Preparation and characterization of a novel magnetic biochar for arsenic removal
[Display omitted] ► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar matrix. ► Biochar/γ-Fe2O3 composite has excellent ferromagnetic properties. ► Biochar/γ-Fe2O3 composite has strong sorption ability to As(V)...
Saved in:
Published in | Bioresource technology Vol. 130; pp. 457 - 462 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.02.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar matrix. ► Biochar/γ-Fe2O3 composite has excellent ferromagnetic properties. ► Biochar/γ-Fe2O3 composite has strong sorption ability to As(V).
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment. |
---|---|
AbstractList | [Display omitted]
► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar matrix. ► Biochar/γ-Fe2O3 composite has excellent ferromagnetic properties. ► Biochar/γ-Fe2O3 composite has strong sorption ability to As(V).
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment. A magnetic biochar based adsorbent with colloidal or nanosized gamma -Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of gamma -Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/ gamma -Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2 emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/ gamma -Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment. A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment. A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment.A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment. A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment. |
Author | Hebard, Arthur Gao, Bin Yao, Ying Inyang, Mandu Zhang, Ming Varnoosfaderani, Sima |
Author_xml | – sequence: 1 givenname: Ming surname: Zhang fullname: Zhang, Ming organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 2 givenname: Bin surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 3 givenname: Sima surname: Varnoosfaderani fullname: Varnoosfaderani, Sima organization: Department of Physics, University of Florida, Gainesville, FL 32611,United States – sequence: 4 givenname: Arthur surname: Hebard fullname: Hebard, Arthur organization: Department of Physics, University of Florida, Gainesville, FL 32611,United States – sequence: 5 givenname: Ying surname: Yao fullname: Yao, Ying organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 6 givenname: Mandu surname: Inyang fullname: Inyang, Mandu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141387$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23313693$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2LFDEQhoOsuLOjf2Hpi-Cl23x0Jx3woCyuCgvuQc8hXal2M3QnY9IzoL_ezM6sgpc5FSmetyrUc0UuQgxIyDWjDaNMvt00g49pQXhoOGW8Yaxhgj8jK9YrUXOt5AVZUS1p3Xe8vSRXOW8opYIp_oJcciGYkFqsyP19wq1NdvExVDa4Ch7KCxZM_vexGcfKViHucapm-yPg4qEquw9cNcZU2ZQxlF7COe7t9JI8H-2U8dWprsn324_fbj7Xd18_fbn5cFdDJ-hSd5paO3S8l8KJrqeOoWa9E4Ja5awToLjSnZYKFYUWNAxKAiAf-2EYR-rEmrw5zt2m-HOHeTGzz4DTZAPGXTaso1SpchN2HhWyo63inT6P8l63SvStLOj1Cd0NMzqzTX626Zd5um0BXp8Am8FOY7IBfP7HKdYyUWytiTxykGLOCce_CKPmINtszJNsc5BtGCt_5iX47r8g-OVR2pKsn87H3x_jWDTtPSaTwWMAdD4hLMZFf27EH25fyLI |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_124755 crossref_primary_10_1109_LMAG_2019_2931975 crossref_primary_10_1016_j_envpol_2016_06_013 crossref_primary_10_1016_j_scitotenv_2020_137091 crossref_primary_10_1016_j_biortech_2014_10_104 crossref_primary_10_1016_j_cej_2021_132071 crossref_primary_10_1016_j_jwpe_2020_101561 crossref_primary_10_1080_00103624_2020_1763382 crossref_primary_10_1109_TBME_2020_3023392 crossref_primary_10_2174_0115734110286724240318051113 crossref_primary_10_1002_adma_201401376 crossref_primary_10_1016_j_molliq_2019_01_103 crossref_primary_10_1061__ASCE_EE_1943_7870_0001420 crossref_primary_10_1016_j_jwpe_2020_101677 crossref_primary_10_1007_s00604_020_04257_z crossref_primary_10_1016_j_ecoenv_2018_08_024 crossref_primary_10_1016_j_chemosphere_2017_02_061 crossref_primary_10_1016_j_renene_2021_06_063 crossref_primary_10_1039_C7RA10185F crossref_primary_10_1016_j_chemosphere_2017_08_014 crossref_primary_10_1080_15567036_2019_1602197 crossref_primary_10_1016_j_biortech_2021_126030 crossref_primary_10_1007_s10653_020_00739_4 crossref_primary_10_1016_j_scitotenv_2021_151440 crossref_primary_10_1007_s42773_024_00341_2 crossref_primary_10_1021_acssuschemeng_7b00418 crossref_primary_10_1016_j_scitotenv_2020_144604 crossref_primary_10_1080_02757540_2020_1858816 crossref_primary_10_1039_C4TA06491G crossref_primary_10_1016_j_biortech_2017_08_148 crossref_primary_10_1016_j_jenvman_2019_06_008 crossref_primary_10_1016_j_molstruc_2024_141005 crossref_primary_10_1016_j_chemosphere_2021_130521 crossref_primary_10_1007_s42398_020_00142_w crossref_primary_10_1016_j_clema_2022_100104 crossref_primary_10_1016_j_apsoil_2023_105065 crossref_primary_10_1007_s11270_021_05343_5 crossref_primary_10_1016_j_biortech_2021_126362 crossref_primary_10_1016_j_jece_2019_103266 crossref_primary_10_1021_acs_iecr_7b05300 crossref_primary_10_1016_S1002_0160_20_60043_1 crossref_primary_10_1021_acsomega_9b02227 crossref_primary_10_1080_09593330_2019_1694081 crossref_primary_10_1016_j_chemosphere_2018_12_053 crossref_primary_10_1039_D4RA07455F crossref_primary_10_1515_mgmc_2018_0011 crossref_primary_10_1016_j_jclepro_2019_03_120 crossref_primary_10_5155_eurjchem_13_1_78_90_2189 crossref_primary_10_1016_j_scitotenv_2020_142104 crossref_primary_10_1016_j_jece_2021_106075 crossref_primary_10_1016_j_cej_2013_12_061 crossref_primary_10_1016_j_cej_2013_12_062 crossref_primary_10_1016_j_jhazmat_2019_121342 crossref_primary_10_1016_j_scitotenv_2019_05_480 crossref_primary_10_1016_j_jclepro_2020_120267 crossref_primary_10_1016_j_biortech_2022_126672 crossref_primary_10_1016_j_carbon_2017_03_056 crossref_primary_10_1061__ASCE_EE_1943_7870_0001503 crossref_primary_10_1007_s13762_022_03920_7 crossref_primary_10_1016_j_chemosphere_2019_125344 crossref_primary_10_1016_j_chemosphere_2022_137434 crossref_primary_10_1016_j_cej_2025_161869 crossref_primary_10_1080_21622515_2019_1631393 crossref_primary_10_1088_2053_1591_ab6b58 crossref_primary_10_1016_j_cherd_2024_05_028 crossref_primary_10_1016_j_ecoenv_2020_111132 crossref_primary_10_1016_j_cej_2022_138921 crossref_primary_10_1039_D1RA08404F crossref_primary_10_1080_15320383_2021_1999206 crossref_primary_10_1016_j_envres_2021_111758 crossref_primary_10_1016_j_biortech_2018_03_077 crossref_primary_10_1016_j_carbon_2017_12_070 crossref_primary_10_1016_j_ibiod_2015_01_007 crossref_primary_10_1007_s11356_017_8376_z crossref_primary_10_12677_OJNS_2024_121029 crossref_primary_10_1016_j_cej_2013_04_077 crossref_primary_10_1016_j_envpol_2024_124850 crossref_primary_10_1007_s11814_024_00237_8 crossref_primary_10_1007_s11356_020_11573_7 crossref_primary_10_3390_nano9010100 crossref_primary_10_5004_dwt_2021_26607 crossref_primary_10_1016_j_arabjc_2022_103817 crossref_primary_10_1016_j_jafr_2021_100191 crossref_primary_10_1007_s13399_024_06474_5 crossref_primary_10_1007_s10098_016_1218_8 crossref_primary_10_1016_j_jece_2019_103497 crossref_primary_10_1371_journal_pone_0100704 crossref_primary_10_4236_jacen_2017_61003 crossref_primary_10_1016_j_reffit_2017_01_001 crossref_primary_10_1039_D2NA00610C crossref_primary_10_1016_j_cherd_2020_05_011 crossref_primary_10_1039_C4RA11815D crossref_primary_10_1016_j_micromeso_2020_110764 crossref_primary_10_1016_j_envpol_2022_119953 crossref_primary_10_1088_1755_1315_295_3_032062 crossref_primary_10_1016_j_scitotenv_2017_09_171 crossref_primary_10_1016_j_biortech_2013_03_057 crossref_primary_10_1016_j_scitotenv_2021_152604 crossref_primary_10_1039_C8GC01748D crossref_primary_10_1002_jssc_202200134 crossref_primary_10_1007_s13399_023_04512_2 crossref_primary_10_1016_j_chemosphere_2016_01_043 crossref_primary_10_3390_molecules27196198 crossref_primary_10_1016_j_biortech_2015_12_056 crossref_primary_10_1016_j_scitotenv_2017_10_063 crossref_primary_10_1039_C4RA11901K crossref_primary_10_1016_j_scitotenv_2016_07_079 crossref_primary_10_1007_s00396_017_4253_z crossref_primary_10_1007_s11270_023_06496_1 crossref_primary_10_1039_C7RA13540H crossref_primary_10_1080_19443994_2015_1029527 crossref_primary_10_1016_j_jenvman_2021_112397 crossref_primary_10_1007_s10967_018_5839_8 crossref_primary_10_1007_s13399_021_01367_3 crossref_primary_10_2166_aqua_2016_089 crossref_primary_10_1021_acsomega_2c02909 crossref_primary_10_1016_j_jaap_2020_104893 crossref_primary_10_1007_s11356_019_05674_1 crossref_primary_10_1016_j_cej_2020_125195 crossref_primary_10_1007_s40899_017_0097_4 crossref_primary_10_1016_j_biortech_2017_09_047 crossref_primary_10_1016_j_jwpe_2023_104205 crossref_primary_10_1080_01932691_2020_1785889 crossref_primary_10_1134_S1070427218110174 crossref_primary_10_1155_2019_5295610 crossref_primary_10_1016_j_jwpe_2022_103054 crossref_primary_10_1039_D0RA07499C crossref_primary_10_1016_j_wasman_2018_11_042 crossref_primary_10_1016_j_chemosphere_2022_137117 crossref_primary_10_1016_j_chemosphere_2022_137238 crossref_primary_10_1016_j_envpol_2021_116485 crossref_primary_10_1007_s11356_024_33679_y crossref_primary_10_1016_j_scitotenv_2018_09_259 crossref_primary_10_1007_s11356_018_3021_z crossref_primary_10_1016_j_biortech_2017_11_052 crossref_primary_10_1016_j_biortech_2019_122030 crossref_primary_10_1016_j_biortech_2015_07_047 crossref_primary_10_1016_j_jwpe_2015_07_001 crossref_primary_10_1016_j_scitotenv_2022_153054 crossref_primary_10_1021_acssuschemeng_1c08288 crossref_primary_10_2174_2405520413999201117143926 crossref_primary_10_1007_s13762_024_06226_y crossref_primary_10_1007_s11356_018_3107_7 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1016_j_cej_2017_10_035 crossref_primary_10_1016_j_aej_2015_12_015 crossref_primary_10_1016_j_jiec_2015_10_007 crossref_primary_10_1016_j_jenvman_2020_111164 crossref_primary_10_1016_j_jenvman_2021_112898 crossref_primary_10_1016_j_jwpe_2022_102801 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1016_j_biortech_2013_11_021 crossref_primary_10_1016_j_indcrop_2023_117496 crossref_primary_10_1016_j_biortech_2017_02_103 crossref_primary_10_1016_j_jhazmat_2019_122010 crossref_primary_10_1016_j_biortech_2024_131866 crossref_primary_10_1080_01496395_2018_1553981 crossref_primary_10_3390_ijerph19031260 crossref_primary_10_1021_acs_est_6b00627 crossref_primary_10_1016_j_chemosphere_2019_03_050 crossref_primary_10_1016_j_aej_2021_06_036 crossref_primary_10_1016_j_scitotenv_2023_166881 crossref_primary_10_1039_C5RA17490B crossref_primary_10_1016_j_jhazmat_2019_121033 crossref_primary_10_1016_j_chroma_2024_465169 crossref_primary_10_1007_s13399_021_01448_3 crossref_primary_10_2139_ssrn_4093754 crossref_primary_10_1007_s11356_019_06524_w crossref_primary_10_3390_su15053973 crossref_primary_10_1016_j_cej_2023_144677 crossref_primary_10_3390_magnetochemistry10120095 crossref_primary_10_3390_toxics10110703 crossref_primary_10_1016_j_jenvman_2023_119513 crossref_primary_10_1007_s10653_022_01462_y crossref_primary_10_1016_j_biortech_2021_125674 crossref_primary_10_1016_j_btre_2020_e00570 crossref_primary_10_1515_ract_2024_0273 crossref_primary_10_1016_j_chemosphere_2020_127694 crossref_primary_10_3390_ma16175800 crossref_primary_10_1016_j_chemosphere_2022_134676 crossref_primary_10_14233_ajchem_2022_23506 crossref_primary_10_1016_j_envpol_2017_07_079 crossref_primary_10_1007_s11356_020_10323_z crossref_primary_10_1007_s11356_020_10082_x crossref_primary_10_1016_j_cej_2016_01_097 crossref_primary_10_1016_j_colsurfa_2019_01_064 crossref_primary_10_1080_01932691_2018_1562354 crossref_primary_10_1016_j_watres_2018_03_021 crossref_primary_10_1039_C7RA00324B crossref_primary_10_1016_j_chemosphere_2016_08_025 crossref_primary_10_1016_j_chemosphere_2015_06_019 crossref_primary_10_1016_j_chemosphere_2020_127566 crossref_primary_10_1080_09593330_2017_1332103 crossref_primary_10_1016_j_matchemphys_2022_126035 crossref_primary_10_1016_j_jhazmat_2022_129337 crossref_primary_10_1016_j_scitotenv_2019_03_011 crossref_primary_10_1016_j_jwpe_2023_104249 crossref_primary_10_1016_j_jhazmat_2020_122507 crossref_primary_10_3390_su152215978 crossref_primary_10_1016_j_jenvman_2017_03_087 crossref_primary_10_1016_j_chemosphere_2015_11_050 crossref_primary_10_1016_j_gsf_2020_08_015 crossref_primary_10_1016_j_fuel_2017_01_052 crossref_primary_10_1088_1755_1315_1222_1_012012 crossref_primary_10_1007_s13201_016_0487_z crossref_primary_10_1016_j_matpr_2020_03_024 crossref_primary_10_1016_j_jece_2017_12_067 crossref_primary_10_1016_j_scitotenv_2018_10_087 crossref_primary_10_1016_j_scitotenv_2020_139750 crossref_primary_10_1007_s11356_020_11811_y crossref_primary_10_1016_j_jenvman_2020_111126 crossref_primary_10_1080_10643389_2014_924180 crossref_primary_10_1016_j_scitotenv_2017_09_220 crossref_primary_10_1007_s11356_018_3643_1 crossref_primary_10_1007_s11356_018_1292_z crossref_primary_10_1080_15226514_2023_2199876 crossref_primary_10_1007_s42773_025_00441_7 crossref_primary_10_1016_j_chemosphere_2024_142205 crossref_primary_10_1016_j_jhazmat_2016_10_006 crossref_primary_10_1016_j_jhazmat_2016_04_014 crossref_primary_10_3390_fermentation7040277 crossref_primary_10_1016_j_microc_2019_104030 crossref_primary_10_1016_j_mtsust_2024_100833 crossref_primary_10_1039_C9NJ02661D crossref_primary_10_1016_j_jwpe_2021_101993 crossref_primary_10_1016_j_ecoenv_2017_06_063 crossref_primary_10_1080_01496395_2024_2394476 crossref_primary_10_3389_fenve_2023_1228992 crossref_primary_10_1007_s13399_022_03183_9 crossref_primary_10_1016_j_apcatb_2019_117752 crossref_primary_10_1016_j_jenvman_2014_07_029 crossref_primary_10_2166_ws_2017_009 crossref_primary_10_1016_j_jenvman_2021_113651 crossref_primary_10_3390_molecules28155840 crossref_primary_10_1016_j_chemosphere_2019_02_132 crossref_primary_10_3390_ijms25094743 crossref_primary_10_1016_j_ecoenv_2018_07_042 crossref_primary_10_1016_j_hazadv_2023_100254 crossref_primary_10_1021_sc400547y crossref_primary_10_3390_c6020021 crossref_primary_10_1016_j_chemosphere_2020_127370 crossref_primary_10_1039_C5RA02388B crossref_primary_10_1016_j_cej_2015_08_037 crossref_primary_10_1016_j_jhazmat_2020_122658 crossref_primary_10_3390_toxics10120787 crossref_primary_10_1016_j_jwpe_2020_101455 crossref_primary_10_1186_s11671_017_2201_y crossref_primary_10_1016_j_scitotenv_2018_02_137 crossref_primary_10_1016_j_jcis_2014_12_030 crossref_primary_10_1039_D3NA00923H crossref_primary_10_1016_j_sajb_2024_07_054 crossref_primary_10_1016_j_biortech_2015_06_102 crossref_primary_10_1098_rsos_190667 crossref_primary_10_1016_j_jwpe_2017_02_001 crossref_primary_10_1590_0001_3765202020190440 crossref_primary_10_1016_j_indcrop_2018_11_041 crossref_primary_10_1039_c3ta11124e crossref_primary_10_1016_j_cherd_2022_07_022 crossref_primary_10_1016_j_scitotenv_2024_176883 crossref_primary_10_1007_s11356_021_14432_1 crossref_primary_10_1016_j_scitotenv_2018_01_323 crossref_primary_10_1007_s44169_023_00030_4 crossref_primary_10_1016_j_jece_2017_04_017 crossref_primary_10_1007_s10098_016_1264_2 crossref_primary_10_1007_s42247_023_00603_y crossref_primary_10_1016_j_jece_2022_108765 crossref_primary_10_1007_s11783_015_0769_y crossref_primary_10_1039_D1RA08941B crossref_primary_10_1016_j_jece_2019_103519 crossref_primary_10_1016_j_diamond_2024_111036 crossref_primary_10_1016_j_jhazmat_2020_123882 crossref_primary_10_1016_j_nanoen_2015_08_004 crossref_primary_10_5004_dwt_2020_25454 crossref_primary_10_1016_j_scitotenv_2021_145676 crossref_primary_10_1016_j_envpol_2022_120696 crossref_primary_10_1016_j_scitotenv_2023_166813 crossref_primary_10_1016_j_biortech_2015_08_132 crossref_primary_10_1016_j_fuel_2022_126930 crossref_primary_10_1080_01932691_2016_1203333 crossref_primary_10_1016_j_jhazmat_2024_134663 crossref_primary_10_1016_j_chemosphere_2020_126539 crossref_primary_10_1007_s11814_018_0057_1 crossref_primary_10_2134_jeq2016_02_0073 crossref_primary_10_1016_j_jiec_2017_12_013 crossref_primary_10_1016_j_microc_2018_08_036 crossref_primary_10_1016_j_chemosphere_2020_127500 crossref_primary_10_1016_j_jece_2023_111770 crossref_primary_10_3390_su15032409 crossref_primary_10_1016_j_chemosphere_2020_126898 crossref_primary_10_1016_j_enmm_2023_100893 crossref_primary_10_1016_j_envpol_2019_01_044 crossref_primary_10_1016_j_biortech_2021_125743 crossref_primary_10_1002_clem_15 crossref_primary_10_1016_j_gsd_2022_100740 crossref_primary_10_1007_s00128_021_03374_6 crossref_primary_10_1016_j_envint_2019_03_012 crossref_primary_10_1016_j_jhazmat_2014_03_067 crossref_primary_10_3390_ijerph17030827 crossref_primary_10_1016_j_envres_2022_114947 crossref_primary_10_1039_C6RA17044G crossref_primary_10_1007_s11356_017_9466_7 crossref_primary_10_1007_s11356_018_1493_5 crossref_primary_10_1016_j_jhazmat_2019_120810 crossref_primary_10_1007_s11356_021_13858_x crossref_primary_10_1016_j_ijhydene_2020_08_225 crossref_primary_10_1016_j_jaap_2019_04_024 crossref_primary_10_1007_s11356_014_2740_z crossref_primary_10_1039_C9RA01271K crossref_primary_10_1016_j_jcis_2019_08_013 crossref_primary_10_1016_j_jhazmat_2023_132184 crossref_primary_10_1080_03067319_2019_1643461 crossref_primary_10_1016_j_molliq_2025_127412 crossref_primary_10_1016_j_micromeso_2017_06_031 crossref_primary_10_1016_j_cej_2013_09_074 crossref_primary_10_1016_j_scitotenv_2023_164730 crossref_primary_10_1016_j_biortech_2014_06_103 crossref_primary_10_1016_j_jfca_2024_106630 crossref_primary_10_1007_s13201_016_0392_5 crossref_primary_10_1021_es4012977 crossref_primary_10_1007_s10311_018_0724_9 crossref_primary_10_1016_j_renene_2021_02_157 crossref_primary_10_1016_j_biortech_2023_129680 crossref_primary_10_1016_j_jhazmat_2021_127136 crossref_primary_10_1007_s11356_021_13869_8 crossref_primary_10_1016_j_chemosphere_2019_124932 crossref_primary_10_1080_26395940_2021_1932605 crossref_primary_10_3390_w14111691 crossref_primary_10_1016_j_enmm_2024_100931 crossref_primary_10_1007_s11270_016_3191_6 crossref_primary_10_1016_j_biortech_2014_01_067 crossref_primary_10_1002_ldr_2851 crossref_primary_10_1016_j_jtice_2017_05_023 crossref_primary_10_1016_j_chemosphere_2021_133214 crossref_primary_10_1007_s11356_021_17964_8 crossref_primary_10_1016_j_cej_2019_123289 crossref_primary_10_1016_j_jhazmat_2020_122597 crossref_primary_10_1007_s13762_020_03116_x crossref_primary_10_1016_j_jece_2023_111840 crossref_primary_10_5004_dwt_2020_25773 crossref_primary_10_2166_wst_2016_335 crossref_primary_10_1007_s10653_017_9984_8 crossref_primary_10_3390_w10060703 crossref_primary_10_1016_j_chemosphere_2022_134654 crossref_primary_10_1016_j_eng_2021_07_012 crossref_primary_10_1007_s42773_022_00181_y crossref_primary_10_1016_j_seppur_2024_128468 crossref_primary_10_1016_j_scitotenv_2020_137972 crossref_primary_10_1039_D4RA04973J crossref_primary_10_1016_j_jece_2021_105447 crossref_primary_10_1002_jctb_6731 crossref_primary_10_1016_j_chemosphere_2018_09_091 crossref_primary_10_1021_acssuschemeng_7b01273 crossref_primary_10_1021_acsomega_0c01268 crossref_primary_10_1016_j_crgsc_2024_100409 crossref_primary_10_1039_D3SU00410D crossref_primary_10_4028_p_MWP6mr crossref_primary_10_1016_j_cej_2020_124638 crossref_primary_10_1039_C8EN01257A crossref_primary_10_1080_15422119_2021_1956539 crossref_primary_10_1007_s13399_022_03209_2 crossref_primary_10_1016_j_scitotenv_2019_133886 crossref_primary_10_1039_D0AY02063J crossref_primary_10_1007_s11356_023_30469_w crossref_primary_10_1007_s12161_021_02041_0 crossref_primary_10_1080_10643389_2020_1713030 crossref_primary_10_1021_acsomega_1c07163 crossref_primary_10_1007_s12517_022_10746_7 crossref_primary_10_1016_j_jes_2018_05_009 crossref_primary_10_1007_s44246_022_00003_7 crossref_primary_10_1016_j_biortech_2015_01_044 crossref_primary_10_1016_j_biortech_2016_04_093 crossref_primary_10_1016_j_watres_2014_10_009 crossref_primary_10_1016_j_chemosphere_2021_133384 crossref_primary_10_1016_j_scitotenv_2021_146617 crossref_primary_10_1016_j_jpcs_2023_111408 crossref_primary_10_1016_j_biortech_2013_12_019 crossref_primary_10_1016_j_biortech_2021_124818 crossref_primary_10_1039_C8RA08512A crossref_primary_10_1007_s10967_019_06709_0 crossref_primary_10_1016_j_jece_2021_105104 crossref_primary_10_1002_jctb_6759 crossref_primary_10_1002_jctb_5428 crossref_primary_10_1016_j_jhazmat_2020_122026 crossref_primary_10_1016_j_crgsc_2021_100088 crossref_primary_10_1016_j_wasman_2018_04_014 crossref_primary_10_1016_j_biortech_2020_123797 crossref_primary_10_3390_c10030061 crossref_primary_10_1016_j_cej_2017_08_123 crossref_primary_10_1039_C6RA06208C crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1016_j_gsd_2021_100585 crossref_primary_10_1016_j_jece_2023_111824 crossref_primary_10_1016_j_jclepro_2018_10_215 crossref_primary_10_1016_j_biortech_2018_05_001 crossref_primary_10_1016_j_biortech_2021_124829 crossref_primary_10_1016_j_materresbull_2018_10_031 crossref_primary_10_1007_s13204_021_01815_6 crossref_primary_10_1016_j_impact_2016_09_004 crossref_primary_10_1016_j_jhazmat_2015_11_047 crossref_primary_10_1080_15226514_2021_1985078 crossref_primary_10_1016_j_jece_2021_105119 crossref_primary_10_1016_j_biortech_2014_02_069 crossref_primary_10_1021_acsomega_9b02769 crossref_primary_10_1016_j_biortech_2019_122680 crossref_primary_10_1016_j_envres_2019_108898 crossref_primary_10_1016_j_jhazmat_2021_127687 crossref_primary_10_1016_j_jhazmat_2020_122037 crossref_primary_10_1016_j_envint_2019_01_004 crossref_primary_10_1016_j_envpol_2023_121662 crossref_primary_10_1039_C5RA12137J crossref_primary_10_1016_j_chemosphere_2019_124745 crossref_primary_10_1039_C4NJ00548A crossref_primary_10_1016_j_biortech_2018_01_145 crossref_primary_10_1002_tqem_22113 crossref_primary_10_1021_sc500619r crossref_primary_10_1016_j_apt_2020_09_007 crossref_primary_10_1016_j_rser_2016_09_057 crossref_primary_10_3390_coatings11111407 crossref_primary_10_1039_D3RA01949G crossref_primary_10_1016_j_carbon_2020_01_089 crossref_primary_10_1016_j_chemosphere_2018_05_175 crossref_primary_10_1016_j_scitotenv_2021_152495 crossref_primary_10_1016_j_seppur_2022_120494 crossref_primary_10_1088_1755_1315_508_1_012158 crossref_primary_10_1016_j_scitotenv_2019_134893 crossref_primary_10_1016_j_scitotenv_2017_12_056 crossref_primary_10_1016_j_scitotenv_2023_163923 crossref_primary_10_1016_j_chemosphere_2018_04_108 crossref_primary_10_1080_10643389_2017_1421844 crossref_primary_10_1016_j_jhazmat_2021_125252 crossref_primary_10_1016_j_jhazmat_2020_124581 crossref_primary_10_1039_C5RA22886G crossref_primary_10_1016_j_cej_2019_122011 crossref_primary_10_3390_su14159022 crossref_primary_10_1007_s42773_020_00053_3 crossref_primary_10_1016_j_jhazmat_2021_126457 crossref_primary_10_1016_j_jhazmat_2021_127305 crossref_primary_10_1016_j_cej_2019_03_179 crossref_primary_10_21967_jbb_v4i1_180 crossref_primary_10_1039_D4RA08867K crossref_primary_10_3390_w15061230 crossref_primary_10_1016_j_biortech_2019_122468 crossref_primary_10_1016_j_jenvman_2019_01_045 crossref_primary_10_1016_j_envres_2021_111346 crossref_primary_10_1016_j_scitotenv_2019_07_233 crossref_primary_10_1007_s13399_022_02795_5 crossref_primary_10_1016_j_chemosphere_2023_139760 crossref_primary_10_1016_j_chemosphere_2017_02_121 crossref_primary_10_1016_j_jclepro_2020_120662 crossref_primary_10_1007_s11356_018_1792_x crossref_primary_10_1021_acssuschemeng_5b01141 crossref_primary_10_1016_j_jhazmat_2020_124488 crossref_primary_10_1039_C8RA05676E crossref_primary_10_1016_S2095_3119_16_61488_0 crossref_primary_10_1016_j_biortech_2016_10_033 crossref_primary_10_1016_j_biortech_2016_12_024 crossref_primary_10_1016_j_rser_2021_111643 crossref_primary_10_1080_10643389_2016_1239975 crossref_primary_10_1039_C5RA13236C crossref_primary_10_1007_s11356_017_9753_3 crossref_primary_10_1016_j_chemosphere_2021_131434 crossref_primary_10_1016_j_ecoenv_2017_08_033 crossref_primary_10_1016_j_jhazmat_2016_01_052 crossref_primary_10_2134_jeq2017_08_0320 crossref_primary_10_1016_j_jece_2021_105951 crossref_primary_10_1016_j_jscs_2024_101873 crossref_primary_10_1016_j_jhazmat_2017_03_064 crossref_primary_10_1021_acssuschemeng_7b00394 crossref_primary_10_1007_s11157_017_9450_1 crossref_primary_10_1016_j_ecoleng_2014_08_017 crossref_primary_10_1155_2014_715398 crossref_primary_10_1039_C6RA10134H crossref_primary_10_1039_D1RA07373G crossref_primary_10_1061_JOEEDU_EEENG_7049 crossref_primary_10_2166_wst_2016_610 crossref_primary_10_1039_D3RA00723E crossref_primary_10_1016_j_jece_2023_111448 crossref_primary_10_1016_j_gsd_2023_101072 crossref_primary_10_1016_j_scitotenv_2022_157062 crossref_primary_10_1016_j_eti_2021_101916 crossref_primary_10_1016_j_cej_2013_09_057 crossref_primary_10_1016_j_cep_2022_109016 crossref_primary_10_1155_2021_2912054 crossref_primary_10_1016_j_biortech_2017_07_082 crossref_primary_10_1016_j_jiec_2019_07_026 crossref_primary_10_1016_j_seppur_2023_123625 crossref_primary_10_1007_s42773_021_00129_8 crossref_primary_10_3390_stresses4010011 crossref_primary_10_1016_j_jece_2023_110360 crossref_primary_10_1016_j_scitotenv_2021_151120 crossref_primary_10_1016_j_carbon_2016_11_032 crossref_primary_10_1016_j_jwpe_2022_103434 crossref_primary_10_1016_j_scitotenv_2021_144955 crossref_primary_10_1016_j_jenvman_2019_109429 crossref_primary_10_1016_j_jaap_2022_105856 crossref_primary_10_1039_C5RA16556C crossref_primary_10_1039_D1EW00958C crossref_primary_10_1016_j_jenvman_2020_111814 crossref_primary_10_1016_j_biortech_2014_01_120 crossref_primary_10_1016_j_envres_2024_119782 crossref_primary_10_1016_j_jaecs_2022_100056 crossref_primary_10_5004_dwt_2019_24572 crossref_primary_10_1016_j_jece_2018_102812 crossref_primary_10_1016_j_jiec_2019_06_008 crossref_primary_10_1007_s11270_019_4130_0 crossref_primary_10_1016_j_chemosphere_2017_10_125 crossref_primary_10_1016_j_biortech_2016_05_057 crossref_primary_10_1016_j_carbon_2020_02_065 crossref_primary_10_2298_JSC220802080N crossref_primary_10_1016_j_envpol_2020_114157 crossref_primary_10_1017_S1755691022000019 crossref_primary_10_1016_j_ecoleng_2015_01_011 crossref_primary_10_1016_j_chemosphere_2017_05_175 crossref_primary_10_1016_j_chroma_2019_460651 crossref_primary_10_1007_s10668_024_05238_5 crossref_primary_10_1007_s11270_016_3066_x crossref_primary_10_3390_coatings13111884 crossref_primary_10_1080_15226514_2019_1687423 crossref_primary_10_3390_nano11102473 crossref_primary_10_1016_j_envpol_2023_121593 crossref_primary_10_1016_j_energy_2017_07_165 crossref_primary_10_1002_jemt_23810 crossref_primary_10_32604_phyton_2022_022473 crossref_primary_10_1016_j_colsurfa_2014_03_105 crossref_primary_10_1039_C6RA11037A crossref_primary_10_1021_es500531c crossref_primary_10_1016_j_envpol_2020_115256 |
Cites_doi | 10.1016/j.jclepro.2012.01.029 10.1021/es048179r 10.1080/10643380902945771 10.1016/j.jhazmat.2008.12.069 10.1016/j.scitotenv.2012.02.023 10.1016/j.jhazmat.2012.01.046 10.1016/j.envpol.2010.10.016 10.1021/cm200397g 10.1016/j.biortech.2010.06.088 10.1016/j.seppur.2011.08.030 10.1016/j.cej.2011.11.052 10.1016/j.jhazmat.2007.01.006 10.1016/j.jhazmat.2010.12.057 10.1016/S0008-6223(02)00076-3 10.1016/j.apsusc.2011.09.045 10.1016/S0926-3373(02)00297-7 10.1016/j.cej.2011.09.003 10.1016/j.biortech.2012.01.072 10.1016/j.scitotenv.2012.07.038 10.1021/es0343712 10.1038/ngeo358 10.1016/j.cej.2012.06.116 10.1016/j.jhazmat.2011.03.083 10.2136/sssaj1996.03615995006000010020x 10.1007/s11051-008-9558-x 10.1021/la204006d 10.1016/j.envpol.2010.02.003 10.1126/science.1154960 10.1007/s10853-007-1887-0 10.1021/jp911030n 10.1080/01496395.2011.584604 10.1002/adma.200600504 10.1016/j.biortech.2011.03.006 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
DOI | 10.1016/j.biortech.2012.11.132 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 462 |
ExternalDocumentID | 23313693 27141387 10_1016_j_biortech_2012_11_132 S0960852412018366 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c530t-590aab52863d3580d1e918d330a7dad3c72795967e70c4c9cb76cce2f8bbff0d3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 05:22:01 EDT 2025 Fri Jul 11 09:57:58 EDT 2025 Sun Aug 24 03:57:02 EDT 2025 Mon Jul 21 06:05:52 EDT 2025 Mon Jul 21 09:16:17 EDT 2025 Tue Jul 01 02:43:05 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanocomposite Adsorption Biochar Black carbon γ-Fe2O3 Carbonization Arsenic γ-Fe Iron III Oxides Charcoal O |
Language | English |
License | CC BY 4.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-590aab52863d3580d1e918d330a7dad3c72795967e70c4c9cb76cce2f8bbff0d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 23313693 |
PQID | 1289473846 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1500771321 proquest_miscellaneous_1365047259 proquest_miscellaneous_1289473846 pubmed_primary_23313693 pascalfrancis_primary_27141387 crossref_primary_10_1016_j_biortech_2012_11_132 crossref_citationtrail_10_1016_j_biortech_2012_11_132 elsevier_sciencedirect_doi_10_1016_j_biortech_2012_11_132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Dong Nguyen, Singh, Ulbrich, Strnadova, Stepanek (b0030) 2011; 82 Beesley, Moreno-Jimenez, Gomez-Eyles (b0020) 2010; 158 Park, Myung, Jung, Choi (b0100) 2009; 11 Xu, Dai, Pan, Li, Huo, Yan, Zou, Zhang (b0120) 2011; 174 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0145) 2011; 190 Zhu, Yang, Zhu, Yang, Jin, Yao (b0165) 2007; 42 Yao, Gao, Chen, Jiang, Inyang, Zimmerman, Cao, Yang, Xue, Li (b0135) 2012; 209–210 Zhu, Jiang, Fu, Jiang, Xiao, Zeng (b0170) 2011; 258 Mohan, Pittman (b0085) 2007; 142 Inyang, Gao, Yao, Xue, Zimmerman, Pullammanappallil, Cao (b0045) 2012; 110 Velickovic, Vukovic, Marinkovic, Moldovan, Peric-Grujic, Uskokovic, Ristic (b0110) 2012; 181 Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (b0130) 2012 Machala, Tucek, Zboril (b0075) 2011; 23 Zhong, Hu, Liang, Cao, Song, Wan (b0175) 2006; 18 Jin, Yu, Li, Qi, Yang, Zhao, Hu (b0060) 2011; 186 Zhang, Gao, Yao, Xue, Inyang (b0150) 2012 Manning, Goldberg (b0080) 1996; 60 Lehmann, Skjemstad, Sohi, Carter, Barson, Falloon, Coleman, Woodbury, Krull (b0065) 2008; 1 Wardle, Nilsson, Zackrisson (b0115) 2008; 320 Oliveira, Rios, Fabris, Garg, Sapag, Lago (b0095) 2002; 40 Li, Miser, Rabiei, Yadav, Hajaligol (b0070) 2003; 43 Aredes, Klein, Pawlik (b0005) 2012; 29–30 Beesley, Marmiroli (b0015) 2011; 159 Inyang, Gao, Pullammanappallil, Ding, Zimmerman (b0040) 2010; 101 Mudhoo, Sharma, Garg, Tseng (b0090) 2011; 41 Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (b0050) 2011; 46 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0140) 2011; 102 Tuutijarvi, Lu, Sillanpaa, Chen (b0105) 2009; 166 Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (b0125) 2012; 424 Chowdhury, Yanful (b0025) 2010; 91 Gu, Fang, Deng (b0035) 2005; 39 Baikousi, Bourlinos, Douvalis, Bakas, Anagnostopoulos, Tucek, Safarova, Zboril, Karakassides (b0010) 2012; 28 Zhou, He, Li, Wang, Sun, Ding, Zhao, Wu (b0160) 2010; 114 Jang, Shin, Park, Choi (b0055) 2003; 37 Jang (10.1016/j.biortech.2012.11.132_b0055) 2003; 37 Li (10.1016/j.biortech.2012.11.132_b0070) 2003; 43 Zhu (10.1016/j.biortech.2012.11.132_b0170) 2011; 258 Lehmann (10.1016/j.biortech.2012.11.132_b0065) 2008; 1 Mudhoo (10.1016/j.biortech.2012.11.132_b0090) 2011; 41 Dong Nguyen (10.1016/j.biortech.2012.11.132_b0030) 2011; 82 Velickovic (10.1016/j.biortech.2012.11.132_b0110) 2012; 181 Aredes (10.1016/j.biortech.2012.11.132_b0005) 2012; 29–30 Machala (10.1016/j.biortech.2012.11.132_b0075) 2011; 23 Gu (10.1016/j.biortech.2012.11.132_b0035) 2005; 39 Chowdhury (10.1016/j.biortech.2012.11.132_b0025) 2010; 91 Xue (10.1016/j.biortech.2012.11.132_b0130) 2012 Baikousi (10.1016/j.biortech.2012.11.132_b0010) 2012; 28 Inyang (10.1016/j.biortech.2012.11.132_b0040) 2010; 101 Inyang (10.1016/j.biortech.2012.11.132_b0050) 2011; 46 Zhu (10.1016/j.biortech.2012.11.132_b0165) 2007; 42 Park (10.1016/j.biortech.2012.11.132_b0100) 2009; 11 Wardle (10.1016/j.biortech.2012.11.132_b0115) 2008; 320 Zhong (10.1016/j.biortech.2012.11.132_b0175) 2006; 18 Zhou (10.1016/j.biortech.2012.11.132_b0160) 2010; 114 Beesley (10.1016/j.biortech.2012.11.132_b0020) 2010; 158 Yao (10.1016/j.biortech.2012.11.132_b0140) 2011; 102 Manning (10.1016/j.biortech.2012.11.132_b0080) 1996; 60 Xu (10.1016/j.biortech.2012.11.132_b0120) 2011; 174 Beesley (10.1016/j.biortech.2012.11.132_b0015) 2011; 159 Mohan (10.1016/j.biortech.2012.11.132_b0085) 2007; 142 Yao (10.1016/j.biortech.2012.11.132_b0145) 2011; 190 Inyang (10.1016/j.biortech.2012.11.132_b0045) 2012; 110 Yao (10.1016/j.biortech.2012.11.132_b0135) 2012; 209–210 Zhang (10.1016/j.biortech.2012.11.132_b0150) 2012 Tuutijarvi (10.1016/j.biortech.2012.11.132_b0105) 2009; 166 Jin (10.1016/j.biortech.2012.11.132_b0060) 2011; 186 Xu (10.1016/j.biortech.2012.11.132_b0125) 2012; 424 Oliveira (10.1016/j.biortech.2012.11.132_b0095) 2002; 40 |
References_xml | – volume: 11 start-page: 1981 year: 2009 end-page: 1989 ident: b0100 article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles publication-title: Journal of Nanoparticle Research – volume: 46 start-page: 1950 year: 2011 end-page: 1956 ident: b0050 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Separation Science and Technology – volume: 1 start-page: 832 year: 2008 end-page: 835 ident: b0065 article-title: Australian climate-carbon cycle feedback reduced by soil black carbon publication-title: Nature Geoscience – volume: 142 start-page: 1 year: 2007 end-page: 53 ident: b0085 article-title: Arsenic removal from water/wastewater using adsorbents – a critical review publication-title: Journal of Hazardous Materials – volume: 114 start-page: 7611 year: 2010 end-page: 7617 ident: b0160 article-title: Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers publication-title: Journal of Physical Chemistry C – volume: 41 start-page: 435 year: 2011 end-page: 519 ident: b0090 article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes publication-title: Critical Reviews in Environmental Science and Technology – year: 2012 ident: b0150 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Science of Total Environment – volume: 18 start-page: 2426 year: 2006 end-page: 2431 ident: b0175 article-title: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment publication-title: Advanced Materials – volume: 39 start-page: 3833 year: 2005 end-page: 3843 ident: b0035 article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal publication-title: Environmental Science and Technology – volume: 60 start-page: 121 year: 1996 end-page: 131 ident: b0080 article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals publication-title: Soil Science Society of American Journal – volume: 181 start-page: 174 year: 2012 end-page: 181 ident: b0110 article-title: Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes publication-title: Chemical Engineering Journal – volume: 82 start-page: 93 year: 2011 end-page: 101 ident: b0030 article-title: Perlite incorporating gamma-Fe2O3 and alpha-MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal publication-title: Separation and Purification Technology – volume: 190 start-page: 501 year: 2011 end-page: 507 ident: b0145 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: Journal of Hazardous Materials – volume: 174 start-page: 221 year: 2011 end-page: 230 ident: b0120 article-title: Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics publication-title: Chemical Engineering Journal – volume: 42 start-page: 9205 year: 2007 end-page: 9209 ident: b0165 article-title: A facile two-step hydrothermal route for the synthesis of gamma-Fe(2)O(3) nanocrystals and their magnetic properties publication-title: Journal of Materials Science – volume: 258 start-page: 1337 year: 2011 end-page: 1344 ident: b0170 article-title: Preparation, characterization and dye adsorption properties of gamma-Fe(2)O(3)/SiO(2)/chitosan composite publication-title: Applied Surface Science – volume: 23 start-page: 3255 year: 2011 end-page: 3272 ident: b0075 article-title: Polymorphous transformations of nanometric iron(III) oxide: a review publication-title: Chemistry of Materials – volume: 91 start-page: 2238 year: 2010 end-page: 2247 ident: b0025 article-title: Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal publication-title: Journal of EnvironmentalManagement – volume: 424 start-page: 1 year: 2012 end-page: 10 ident: b0125 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Science of the Total Environment – volume: 159 start-page: 474 year: 2011 end-page: 480 ident: b0015 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environmental Pollution – volume: 186 start-page: 1672 year: 2011 end-page: 1680 ident: b0060 article-title: Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment publication-title: Journal of Hazardous Materials – year: 2012 ident: b0130 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chemical Engineering Journal – volume: 43 start-page: 151 year: 2003 end-page: 162 ident: b0070 article-title: The removal of carbon monoxide by iron oxide nanoparticles publication-title: Applied Catalysis B-Environmental – volume: 209–210 start-page: 408 year: 2012 end-page: 413 ident: b0135 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: Journal of Hazardous Matererials – volume: 110 start-page: 50 year: 2012 end-page: 56 ident: b0045 article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass publication-title: Bioresource Technology – volume: 37 start-page: 5062 year: 2003 end-page: 5070 ident: b0055 article-title: Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides publication-title: Environmental Science and Technology – volume: 166 start-page: 1415 year: 2009 end-page: 1420 ident: b0105 article-title: As(V) adsorption on maghemite nanoparticles publication-title: Journal of Hazardous Materials – volume: 158 start-page: 2282 year: 2010 end-page: 2287 ident: b0020 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil publication-title: Environmental Pollution – volume: 320 year: 2008 ident: b0115 article-title: Fire-derived charcoal causes loss of forest humus publication-title: Science – volume: 29–30 start-page: 208 year: 2012 end-page: 213 ident: b0005 article-title: The removal of arsenic from water using natural iron oxide minerals publication-title: Journal of Cleaner Production – volume: 101 start-page: 8868 year: 2010 end-page: 8872 ident: b0040 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresource Technology – volume: 102 start-page: 6273 year: 2011 end-page: 6278 ident: b0140 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresource Technology – volume: 28 start-page: 3918 year: 2012 end-page: 3930 ident: b0010 article-title: Synthesis and characterization of gamma-Fe publication-title: Langmuir – volume: 40 start-page: 2177 year: 2002 end-page: 2183 ident: b0095 article-title: Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water publication-title: Carbon – volume: 29–30 start-page: 208 year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0005 article-title: The removal of arsenic from water using natural iron oxide minerals publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2012.01.029 – volume: 39 start-page: 3833 issue: 10 year: 2005 ident: 10.1016/j.biortech.2012.11.132_b0035 article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal publication-title: Environmental Science and Technology doi: 10.1021/es048179r – volume: 41 start-page: 435 issue: 5 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0090 article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes publication-title: Critical Reviews in Environmental Science and Technology doi: 10.1080/10643380902945771 – volume: 166 start-page: 1415 issue: 2–3 year: 2009 ident: 10.1016/j.biortech.2012.11.132_b0105 article-title: As(V) adsorption on maghemite nanoparticles publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2008.12.069 – volume: 424 start-page: 1 year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0125 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2012.02.023 – volume: 209–210 start-page: 408 year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0135 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: Journal of Hazardous Matererials doi: 10.1016/j.jhazmat.2012.01.046 – volume: 159 start-page: 474 issue: 2 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0015 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environmental Pollution doi: 10.1016/j.envpol.2010.10.016 – volume: 23 start-page: 3255 issue: 14 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0075 article-title: Polymorphous transformations of nanometric iron(III) oxide: a review publication-title: Chemistry of Materials doi: 10.1021/cm200397g – volume: 101 start-page: 8868 issue: 22 year: 2010 ident: 10.1016/j.biortech.2012.11.132_b0040 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresource Technology doi: 10.1016/j.biortech.2010.06.088 – volume: 82 start-page: 93 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0030 article-title: Perlite incorporating gamma-Fe2O3 and alpha-MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2011.08.030 – volume: 181 start-page: 174 year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0110 article-title: Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2011.11.052 – volume: 142 start-page: 1 issue: 1–2 year: 2007 ident: 10.1016/j.biortech.2012.11.132_b0085 article-title: Arsenic removal from water/wastewater using adsorbents – a critical review publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2007.01.006 – volume: 186 start-page: 1672 issue: 2–3 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0060 article-title: Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2010.12.057 – volume: 40 start-page: 2177 issue: 12 year: 2002 ident: 10.1016/j.biortech.2012.11.132_b0095 article-title: Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water publication-title: Carbon doi: 10.1016/S0008-6223(02)00076-3 – volume: 258 start-page: 1337 issue: 4 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0170 article-title: Preparation, characterization and dye adsorption properties of gamma-Fe(2)O(3)/SiO(2)/chitosan composite publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2011.09.045 – volume: 43 start-page: 151 issue: 2 year: 2003 ident: 10.1016/j.biortech.2012.11.132_b0070 article-title: The removal of carbon monoxide by iron oxide nanoparticles publication-title: Applied Catalysis B-Environmental doi: 10.1016/S0926-3373(02)00297-7 – volume: 174 start-page: 221 issue: 1 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0120 article-title: Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2011.09.003 – volume: 110 start-page: 50 year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0045 article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass publication-title: Bioresource Technology doi: 10.1016/j.biortech.2012.01.072 – year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0150 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Science of Total Environment doi: 10.1016/j.scitotenv.2012.07.038 – volume: 37 start-page: 5062 issue: 21 year: 2003 ident: 10.1016/j.biortech.2012.11.132_b0055 article-title: Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides publication-title: Environmental Science and Technology doi: 10.1021/es0343712 – volume: 1 start-page: 832 issue: 12 year: 2008 ident: 10.1016/j.biortech.2012.11.132_b0065 article-title: Australian climate-carbon cycle feedback reduced by soil black carbon publication-title: Nature Geoscience doi: 10.1038/ngeo358 – year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0130 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2012.06.116 – volume: 190 start-page: 501 issue: 1–3 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0145 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2011.03.083 – volume: 60 start-page: 121 issue: 1 year: 1996 ident: 10.1016/j.biortech.2012.11.132_b0080 article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals publication-title: Soil Science Society of American Journal doi: 10.2136/sssaj1996.03615995006000010020x – volume: 91 start-page: 2238 issue: 11 year: 2010 ident: 10.1016/j.biortech.2012.11.132_b0025 article-title: Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal publication-title: Journal of EnvironmentalManagement – volume: 11 start-page: 1981 issue: 8 year: 2009 ident: 10.1016/j.biortech.2012.11.132_b0100 article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-008-9558-x – volume: 28 start-page: 3918 issue: 8 year: 2012 ident: 10.1016/j.biortech.2012.11.132_b0010 article-title: Synthesis and characterization of gamma-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions publication-title: Langmuir doi: 10.1021/la204006d – volume: 158 start-page: 2282 issue: 6 year: 2010 ident: 10.1016/j.biortech.2012.11.132_b0020 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil publication-title: Environmental Pollution doi: 10.1016/j.envpol.2010.02.003 – volume: 320 issue: 5876 year: 2008 ident: 10.1016/j.biortech.2012.11.132_b0115 article-title: Fire-derived charcoal causes loss of forest humus publication-title: Science doi: 10.1126/science.1154960 – volume: 42 start-page: 9205 issue: 22 year: 2007 ident: 10.1016/j.biortech.2012.11.132_b0165 article-title: A facile two-step hydrothermal route for the synthesis of gamma-Fe(2)O(3) nanocrystals and their magnetic properties publication-title: Journal of Materials Science doi: 10.1007/s10853-007-1887-0 – volume: 114 start-page: 7611 issue: 17 year: 2010 ident: 10.1016/j.biortech.2012.11.132_b0160 article-title: Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers publication-title: Journal of Physical Chemistry C doi: 10.1021/jp911030n – volume: 46 start-page: 1950 issue: 12 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0050 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Separation Science and Technology doi: 10.1080/01496395.2011.584604 – volume: 18 start-page: 2426 issue: 18 year: 2006 ident: 10.1016/j.biortech.2012.11.132_b0175 article-title: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment publication-title: Advanced Materials doi: 10.1002/adma.200600504 – volume: 102 start-page: 6273 issue: 10 year: 2011 ident: 10.1016/j.biortech.2012.11.132_b0140 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.03.006 |
SSID | ssj0003172 |
Score | 2.5918343 |
Snippet | [Display omitted]
► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar... A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of... A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of... A magnetic biochar based adsorbent with colloidal or nanosized gamma -Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 457 |
SubjectTerms | Adsorption Arsenic Arsenic - isolation & purification Biochar Biological and medical sciences Biomass Black carbon Charcoal Charcoal - chemistry chemistry energy-dispersive X-ray analysis Ferric Compounds Ferric Compounds - chemistry Ferromagnetism Fundamental and applied biological sciences. Psychology isolation & purification Kinetics Magnets Magnets - chemistry Micrometers Nanocomposite Nanostructure particle size Particulate composites Scanning electron microscopy Sorption transmission electron microscopy Water Pollutants, Chemical Water Pollutants, Chemical - isolation & purification X-ray diffraction X-ray photoelectron spectroscopy X-rays γ-Fe2O3 |
Title | Preparation and characterization of a novel magnetic biochar for arsenic removal |
URI | https://dx.doi.org/10.1016/j.biortech.2012.11.132 https://www.ncbi.nlm.nih.gov/pubmed/23313693 https://www.proquest.com/docview/1289473846 https://www.proquest.com/docview/1365047259 https://www.proquest.com/docview/1500771321 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hemirqmrpa_tYuVKv2U1iO46Pq1XRtlURUovEzfITLQJntSw98tsZ57HAATj0kkMyTmyP4--zPP4G4JtmhQm5MFlurM2YEwF_KbwERD_vpXB1q8T0-6BaHLGfx_x4B-bDWZgUVtnP_d2c3s7W_Z1p35vT1XI5_ZPId80RgRDDalol2W3GRBrlk6ubMA_Ex3YnAY2zZH3rlPDpxCxTRGu7KVGUOHtMClreB1AvVvoCuy10-S7uJ6QtMO2_gpc9oySzrtKvYcfHPXg-O1n3qhp-D57Oh7Ru-OSWAuEbODxc-079u4lER0fsVsC5O59JmkA0ic0_f0bO9UlMZx4JNijZESS8BBfGPuK9tT9vcNS-haP973_ni6xPspBZTvNNxmWuteFlXVGXtkRd4WVRO0pzLZx21CLBkVxWwovcMiutEZW1vgy1MSHkjr6D3dhE_wEIs4FWQaJ3vWWeCYkrbxZ4YE5WAYnZCPjQs8r2CuQpEcaZGkLNTtXgEZU8gssThR4ZwXRbbtVpcDxaQg6OU3dGk0KgeLTs-I6nt58sRYGIX4sRfB1cr9B3aYNFR99cXijEeskERUr3gA1FTswErjofsOFJZQnrUozgfTe2bmpBKb5C0o__0cRP8Kxss3qkqJzPsLtZX_ovyK02Ztz-PGN4Mvvxa3FwDXUaJE4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UCrqmrpa_ugrtRr2CS24_i4WhUtBVZIBYmb5fiBFoGzWhZ-P-M8tnAADr3k4NiJ7bHn-yzb3wD80iyrfCqqJK2MSZgVHqcUPjyin3NS2LJRYjqaFdNT9ueMn23ApL8LE49Vdr6_9emNt-5SRl1vjhbz-ehvJN8lRwRCDCtpUbyAzahOxQewOd4_mM7WDhkhstlMwPxJLHDvovDFbjWPh1qbfYksRweym9H8MYx6vdDX2HO-DXnxOCdtsGnvLbzpSCUZt_V-BxsubMOr8fmyE9Zw27A16SO74Zt7IoTv4fh46VoB8DoQHSwxaw3n9oomqT3RJNS37pJc6fMQrz0SbFDMR5DzElwbu4BpS3dV48D9AKd7v08m06SLs5AYTtNVwmWqdcXzsqA27orazMmstJSmWlhtqUGOI7kshBOpYUaaShTGuNyXVeV9aulHGIQ6uM9AmPG08BIN7AxzTEhcfDPPPbOy8MjNhsD7nlWmEyGPsTAuVX_a7EL1FlHRIrhCUWiRIYzW5RatDMezJWRvOPVgQCnEimfL7jyw9PqXucgQ9EsxhJ-96RXaLu6x6ODqm2uFcC-ZoMjqnshDkRYzgQvPJ_LwKLSEdcmG8KkdW_9qQSl-QtIv_9HEH7A1PTk6VIf7s4Ov8DJvgnzEQzrfYLBa3rjvSLVW1U43le4AYsAm_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+characterization+of+a+novel+magnetic+biochar+for+arsenic+removal&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Ming&rft.au=Gao%2C+Bin&rft.au=Varnoosfaderani%2C+Sima&rft.au=Hebard%2C+Arthur&rft.date=2013-02-01&rft.issn=0960-8524&rft.volume=130&rft.spage=457&rft.epage=462&rft_id=info:doi/10.1016%2Fj.biortech.2012.11.132&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |