Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events

Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 29; pp. 1 - 11
Main Authors Tsukamoto, Hirotake, Komohara, Yoshihiro, Tomita, Yusuke, Miura, Yuji, Motoshima, Takanobu, Imamura, Kosuke, Kimura, Toshiki, Ikeda, Tokunori, Fujiwara, Yukio, Yano, Hiromu, Kamba, Tomomi, Sakagami, Takuro, Oshiumi, Hiroyuki
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 19.07.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2205378119

Cover

Abstract Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
AbstractList Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic issue in cancer immunotherapy. Preclinical models for more physiologically occurring irAEs are potentially useful for the clarification of fundamental causes and natural developmental course of irAEs. Here, we found that in tumor-bearing aged, but not young, mice, anti–PD-(L)1 therapy alone induces irAE-like multiorgan toxicities through CD4 T-cell–derived interleukin (IL)-21 and subsequent age-specific CXCL13 expression in tertiary lymphoid structure. Consistent with this animal model, a systemic increase in CXCL13 correlates with irAE incidence in cancer patients. These findings provide insight into the development of management strategies for irAE that balance both irAE-related immune response and antitumor immune surveillance. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell-derived interleukin (IL)-21 upregulated B-cell-homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti-PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell-derived interleukin (IL)-21 upregulated B-cell-homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti-PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Author Komohara, Yoshihiro
Tsukamoto, Hirotake
Miura, Yuji
Kimura, Toshiki
Fujiwara, Yukio
Tomita, Yusuke
Motoshima, Takanobu
Ikeda, Tokunori
Imamura, Kosuke
Oshiumi, Hiroyuki
Sakagami, Takuro
Yano, Hiromu
Kamba, Tomomi
Author_xml – sequence: 1
  givenname: Hirotake
  surname: Tsukamoto
  fullname: Tsukamoto, Hirotake
– sequence: 2
  givenname: Yoshihiro
  surname: Komohara
  fullname: Komohara, Yoshihiro
– sequence: 3
  givenname: Yusuke
  surname: Tomita
  fullname: Tomita, Yusuke
– sequence: 4
  givenname: Yuji
  surname: Miura
  fullname: Miura, Yuji
– sequence: 5
  givenname: Takanobu
  surname: Motoshima
  fullname: Motoshima, Takanobu
– sequence: 6
  givenname: Kosuke
  surname: Imamura
  fullname: Imamura, Kosuke
– sequence: 7
  givenname: Toshiki
  surname: Kimura
  fullname: Kimura, Toshiki
– sequence: 8
  givenname: Tokunori
  surname: Ikeda
  fullname: Ikeda, Tokunori
– sequence: 9
  givenname: Yukio
  surname: Fujiwara
  fullname: Fujiwara, Yukio
– sequence: 10
  givenname: Hiromu
  surname: Yano
  fullname: Yano, Hiromu
– sequence: 11
  givenname: Tomomi
  surname: Kamba
  fullname: Kamba, Tomomi
– sequence: 12
  givenname: Takuro
  surname: Sakagami
  fullname: Sakagami, Takuro
– sequence: 13
  givenname: Hiroyuki
  surname: Oshiumi
  fullname: Oshiumi, Hiroyuki
BookMark eNp1kUFrFDEYhoNU7LZ69iQMePEybTKZTJKLUKbaCgt6qOAtZJJvtll2kzHJLPSk_8F_6C8x262KBU855Hmfj-97T9CRDx4QeknwGcGcnk9ep7OmwYxyQYh8ghYES1J3rcRHaIFxw2vRNu0xOklpjTGWTOBn6JgywQRt-QJ9u1g5v6p1SsE4ncFW2tuqv2yrm9rAZvPz-w8LE3gLPldgcpicqfov_ZLQSpvsdjq74KspgnVpCglSlUNxZFeSny5rUuVbiHq6q523s9n77Q5iggp2RZmeo6ej3iR48fCeos_v39301_Xy49WH_mJZG0Zxrtk4dIy1xGgrtAXZDaBBjuOgNXAQozCj5cVuG96BbAvMucRyEJKPrZSEnqK3B-80D1uwpsyOeqOm6LY63qmgnfr3x7tbtQo7JSmmgskiePMgiOHrDCmrrUv7C2kPYU6q6WTDWUeatqCvH6HrMEdf1runGklawQvFDpSJIaUIozIu31-zzHcbRbDaV6z2Fau_FZfc-aPc7yX-n3h1SKxTDvEP3nDCiaCC_gLyF7gg
CitedBy_id crossref_primary_10_1038_s43018_024_00730_3
crossref_primary_10_1159_000535553
crossref_primary_10_1016_j_critrevonc_2024_104259
crossref_primary_10_1016_j_imbio_2025_152884
crossref_primary_10_1093_intimm_dxae056
crossref_primary_10_1016_j_canlet_2023_216293
crossref_primary_10_1016_j_trecan_2022_12_007
crossref_primary_10_37155_2972_4759_2023_01_01_6
crossref_primary_10_1111_1348_0421_13067
crossref_primary_10_3389_fimmu_2023_1190850
crossref_primary_10_1002_cam4_70011
crossref_primary_10_3892_ijo_2024_5653
crossref_primary_10_1002_mco2_489
crossref_primary_10_1111_imr_13250
crossref_primary_10_1007_s11912_024_01528_3
crossref_primary_10_18632_aging_204552
crossref_primary_10_1038_s41698_023_00380_1
crossref_primary_10_1007_s00262_023_03541_0
crossref_primary_10_1038_s41392_024_01947_5
crossref_primary_10_1016_j_actbio_2023_09_028
crossref_primary_10_3389_fimmu_2025_1549206
crossref_primary_10_3389_fmed_2022_1034764
crossref_primary_10_1007_s00432_025_06087_z
crossref_primary_10_1016_j_jdermsci_2023_03_004
crossref_primary_10_3390_ijms25074101
crossref_primary_10_1007_s41999_024_01032_8
crossref_primary_10_1186_s13046_025_03318_6
crossref_primary_10_2217_nnm_2022_0299
crossref_primary_10_1158_2326_6066_CIR_23_0121
crossref_primary_10_1007_s11033_025_10319_3
crossref_primary_10_1016_j_antiviral_2023_105720
crossref_primary_10_1111_acel_14317
crossref_primary_10_1016_j_canlet_2024_217278
crossref_primary_10_1136_jitc_2024_009345
crossref_primary_10_1093_jjco_hyad184
crossref_primary_10_3960_jslrt_24001
crossref_primary_10_1038_s41419_024_07319_9
crossref_primary_10_3389_fimmu_2024_1414884
crossref_primary_10_3390_ijms25137013
Cites_doi 10.1016/j.celrep.2021.109422
10.1200/JCO.2008.20.8983
10.1038/nrd3003
10.1200/JCO.2000.18.22.3782
10.1158/1078-0432.CCR-21-1283
10.1038/s41584-020-0419-z
10.1073/pnas.1409155111
10.1136/thoraxjnl-2015-207886
10.1084/jem.20190738
10.1002/JLB.3MR0218-062R
10.3389/fonc.2021.619385
10.1038/ncomms7702
10.1016/j.immuni.2021.02.003
10.1038/s41586-019-1914-8
10.1001/jamaoncol.2019.0402
10.1158/0008-5472.CAN-18-0118
10.1073/pnas.1908079116
10.1038/35018581
10.1038/nm0795-649
10.1200/JCO.2016.72.1167
10.1056/NEJMoa1606774
10.1158/2326-6066.CIR-17-0755
10.1158/0008-5472.CAN-11-3019
10.1073/pnas.0700591104
10.1111/eci.12063
10.1172/JCI96798
10.1084/jem.20141380
10.1016/j.isci.2020.101580
10.1136/esmoopen-2018-000472
10.1158/1055-9965.EPI-11-0729
10.1056/NEJMoa1709684
10.1084/jem.20091738
10.1073/pnas.2103730118
10.1186/1465-9921-12-29
10.1126/scitranslmed.abc4220
10.1172/JCI123391
10.1038/s41571-020-0352-8
10.1634/theoncologist.2016-0450
10.1038/nm955
10.1136/rmdopen-2019-000906
10.1186/s12885-020-07142-3
10.1152/jappl.2001.91.6.2730
10.1016/j.jhepr.2020.100170
10.1038/s41586-021-03187-x
10.1056/NEJMoa1504030
10.1073/pnas.1416498111
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Jul 19, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Jul 19, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2205378119
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Virology and AIDS Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11
ExternalDocumentID PMC9303859
10_1073_pnas_2205378119
27171838
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
2AX
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
ABBHK
AEUPB
AEXZC
C1K
DCCCD
FR3
H94
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
M7N
P64
RC3
SA0
7X8
5PM
ID FETCH-LOGICAL-c530t-5fb65541cad8ade96beae9ffbaae7e8f8cfd7cedd276e94b6577909b897f49913
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:13:42 EDT 2025
Thu Sep 04 20:09:54 EDT 2025
Fri Jul 25 10:29:20 EDT 2025
Tue Jul 01 01:03:20 EDT 2025
Thu Apr 24 23:01:12 EDT 2025
Thu May 29 08:52:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c530t-5fb65541cad8ade96beae9ffbaae7e8f8cfd7cedd276e94b6577909b897f49913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: H.T., Y.K., and H.O. designed research; H.T., Y.K., Y.T., Y.M., T.M., K.I., T. Kimura, T.I., Y.F., H.Y., T. Kamba, and T.S. performed research; H.T., Y.K., Y.T., Y.M., T.M., T.I., and H.O. analyzed data; and H.T., Y.K., Y.T., and H.O. wrote the paper.
Edited by Tyler Curiel, Dartmouth College, Hanover, NH; received March 30, 2022; accepted May 20, 2022 by Editorial Board Member Philippa Marrack
ORCID 0000-0003-3214-1652
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9303859
PMID 35858347
PQID 2692291487
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303859
proquest_miscellaneous_2692756124
proquest_journals_2692291487
crossref_citationtrail_10_1073_pnas_2205378119
crossref_primary_10_1073_pnas_2205378119
jstor_primary_27171838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_28_2
e_1_3_4_29_2
Dai H. (e_1_3_4_33_2) 2015; 7
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_46_2
  doi: 10.1016/j.celrep.2021.109422
– ident: e_1_3_4_17_2
  doi: 10.1200/JCO.2008.20.8983
– ident: e_1_3_4_31_2
  doi: 10.1038/nrd3003
– ident: e_1_3_4_23_2
  doi: 10.1200/JCO.2000.18.22.3782
– ident: e_1_3_4_10_2
  doi: 10.1158/1078-0432.CCR-21-1283
– ident: e_1_3_4_30_2
  doi: 10.1038/s41584-020-0419-z
– volume: 7
  start-page: 616
  year: 2015
  ident: e_1_3_4_33_2
  article-title: Mechanical ventilation modulates Toll-like receptors 2, 4, and 9 on alveolar macrophages in a ventilator-induced lung injury model
  publication-title: J. Thorac. Dis.
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.1409155111
– ident: e_1_3_4_27_2
  doi: 10.1136/thoraxjnl-2015-207886
– ident: e_1_3_4_9_2
  doi: 10.1084/jem.20190738
– ident: e_1_3_4_29_2
  doi: 10.1002/JLB.3MR0218-062R
– ident: e_1_3_4_21_2
  doi: 10.3389/fonc.2021.619385
– ident: e_1_3_4_24_2
  doi: 10.1038/ncomms7702
– ident: e_1_3_4_40_2
  doi: 10.1016/j.immuni.2021.02.003
– ident: e_1_3_4_36_2
  doi: 10.1038/s41586-019-1914-8
– ident: e_1_3_4_11_2
  doi: 10.1001/jamaoncol.2019.0402
– ident: e_1_3_4_22_2
  doi: 10.1158/0008-5472.CAN-18-0118
– ident: e_1_3_4_12_2
  doi: 10.1073/pnas.1908079116
– ident: e_1_3_4_35_2
  doi: 10.1038/35018581
– ident: e_1_3_4_47_2
  doi: 10.1038/nm0795-649
– ident: e_1_3_4_48_2
– ident: e_1_3_4_37_2
  doi: 10.1200/JCO.2016.72.1167
– ident: e_1_3_4_1_2
  doi: 10.1056/NEJMoa1606774
– ident: e_1_3_4_7_2
  doi: 10.1158/2326-6066.CIR-17-0755
– ident: e_1_3_4_38_2
  doi: 10.1158/0008-5472.CAN-11-3019
– ident: e_1_3_4_28_2
  doi: 10.1073/pnas.0700591104
– ident: e_1_3_4_39_2
  doi: 10.1111/eci.12063
– ident: e_1_3_4_13_2
  doi: 10.1172/JCI96798
– ident: e_1_3_4_34_2
  doi: 10.1084/jem.20141380
– ident: e_1_3_4_5_2
  doi: 10.1016/j.isci.2020.101580
– ident: e_1_3_4_15_2
  doi: 10.1136/esmoopen-2018-000472
– ident: e_1_3_4_18_2
  doi: 10.1158/1055-9965.EPI-11-0729
– ident: e_1_3_4_3_2
  doi: 10.1056/NEJMoa1709684
– ident: e_1_3_4_42_2
  doi: 10.1084/jem.20091738
– ident: e_1_3_4_25_2
  doi: 10.1073/pnas.2103730118
– ident: e_1_3_4_26_2
  doi: 10.1186/1465-9921-12-29
– ident: e_1_3_4_43_2
  doi: 10.1126/scitranslmed.abc4220
– ident: e_1_3_4_16_2
  doi: 10.1172/JCI123391
– ident: e_1_3_4_8_2
  doi: 10.1038/s41571-020-0352-8
– ident: e_1_3_4_19_2
  doi: 10.1634/theoncologist.2016-0450
– ident: e_1_3_4_4_2
  doi: 10.1038/nm955
– ident: e_1_3_4_14_2
  doi: 10.1136/rmdopen-2019-000906
– ident: e_1_3_4_20_2
  doi: 10.1186/s12885-020-07142-3
– ident: e_1_3_4_32_2
  doi: 10.1152/jappl.2001.91.6.2730
– ident: e_1_3_4_6_2
  doi: 10.1016/j.jhepr.2020.100170
– ident: e_1_3_4_41_2
  doi: 10.1038/s41586-021-03187-x
– ident: e_1_3_4_2_2
  doi: 10.1056/NEJMoa1504030
– ident: e_1_3_4_45_2
  doi: 10.1073/pnas.1416498111
SSID ssj0009580
Score 2.5641606
Snippet Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However,...
Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic...
SourceID pubmedcentral
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adverse events
Aging
Autoantibodies
Biological Sciences
Cancer immunotherapy
CD4 antigen
Cell activation
Chemokines
CXCL13 protein
Damage accumulation
Depletion
IgG antibody
Immune checkpoint
Immunoglobulin G
Immunotherapy
Interleukin 21
Lymphocytes
Lymphocytes B
Lymphocytes T
Organs
Pathogenicity
Pathogens
PD-1 protein
Therapy
Toxicity
Tumors
Title Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events
URI https://www.jstor.org/stable/27171838
https://www.proquest.com/docview/2692291487
https://www.proquest.com/docview/2692756124
https://pubmed.ncbi.nlm.nih.gov/PMC9303859
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDJgoDGQkDkORS_Ojdnysuk0VjNJDK5VTFKeOGsaaaUkOwD_En8nzjyRNVaTBJaoc2438fX15fn3-HkLvAi64l44S2OQISoJAekQIlxKX0kSk_lAOdbWGzzM6XQYfV6NVr_d7J2upKsUg-XnwXMn_oAptgKs6JfsPyDaTQgN8BnzhCgjD9V4Yj1WFIRLbFZZaddWZnAfOgqiAPKkr3JaOis3fZokzWU2uXF8raJhYrBIJWGcqd8toPcBCZ2R-TlzHnMz6QWDTXqkkgViVbi6koyWfil2ndt68BIs65WBWxxjH7YkVa0YKhzjzWVv_eFFU1zEQRsdsp9ldXsbXDds-5Te5kpTWb4q82GQb6NBGxm8y4_x-rWCSNos3q-yI6lu2G9bwdAqsNZ7GEoMjQ2hgaokO5IG22ny3oyqr9VRbY6lOEfvqLC0_-LYA86ZKHG_jYtDt2dXlnn2JLpdXV9HiYrV4gB56jOmEAB0XauSdQ6N7YR-wFpFi_oe96Tv-j0mB7Wxuuqm5O77O4gl6bDcpeGwYd4x6cvsUHdf44TOrVf7-Gfq1T0EMFMRAQbxPQWwpiA0FcUtBvENBXOa4oSDeoyC2FMSGgs_R8vJiMZkSW8-DJCN_WJJRKih4ry4QLwTucSpkLHmaijiWTIZpmKRrBrOtPUYlD6CzEsPkIuQshY2565-go22-lS8Qph5PqU8F5cMgEMyNhzR0ZSp4kqyFHwd9NKhXOUqs2L2qufI90kkXzI8ULFELSx-dNQNujc7L37ueaNiafh5zwcPzwz46rXGMrJWAcZR7HneDkPXR2-Y22HAFQryVeWX6MFWmFp6bdfBvvkOpwHfvbLONVoPnvvpzn7-8x-yv0KP2p3aKjsq7Sr4Gn7oUbzSd_wAdvdGK
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging-associated+and+CD4+T-cell-dependent+ectopic+CXCL13+activation+predisposes+to+anti-PD-1+therapy-induced+adverse+events&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tsukamoto%2C+Hirotake&rft.au=Komohara%2C+Yoshihiro&rft.au=Tomita%2C+Yusuke&rft.au=Miura%2C+Yuji&rft.date=2022-07-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=29&rft.spage=e2205378119&rft_id=info:doi/10.1073%2Fpnas.2205378119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon