Progenitor/Stem Cells Give Rise to Liver Cancer Due to Aberrant TGF-β and IL-6 Signaling
Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regeneratin...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 7; pp. 2445 - 2450 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.02.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. $elf^{+/-}$ mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in $elf^{+/-}$ mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. |
---|---|
AbstractList | Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ “cancer stem cells,” such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000–50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF.
elf
+/−
mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in
elf
+/−
mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-beta-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-beta pathway. Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. $elf^{+/-}$ mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in $elf^{+/-}$ mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF- beta -receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf super(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF- beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf super(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF- beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF- beta pathway. Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf⁺/⁻ mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf⁺/⁻ mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ “cancer stem cells,” such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000–50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf +/− mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf +/− mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. hepatocellular cancer spectrin embryonic liver fodrin Smads Stat3 Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-beta-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-beta pathway.Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ "cancer stem cells," such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000-50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-beta-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf(+/-) mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-beta signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf(+/-) mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-beta signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-beta pathway. |
Author | Mueller, Susette C. Ressom, Habtom W. Mendelson, Jonathan S. Jessup, John M. Johnson, Lynt Kitisin, Krit Mishra, Lopa Zasloff, Michael Reddy, E. P. Li, Cuiling Shetty, Kirti Jogunoori, Wilma Rashid, Asif Mishra, Bibhuti Deng, Chu-Xia Tang, Yi He, Aiwu Ruth |
Author_xml | – sequence: 1 givenname: Yi surname: Tang fullname: Tang, Yi – sequence: 2 givenname: Krit surname: Kitisin fullname: Kitisin, Krit – sequence: 3 givenname: Wilma surname: Jogunoori fullname: Jogunoori, Wilma – sequence: 4 givenname: Cuiling surname: Li fullname: Li, Cuiling – sequence: 5 givenname: Chu-Xia surname: Deng fullname: Deng, Chu-Xia – sequence: 6 givenname: Susette C. surname: Mueller fullname: Mueller, Susette C. – sequence: 7 givenname: Habtom W. surname: Ressom fullname: Ressom, Habtom W. – sequence: 8 givenname: Asif surname: Rashid fullname: Rashid, Asif – sequence: 9 givenname: Aiwu Ruth surname: He fullname: He, Aiwu Ruth – sequence: 10 givenname: Jonathan S. surname: Mendelson fullname: Mendelson, Jonathan S. – sequence: 11 givenname: John M. surname: Jessup fullname: Jessup, John M. – sequence: 12 givenname: Kirti surname: Shetty fullname: Shetty, Kirti – sequence: 13 givenname: Michael surname: Zasloff fullname: Zasloff, Michael – sequence: 14 givenname: Bibhuti surname: Mishra fullname: Mishra, Bibhuti – sequence: 15 givenname: E. P. surname: Reddy fullname: Reddy, E. P. – sequence: 16 givenname: Lynt surname: Johnson fullname: Johnson, Lynt – sequence: 17 givenname: Lopa surname: Mishra fullname: Mishra, Lopa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18263735$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhS1URNPCmhXIK1hN47_rGW-QqtCGSpFAtCxYWZ4ZT3A1sYPtVPS1eBCeiRkS0oJAXV3Z97tH59rnCB344C1Czyk5oaTk07U36YSUBLgCSuARmlCiaCGFIgdoQggri0owcYiOUromhCioyBN0SCsmeclhgj5_iGFpvcshTi-zXeGZ7fuE5-7G4o8uWZwDXgyHiGfGN0N5u_l1d1rbGI3P-Gp-Xvz4jo1v8cWikPjSLb3pnV8-RY870yf7bFeP0afzs6vZu2Lxfn4xO10UDXCSC9NBrWrVUWEqBUQ2FExbVZ1STEjbKCJr1sqWlyCtErbpWNXyWgBvlJK1ovwYvdnqrjf1yraN9TmaXq-jW5l4q4Nx-s-Od1_0MtxoxmRFQQ4Cr3YCMXzd2JT1yqVmeAbjbdgkXRLOCOfwIChKAFmVDytSJUCxagRf3ve-N_37fwYAtkATQ0rRdrpx2WQXxlVcrynRYw70mAN9l4NhbvrX3F76vxOvd1bGxh0NutRMCNDdpu-z_Zbvmf43OQAvtsB1GmK1JxgIoGLY-iel1dWp |
CitedBy_id | crossref_primary_10_1111_j_1582_4934_2011_01290_x crossref_primary_10_1016_j_clinre_2014_04_015 crossref_primary_10_1111_gbb_12505 crossref_primary_10_1002_path_2453 crossref_primary_10_1002_hep_27968 crossref_primary_10_1002_jcp_28975 crossref_primary_10_3892_mmr_2017_6566 crossref_primary_10_1007_s43152_024_00053_6 crossref_primary_10_18632_oncotarget_5578 crossref_primary_10_1016_j_jhep_2009_02_022 crossref_primary_10_1002_hep_28951 crossref_primary_10_3390_cancers14102381 crossref_primary_10_1016_j_cbi_2020_109055 crossref_primary_10_3923_ijcr_2014_65_73 crossref_primary_10_3390_cancers11081076 crossref_primary_10_3390_cancers10060161 crossref_primary_10_1186_gm307 crossref_primary_10_1016_j_stem_2011_06_005 crossref_primary_10_1159_000343863 crossref_primary_10_3390_ijms15069422 crossref_primary_10_1007_s13402_013_0132_x crossref_primary_10_1016_j_yexcr_2018_03_025 crossref_primary_10_3390_cancers12102746 crossref_primary_10_1089_jir_2014_0197 crossref_primary_10_1016_j_jhep_2010_05_003 crossref_primary_10_1155_2010_518674 crossref_primary_10_1038_nrgastro_2012_114 crossref_primary_10_1002_hep_23703 crossref_primary_10_1038_cdd_2015_129 crossref_primary_10_1155_2016_1065230 crossref_primary_10_3390_cancers10060199 crossref_primary_10_1016_j_omto_2018_12_006 crossref_primary_10_1093_nsr_nwu038 crossref_primary_10_1016_j_ebiom_2016_09_001 crossref_primary_10_1002_ijc_28445 crossref_primary_10_1016_j_canlet_2015_07_018 crossref_primary_10_1039_c0mb00219d crossref_primary_10_3389_fnut_2019_00148 crossref_primary_10_1016_j_canlet_2013_12_024 crossref_primary_10_1002_hep_24252 crossref_primary_10_1016_j_jconrel_2021_06_027 crossref_primary_10_1002_hep_27886 crossref_primary_10_1007_s11033_020_06090_2 crossref_primary_10_1074_jbc_M116_773085 crossref_primary_10_1002_stem_67 crossref_primary_10_3390_cancers11101428 crossref_primary_10_1002_hep_22625 crossref_primary_10_1053_j_gastro_2016_06_052 crossref_primary_10_3390_cancers13092190 crossref_primary_10_1371_journal_pone_0144433 crossref_primary_10_1007_s00428_009_0783_1 crossref_primary_10_18632_oncotarget_8515 crossref_primary_10_1186_1471_2407_11_396 crossref_primary_10_1111_jgh_16040 crossref_primary_10_1016_j_canlet_2018_01_001 crossref_primary_10_1186_s12943_016_0572_9 crossref_primary_10_1002_path_2498 crossref_primary_10_1016_j_ejphar_2019_172597 crossref_primary_10_3390_ijms18061274 crossref_primary_10_1002_hep_24144 crossref_primary_10_1093_intimm_dxaa078 crossref_primary_10_1021_acs_jmedchem_3c02241 crossref_primary_10_1038_s41467_021_21828_7 crossref_primary_10_1155_2010_710381 crossref_primary_10_4236_ojim_2012_23024 crossref_primary_10_1002_hep_24814 crossref_primary_10_1111_j_1440_1746_2009_05815_x crossref_primary_10_5604_16652681_1198813 crossref_primary_10_3390_v2092108 crossref_primary_10_1016_j_jhep_2012_04_024 crossref_primary_10_1158_1940_6207_CAPR_15_0339 crossref_primary_10_1016_j_jcmgh_2023_01_007 crossref_primary_10_1007_s12072_014_9545_5 crossref_primary_10_2119_molmed_2014_00173 crossref_primary_10_1186_s11658_018_0078_0 crossref_primary_10_3892_ijo_2014_2347 crossref_primary_10_1021_am506388q crossref_primary_10_1002_bdrc_20205 crossref_primary_10_3390_cancers12061663 crossref_primary_10_1016_j_canlet_2015_07_041 crossref_primary_10_1080_1354750X_2016_1252966 crossref_primary_10_1007_s12253_017_0285_4 crossref_primary_10_3389_fonc_2021_790358 crossref_primary_10_1101_cshperspect_a022129 crossref_primary_10_1007_s13346_012_0115_x crossref_primary_10_1016_j_canlet_2012_05_001 crossref_primary_10_2147_OTT_S262089 crossref_primary_10_3390_cancers6020741 crossref_primary_10_1126_sciadv_aba7381 crossref_primary_10_1016_j_ymthe_2021_02_016 crossref_primary_10_1038_srep25557 crossref_primary_10_1074_jbc_M110_162347 crossref_primary_10_1002_hep_22791 crossref_primary_10_1002_cncr_25861 crossref_primary_10_1186_1471_2407_11_506 crossref_primary_10_1186_1471_2164_10_S1_S15 crossref_primary_10_1089_scd_2012_0703 crossref_primary_10_1063_1_4922488 crossref_primary_10_1038_cdd_2014_131 crossref_primary_10_1158_1078_0432_CCR_13_3274 crossref_primary_10_1016_j_canlet_2014_12_019 crossref_primary_10_1101_cshperspect_a041389 crossref_primary_10_1053_j_gastro_2021_04_064 crossref_primary_10_1155_2013_187204 crossref_primary_10_1038_s41388_020_01584_6 crossref_primary_10_1093_abbs_gmx118 crossref_primary_10_1002_hep_23769 crossref_primary_10_1111_j_1478_3231_2012_02812_x crossref_primary_10_2140_involve_2018_11_361 crossref_primary_10_4252_wjsc_v6_i5_579 crossref_primary_10_1172_JCI65859 crossref_primary_10_1007_s11010_014_2096_1 crossref_primary_10_1111_j_1440_1746_2011_07010_x crossref_primary_10_3390_biomedicines11102623 crossref_primary_10_4254_wjh_v2_i3_114 crossref_primary_10_1111_j_1474_9726_2010_00585_x crossref_primary_10_1111_j_1582_4934_2011_01282_x crossref_primary_10_1038_onc_2008_448 crossref_primary_10_1016_j_radonc_2017_01_001 crossref_primary_10_1002_hep_26007 crossref_primary_10_1172_JCI66024 crossref_primary_10_1517_14728222_2013_782287 crossref_primary_10_1093_carcin_bgu163 crossref_primary_10_1186_s40001_024_02073_2 crossref_primary_10_18632_genesandcancer_234 crossref_primary_10_1016_j_bbi_2016_08_016 crossref_primary_10_4161_epi_6_6_15856 crossref_primary_10_1016_j_neo_2016_04_002 crossref_primary_10_1111_j_1349_7006_2011_01932_x crossref_primary_10_1186_2045_3701_1_5 crossref_primary_10_1016_j_isci_2023_106254 crossref_primary_10_1007_s13277_015_3920_2 crossref_primary_10_1016_j_dld_2019_07_014 crossref_primary_10_1155_2010_984248 crossref_primary_10_1002_hep_23544 crossref_primary_10_1002_jcp_30529 crossref_primary_10_1186_s12885_015_1127_y crossref_primary_10_1158_0008_5472_CAN_10_3951 crossref_primary_10_1002_jcp_22219 crossref_primary_10_1016_j_vetimm_2021_110221 crossref_primary_10_1053_j_gastro_2017_09_007 crossref_primary_10_1158_0008_5472_CAN_15_1548 crossref_primary_10_18632_oncotarget_9677 crossref_primary_10_1053_j_seminoncol_2012_05_011 crossref_primary_10_1097_RCT_0b013e31820bad61 crossref_primary_10_1016_j_canlet_2009_04_027 crossref_primary_10_4061_2011_486954 crossref_primary_10_1073_pnas_1114438109 crossref_primary_10_3892_or_2012_2082 crossref_primary_10_1016_j_cct_2013_03_013 crossref_primary_10_1158_0008_5472_CAN_11_1982 crossref_primary_10_18632_oncotarget_12424 crossref_primary_10_1002_hep_22902 crossref_primary_10_1007_s12029_017_9960_7 crossref_primary_10_1002_stem_2472 crossref_primary_10_1038_srep24397 crossref_primary_10_1016_j_jfma_2016_08_009 crossref_primary_10_3389_fcell_2021_691410 crossref_primary_10_1002_ijc_26312 crossref_primary_10_1186_1476_4598_9_267 crossref_primary_10_1007_s40139_015_0088_9 crossref_primary_10_1007_s00595_011_0058_8 crossref_primary_10_1002_hep_25745 crossref_primary_10_1002_hep_23449 crossref_primary_10_1007_s12015_008_9035_z crossref_primary_10_1111_j_1440_1746_2009_06121_x crossref_primary_10_5009_gnl_2012_6_1_29 crossref_primary_10_1586_17474124_2013_846826 crossref_primary_10_3390_ijms222111765 crossref_primary_10_1097_01_XEJ_0000421475_16823_a3 crossref_primary_10_1002_hep_24675 crossref_primary_10_1146_annurev_pathmechdis_012419_032824 crossref_primary_10_1002_hep_23697 crossref_primary_10_18632_oncotarget_12569 crossref_primary_10_1002_hep_22369 crossref_primary_10_1016_j_canlet_2016_11_023 crossref_primary_10_1053_j_gastro_2012_02_009 crossref_primary_10_18632_genesandcancer_156 crossref_primary_10_1111_j_1538_7836_2010_03932_x crossref_primary_10_18632_oncotarget_13530 crossref_primary_10_1038_s41419_018_0456_6 crossref_primary_10_1111_j_1440_1746_2011_06762_x crossref_primary_10_1158_0008_5472_CAN_09_1482 crossref_primary_10_1517_14728220903074588 crossref_primary_10_1186_s12885_022_10195_1 crossref_primary_10_1007_s11010_010_0509_3 crossref_primary_10_1007_s11033_021_06334_9 crossref_primary_10_1016_j_canlet_2013_09_017 crossref_primary_10_3748_wjg_v23_i37_6750 crossref_primary_10_1002_hep_25890 crossref_primary_10_3109_07357907_2012_732161 crossref_primary_10_1038_srep17564 crossref_primary_10_1002_hep_23474 crossref_primary_10_3390_cancers12030684 crossref_primary_10_1186_s12885_019_5825_8 crossref_primary_10_1002_hep4_1062 crossref_primary_10_1016_j_bbcan_2023_188870 crossref_primary_10_3748_wjg_v24_i39_4436 crossref_primary_10_1186_s12885_015_1166_4 crossref_primary_10_1159_000327908 crossref_primary_10_1016_j_vetimm_2016_07_010 crossref_primary_10_1111_j_1478_3231_2009_02040_x crossref_primary_10_1016_j_clinbiochem_2014_05_002 crossref_primary_10_3389_fphys_2022_903302 crossref_primary_10_1111_j_1365_2036_2010_04332_x crossref_primary_10_1002_ijc_24281 crossref_primary_10_3389_fimmu_2023_1204907 crossref_primary_10_4252_wjsc_v6_i5_606 crossref_primary_10_1097_PPO_0000000000000682 crossref_primary_10_1002_hep_28927 crossref_primary_10_1002_path_4060 crossref_primary_10_1002_hep_22704 crossref_primary_10_1371_journal_pone_0096698 crossref_primary_10_1371_journal_pone_0095486 crossref_primary_10_1007_s11684_023_1049_z crossref_primary_10_1016_j_etp_2013_11_007 |
Cites_doi | 10.1016/S0168-8278(99)80303-1 10.1126/science.1092436 10.1002/hep.20375 10.1385/SCR:1:3:253 10.1016/S0092-8674(03)00392-1 10.1038/sj.onc.1203551 10.1016/S0305-7372(75)80015-6 10.1101/gad.14.6.627 10.1016/S0092-8674(00)00121-5 10.1038/sj.onc.1208924 10.1093/carcin/bgh321 10.1038/sj.onc.1209211 10.1038/sj.onc.1204544 10.1093/emboj/17.19.5588 10.1158/1078-0432.1110.11.3 10.1101/gad.12.13.2048 10.1038/sj.onc.1202313 10.1016/S0002-9440(10)65605-2 10.1038/nature04956 10.1172/JCI0215650 10.1016/S1359-6101(99)00028-3 10.1073/pnas.94.8.3801 10.1038/sj.onc.1208915 10.1158/0008-5472.CAN-05-3447 10.1038/nrc1934 10.1111/j.1365-2559.2006.02468.x 10.1038/sj.onc.1209558 10.1016/j.cell.2006.07.024 10.1016/S0046-8177(88)80205-3 10.1016/j.cell.2006.05.030 10.1002/dvdy.1235 10.1016/j.surg.2005.12.011 10.1161/01.ATV.0000021412.56621.A2 10.1053/j.gastro.2005.07.055 10.1002/hep.21227 10.1002/hep.20969 10.1038/sj.onc.1209281 10.1136/ard.2004.032243 10.1126/science.1075994 10.1126/science.1118389 10.1373/clinchem.2005.065722 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: 2008 by The National Academy of Sciences of the USA |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 8FD FR3 H94 P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0705395105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts CrossRef AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2450 |
ExternalDocumentID | PMC2268156 18263735 10_1073_pnas_0705395105 105_7_2445 25451486 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK056111 – fundername: NIDDK NIH HHS grantid: R01 DK58637 – fundername: NCI NIH HHS grantid: R01 CA4285718A – fundername: NCI NIH HHS grantid: R01 CA106614 – fundername: NIDDK NIH HHS grantid: R01 DK56111 – fundername: NCI NIH HHS grantid: R01 CA106614A – fundername: NCI NIH HHS grantid: R01 CA042857 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 8FD FR3 H94 P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c530t-af5b9b9f14a89506c15ad88f99246ec906b2d6d3756e94ecf28d3b453c996b913 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:50:56 EDT 2025 Fri Jul 11 05:39:17 EDT 2025 Fri Jul 11 03:20:03 EDT 2025 Fri Jul 11 14:38:34 EDT 2025 Fri May 30 11:01:15 EDT 2025 Tue Jul 01 02:38:53 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Wed Nov 11 00:29:27 EST 2020 Thu May 30 08:50:29 EDT 2019 Thu May 29 08:42:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c530t-af5b9b9f14a89506c15ad88f99246ec906b2d6d3756e94ecf28d3b453c996b913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Raymond L. White, University of California, San Francisco, Emeryville, CA, and approved December 10, 2007 Author contributions: Y.T. and K.K. contributed equally to this work; Y.T., K.K., K.S., J.M.J., B.M., L.J., and L.M. designed research; Y.T., K.K., W.J., C.L., C.-X.D., and J.S.M. performed research; C.L., C.-X.D., S.C.M., and H.W.R. contributed new reagents/analytic tools; Y.T., K.K., S.C.M., H.R., A.R., A.R.H., K.S., J.M.J., M.Z., B.M., E.P.R., L.J., and L.M. analyzed data; and Y.T., K.K., A.R.H., J.M.J., K.S., M.Z., B.M., E.P.R., L.J., and L.M. wrote the paper. |
OpenAccessLink | http://doi.org/10.1073/pnas.0705395105 |
PMID | 18263735 |
PQID | 19459286 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_0705395105 proquest_miscellaneous_47556876 pubmed_primary_18263735 proquest_miscellaneous_70320335 pnas_primary_105_7_2445_fulltext proquest_miscellaneous_19459286 crossref_primary_10_1073_pnas_0705395105 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268156 pnas_primary_105_7_2445 jstor_primary_25451486 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-19 |
PublicationDateYYYYMMDD | 2008-02-19 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-19 day: 19 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Bergsagel DE (e_1_3_3_1_2) 1968; 28 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Braun L (e_1_3_3_37_2) 1989; 49 Koomen JM (e_1_3_3_30_2) 2005; 11 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 18508299 - Hepatology. 2008 Jun;47(6):2134-6. doi: 10.1002/hep.22369. |
References_xml | – ident: e_1_3_3_38_2 doi: 10.1016/S0168-8278(99)80303-1 – ident: e_1_3_3_20_2 doi: 10.1126/science.1092436 – ident: e_1_3_3_17_2 doi: 10.1002/hep.20375 – volume: 49 start-page: 1554 year: 1989 ident: e_1_3_3_37_2 publication-title: Cancer Res – ident: e_1_3_3_13_2 doi: 10.1385/SCR:1:3:253 – ident: e_1_3_3_22_2 doi: 10.1016/S0092-8674(03)00392-1 – ident: e_1_3_3_27_2 doi: 10.1038/sj.onc.1203551 – ident: e_1_3_3_2_2 doi: 10.1016/S0305-7372(75)80015-6 – ident: e_1_3_3_36_2 doi: 10.1101/gad.14.6.627 – ident: e_1_3_3_6_2 doi: 10.1016/S0092-8674(00)00121-5 – ident: e_1_3_3_7_2 doi: 10.1038/sj.onc.1208924 – ident: e_1_3_3_21_2 doi: 10.1093/carcin/bgh321 – ident: e_1_3_3_43_2 doi: 10.1038/sj.onc.1209211 – ident: e_1_3_3_11_2 doi: 10.1038/sj.onc.1204544 – ident: e_1_3_3_25_2 doi: 10.1093/emboj/17.19.5588 – volume: 11 start-page: 1110 year: 2005 ident: e_1_3_3_30_2 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.1110.11.3 – ident: e_1_3_3_24_2 doi: 10.1101/gad.12.13.2048 – ident: e_1_3_3_8_2 doi: 10.1038/sj.onc.1202313 – ident: e_1_3_3_26_2 doi: 10.1016/S0002-9440(10)65605-2 – ident: e_1_3_3_3_2 doi: 10.1038/nature04956 – ident: e_1_3_3_28_2 doi: 10.1172/JCI0215650 – ident: e_1_3_3_10_2 doi: 10.1016/S1359-6101(99)00028-3 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.94.8.3801 – ident: e_1_3_3_41_2 doi: 10.1038/sj.onc.1208915 – ident: e_1_3_3_42_2 doi: 10.1158/0008-5472.CAN-05-3447 – volume: 28 start-page: 2187 year: 1968 ident: e_1_3_3_1_2 publication-title: Cancer Res – ident: e_1_3_3_12_2 doi: 10.1038/nrc1934 – ident: e_1_3_3_15_2 doi: 10.1111/j.1365-2559.2006.02468.x – ident: e_1_3_3_39_2 doi: 10.1038/sj.onc.1209558 – ident: e_1_3_3_5_2 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_3_3_16_2 doi: 10.1016/S0046-8177(88)80205-3 – ident: e_1_3_3_14_2 doi: 10.1016/j.cell.2006.05.030 – ident: e_1_3_3_29_2 doi: 10.1002/dvdy.1235 – ident: e_1_3_3_19_2 doi: 10.1016/j.surg.2005.12.011 – ident: e_1_3_3_33_2 doi: 10.1161/01.ATV.0000021412.56621.A2 – ident: e_1_3_3_35_2 doi: 10.1053/j.gastro.2005.07.055 – ident: e_1_3_3_40_2 doi: 10.1002/hep.21227 – ident: e_1_3_3_18_2 doi: 10.1002/hep.20969 – ident: e_1_3_3_31_2 doi: 10.1038/sj.onc.1209281 – ident: e_1_3_3_34_2 doi: 10.1136/ard.2004.032243 – ident: e_1_3_3_9_2 doi: 10.1126/science.1075994 – ident: e_1_3_3_4_2 doi: 10.1126/science.1118389 – ident: e_1_3_3_32_2 doi: 10.1373/clinchem.2005.065722 – reference: 18508299 - Hepatology. 2008 Jun;47(6):2134-6. doi: 10.1002/hep.22369. |
SSID | ssj0009580 |
Score | 2.419606 |
Snippet | Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2445 |
SubjectTerms | Animals Apoptosis Biological Sciences Calcium-Binding Proteins - deficiency Calcium-Binding Proteins - genetics Calcium-Binding Proteins - metabolism Cell growth Cell Line Cell lines Cell Proliferation Cell Separation Cellular differentiation Down-Regulation Embryonic stem cells foregut Gene Expression Profiling genes Glycoproteins - deficiency Glycoproteins - genetics Glycoproteins - metabolism Hepatocellular carcinoma Hepatocytes hepatoma Humans interleukin-6 Interleukin-6 - metabolism Liver Liver - cytology Liver - metabolism Liver Neoplasms - metabolism Liver Neoplasms - pathology Mice Mice, Knockout Pluripotent stem cells Progenitor cells Proteinase Inhibitory Proteins, Secretory proteins Signal Transduction STAT3 Transcription Factor - metabolism Stem cells Stem Cells - metabolism transforming growth factor beta Transforming Growth Factor beta - metabolism |
Title | Progenitor/Stem Cells Give Rise to Liver Cancer Due to Aberrant TGF-β and IL-6 Signaling |
URI | https://www.jstor.org/stable/25451486 http://www.pnas.org/content/105/7/2445.abstract https://www.ncbi.nlm.nih.gov/pubmed/18263735 https://www.proquest.com/docview/19459286 https://www.proquest.com/docview/47556876 https://www.proquest.com/docview/70320335 https://pubmed.ncbi.nlm.nih.gov/PMC2268156 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGChPH3gsChKt4ntxD5WaLurVSl76EpFQorsNNktqhLUpheu_HFm4ry6bHldosqepFbm84zHmflMyDupU8V9ztxUi6HLQ5m6Jo4XrtLaMzIwItW4D_lxGpxf8Yu5mPd6PzpZS9vCDOLvd9aV_I9WoQ30ilWy_6DZ5qHQAL9Bv3AFDcP1r3R8uc6hb1luu4-RkdnBffiNc43pQDB7y2MxVph5gcldMR4Gvi3btEnW4KQKZ3Y2djFXS9u84IkbOJjRoVe1R_va_FPl5zZ1VsG03kYctUUplaXYOK5zOR11tgWsRfm8bD_5F8uNpS8AM9Ok3lzk19ssz231Oxis1mlMlpYAdNmMrN6qkJjdXBnEunQAXCK3RdODxFpcWLC4AbdnhjYmeSg62Au7BpZb9snKWfvc0tb-4gjAcuHpxZneDMCoCVYuJFufV3_nn36KxleTSTQ7nc_ukfs-xBp4DMbZ3OswN0tbx1SNveaHCtnJrcfvLG1sditS5oLQXeHL7SzczrJm9og8rOIROrLgOiS9JHtMDms90uOKlvz9E_KlRdsJYo2WWKOINYpYo0VOS6xRizUKWMO2GmsUsUYRaxSwRhFrtMHaU3I1Pp19OHerszncWLBh4epUGGVU6nEtlRgGsSf0QspUQTwfJLEaBsZfBAsWiiBRPIlTXy6Y4YLFEGAb5bEjcpDlWfKc0FgqbVIlfROAB4GAN07Rz3BvwTSSJ_XJoH6tUVwR1-P5KauoTKAIWYSvOGr10CfHzQ3fLGfLftGjUk-NnA8Rhcdl0CfPStH2fhGFEaKvT-ieniit8rX65G2t7gisNapDZ0m-3USe4kL5-Ph9EjxETsDwNxLgo_0hYwKHWAKoHYr0AxZiT7gDrUYAueR3e7LlTckpD1EY8ka9-OPIX5IH7dR-RQ6K9TZ5Devywrwp581PgXTiBQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progenitor%2Fstem+cells+give+rise+to+liver+cancer+due+to+aberrant+TGF-+beta+and+IL-6+signaling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tang%2C+Yi&rft.au=Kitisin%2C+Krit&rft.au=Jogunoori%2C+Wilma&rft.au=Li%2C+Cuiling&rft.date=2008-02-19&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=7&rft.spage=2445&rft.epage=2450&rft_id=info:doi/10.1073%2Fpnas.0705395105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F7.cover.gif |