Sensory Integration Does Not Lead to Sensory Calibration

One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calib...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 49; pp. 18781 - 18786
Main Authors Smeets, Jeroen B. J., van den Dobbelsteen, John J., de Grave, Denise D. J., van Beers, Robert J., Brenner, Eli
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.12.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calibration is not necessary to achieve such a coherent percept. Does sensory integration nevertheless entail sensory calibration? We asked subjects to move their hand between visual targets. Blocks of trials without any visual feedback about their hand's position were alternated with blocks with veridical visual feedback. Whenever vision was removed, individual subjects' hands slowly drifted toward the same position to which they had drifted on previous blocks without visual feedback. The time course of the observed drift depended in a predictable manner (assuming optimal sensory combination) on the variable errors in the blocks with and without visual feedback. We conclude that the optimal use of unaligned sensory information, rather than changes within either of the senses or an accumulation of execution errors, is the cause of the frequently observed movement drift. The conclusion that seeing one's hand does not lead to an alignment between vision and proprioception has important consequences for the interpretation of previous work on visuomotor adaptation.
AbstractList One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calibration is not necessary to achieve such a coherent percept. Does sensory integration nevertheless entail sensory calibration? We asked subjects to move their hand between visual targets. Blocks of trials without any visual feedback about their hand's position were alternated with blocks with veridical visual feedback. Whenever vision was removed, individual subjects' hands slowly drifted toward the same position to which they had drifted on previous blocks without visual feedback. The time course of the observed drift depended in a predictable manner (assuming optimal sensory combination) on the variable errors in the blocks with and without visual feedback. We conclude that the optimal use of unaligned sensory information, rather than changes within either of the senses or an accumulation of execution errors, is the cause of the frequently observed movement drift. The conclusion that seeing one's hand does not lead to an alignment between vision and proprioception has important consequences for the interpretation of previous work on visuomotor adaptation.
One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calibration is not necessary to achieve such a coherent percept. Does sensory integration nevertheless entail sensory calibration? We asked subjects to move their hand between visual targets. Blocks of trials without any visual feedback about their hand's position were alternated with blocks with veridical visual feedback. Whenever vision was removed, individual subjects' hands slowly drifted toward the same position to which they had drifted on previous blocks without visual feedback. The time course of the observed drift depended in a predictable manner (assuming optimal sensory combination) on the variable errors in the blocks with and without visual feedback. We conclude that the optimal use of unaligned sensory information, rather than changes within either of the senses or an accumulation of execution errors, is the cause of the frequently observed movement drift. The conclusion that seeing one's hand does not lead to an alignment between vision and proprioception has important consequences for the interpretation of previous work on visuomotor adaptation. [PUBLICATION ABSTRACT]
One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calibration is not necessary to achieve such a coherent percept. Does sensory integration nevertheless entail sensory calibration? We asked subjects to move their hand between visual targets. Blocks of trials without any visual feedback about their hand's position were alternated with blocks with veridical visual feedback. Whenever vision was removed, individual subjects' hands slowly drifted toward the same position to which they had drifted on previous blocks without visual feedback. The time course of the observed drift depended in a predictable manner (assuming optimal sensory combination) on the variable errors in the blocks with and without visual feedback. We conclude that the optimal use of unaligned sensory information, rather than changes within either of the senses or an accumulation of execution errors, is the cause of the frequently observed movement drift. The conclusion that seeing one's hand does not lead to an alignment between vision and proprioception has important consequences for the interpretation of previous work on visuomotor adaptation.One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calibration is not necessary to achieve such a coherent percept. Does sensory integration nevertheless entail sensory calibration? We asked subjects to move their hand between visual targets. Blocks of trials without any visual feedback about their hand's position were alternated with blocks with veridical visual feedback. Whenever vision was removed, individual subjects' hands slowly drifted toward the same position to which they had drifted on previous blocks without visual feedback. The time course of the observed drift depended in a predictable manner (assuming optimal sensory combination) on the variable errors in the blocks with and without visual feedback. We conclude that the optimal use of unaligned sensory information, rather than changes within either of the senses or an accumulation of execution errors, is the cause of the frequently observed movement drift. The conclusion that seeing one's hand does not lead to an alignment between vision and proprioception has important consequences for the interpretation of previous work on visuomotor adaptation.
One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting visual and proprioceptive information about hand position by combining it into an optimal estimate of the hand's location, mutual calibration is not necessary to achieve such a coherent percept. Does sensory integration nevertheless entail sensory calibration? We asked subjects to move their hand between visual targets. Blocks of trials without any visual feedback about their hand's position were alternated with blocks with veridical visual feedback. Whenever vision was removed, individual subjects' hands slowly drifted toward the same position to which they had drifted on previous blocks without visual feedback. The time course of the observed drift depended in a predictable manner (assuming optimal sensory combination) on the variable errors in the blocks with and without visual feedback. We conclude that the optimal use of unaligned sensory information, rather than changes within either of the senses or an accumulation of execution errors, is the cause of the frequently observed movement drift. The conclusion that seeing one's hand does not lead to an alignment between vision and proprioception has important consequences for the interpretation of previous work on visuomotor adaptation. adaptation motor control vision proprioception drift
Author van Beers, Robert J.
Brenner, Eli
de Grave, Denise D. J.
Smeets, Jeroen B. J.
van den Dobbelsteen, John J.
Author_xml – sequence: 1
  givenname: Jeroen B. J.
  surname: Smeets
  fullname: Smeets, Jeroen B. J.
– sequence: 2
  givenname: John J.
  surname: van den Dobbelsteen
  fullname: van den Dobbelsteen, John J.
– sequence: 3
  givenname: Denise D. J.
  surname: de Grave
  fullname: de Grave, Denise D. J.
– sequence: 4
  givenname: Robert J.
  surname: van Beers
  fullname: van Beers, Robert J.
– sequence: 5
  givenname: Eli
  surname: Brenner
  fullname: Brenner, Eli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17130453$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1v1DAQBmALFdFt4cwJFHFA6iHtTPx9QUIL_ZBW5QCcLSdxSlZZe7EdRP89WXa7hUpVTz7MM6_GM0fkwAfvCHmNcIog6dna23QKAqRQEoE-IzMEjaVgGg7IDKCSpWIVOyRHKS0BQHMFL8ghSqTAOJ0R9dX5FOJtceWzu4k298EXn4JLxXXIxcLZtsihuENzO_T1Fr0kzzs7JPdq9x6T7-efv80vy8WXi6v5x0XZcAq5FGhl7ZjqKHUO6qbl0HLNqsZJC1R01NqGYmeFogKZVpq3Qtd6sqhr7Gp6TD5sc9djvXJt43yOdjDr2K9svDXB9ub_iu9_mJvwy6DQVFI9BbzfBcTwc3Qpm1WfGjcM1rswJiNUVUms5JMQNa8QBUzw3QO4DGP00xZMBUi5YmyD3v47937gu9VPgG9BE0NK0XWm6fPf1U7f6AeDYDYnNpsTm_sTT31nD_r20Y92FLtRNoV7TQ3TBpVUOJGTJ4jpxmHI7nee7JutXaYc4h5TAI6ogf4BgiLKNA
CitedBy_id crossref_primary_10_1016_j_visres_2020_09_007
crossref_primary_10_1007_s00221_020_05775_1
crossref_primary_10_1093_mind_fzu089
crossref_primary_10_1152_jn_00517_2018
crossref_primary_10_1152_jn_00317_2019
crossref_primary_10_1016_j_actpsy_2016_03_011
crossref_primary_10_1080_00222895_2015_1015674
crossref_primary_10_1152_jn_00633_2017
crossref_primary_10_3389_fpsyg_2016_01620
crossref_primary_10_1523_JNEUROSCI_0623_10_2011
crossref_primary_10_1017_S0952523812000053
crossref_primary_10_1038_s41598_020_76220_0
crossref_primary_10_1111_j_1467_9973_2011_01688_x
crossref_primary_10_1016_j_actpsy_2013_01_001
crossref_primary_10_1016_j_visres_2014_06_010
crossref_primary_10_1152_jn_00053_2023
crossref_primary_10_1152_jn_00980_2007
crossref_primary_10_1167_18_11_15
crossref_primary_10_1007_s00221_009_2076_y
crossref_primary_10_1016_j_actpsy_2013_01_005
crossref_primary_10_1016_j_visres_2015_12_005
crossref_primary_10_1371_journal_pone_0074236
crossref_primary_10_1007_s00221_023_06685_8
crossref_primary_10_1371_journal_pone_0117901
crossref_primary_10_1142_S0219635215500168
crossref_primary_10_1123_mc_2021_0070
crossref_primary_10_1152_jn_00204_2011
crossref_primary_10_1016_j_neuroscience_2009_07_057
crossref_primary_10_1152_jn_00478_2022
crossref_primary_10_1162_jocn_a_01171
crossref_primary_10_1186_s12984_017_0248_8
crossref_primary_10_1007_s00221_008_1527_1
crossref_primary_10_3389_fnint_2019_00063
crossref_primary_10_1007_s00221_011_2738_4
crossref_primary_10_1371_journal_pone_0060196
crossref_primary_10_1152_jn_00845_2012
crossref_primary_10_1068_p6788
crossref_primary_10_1142_S0129065724500370
crossref_primary_10_1152_jn_01008_2009
crossref_primary_10_1167_jov_22_12_14
crossref_primary_10_1007_s00221_016_4815_1
crossref_primary_10_1007_s00221_015_4205_0
crossref_primary_10_1016_j_neuron_2009_06_025
crossref_primary_10_1080_00222895_2018_1468311
crossref_primary_10_1152_jn_00314_2012
crossref_primary_10_1371_journal_pone_0025214
crossref_primary_10_1016_j_gaitpost_2010_07_017
crossref_primary_10_1152_jn_00206_2016
crossref_primary_10_1152_jn_00493_2022
crossref_primary_10_1177_0301006620965133
crossref_primary_10_1007_s00221_011_2934_2
crossref_primary_10_1007_s00221_014_4086_7
crossref_primary_10_1007_s00221_011_2786_9
crossref_primary_10_1016_j_jelekin_2011_08_001
crossref_primary_10_1016_j_visres_2015_03_028
crossref_primary_10_1152_jn_00005_2014
crossref_primary_10_1016_j_neurobiolaging_2013_01_021
crossref_primary_10_1007_s00221_009_1928_9
crossref_primary_10_1038_s41598_023_34311_8
crossref_primary_10_1007_s00221_018_5186_6
crossref_primary_10_1007_s00221_007_1135_5
crossref_primary_10_1162_jocn_a_00340
crossref_primary_10_1152_jn_00635_2011
crossref_primary_10_1152_jn_90961_2008
crossref_primary_10_1371_journal_pone_0064332
crossref_primary_10_1152_jn_00326_2013
crossref_primary_10_1152_jn_00112_2013
crossref_primary_10_1523_JNEUROSCI_1384_24_2024
crossref_primary_10_1016_j_neuroscience_2013_05_051
crossref_primary_10_1109_TNSRE_2016_2613443
crossref_primary_10_1016_j_concog_2010_11_006
crossref_primary_10_1038_s41598_019_46625_7
crossref_primary_10_1371_journal_pone_0158709
crossref_primary_10_1371_journal_pone_0004214
crossref_primary_10_1007_s00221_015_4456_9
crossref_primary_10_1007_s00221_008_1680_6
crossref_primary_10_1152_jn_00439_2014
crossref_primary_10_1152_jn_00641_2010
crossref_primary_10_3389_fpsyg_2015_01692
crossref_primary_10_3389_fpsyg_2019_02995
crossref_primary_10_1016_j_neulet_2023_137335
crossref_primary_10_1152_jn_00507_2007
crossref_primary_10_1016_j_cortex_2020_11_012
crossref_primary_10_1027_2151_2604_a000084
crossref_primary_10_1007_s00221_012_3011_1
crossref_primary_10_1007_s00221_015_4523_2
crossref_primary_10_1016_j_cortex_2021_11_010
crossref_primary_10_1523_ENEURO_0357_23_2024
crossref_primary_10_1007_s10015_018_0504_4
crossref_primary_10_1080_00222895_2022_2134287
crossref_primary_10_1163_22134808_bja10032
crossref_primary_10_1016_j_neuropsychologia_2008_12_039
crossref_primary_10_1007_s00221_015_4403_9
crossref_primary_10_1371_journal_pone_0150912
crossref_primary_10_1007_s00221_014_4064_0
crossref_primary_10_1016_j_visres_2016_03_008
crossref_primary_10_1016_j_neuroscience_2008_12_038
crossref_primary_10_1080_00222895_2018_1528435
crossref_primary_10_1152_jn_00237_2009
crossref_primary_10_1371_journal_pone_0049373
crossref_primary_10_1007_s00221_022_06352_4
crossref_primary_10_1016_j_humov_2007_05_005
crossref_primary_10_1152_jn_00291_2014
crossref_primary_10_1152_jn_00743_2010
crossref_primary_10_1007_s00221_019_05515_0
crossref_primary_10_1007_s00221_022_06503_7
crossref_primary_10_1007_s00221_019_05546_7
crossref_primary_10_1152_jn_00706_2012
crossref_primary_10_1152_jn_90544_2008
crossref_primary_10_1007_s00221_011_2965_8
crossref_primary_10_1038_s41598_023_33290_0
crossref_primary_10_1038_s41598_024_78063_5
crossref_primary_10_1007_s00221_014_3978_x
crossref_primary_10_1016_j_visres_2021_03_012
crossref_primary_10_1016_j_cognition_2019_104170
crossref_primary_10_1016_j_cognition_2020_104326
crossref_primary_10_1098_rsif_2017_0816
crossref_primary_10_1016_j_humov_2014_02_001
crossref_primary_10_1177_03010066251314181
crossref_primary_10_1080_17588920903490939
crossref_primary_10_1152_jn_00123_2019
crossref_primary_10_1152_jn_00652_2007
crossref_primary_10_1016_j_cophys_2021_01_011
crossref_primary_10_1016_j_neuropsychologia_2009_05_014
crossref_primary_10_1007_s00221_022_06436_1
crossref_primary_10_1007_s00221_009_1798_1
crossref_primary_10_1109_THMS_2016_2604571
crossref_primary_10_1177_0301006619861876
crossref_primary_10_1162_PRES_a_00161
crossref_primary_10_1007_s00221_018_5366_4
crossref_primary_10_1016_j_bbr_2008_02_041
crossref_primary_10_1080_00222895_2013_778813
crossref_primary_10_1371_journal_pone_0019377
crossref_primary_10_1152_jn_00032_2015
crossref_primary_10_1007_s00221_018_5456_3
crossref_primary_10_1152_jn_00514_2009
crossref_primary_10_3389_fnins_2022_958513
crossref_primary_10_1007_s00221_011_2822_9
crossref_primary_10_1167_jov_22_1_5
crossref_primary_10_1016_j_neuropsychologia_2012_03_034
crossref_primary_10_1007_s00221_009_1737_1
crossref_primary_10_1016_j_neuron_2013_09_026
crossref_primary_10_3389_fnins_2021_774448
crossref_primary_10_1007_s10514_011_9226_3
crossref_primary_10_1016_j_newideapsych_2012_12_002
crossref_primary_10_1080_00222895_2012_659232
crossref_primary_10_1093_brain_awz187
crossref_primary_10_1093_cercor_bhn233
crossref_primary_10_1109_TNSRE_2011_2166808
crossref_primary_10_1167_jov_21_4_10
crossref_primary_10_1152_jn_00337_2018
crossref_primary_10_1007_s00221_023_06658_x
crossref_primary_10_1007_s00221_015_4242_8
crossref_primary_10_1007_s00221_011_2981_8
crossref_primary_10_1167_jov_23_5_11
Cites_doi 10.1152/jn.00013.2003
10.1177/027836498600500404
10.1007/s00221-003-1708-x
10.1007/s00221-002-1321-4
10.1152/jn.00652.2003
10.1073/pnas.96.18.10418
10.1016/S1364-6613(02)01948-4
10.1007/BF00230024
10.1037/h0036325
10.1016/S0960-9822(02)00836-9
10.1007/s002210000473
10.1152/jn.2000.84.5.2703
10.1016/j.tins.2004.10.007
10.1016/S1364-6613(98)01266-2
10.1038/nn1427
10.1038/nn1480
10.1007/s002210050890
10.1152/jn.00725.2004
10.1016/S0149-7634(98)00004-9
10.1109/MPRV.2003.1228524
10.1007/BF00227302
10.1038/nrn873
10.1037/h0055392
10.1163/156856803322467581
10.1016/j.jphysparis.2004.03.011
10.1038/71140
10.1016/j.neubiorev.2004.12.004
10.1007/s00221-003-1601-7
10.1016/S1364-6613(00)01493-5
10.1152/jn.00764.2003
10.1016/S0960-9822(03)00449-4
10.1007/s002210050525
10.1152/jn.1999.81.3.1355
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 5, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 5, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0607687103
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
CrossRef
Virology and AIDS Abstracts

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 18786
ExternalDocumentID PMC1693739
1176653521
17130453
10_1073_pnas_0607687103
103_49_18781
30051190
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c530t-61a7be48f33ee0bcd50d5942ce7a036f3aac31fa6836149895d69b9ee019b1fb3
ISSN 0027-8424
IngestDate Thu Aug 21 17:39:01 EDT 2025
Fri Jul 11 10:05:29 EDT 2025
Sun Aug 24 03:33:58 EDT 2025
Mon Jun 30 08:38:33 EDT 2025
Wed Feb 19 01:47:07 EST 2025
Thu Apr 24 23:07:21 EDT 2025
Tue Jul 01 03:50:25 EDT 2025
Thu May 30 08:51:21 EDT 2019
Wed Nov 11 00:29:21 EST 2020
Thu May 29 08:42:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c530t-61a7be48f33ee0bcd50d5942ce7a036f3aac31fa6836149895d69b9ee019b1fb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Present address: Department Physics of Man, Helmholtz Institute, Utrecht University, NL-3584 CC, Utrecht, The Netherlands.
Edited by Dale Purves, Duke University Medical Center, Durham, NC, and approved October 9, 2006
Author contributions: J.B.J.S. and J.J.v.d.D. designed research; J.B.J.S., D.D.J.d.G., and R.J.v.B. performed research; J.B.J.S. and R.J.v.B. analyzed data; and J.B.J.S., R.J.v.B., and E.B. wrote the paper.
Present address: Department of Biomechanical Engineering, Delft University of Technology, NL-2628 CD Delft, The Netherlands.
OpenAccessLink http://hdl.handle.net/1765/63485
PMID 17130453
PQID 201358440
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_0607687103
jstor_primary_30051190
proquest_miscellaneous_68227127
proquest_journals_201358440
proquest_miscellaneous_19521160
pnas_primary_103_49_18781
pubmed_primary_17130453
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693739
crossref_primary_10_1073_pnas_0607687103
pnas_primary_103_49_18781_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12-05
PublicationDateYYYYMMDD 2006-12-05
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-05
  day: 05
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
Cuijpers RH (e_1_3_4_9_2) 2003; 47
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
12928763 - Exp Brain Res. 2003 Nov;153(2):266-74
9809311 - Neurosci Biobehav Rev. 1998 Oct;22(6):761-88
12858957 - Spat Vis. 2003;16(3-4):365-76
15951810 - Nat Neurosci. 2005 Jul;8(7):941-9
10859572 - Trends Cogn Sci. 2000 Jul;4(7):279-88
10591894 - Exp Brain Res. 1999 Nov;129(2):201-10
10468623 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10418-21
10085361 - J Neurophysiol. 1999 Mar;81(3):1355-64
14615428 - J Neurophysiol. 2003 Nov;90(5):3105-18
8891655 - Exp Brain Res. 1996 Sep;111(2):253-61
11068013 - J Neurophysiol. 2000 Nov;84(5):2703-8
9827856 - Exp Brain Res. 1998 Oct;122(4):367-77
12842033 - Curr Biol. 2003 Jul 1;13(13):R531-9
14561687 - J Neurophysiol. 2004 Feb;91(2):1050-63
15793578 - Nat Neurosci. 2005 Apr;8(4):490-7
12094211 - Nat Rev Neurosci. 2002 Jul;3(7):553-62
4842283 - J Exp Psychol. 1974 Jun;102(6):1076-84
10607397 - Nat Neurosci. 2000 Jan;3(1):69-73
15477036 - J Physiol Paris. 2004 Jan-Jun;98(1-3):249-58
1301369 - Exp Brain Res. 1992;91(1):162-6
15356184 - J Neurophysiol. 2005 Feb;93(2):954-62
14999049 - J Neurophysiol. 2004 Jul;92(1):416-23
13174710 - J Exp Psychol. 1954 Jun;47(6):381-91
15820548 - Neurosci Biobehav Rev. 2005 May;29(3):431-44
15541511 - Trends Neurosci. 2004 Dec;27(12):712-9
10234221 - Trends Cogn Sci. 1999 Jan;3(1):4-11
12140085 - Trends Cogn Sci. 2002 Aug 1;6(8):345-350
15064885 - Exp Brain Res. 2004 Mar;155(1):56-62
11045361 - Exp Brain Res. 2000 Oct;134(3):363-77
12015120 - Curr Biol. 2002 May 14;12(10):834-7
12582830 - Exp Brain Res. 2003 Feb;148(4):471-81
References_xml – volume: 47
  start-page: 278
  year: 2003
  ident: e_1_3_4_9_2
  publication-title: J MathPsychol
– ident: e_1_3_4_18_2
  doi: 10.1152/jn.00013.2003
– ident: e_1_3_4_10_2
  doi: 10.1177/027836498600500404
– ident: e_1_3_4_15_2
  doi: 10.1007/s00221-003-1708-x
– ident: e_1_3_4_12_2
  doi: 10.1007/s00221-002-1321-4
– ident: e_1_3_4_16_2
  doi: 10.1152/jn.00652.2003
– ident: e_1_3_4_30_2
  doi: 10.1073/pnas.96.18.10418
– ident: e_1_3_4_32_2
  doi: 10.1016/S1364-6613(02)01948-4
– ident: e_1_3_4_20_2
  doi: 10.1007/BF00230024
– ident: e_1_3_4_23_2
  doi: 10.1037/h0036325
– ident: e_1_3_4_34_2
  doi: 10.1016/S0960-9822(02)00836-9
– ident: e_1_3_4_19_2
  doi: 10.1007/s002210000473
– ident: e_1_3_4_22_2
  doi: 10.1152/jn.2000.84.5.2703
– ident: e_1_3_4_6_2
  doi: 10.1016/j.tins.2004.10.007
– ident: e_1_3_4_2_2
  doi: 10.1016/S1364-6613(98)01266-2
– ident: e_1_3_4_8_2
  doi: 10.1038/nn1427
– ident: e_1_3_4_31_2
  doi: 10.1038/nn1480
– ident: e_1_3_4_5_2
  doi: 10.1007/s002210050890
– ident: e_1_3_4_28_2
  doi: 10.1152/jn.00725.2004
– ident: e_1_3_4_3_2
  doi: 10.1016/S0149-7634(98)00004-9
– ident: e_1_3_4_11_2
  doi: 10.1109/MPRV.2003.1228524
– ident: e_1_3_4_14_2
  doi: 10.1007/BF00227302
– ident: e_1_3_4_27_2
  doi: 10.1038/nrn873
– ident: e_1_3_4_21_2
  doi: 10.1037/h0055392
– ident: e_1_3_4_29_2
  doi: 10.1163/156856803322467581
– ident: e_1_3_4_33_2
  doi: 10.1016/j.jphysparis.2004.03.011
– ident: e_1_3_4_24_2
  doi: 10.1038/71140
– ident: e_1_3_4_25_2
  doi: 10.1016/j.neubiorev.2004.12.004
– ident: e_1_3_4_17_2
  doi: 10.1007/s00221-003-1601-7
– ident: e_1_3_4_1_2
  doi: 10.1016/S1364-6613(00)01493-5
– ident: e_1_3_4_13_2
  doi: 10.1152/jn.00764.2003
– ident: e_1_3_4_4_2
  doi: 10.1016/S0960-9822(03)00449-4
– ident: e_1_3_4_26_2
  doi: 10.1007/s002210050525
– ident: e_1_3_4_7_2
  doi: 10.1152/jn.1999.81.3.1355
– reference: 10468623 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10418-21
– reference: 12140085 - Trends Cogn Sci. 2002 Aug 1;6(8):345-350
– reference: 15477036 - J Physiol Paris. 2004 Jan-Jun;98(1-3):249-58
– reference: 4842283 - J Exp Psychol. 1974 Jun;102(6):1076-84
– reference: 15356184 - J Neurophysiol. 2005 Feb;93(2):954-62
– reference: 10859572 - Trends Cogn Sci. 2000 Jul;4(7):279-88
– reference: 15951810 - Nat Neurosci. 2005 Jul;8(7):941-9
– reference: 12842033 - Curr Biol. 2003 Jul 1;13(13):R531-9
– reference: 10085361 - J Neurophysiol. 1999 Mar;81(3):1355-64
– reference: 11045361 - Exp Brain Res. 2000 Oct;134(3):363-77
– reference: 13174710 - J Exp Psychol. 1954 Jun;47(6):381-91
– reference: 12858957 - Spat Vis. 2003;16(3-4):365-76
– reference: 15541511 - Trends Neurosci. 2004 Dec;27(12):712-9
– reference: 12582830 - Exp Brain Res. 2003 Feb;148(4):471-81
– reference: 12928763 - Exp Brain Res. 2003 Nov;153(2):266-74
– reference: 1301369 - Exp Brain Res. 1992;91(1):162-6
– reference: 15793578 - Nat Neurosci. 2005 Apr;8(4):490-7
– reference: 9809311 - Neurosci Biobehav Rev. 1998 Oct;22(6):761-88
– reference: 10234221 - Trends Cogn Sci. 1999 Jan;3(1):4-11
– reference: 14615428 - J Neurophysiol. 2003 Nov;90(5):3105-18
– reference: 12094211 - Nat Rev Neurosci. 2002 Jul;3(7):553-62
– reference: 8891655 - Exp Brain Res. 1996 Sep;111(2):253-61
– reference: 10607397 - Nat Neurosci. 2000 Jan;3(1):69-73
– reference: 12015120 - Curr Biol. 2002 May 14;12(10):834-7
– reference: 9827856 - Exp Brain Res. 1998 Oct;122(4):367-77
– reference: 14999049 - J Neurophysiol. 2004 Jul;92(1):416-23
– reference: 10591894 - Exp Brain Res. 1999 Nov;129(2):201-10
– reference: 14561687 - J Neurophysiol. 2004 Feb;91(2):1050-63
– reference: 15820548 - Neurosci Biobehav Rev. 2005 May;29(3):431-44
– reference: 11068013 - J Neurophysiol. 2000 Nov;84(5):2703-8
– reference: 15064885 - Exp Brain Res. 2004 Mar;155(1):56-62
SSID ssj0009580
Score 2.3238583
Snippet One generally has the impression that one feels one's hand at the same location as one sees it. However, because our brain deals with possibly conflicting...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18781
SubjectTerms Adaptation
Adaptation, Physiological
Behavioral neuroscience
Biological Sciences
Calibration
Cubes
Experimentation
Hands
Humans
Integration
Modeling
Models, Neurological
Neurons
Predictive Value of Tests
Proprioception
Proprioception - physiology
Senses
Social Sciences
Statistical discrepancies
Visual perception
Visual Perception - physiology
Title Sensory Integration Does Not Lead to Sensory Calibration
URI https://www.jstor.org/stable/30051190
http://www.pnas.org/content/103/49/18781.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17130453
https://www.proquest.com/docview/201358440
https://www.proquest.com/docview/19521160
https://www.proquest.com/docview/68227127
https://pubmed.ncbi.nlm.nih.gov/PMC1693739
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCKFAI5REhDkWrLHHs2MmxRS0VKkulbqW9WXHiiEqQRU32wpFfzkzsPLba8rpEu8nESjJfZj7H8yDkTZhzFpVRHFDNYYIiRR6kkTBBmRvwPkUYpW262Ke5OL3kH5fxcjL5OYpaWjd6lv_YmlfyP1qFfaBXzJL9B832g8IO-A36hS1oGLZ_peMLmIPiGnlX8wFVWaxMPa1WDfaDKJBZ1k4IlIFT414RjpGe9x6s7uIF5t0HwsMh3cTZgHoaTM_nQ_Pii2_GNC4l7HplqulR_90ZE6PAqAFF1xoccGNcGgiG6vRCBYAUGyBZ01dd1Wa0oo8jHBnXxM2GgLszh88UGPIRj01vBO6Q24TpmbHWFshKILjtF9qb45CNcGfrmTrrShNp-7s4V43_xVY_AIYLmxdXWT0LBS42ym7YjYrb88_q5PLsTC2Ol4s75G4EUw3sgvFhSUeFmxObxuQuvysPJdm7G8NvMBsb3IoVc0Fo2-zlZhDuiNUsHpD7bjriH1ps7ZKJqR6S3U7Z_oGrSv72EUkc2PwR2HwEmw9g8xFsfrPyHdj8Edgek8uT48X708C13QjymIVNIGgmteFJyZgxoc6LOCzilEe5kRnwnZJlWc5omYmEAbdLkzQuRKpTkKWppqVme2SnWlXmKfFlZkrOC55FIgePXGpcy9M5TzhnPMlKj8y6R6ZyV5MeW6N8VW1shGQKH58anrFHDvoTvttyLLeL7rU66OWwMQMF_usRrxUdzmeKp6oFl0de33pMlS4cyyP7nTqVswa1AiLNgMxzGP5VfxRMNa6_ZZVZrWtFU-DKVPxGQgBdlzSSHnliwTFciKQY0wB3JTdg0wtgmfjNI9XVl7ZcPJZbkix99sfr2if3hjf3OdlprtfmBVDuRr9s34lfwknVGw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+integration+does+not+lead+to+sensory+calibration&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Smeets%2C+Jeroen+BJ&rft.au=van+den+Dobbelsteen%2C+John+J&rft.au=de+Grave%2C+Denise+DJ&rft.au=van+Beers%2C+Robert+J&rft.date=2006-12-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=49&rft.spage=18781&rft.epage=18786&rft_id=info:doi/10.1073%2Fpnas.0607687103&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F49.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F49.cover.gif