Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events
Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged,...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 29; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
19.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2205378119 |
Cover
Abstract | Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management. |
---|---|
AbstractList | Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and
Il21
expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management. Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic issue in cancer immunotherapy. Preclinical models for more physiologically occurring irAEs are potentially useful for the clarification of fundamental causes and natural developmental course of irAEs. Here, we found that in tumor-bearing aged, but not young, mice, anti–PD-(L)1 therapy alone induces irAE-like multiorgan toxicities through CD4 T-cell–derived interleukin (IL)-21 and subsequent age-specific CXCL13 expression in tertiary lymphoid structure. Consistent with this animal model, a systemic increase in CXCL13 correlates with irAE incidence in cancer patients. These findings provide insight into the development of management strategies for irAE that balance both irAE-related immune response and antitumor immune surveillance. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell-derived interleukin (IL)-21 upregulated B-cell-homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti-PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell-derived interleukin (IL)-21 upregulated B-cell-homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti-PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management. |
Author | Komohara, Yoshihiro Tsukamoto, Hirotake Miura, Yuji Kimura, Toshiki Fujiwara, Yukio Tomita, Yusuke Motoshima, Takanobu Ikeda, Tokunori Imamura, Kosuke Oshiumi, Hiroyuki Sakagami, Takuro Yano, Hiromu Kamba, Tomomi |
Author_xml | – sequence: 1 givenname: Hirotake surname: Tsukamoto fullname: Tsukamoto, Hirotake – sequence: 2 givenname: Yoshihiro surname: Komohara fullname: Komohara, Yoshihiro – sequence: 3 givenname: Yusuke surname: Tomita fullname: Tomita, Yusuke – sequence: 4 givenname: Yuji surname: Miura fullname: Miura, Yuji – sequence: 5 givenname: Takanobu surname: Motoshima fullname: Motoshima, Takanobu – sequence: 6 givenname: Kosuke surname: Imamura fullname: Imamura, Kosuke – sequence: 7 givenname: Toshiki surname: Kimura fullname: Kimura, Toshiki – sequence: 8 givenname: Tokunori surname: Ikeda fullname: Ikeda, Tokunori – sequence: 9 givenname: Yukio surname: Fujiwara fullname: Fujiwara, Yukio – sequence: 10 givenname: Hiromu surname: Yano fullname: Yano, Hiromu – sequence: 11 givenname: Tomomi surname: Kamba fullname: Kamba, Tomomi – sequence: 12 givenname: Takuro surname: Sakagami fullname: Sakagami, Takuro – sequence: 13 givenname: Hiroyuki surname: Oshiumi fullname: Oshiumi, Hiroyuki |
BookMark | eNp1kUFrFDEYhoNU7LZ69iQMePEybTKZTJKLUKbaCgt6qOAtZJJvtll2kzHJLPSk_8F_6C8x262KBU855Hmfj-97T9CRDx4QeknwGcGcnk9ep7OmwYxyQYh8ghYES1J3rcRHaIFxw2vRNu0xOklpjTGWTOBn6JgywQRt-QJ9u1g5v6p1SsE4ncFW2tuqv2yrm9rAZvPz-w8LE3gLPldgcpicqfov_ZLQSpvsdjq74KspgnVpCglSlUNxZFeSny5rUuVbiHq6q523s9n77Q5iggp2RZmeo6ej3iR48fCeos_v39301_Xy49WH_mJZG0Zxrtk4dIy1xGgrtAXZDaBBjuOgNXAQozCj5cVuG96BbAvMucRyEJKPrZSEnqK3B-80D1uwpsyOeqOm6LY63qmgnfr3x7tbtQo7JSmmgskiePMgiOHrDCmrrUv7C2kPYU6q6WTDWUeatqCvH6HrMEdf1runGklawQvFDpSJIaUIozIu31-zzHcbRbDaV6z2Fau_FZfc-aPc7yX-n3h1SKxTDvEP3nDCiaCC_gLyF7gg |
CitedBy_id | crossref_primary_10_1038_s43018_024_00730_3 crossref_primary_10_1159_000535553 crossref_primary_10_1016_j_critrevonc_2024_104259 crossref_primary_10_1016_j_imbio_2025_152884 crossref_primary_10_1093_intimm_dxae056 crossref_primary_10_1016_j_canlet_2023_216293 crossref_primary_10_1016_j_trecan_2022_12_007 crossref_primary_10_37155_2972_4759_2023_01_01_6 crossref_primary_10_1111_1348_0421_13067 crossref_primary_10_3389_fimmu_2023_1190850 crossref_primary_10_1002_cam4_70011 crossref_primary_10_3892_ijo_2024_5653 crossref_primary_10_1002_mco2_489 crossref_primary_10_1111_imr_13250 crossref_primary_10_1007_s11912_024_01528_3 crossref_primary_10_18632_aging_204552 crossref_primary_10_1038_s41698_023_00380_1 crossref_primary_10_1007_s00262_023_03541_0 crossref_primary_10_1038_s41392_024_01947_5 crossref_primary_10_1016_j_actbio_2023_09_028 crossref_primary_10_3389_fimmu_2025_1549206 crossref_primary_10_3389_fmed_2022_1034764 crossref_primary_10_1007_s00432_025_06087_z crossref_primary_10_1016_j_jdermsci_2023_03_004 crossref_primary_10_3390_ijms25074101 crossref_primary_10_1007_s41999_024_01032_8 crossref_primary_10_1186_s13046_025_03318_6 crossref_primary_10_2217_nnm_2022_0299 crossref_primary_10_1158_2326_6066_CIR_23_0121 crossref_primary_10_1007_s11033_025_10319_3 crossref_primary_10_1016_j_antiviral_2023_105720 crossref_primary_10_1111_acel_14317 crossref_primary_10_1016_j_canlet_2024_217278 crossref_primary_10_1136_jitc_2024_009345 crossref_primary_10_1093_jjco_hyad184 crossref_primary_10_3960_jslrt_24001 crossref_primary_10_1038_s41419_024_07319_9 crossref_primary_10_3389_fimmu_2024_1414884 crossref_primary_10_3390_ijms25137013 |
Cites_doi | 10.1016/j.celrep.2021.109422 10.1200/JCO.2008.20.8983 10.1038/nrd3003 10.1200/JCO.2000.18.22.3782 10.1158/1078-0432.CCR-21-1283 10.1038/s41584-020-0419-z 10.1073/pnas.1409155111 10.1136/thoraxjnl-2015-207886 10.1084/jem.20190738 10.1002/JLB.3MR0218-062R 10.3389/fonc.2021.619385 10.1038/ncomms7702 10.1016/j.immuni.2021.02.003 10.1038/s41586-019-1914-8 10.1001/jamaoncol.2019.0402 10.1158/0008-5472.CAN-18-0118 10.1073/pnas.1908079116 10.1038/35018581 10.1038/nm0795-649 10.1200/JCO.2016.72.1167 10.1056/NEJMoa1606774 10.1158/2326-6066.CIR-17-0755 10.1158/0008-5472.CAN-11-3019 10.1073/pnas.0700591104 10.1111/eci.12063 10.1172/JCI96798 10.1084/jem.20141380 10.1016/j.isci.2020.101580 10.1136/esmoopen-2018-000472 10.1158/1055-9965.EPI-11-0729 10.1056/NEJMoa1709684 10.1084/jem.20091738 10.1073/pnas.2103730118 10.1186/1465-9921-12-29 10.1126/scitranslmed.abc4220 10.1172/JCI123391 10.1038/s41571-020-0352-8 10.1634/theoncologist.2016-0450 10.1038/nm955 10.1136/rmdopen-2019-000906 10.1186/s12885-020-07142-3 10.1152/jappl.2001.91.6.2730 10.1016/j.jhepr.2020.100170 10.1038/s41586-021-03187-x 10.1056/NEJMoa1504030 10.1073/pnas.1416498111 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Jul 19, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Jul 19, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2205378119 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11 |
ExternalDocumentID | PMC9303859 10_1073_pnas_2205378119 27171838 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 2AX 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD ABBHK AEUPB AEXZC C1K DCCCD FR3 H94 IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM M7N P64 RC3 SA0 7X8 5PM |
ID | FETCH-LOGICAL-c530t-5fb65541cad8ade96beae9ffbaae7e8f8cfd7cedd276e94b6577909b897f49913 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:13:42 EDT 2025 Thu Sep 04 20:09:54 EDT 2025 Fri Jul 25 10:29:20 EDT 2025 Tue Jul 01 01:03:20 EDT 2025 Thu Apr 24 23:01:12 EDT 2025 Thu May 29 08:52:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c530t-5fb65541cad8ade96beae9ffbaae7e8f8cfd7cedd276e94b6577909b897f49913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: H.T., Y.K., and H.O. designed research; H.T., Y.K., Y.T., Y.M., T.M., K.I., T. Kimura, T.I., Y.F., H.Y., T. Kamba, and T.S. performed research; H.T., Y.K., Y.T., Y.M., T.M., T.I., and H.O. analyzed data; and H.T., Y.K., Y.T., and H.O. wrote the paper. Edited by Tyler Curiel, Dartmouth College, Hanover, NH; received March 30, 2022; accepted May 20, 2022 by Editorial Board Member Philippa Marrack |
ORCID | 0000-0003-3214-1652 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9303859 |
PMID | 35858347 |
PQID | 2692291487 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303859 proquest_miscellaneous_2692756124 proquest_journals_2692291487 crossref_citationtrail_10_1073_pnas_2205378119 crossref_primary_10_1073_pnas_2205378119 jstor_primary_27171838 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-19 |
PublicationDateYYYYMMDD | 2022-07-19 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_28_2 e_1_3_4_29_2 Dai H. (e_1_3_4_33_2) 2015; 7 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_46_2 doi: 10.1016/j.celrep.2021.109422 – ident: e_1_3_4_17_2 doi: 10.1200/JCO.2008.20.8983 – ident: e_1_3_4_31_2 doi: 10.1038/nrd3003 – ident: e_1_3_4_23_2 doi: 10.1200/JCO.2000.18.22.3782 – ident: e_1_3_4_10_2 doi: 10.1158/1078-0432.CCR-21-1283 – ident: e_1_3_4_30_2 doi: 10.1038/s41584-020-0419-z – volume: 7 start-page: 616 year: 2015 ident: e_1_3_4_33_2 article-title: Mechanical ventilation modulates Toll-like receptors 2, 4, and 9 on alveolar macrophages in a ventilator-induced lung injury model publication-title: J. Thorac. Dis. – ident: e_1_3_4_44_2 doi: 10.1073/pnas.1409155111 – ident: e_1_3_4_27_2 doi: 10.1136/thoraxjnl-2015-207886 – ident: e_1_3_4_9_2 doi: 10.1084/jem.20190738 – ident: e_1_3_4_29_2 doi: 10.1002/JLB.3MR0218-062R – ident: e_1_3_4_21_2 doi: 10.3389/fonc.2021.619385 – ident: e_1_3_4_24_2 doi: 10.1038/ncomms7702 – ident: e_1_3_4_40_2 doi: 10.1016/j.immuni.2021.02.003 – ident: e_1_3_4_36_2 doi: 10.1038/s41586-019-1914-8 – ident: e_1_3_4_11_2 doi: 10.1001/jamaoncol.2019.0402 – ident: e_1_3_4_22_2 doi: 10.1158/0008-5472.CAN-18-0118 – ident: e_1_3_4_12_2 doi: 10.1073/pnas.1908079116 – ident: e_1_3_4_35_2 doi: 10.1038/35018581 – ident: e_1_3_4_47_2 doi: 10.1038/nm0795-649 – ident: e_1_3_4_48_2 – ident: e_1_3_4_37_2 doi: 10.1200/JCO.2016.72.1167 – ident: e_1_3_4_1_2 doi: 10.1056/NEJMoa1606774 – ident: e_1_3_4_7_2 doi: 10.1158/2326-6066.CIR-17-0755 – ident: e_1_3_4_38_2 doi: 10.1158/0008-5472.CAN-11-3019 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.0700591104 – ident: e_1_3_4_39_2 doi: 10.1111/eci.12063 – ident: e_1_3_4_13_2 doi: 10.1172/JCI96798 – ident: e_1_3_4_34_2 doi: 10.1084/jem.20141380 – ident: e_1_3_4_5_2 doi: 10.1016/j.isci.2020.101580 – ident: e_1_3_4_15_2 doi: 10.1136/esmoopen-2018-000472 – ident: e_1_3_4_18_2 doi: 10.1158/1055-9965.EPI-11-0729 – ident: e_1_3_4_3_2 doi: 10.1056/NEJMoa1709684 – ident: e_1_3_4_42_2 doi: 10.1084/jem.20091738 – ident: e_1_3_4_25_2 doi: 10.1073/pnas.2103730118 – ident: e_1_3_4_26_2 doi: 10.1186/1465-9921-12-29 – ident: e_1_3_4_43_2 doi: 10.1126/scitranslmed.abc4220 – ident: e_1_3_4_16_2 doi: 10.1172/JCI123391 – ident: e_1_3_4_8_2 doi: 10.1038/s41571-020-0352-8 – ident: e_1_3_4_19_2 doi: 10.1634/theoncologist.2016-0450 – ident: e_1_3_4_4_2 doi: 10.1038/nm955 – ident: e_1_3_4_14_2 doi: 10.1136/rmdopen-2019-000906 – ident: e_1_3_4_20_2 doi: 10.1186/s12885-020-07142-3 – ident: e_1_3_4_32_2 doi: 10.1152/jappl.2001.91.6.2730 – ident: e_1_3_4_6_2 doi: 10.1016/j.jhepr.2020.100170 – ident: e_1_3_4_41_2 doi: 10.1038/s41586-021-03187-x – ident: e_1_3_4_2_2 doi: 10.1056/NEJMoa1504030 – ident: e_1_3_4_45_2 doi: 10.1073/pnas.1416498111 |
SSID | ssj0009580 |
Score | 2.5641606 |
Snippet | Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However,... Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adverse events Aging Autoantibodies Biological Sciences Cancer immunotherapy CD4 antigen Cell activation Chemokines CXCL13 protein Damage accumulation Depletion IgG antibody Immune checkpoint Immunoglobulin G Immunotherapy Interleukin 21 Lymphocytes Lymphocytes B Lymphocytes T Organs Pathogenicity Pathogens PD-1 protein Therapy Toxicity Tumors |
Title | Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events |
URI | https://www.jstor.org/stable/27171838 https://www.proquest.com/docview/2692291487 https://www.proquest.com/docview/2692756124 https://pubmed.ncbi.nlm.nih.gov/PMC9303859 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDJgoDGQkDkORS_Ojdnysuk0VjNJDK5VTFKeOGsaaaUkOwD_En8nzjyRNVaTBJaoc2438fX15fn3-HkLvAi64l44S2OQISoJAekQIlxKX0kSk_lAOdbWGzzM6XQYfV6NVr_d7J2upKsUg-XnwXMn_oAptgKs6JfsPyDaTQgN8BnzhCgjD9V4Yj1WFIRLbFZZaddWZnAfOgqiAPKkr3JaOis3fZokzWU2uXF8raJhYrBIJWGcqd8toPcBCZ2R-TlzHnMz6QWDTXqkkgViVbi6koyWfil2ndt68BIs65WBWxxjH7YkVa0YKhzjzWVv_eFFU1zEQRsdsp9ldXsbXDds-5Te5kpTWb4q82GQb6NBGxm8y4_x-rWCSNos3q-yI6lu2G9bwdAqsNZ7GEoMjQ2hgaokO5IG22ny3oyqr9VRbY6lOEfvqLC0_-LYA86ZKHG_jYtDt2dXlnn2JLpdXV9HiYrV4gB56jOmEAB0XauSdQ6N7YR-wFpFi_oe96Tv-j0mB7Wxuuqm5O77O4gl6bDcpeGwYd4x6cvsUHdf44TOrVf7-Gfq1T0EMFMRAQbxPQWwpiA0FcUtBvENBXOa4oSDeoyC2FMSGgs_R8vJiMZkSW8-DJCN_WJJRKih4ry4QLwTucSpkLHmaijiWTIZpmKRrBrOtPUYlD6CzEsPkIuQshY2565-go22-lS8Qph5PqU8F5cMgEMyNhzR0ZSp4kqyFHwd9NKhXOUqs2L2qufI90kkXzI8ULFELSx-dNQNujc7L37ueaNiafh5zwcPzwz46rXGMrJWAcZR7HneDkPXR2-Y22HAFQryVeWX6MFWmFp6bdfBvvkOpwHfvbLONVoPnvvpzn7-8x-yv0KP2p3aKjsq7Sr4Gn7oUbzSd_wAdvdGK |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging-associated+and+CD4+T-cell-dependent+ectopic+CXCL13+activation+predisposes+to+anti-PD-1+therapy-induced+adverse+events&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tsukamoto%2C+Hirotake&rft.au=Komohara%2C+Yoshihiro&rft.au=Tomita%2C+Yusuke&rft.au=Miura%2C+Yuji&rft.date=2022-07-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=29&rft.spage=e2205378119&rft_id=info:doi/10.1073%2Fpnas.2205378119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |