
Humans
interleukin-6
Interleukin-6 - metabolism
Liver
Liver - cytology
Liver - metabolism
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Mice
Mice, Knockout
Pluripotent stem cells
Progenitor cells
Proteinase Inhibitory Proteins, Secretory
proteins
Signal Transduction
STAT3 Transcription Factor - metabolism
Stem cells
Stem Cells - metabolism
transforming growth factor beta
Transforming Growth Factor beta - metabolism
Title Progenitor/Stem Cells Give Rise to Liver Cancer Due to Aberrant TGF-β and IL-6 Signaling
URI https://www.jstor.org/stable/25451486
http://www.pnas.org/content/105/7/2445.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18263735
https://www.proquest.com/docview/19459286
https://www.proquest.com/docview/47556876
https://www.proquest.com/docview/70320335
https://pubmed.ncbi.nlm.nih.gov/PMC2268156
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGChPH3gsChKt4ntxD5WaLurVSl76EpFQorsNNktqhLUpheu_HFm4ry6bHldosqepFbm84zHmflMyDupU8V9ztxUi6HLQ5m6Jo4XrtLaMzIwItW4D_lxGpxf8Yu5mPd6PzpZS9vCDOLvd9aV_I9WoQ30ilWy_6DZ5qHQAL9Bv3AFDcP1r3R8uc6hb1luu4-RkdnBffiNc43pQDB7y2MxVph5gcldMR4Gvi3btEnW4KQKZ3Y2djFXS9u84IkbOJjRoVe1R_va_FPl5zZ1VsG03kYctUUplaXYOK5zOR11tgWsRfm8bD_5F8uNpS8AM9Ok3lzk19ssz231Oxis1mlMlpYAdNmMrN6qkJjdXBnEunQAXCK3RdODxFpcWLC4AbdnhjYmeSg62Au7BpZb9snKWfvc0tb-4gjAcuHpxZneDMCoCVYuJFufV3_nn36KxleTSTQ7nc_ukfs-xBp4DMbZ3OswN0tbx1SNveaHCtnJrcfvLG1sditS5oLQXeHL7SzczrJm9og8rOIROrLgOiS9JHtMDms90uOKlvz9E_KlRdsJYo2WWKOINYpYo0VOS6xRizUKWMO2GmsUsUYRaxSwRhFrtMHaU3I1Pp19OHerszncWLBh4epUGGVU6nEtlRgGsSf0QspUQTwfJLEaBsZfBAsWiiBRPIlTXy6Y4YLFEGAb5bEjcpDlWfKc0FgqbVIlfROAB4GAN07Rz3BvwTSSJ_XJoH6tUVwR1-P5KauoTKAIWYSvOGr10CfHzQ3fLGfLftGjUk-NnA8Rhcdl0CfPStH2fhGFEaKvT-ieniit8rX65G2t7gisNapDZ0m-3USe4kL5-Ph9EjxETsDwNxLgo_0hYwKHWAKoHYr0AxZiT7gDrUYAueR3e7LlTckpD1EY8ka9-OPIX5IH7dR-RQ6K9TZ5Devywrwp581PgXTiBQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progenitor%2Fstem+cells+give+rise+to+liver+cancer+due+to+aberrant+TGF-+beta+and+IL-6+signaling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tang%2C+Yi&rft.au=Kitisin%2C+Krit&rft.au=Jogunoori%2C+Wilma&rft.au=Li%2C+Cuiling&rft.date=2008-02-19&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=7&rft.spage=2445&rft.epage=2450&rft_id=info:doi/10.1073%2Fpnas.0705395105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif