Preparation and characterization of a novel magnetic biochar for arsenic removal

[Display omitted] ► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar matrix. ► Biochar/γ-Fe2O3 composite has excellent ferromagnetic properties. ► Biochar/γ-Fe2O3 composite has strong sorption ability to As(V)...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 130; pp. 457 - 462
Main Authors Zhang, Ming, Gao, Bin, Varnoosfaderani, Sima, Hebard, Arthur, Yao, Ying, Inyang, Mandu
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar matrix. ► Biochar/γ-Fe2O3 composite has excellent ferromagnetic properties. ► Biochar/γ-Fe2O3 composite has strong sorption ability to As(V). A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment.
AbstractList [Display omitted] ► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar matrix. ► Biochar/γ-Fe2O3 composite has excellent ferromagnetic properties. ► Biochar/γ-Fe2O3 composite has strong sorption ability to As(V). A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment.
A magnetic biochar based adsorbent with colloidal or nanosized gamma -Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of gamma -Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/ gamma -Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2 emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/ gamma -Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment.
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl3 treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe2O3 particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe2O3 composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe2O3 composite could be easily separated from the solution by a magnet at the end of the sorption experiment.
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment.A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment.
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of γ-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/γ-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/γ-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment.
Author Hebard, Arthur
Gao, Bin
Yao, Ying
Inyang, Mandu
Zhang, Ming
Varnoosfaderani, Sima
Author_xml – sequence: 1
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 2
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 3
  givenname: Sima
  surname: Varnoosfaderani
  fullname: Varnoosfaderani, Sima
  organization: Department of Physics, University of Florida, Gainesville, FL 32611,United States
– sequence: 4
  givenname: Arthur
  surname: Hebard
  fullname: Hebard, Arthur
  organization: Department of Physics, University of Florida, Gainesville, FL 32611,United States
– sequence: 5
  givenname: Ying
  surname: Yao
  fullname: Yao, Ying
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 6
  givenname: Mandu
  surname: Inyang
  fullname: Inyang, Mandu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141387$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23313693$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2LFDEQhoOsuLOjf2Hpi-Cl23x0Jx3woCyuCgvuQc8hXal2M3QnY9IzoL_ezM6sgpc5FSmetyrUc0UuQgxIyDWjDaNMvt00g49pQXhoOGW8Yaxhgj8jK9YrUXOt5AVZUS1p3Xe8vSRXOW8opYIp_oJcciGYkFqsyP19wq1NdvExVDa4Ch7KCxZM_vexGcfKViHucapm-yPg4qEquw9cNcZU2ZQxlF7COe7t9JI8H-2U8dWprsn324_fbj7Xd18_fbn5cFdDJ-hSd5paO3S8l8KJrqeOoWa9E4Ja5awToLjSnZYKFYUWNAxKAiAf-2EYR-rEmrw5zt2m-HOHeTGzz4DTZAPGXTaso1SpchN2HhWyo63inT6P8l63SvStLOj1Cd0NMzqzTX626Zd5um0BXp8Am8FOY7IBfP7HKdYyUWytiTxykGLOCce_CKPmINtszJNsc5BtGCt_5iX47r8g-OVR2pKsn87H3x_jWDTtPSaTwWMAdD4hLMZFf27EH25fyLI
CitedBy_id crossref_primary_10_1016_j_jclepro_2020_124755
crossref_primary_10_1109_LMAG_2019_2931975
crossref_primary_10_1016_j_envpol_2016_06_013
crossref_primary_10_1016_j_scitotenv_2020_137091
crossref_primary_10_1016_j_biortech_2014_10_104
crossref_primary_10_1016_j_cej_2021_132071
crossref_primary_10_1016_j_jwpe_2020_101561
crossref_primary_10_1080_00103624_2020_1763382
crossref_primary_10_1109_TBME_2020_3023392
crossref_primary_10_2174_0115734110286724240318051113
crossref_primary_10_1002_adma_201401376
crossref_primary_10_1016_j_molliq_2019_01_103
crossref_primary_10_1061__ASCE_EE_1943_7870_0001420
crossref_primary_10_1016_j_jwpe_2020_101677
crossref_primary_10_1007_s00604_020_04257_z
crossref_primary_10_1016_j_ecoenv_2018_08_024
crossref_primary_10_1016_j_chemosphere_2017_02_061
crossref_primary_10_1016_j_renene_2021_06_063
crossref_primary_10_1039_C7RA10185F
crossref_primary_10_1016_j_chemosphere_2017_08_014
crossref_primary_10_1080_15567036_2019_1602197
crossref_primary_10_1016_j_biortech_2021_126030
crossref_primary_10_1007_s10653_020_00739_4
crossref_primary_10_1016_j_scitotenv_2021_151440
crossref_primary_10_1007_s42773_024_00341_2
crossref_primary_10_1021_acssuschemeng_7b00418
crossref_primary_10_1016_j_scitotenv_2020_144604
crossref_primary_10_1080_02757540_2020_1858816
crossref_primary_10_1039_C4TA06491G
crossref_primary_10_1016_j_biortech_2017_08_148
crossref_primary_10_1016_j_jenvman_2019_06_008
crossref_primary_10_1016_j_molstruc_2024_141005
crossref_primary_10_1016_j_chemosphere_2021_130521
crossref_primary_10_1007_s42398_020_00142_w
crossref_primary_10_1016_j_clema_2022_100104
crossref_primary_10_1016_j_apsoil_2023_105065
crossref_primary_10_1007_s11270_021_05343_5
crossref_primary_10_1016_j_biortech_2021_126362
crossref_primary_10_1016_j_jece_2019_103266
crossref_primary_10_1021_acs_iecr_7b05300
crossref_primary_10_1016_S1002_0160_20_60043_1
crossref_primary_10_1021_acsomega_9b02227
crossref_primary_10_1080_09593330_2019_1694081
crossref_primary_10_1016_j_chemosphere_2018_12_053
crossref_primary_10_1039_D4RA07455F
crossref_primary_10_1515_mgmc_2018_0011
crossref_primary_10_1016_j_jclepro_2019_03_120
crossref_primary_10_5155_eurjchem_13_1_78_90_2189
crossref_primary_10_1016_j_scitotenv_2020_142104
crossref_primary_10_1016_j_jece_2021_106075
crossref_primary_10_1016_j_cej_2013_12_061
crossref_primary_10_1016_j_cej_2013_12_062
crossref_primary_10_1016_j_jhazmat_2019_121342
crossref_primary_10_1016_j_scitotenv_2019_05_480
crossref_primary_10_1016_j_jclepro_2020_120267
crossref_primary_10_1016_j_biortech_2022_126672
crossref_primary_10_1016_j_carbon_2017_03_056
crossref_primary_10_1061__ASCE_EE_1943_7870_0001503
crossref_primary_10_1007_s13762_022_03920_7
crossref_primary_10_1016_j_chemosphere_2019_125344
crossref_primary_10_1016_j_chemosphere_2022_137434
crossref_primary_10_1016_j_cej_2025_161869
crossref_primary_10_1080_21622515_2019_1631393
crossref_primary_10_1088_2053_1591_ab6b58
crossref_primary_10_1016_j_cherd_2024_05_028
crossref_primary_10_1016_j_ecoenv_2020_111132
crossref_primary_10_1016_j_cej_2022_138921
crossref_primary_10_1039_D1RA08404F
crossref_primary_10_1080_15320383_2021_1999206
crossref_primary_10_1016_j_envres_2021_111758
crossref_primary_10_1016_j_biortech_2018_03_077
crossref_primary_10_1016_j_carbon_2017_12_070
crossref_primary_10_1016_j_ibiod_2015_01_007
crossref_primary_10_1007_s11356_017_8376_z
crossref_primary_10_12677_OJNS_2024_121029
crossref_primary_10_1016_j_cej_2013_04_077
crossref_primary_10_1016_j_envpol_2024_124850
crossref_primary_10_1007_s11814_024_00237_8
crossref_primary_10_1007_s11356_020_11573_7
crossref_primary_10_3390_nano9010100
crossref_primary_10_5004_dwt_2021_26607
crossref_primary_10_1016_j_arabjc_2022_103817
crossref_primary_10_1016_j_jafr_2021_100191
crossref_primary_10_1007_s13399_024_06474_5
crossref_primary_10_1007_s10098_016_1218_8
crossref_primary_10_1016_j_jece_2019_103497
crossref_primary_10_1371_journal_pone_0100704
crossref_primary_10_4236_jacen_2017_61003
crossref_primary_10_1016_j_reffit_2017_01_001
crossref_primary_10_1039_D2NA00610C
crossref_primary_10_1016_j_cherd_2020_05_011
crossref_primary_10_1039_C4RA11815D
crossref_primary_10_1016_j_micromeso_2020_110764
crossref_primary_10_1016_j_envpol_2022_119953
crossref_primary_10_1088_1755_1315_295_3_032062
crossref_primary_10_1016_j_scitotenv_2017_09_171
crossref_primary_10_1016_j_biortech_2013_03_057
crossref_primary_10_1016_j_scitotenv_2021_152604
crossref_primary_10_1039_C8GC01748D
crossref_primary_10_1002_jssc_202200134
crossref_primary_10_1007_s13399_023_04512_2
crossref_primary_10_1016_j_chemosphere_2016_01_043
crossref_primary_10_3390_molecules27196198
crossref_primary_10_1016_j_biortech_2015_12_056
crossref_primary_10_1016_j_scitotenv_2017_10_063
crossref_primary_10_1039_C4RA11901K
crossref_primary_10_1016_j_scitotenv_2016_07_079
crossref_primary_10_1007_s00396_017_4253_z
crossref_primary_10_1007_s11270_023_06496_1
crossref_primary_10_1039_C7RA13540H
crossref_primary_10_1080_19443994_2015_1029527
crossref_primary_10_1016_j_jenvman_2021_112397
crossref_primary_10_1007_s10967_018_5839_8
crossref_primary_10_1007_s13399_021_01367_3
crossref_primary_10_2166_aqua_2016_089
crossref_primary_10_1021_acsomega_2c02909
crossref_primary_10_1016_j_jaap_2020_104893
crossref_primary_10_1007_s11356_019_05674_1
crossref_primary_10_1016_j_cej_2020_125195
crossref_primary_10_1007_s40899_017_0097_4
crossref_primary_10_1016_j_biortech_2017_09_047
crossref_primary_10_1016_j_jwpe_2023_104205
crossref_primary_10_1080_01932691_2020_1785889
crossref_primary_10_1134_S1070427218110174
crossref_primary_10_1155_2019_5295610
crossref_primary_10_1016_j_jwpe_2022_103054
crossref_primary_10_1039_D0RA07499C
crossref_primary_10_1016_j_wasman_2018_11_042
crossref_primary_10_1016_j_chemosphere_2022_137117
crossref_primary_10_1016_j_chemosphere_2022_137238
crossref_primary_10_1016_j_envpol_2021_116485
crossref_primary_10_1007_s11356_024_33679_y
crossref_primary_10_1016_j_scitotenv_2018_09_259
crossref_primary_10_1007_s11356_018_3021_z
crossref_primary_10_1016_j_biortech_2017_11_052
crossref_primary_10_1016_j_biortech_2019_122030
crossref_primary_10_1016_j_biortech_2015_07_047
crossref_primary_10_1016_j_jwpe_2015_07_001
crossref_primary_10_1016_j_scitotenv_2022_153054
crossref_primary_10_1021_acssuschemeng_1c08288
crossref_primary_10_2174_2405520413999201117143926
crossref_primary_10_1007_s13762_024_06226_y
crossref_primary_10_1007_s11356_018_3107_7
crossref_primary_10_1021_acs_est_7b06487
crossref_primary_10_1016_j_cej_2017_10_035
crossref_primary_10_1016_j_aej_2015_12_015
crossref_primary_10_1016_j_jiec_2015_10_007
crossref_primary_10_1016_j_jenvman_2020_111164
crossref_primary_10_1016_j_jenvman_2021_112898
crossref_primary_10_1016_j_jwpe_2022_102801
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1016_j_biortech_2013_11_021
crossref_primary_10_1016_j_indcrop_2023_117496
crossref_primary_10_1016_j_biortech_2017_02_103
crossref_primary_10_1016_j_jhazmat_2019_122010
crossref_primary_10_1016_j_biortech_2024_131866
crossref_primary_10_1080_01496395_2018_1553981
crossref_primary_10_3390_ijerph19031260
crossref_primary_10_1021_acs_est_6b00627
crossref_primary_10_1016_j_chemosphere_2019_03_050
crossref_primary_10_1016_j_aej_2021_06_036
crossref_primary_10_1016_j_scitotenv_2023_166881
crossref_primary_10_1039_C5RA17490B
crossref_primary_10_1016_j_jhazmat_2019_121033
crossref_primary_10_1016_j_chroma_2024_465169
crossref_primary_10_1007_s13399_021_01448_3
crossref_primary_10_2139_ssrn_4093754
crossref_primary_10_1007_s11356_019_06524_w
crossref_primary_10_3390_su15053973
crossref_primary_10_1016_j_cej_2023_144677
crossref_primary_10_3390_magnetochemistry10120095
crossref_primary_10_3390_toxics10110703
crossref_primary_10_1016_j_jenvman_2023_119513
crossref_primary_10_1007_s10653_022_01462_y
crossref_primary_10_1016_j_biortech_2021_125674
crossref_primary_10_1016_j_btre_2020_e00570
crossref_primary_10_1515_ract_2024_0273
crossref_primary_10_1016_j_chemosphere_2020_127694
crossref_primary_10_3390_ma16175800
crossref_primary_10_1016_j_chemosphere_2022_134676
crossref_primary_10_14233_ajchem_2022_23506
crossref_primary_10_1016_j_envpol_2017_07_079
crossref_primary_10_1007_s11356_020_10323_z
crossref_primary_10_1007_s11356_020_10082_x
crossref_primary_10_1016_j_cej_2016_01_097
crossref_primary_10_1016_j_colsurfa_2019_01_064
crossref_primary_10_1080_01932691_2018_1562354
crossref_primary_10_1016_j_watres_2018_03_021
crossref_primary_10_1039_C7RA00324B
crossref_primary_10_1016_j_chemosphere_2016_08_025
crossref_primary_10_1016_j_chemosphere_2015_06_019
crossref_primary_10_1016_j_chemosphere_2020_127566
crossref_primary_10_1080_09593330_2017_1332103
crossref_primary_10_1016_j_matchemphys_2022_126035
crossref_primary_10_1016_j_jhazmat_2022_129337
crossref_primary_10_1016_j_scitotenv_2019_03_011
crossref_primary_10_1016_j_jwpe_2023_104249
crossref_primary_10_1016_j_jhazmat_2020_122507
crossref_primary_10_3390_su152215978
crossref_primary_10_1016_j_jenvman_2017_03_087
crossref_primary_10_1016_j_chemosphere_2015_11_050
crossref_primary_10_1016_j_gsf_2020_08_015
crossref_primary_10_1016_j_fuel_2017_01_052
crossref_primary_10_1088_1755_1315_1222_1_012012
crossref_primary_10_1007_s13201_016_0487_z
crossref_primary_10_1016_j_matpr_2020_03_024
crossref_primary_10_1016_j_jece_2017_12_067
crossref_primary_10_1016_j_scitotenv_2018_10_087
crossref_primary_10_1016_j_scitotenv_2020_139750
crossref_primary_10_1007_s11356_020_11811_y
crossref_primary_10_1016_j_jenvman_2020_111126
crossref_primary_10_1080_10643389_2014_924180
crossref_primary_10_1016_j_scitotenv_2017_09_220
crossref_primary_10_1007_s11356_018_3643_1
crossref_primary_10_1007_s11356_018_1292_z
crossref_primary_10_1080_15226514_2023_2199876
crossref_primary_10_1007_s42773_025_00441_7
crossref_primary_10_1016_j_chemosphere_2024_142205
crossref_primary_10_1016_j_jhazmat_2016_10_006
crossref_primary_10_1016_j_jhazmat_2016_04_014
crossref_primary_10_3390_fermentation7040277
crossref_primary_10_1016_j_microc_2019_104030
crossref_primary_10_1016_j_mtsust_2024_100833
crossref_primary_10_1039_C9NJ02661D
crossref_primary_10_1016_j_jwpe_2021_101993
crossref_primary_10_1016_j_ecoenv_2017_06_063
crossref_primary_10_1080_01496395_2024_2394476
crossref_primary_10_3389_fenve_2023_1228992
crossref_primary_10_1007_s13399_022_03183_9
crossref_primary_10_1016_j_apcatb_2019_117752
crossref_primary_10_1016_j_jenvman_2014_07_029
crossref_primary_10_2166_ws_2017_009
crossref_primary_10_1016_j_jenvman_2021_113651
crossref_primary_10_3390_molecules28155840
crossref_primary_10_1016_j_chemosphere_2019_02_132
crossref_primary_10_3390_ijms25094743
crossref_primary_10_1016_j_ecoenv_2018_07_042
crossref_primary_10_1016_j_hazadv_2023_100254
crossref_primary_10_1021_sc400547y
crossref_primary_10_3390_c6020021
crossref_primary_10_1016_j_chemosphere_2020_127370
crossref_primary_10_1039_C5RA02388B
crossref_primary_10_1016_j_cej_2015_08_037
crossref_primary_10_1016_j_jhazmat_2020_122658
crossref_primary_10_3390_toxics10120787
crossref_primary_10_1016_j_jwpe_2020_101455
crossref_primary_10_1186_s11671_017_2201_y
crossref_primary_10_1016_j_scitotenv_2018_02_137
crossref_primary_10_1016_j_jcis_2014_12_030
crossref_primary_10_1039_D3NA00923H
crossref_primary_10_1016_j_sajb_2024_07_054
crossref_primary_10_1016_j_biortech_2015_06_102
crossref_primary_10_1098_rsos_190667
crossref_primary_10_1016_j_jwpe_2017_02_001
crossref_primary_10_1590_0001_3765202020190440
crossref_primary_10_1016_j_indcrop_2018_11_041
crossref_primary_10_1039_c3ta11124e
crossref_primary_10_1016_j_cherd_2022_07_022
crossref_primary_10_1016_j_scitotenv_2024_176883
crossref_primary_10_1007_s11356_021_14432_1
crossref_primary_10_1016_j_scitotenv_2018_01_323
crossref_primary_10_1007_s44169_023_00030_4
crossref_primary_10_1016_j_jece_2017_04_017
crossref_primary_10_1007_s10098_016_1264_2
crossref_primary_10_1007_s42247_023_00603_y
crossref_primary_10_1016_j_jece_2022_108765
crossref_primary_10_1007_s11783_015_0769_y
crossref_primary_10_1039_D1RA08941B
crossref_primary_10_1016_j_jece_2019_103519
crossref_primary_10_1016_j_diamond_2024_111036
crossref_primary_10_1016_j_jhazmat_2020_123882
crossref_primary_10_1016_j_nanoen_2015_08_004
crossref_primary_10_5004_dwt_2020_25454
crossref_primary_10_1016_j_scitotenv_2021_145676
crossref_primary_10_1016_j_envpol_2022_120696
crossref_primary_10_1016_j_scitotenv_2023_166813
crossref_primary_10_1016_j_biortech_2015_08_132
crossref_primary_10_1016_j_fuel_2022_126930
crossref_primary_10_1080_01932691_2016_1203333
crossref_primary_10_1016_j_jhazmat_2024_134663
crossref_primary_10_1016_j_chemosphere_2020_126539
crossref_primary_10_1007_s11814_018_0057_1
crossref_primary_10_2134_jeq2016_02_0073
crossref_primary_10_1016_j_jiec_2017_12_013
crossref_primary_10_1016_j_microc_2018_08_036
crossref_primary_10_1016_j_chemosphere_2020_127500
crossref_primary_10_1016_j_jece_2023_111770
crossref_primary_10_3390_su15032409
crossref_primary_10_1016_j_chemosphere_2020_126898
crossref_primary_10_1016_j_enmm_2023_100893
crossref_primary_10_1016_j_envpol_2019_01_044
crossref_primary_10_1016_j_biortech_2021_125743
crossref_primary_10_1002_clem_15
crossref_primary_10_1016_j_gsd_2022_100740
crossref_primary_10_1007_s00128_021_03374_6
crossref_primary_10_1016_j_envint_2019_03_012
crossref_primary_10_1016_j_jhazmat_2014_03_067
crossref_primary_10_3390_ijerph17030827
crossref_primary_10_1016_j_envres_2022_114947
crossref_primary_10_1039_C6RA17044G
crossref_primary_10_1007_s11356_017_9466_7
crossref_primary_10_1007_s11356_018_1493_5
crossref_primary_10_1016_j_jhazmat_2019_120810
crossref_primary_10_1007_s11356_021_13858_x
crossref_primary_10_1016_j_ijhydene_2020_08_225
crossref_primary_10_1016_j_jaap_2019_04_024
crossref_primary_10_1007_s11356_014_2740_z
crossref_primary_10_1039_C9RA01271K
crossref_primary_10_1016_j_jcis_2019_08_013
crossref_primary_10_1016_j_jhazmat_2023_132184
crossref_primary_10_1080_03067319_2019_1643461
crossref_primary_10_1016_j_molliq_2025_127412
crossref_primary_10_1016_j_micromeso_2017_06_031
crossref_primary_10_1016_j_cej_2013_09_074
crossref_primary_10_1016_j_scitotenv_2023_164730
crossref_primary_10_1016_j_biortech_2014_06_103
crossref_primary_10_1016_j_jfca_2024_106630
crossref_primary_10_1007_s13201_016_0392_5
crossref_primary_10_1021_es4012977
crossref_primary_10_1007_s10311_018_0724_9
crossref_primary_10_1016_j_renene_2021_02_157
crossref_primary_10_1016_j_biortech_2023_129680
crossref_primary_10_1016_j_jhazmat_2021_127136
crossref_primary_10_1007_s11356_021_13869_8
crossref_primary_10_1016_j_chemosphere_2019_124932
crossref_primary_10_1080_26395940_2021_1932605
crossref_primary_10_3390_w14111691
crossref_primary_10_1016_j_enmm_2024_100931
crossref_primary_10_1007_s11270_016_3191_6
crossref_primary_10_1016_j_biortech_2014_01_067
crossref_primary_10_1002_ldr_2851
crossref_primary_10_1016_j_jtice_2017_05_023
crossref_primary_10_1016_j_chemosphere_2021_133214
crossref_primary_10_1007_s11356_021_17964_8
crossref_primary_10_1016_j_cej_2019_123289
crossref_primary_10_1016_j_jhazmat_2020_122597
crossref_primary_10_1007_s13762_020_03116_x
crossref_primary_10_1016_j_jece_2023_111840
crossref_primary_10_5004_dwt_2020_25773
crossref_primary_10_2166_wst_2016_335
crossref_primary_10_1007_s10653_017_9984_8
crossref_primary_10_3390_w10060703
crossref_primary_10_1016_j_chemosphere_2022_134654
crossref_primary_10_1016_j_eng_2021_07_012
crossref_primary_10_1007_s42773_022_00181_y
crossref_primary_10_1016_j_seppur_2024_128468
crossref_primary_10_1016_j_scitotenv_2020_137972
crossref_primary_10_1039_D4RA04973J
crossref_primary_10_1016_j_jece_2021_105447
crossref_primary_10_1002_jctb_6731
crossref_primary_10_1016_j_chemosphere_2018_09_091
crossref_primary_10_1021_acssuschemeng_7b01273
crossref_primary_10_1021_acsomega_0c01268
crossref_primary_10_1016_j_crgsc_2024_100409
crossref_primary_10_1039_D3SU00410D
crossref_primary_10_4028_p_MWP6mr
crossref_primary_10_1016_j_cej_2020_124638
crossref_primary_10_1039_C8EN01257A
crossref_primary_10_1080_15422119_2021_1956539
crossref_primary_10_1007_s13399_022_03209_2
crossref_primary_10_1016_j_scitotenv_2019_133886
crossref_primary_10_1039_D0AY02063J
crossref_primary_10_1007_s11356_023_30469_w
crossref_primary_10_1007_s12161_021_02041_0
crossref_primary_10_1080_10643389_2020_1713030
crossref_primary_10_1021_acsomega_1c07163
crossref_primary_10_1007_s12517_022_10746_7
crossref_primary_10_1016_j_jes_2018_05_009
crossref_primary_10_1007_s44246_022_00003_7
crossref_primary_10_1016_j_biortech_2015_01_044
crossref_primary_10_1016_j_biortech_2016_04_093
crossref_primary_10_1016_j_watres_2014_10_009
crossref_primary_10_1016_j_chemosphere_2021_133384
crossref_primary_10_1016_j_scitotenv_2021_146617
crossref_primary_10_1016_j_jpcs_2023_111408
crossref_primary_10_1016_j_biortech_2013_12_019
crossref_primary_10_1016_j_biortech_2021_124818
crossref_primary_10_1039_C8RA08512A
crossref_primary_10_1007_s10967_019_06709_0
crossref_primary_10_1016_j_jece_2021_105104
crossref_primary_10_1002_jctb_6759
crossref_primary_10_1002_jctb_5428
crossref_primary_10_1016_j_jhazmat_2020_122026
crossref_primary_10_1016_j_crgsc_2021_100088
crossref_primary_10_1016_j_wasman_2018_04_014
crossref_primary_10_1016_j_biortech_2020_123797
crossref_primary_10_3390_c10030061
crossref_primary_10_1016_j_cej_2017_08_123
crossref_primary_10_1039_C6RA06208C
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1016_j_gsd_2021_100585
crossref_primary_10_1016_j_jece_2023_111824
crossref_primary_10_1016_j_jclepro_2018_10_215
crossref_primary_10_1016_j_biortech_2018_05_001
crossref_primary_10_1016_j_biortech_2021_124829
crossref_primary_10_1016_j_materresbull_2018_10_031
crossref_primary_10_1007_s13204_021_01815_6
crossref_primary_10_1016_j_impact_2016_09_004
crossref_primary_10_1016_j_jhazmat_2015_11_047
crossref_primary_10_1080_15226514_2021_1985078
crossref_primary_10_1016_j_jece_2021_105119
crossref_primary_10_1016_j_biortech_2014_02_069
crossref_primary_10_1021_acsomega_9b02769
crossref_primary_10_1016_j_biortech_2019_122680
crossref_primary_10_1016_j_envres_2019_108898
crossref_primary_10_1016_j_jhazmat_2021_127687
crossref_primary_10_1016_j_jhazmat_2020_122037
crossref_primary_10_1016_j_envint_2019_01_004
crossref_primary_10_1016_j_envpol_2023_121662
crossref_primary_10_1039_C5RA12137J
crossref_primary_10_1016_j_chemosphere_2019_124745
crossref_primary_10_1039_C4NJ00548A
crossref_primary_10_1016_j_biortech_2018_01_145
crossref_primary_10_1002_tqem_22113
crossref_primary_10_1021_sc500619r
crossref_primary_10_1016_j_apt_2020_09_007
crossref_primary_10_1016_j_rser_2016_09_057
crossref_primary_10_3390_coatings11111407
crossref_primary_10_1039_D3RA01949G
crossref_primary_10_1016_j_carbon_2020_01_089
crossref_primary_10_1016_j_chemosphere_2018_05_175
crossref_primary_10_1016_j_scitotenv_2021_152495
crossref_primary_10_1016_j_seppur_2022_120494
crossref_primary_10_1088_1755_1315_508_1_012158
crossref_primary_10_1016_j_scitotenv_2019_134893
crossref_primary_10_1016_j_scitotenv_2017_12_056
crossref_primary_10_1016_j_scitotenv_2023_163923
crossref_primary_10_1016_j_chemosphere_2018_04_108
crossref_primary_10_1080_10643389_2017_1421844
crossref_primary_10_1016_j_jhazmat_2021_125252
crossref_primary_10_1016_j_jhazmat_2020_124581
crossref_primary_10_1039_C5RA22886G
crossref_primary_10_1016_j_cej_2019_122011
crossref_primary_10_3390_su14159022
crossref_primary_10_1007_s42773_020_00053_3
crossref_primary_10_1016_j_jhazmat_2021_126457
crossref_primary_10_1016_j_jhazmat_2021_127305
crossref_primary_10_1016_j_cej_2019_03_179
crossref_primary_10_21967_jbb_v4i1_180
crossref_primary_10_1039_D4RA08867K
crossref_primary_10_3390_w15061230
crossref_primary_10_1016_j_biortech_2019_122468
crossref_primary_10_1016_j_jenvman_2019_01_045
crossref_primary_10_1016_j_envres_2021_111346
crossref_primary_10_1016_j_scitotenv_2019_07_233
crossref_primary_10_1007_s13399_022_02795_5
crossref_primary_10_1016_j_chemosphere_2023_139760
crossref_primary_10_1016_j_chemosphere_2017_02_121
crossref_primary_10_1016_j_jclepro_2020_120662
crossref_primary_10_1007_s11356_018_1792_x
crossref_primary_10_1021_acssuschemeng_5b01141
crossref_primary_10_1016_j_jhazmat_2020_124488
crossref_primary_10_1039_C8RA05676E
crossref_primary_10_1016_S2095_3119_16_61488_0
crossref_primary_10_1016_j_biortech_2016_10_033
crossref_primary_10_1016_j_biortech_2016_12_024
crossref_primary_10_1016_j_rser_2021_111643
crossref_primary_10_1080_10643389_2016_1239975
crossref_primary_10_1039_C5RA13236C
crossref_primary_10_1007_s11356_017_9753_3
crossref_primary_10_1016_j_chemosphere_2021_131434
crossref_primary_10_1016_j_ecoenv_2017_08_033
crossref_primary_10_1016_j_jhazmat_2016_01_052
crossref_primary_10_2134_jeq2017_08_0320
crossref_primary_10_1016_j_jece_2021_105951
crossref_primary_10_1016_j_jscs_2024_101873
crossref_primary_10_1016_j_jhazmat_2017_03_064
crossref_primary_10_1021_acssuschemeng_7b00394
crossref_primary_10_1007_s11157_017_9450_1
crossref_primary_10_1016_j_ecoleng_2014_08_017
crossref_primary_10_1155_2014_715398
crossref_primary_10_1039_C6RA10134H
crossref_primary_10_1039_D1RA07373G
crossref_primary_10_1061_JOEEDU_EEENG_7049
crossref_primary_10_2166_wst_2016_610
crossref_primary_10_1039_D3RA00723E
crossref_primary_10_1016_j_jece_2023_111448
crossref_primary_10_1016_j_gsd_2023_101072
crossref_primary_10_1016_j_scitotenv_2022_157062
crossref_primary_10_1016_j_eti_2021_101916
crossref_primary_10_1016_j_cej_2013_09_057
crossref_primary_10_1016_j_cep_2022_109016
crossref_primary_10_1155_2021_2912054
crossref_primary_10_1016_j_biortech_2017_07_082
crossref_primary_10_1016_j_jiec_2019_07_026
crossref_primary_10_1016_j_seppur_2023_123625
crossref_primary_10_1007_s42773_021_00129_8
crossref_primary_10_3390_stresses4010011
crossref_primary_10_1016_j_jece_2023_110360
crossref_primary_10_1016_j_scitotenv_2021_151120
crossref_primary_10_1016_j_carbon_2016_11_032
crossref_primary_10_1016_j_jwpe_2022_103434
crossref_primary_10_1016_j_scitotenv_2021_144955
crossref_primary_10_1016_j_jenvman_2019_109429
crossref_primary_10_1016_j_jaap_2022_105856
crossref_primary_10_1039_C5RA16556C
crossref_primary_10_1039_D1EW00958C
crossref_primary_10_1016_j_jenvman_2020_111814
crossref_primary_10_1016_j_biortech_2014_01_120
crossref_primary_10_1016_j_envres_2024_119782
crossref_primary_10_1016_j_jaecs_2022_100056
crossref_primary_10_5004_dwt_2019_24572
crossref_primary_10_1016_j_jece_2018_102812
crossref_primary_10_1016_j_jiec_2019_06_008
crossref_primary_10_1007_s11270_019_4130_0
crossref_primary_10_1016_j_chemosphere_2017_10_125
crossref_primary_10_1016_j_biortech_2016_05_057
crossref_primary_10_1016_j_carbon_2020_02_065
crossref_primary_10_2298_JSC220802080N
crossref_primary_10_1016_j_envpol_2020_114157
crossref_primary_10_1017_S1755691022000019
crossref_primary_10_1016_j_ecoleng_2015_01_011
crossref_primary_10_1016_j_chemosphere_2017_05_175
crossref_primary_10_1016_j_chroma_2019_460651
crossref_primary_10_1007_s10668_024_05238_5
crossref_primary_10_1007_s11270_016_3066_x
crossref_primary_10_3390_coatings13111884
crossref_primary_10_1080_15226514_2019_1687423
crossref_primary_10_3390_nano11102473
crossref_primary_10_1016_j_envpol_2023_121593
crossref_primary_10_1016_j_energy_2017_07_165
crossref_primary_10_1002_jemt_23810
crossref_primary_10_32604_phyton_2022_022473
crossref_primary_10_1016_j_colsurfa_2014_03_105
crossref_primary_10_1039_C6RA11037A
crossref_primary_10_1021_es500531c
crossref_primary_10_1016_j_envpol_2020_115256
Cites_doi 10.1016/j.jclepro.2012.01.029
10.1021/es048179r
10.1080/10643380902945771
10.1016/j.jhazmat.2008.12.069
10.1016/j.scitotenv.2012.02.023
10.1016/j.jhazmat.2012.01.046
10.1016/j.envpol.2010.10.016
10.1021/cm200397g
10.1016/j.biortech.2010.06.088
10.1016/j.seppur.2011.08.030
10.1016/j.cej.2011.11.052
10.1016/j.jhazmat.2007.01.006
10.1016/j.jhazmat.2010.12.057
10.1016/S0008-6223(02)00076-3
10.1016/j.apsusc.2011.09.045
10.1016/S0926-3373(02)00297-7
10.1016/j.cej.2011.09.003
10.1016/j.biortech.2012.01.072
10.1016/j.scitotenv.2012.07.038
10.1021/es0343712
10.1038/ngeo358
10.1016/j.cej.2012.06.116
10.1016/j.jhazmat.2011.03.083
10.2136/sssaj1996.03615995006000010020x
10.1007/s11051-008-9558-x
10.1021/la204006d
10.1016/j.envpol.2010.02.003
10.1126/science.1154960
10.1007/s10853-007-1887-0
10.1021/jp911030n
10.1080/01496395.2011.584604
10.1002/adma.200600504
10.1016/j.biortech.2011.03.006
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
DOI 10.1016/j.biortech.2012.11.132
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 462
ExternalDocumentID 23313693
27141387
10_1016_j_biortech_2012_11_132
S0960852412018366
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
ID FETCH-LOGICAL-c530t-590aab52863d3580d1e918d330a7dad3c72795967e70c4c9cb76cce2f8bbff0d3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 05:22:01 EDT 2025
Fri Jul 11 09:57:58 EDT 2025
Sun Aug 24 03:57:02 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Mon Jul 21 09:16:17 EDT 2025
Tue Jul 01 02:43:05 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanocomposite
Adsorption
Biochar
Black carbon
γ-Fe2O3
Carbonization
Arsenic
γ-Fe
Iron III Oxides
Charcoal
O
Language English
License CC BY 4.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-590aab52863d3580d1e918d330a7dad3c72795967e70c4c9cb76cce2f8bbff0d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 23313693
PQID 1289473846
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1500771321
proquest_miscellaneous_1365047259
proquest_miscellaneous_1289473846
pubmed_primary_23313693
pascalfrancis_primary_27141387
crossref_primary_10_1016_j_biortech_2012_11_132
crossref_citationtrail_10_1016_j_biortech_2012_11_132
elsevier_sciencedirect_doi_10_1016_j_biortech_2012_11_132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dong Nguyen, Singh, Ulbrich, Strnadova, Stepanek (b0030) 2011; 82
Beesley, Moreno-Jimenez, Gomez-Eyles (b0020) 2010; 158
Park, Myung, Jung, Choi (b0100) 2009; 11
Xu, Dai, Pan, Li, Huo, Yan, Zou, Zhang (b0120) 2011; 174
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0145) 2011; 190
Zhu, Yang, Zhu, Yang, Jin, Yao (b0165) 2007; 42
Yao, Gao, Chen, Jiang, Inyang, Zimmerman, Cao, Yang, Xue, Li (b0135) 2012; 209–210
Zhu, Jiang, Fu, Jiang, Xiao, Zeng (b0170) 2011; 258
Mohan, Pittman (b0085) 2007; 142
Inyang, Gao, Yao, Xue, Zimmerman, Pullammanappallil, Cao (b0045) 2012; 110
Velickovic, Vukovic, Marinkovic, Moldovan, Peric-Grujic, Uskokovic, Ristic (b0110) 2012; 181
Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (b0130) 2012
Machala, Tucek, Zboril (b0075) 2011; 23
Zhong, Hu, Liang, Cao, Song, Wan (b0175) 2006; 18
Jin, Yu, Li, Qi, Yang, Zhao, Hu (b0060) 2011; 186
Zhang, Gao, Yao, Xue, Inyang (b0150) 2012
Manning, Goldberg (b0080) 1996; 60
Lehmann, Skjemstad, Sohi, Carter, Barson, Falloon, Coleman, Woodbury, Krull (b0065) 2008; 1
Wardle, Nilsson, Zackrisson (b0115) 2008; 320
Oliveira, Rios, Fabris, Garg, Sapag, Lago (b0095) 2002; 40
Li, Miser, Rabiei, Yadav, Hajaligol (b0070) 2003; 43
Aredes, Klein, Pawlik (b0005) 2012; 29–30
Beesley, Marmiroli (b0015) 2011; 159
Inyang, Gao, Pullammanappallil, Ding, Zimmerman (b0040) 2010; 101
Mudhoo, Sharma, Garg, Tseng (b0090) 2011; 41
Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (b0050) 2011; 46
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0140) 2011; 102
Tuutijarvi, Lu, Sillanpaa, Chen (b0105) 2009; 166
Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (b0125) 2012; 424
Chowdhury, Yanful (b0025) 2010; 91
Gu, Fang, Deng (b0035) 2005; 39
Baikousi, Bourlinos, Douvalis, Bakas, Anagnostopoulos, Tucek, Safarova, Zboril, Karakassides (b0010) 2012; 28
Zhou, He, Li, Wang, Sun, Ding, Zhao, Wu (b0160) 2010; 114
Jang, Shin, Park, Choi (b0055) 2003; 37
Jang (10.1016/j.biortech.2012.11.132_b0055) 2003; 37
Li (10.1016/j.biortech.2012.11.132_b0070) 2003; 43
Zhu (10.1016/j.biortech.2012.11.132_b0170) 2011; 258
Lehmann (10.1016/j.biortech.2012.11.132_b0065) 2008; 1
Mudhoo (10.1016/j.biortech.2012.11.132_b0090) 2011; 41
Dong Nguyen (10.1016/j.biortech.2012.11.132_b0030) 2011; 82
Velickovic (10.1016/j.biortech.2012.11.132_b0110) 2012; 181
Aredes (10.1016/j.biortech.2012.11.132_b0005) 2012; 29–30
Machala (10.1016/j.biortech.2012.11.132_b0075) 2011; 23
Gu (10.1016/j.biortech.2012.11.132_b0035) 2005; 39
Chowdhury (10.1016/j.biortech.2012.11.132_b0025) 2010; 91
Xue (10.1016/j.biortech.2012.11.132_b0130) 2012
Baikousi (10.1016/j.biortech.2012.11.132_b0010) 2012; 28
Inyang (10.1016/j.biortech.2012.11.132_b0040) 2010; 101
Inyang (10.1016/j.biortech.2012.11.132_b0050) 2011; 46
Zhu (10.1016/j.biortech.2012.11.132_b0165) 2007; 42
Park (10.1016/j.biortech.2012.11.132_b0100) 2009; 11
Wardle (10.1016/j.biortech.2012.11.132_b0115) 2008; 320
Zhong (10.1016/j.biortech.2012.11.132_b0175) 2006; 18
Zhou (10.1016/j.biortech.2012.11.132_b0160) 2010; 114
Beesley (10.1016/j.biortech.2012.11.132_b0020) 2010; 158
Yao (10.1016/j.biortech.2012.11.132_b0140) 2011; 102
Manning (10.1016/j.biortech.2012.11.132_b0080) 1996; 60
Xu (10.1016/j.biortech.2012.11.132_b0120) 2011; 174
Beesley (10.1016/j.biortech.2012.11.132_b0015) 2011; 159
Mohan (10.1016/j.biortech.2012.11.132_b0085) 2007; 142
Yao (10.1016/j.biortech.2012.11.132_b0145) 2011; 190
Inyang (10.1016/j.biortech.2012.11.132_b0045) 2012; 110
Yao (10.1016/j.biortech.2012.11.132_b0135) 2012; 209–210
Zhang (10.1016/j.biortech.2012.11.132_b0150) 2012
Tuutijarvi (10.1016/j.biortech.2012.11.132_b0105) 2009; 166
Jin (10.1016/j.biortech.2012.11.132_b0060) 2011; 186
Xu (10.1016/j.biortech.2012.11.132_b0125) 2012; 424
Oliveira (10.1016/j.biortech.2012.11.132_b0095) 2002; 40
References_xml – volume: 11
  start-page: 1981
  year: 2009
  end-page: 1989
  ident: b0100
  article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles
  publication-title: Journal of Nanoparticle Research
– volume: 46
  start-page: 1950
  year: 2011
  end-page: 1956
  ident: b0050
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Separation Science and Technology
– volume: 1
  start-page: 832
  year: 2008
  end-page: 835
  ident: b0065
  article-title: Australian climate-carbon cycle feedback reduced by soil black carbon
  publication-title: Nature Geoscience
– volume: 142
  start-page: 1
  year: 2007
  end-page: 53
  ident: b0085
  article-title: Arsenic removal from water/wastewater using adsorbents – a critical review
  publication-title: Journal of Hazardous Materials
– volume: 114
  start-page: 7611
  year: 2010
  end-page: 7617
  ident: b0160
  article-title: Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers
  publication-title: Journal of Physical Chemistry C
– volume: 41
  start-page: 435
  year: 2011
  end-page: 519
  ident: b0090
  article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes
  publication-title: Critical Reviews in Environmental Science and Technology
– year: 2012
  ident: b0150
  article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar
  publication-title: Science of Total Environment
– volume: 18
  start-page: 2426
  year: 2006
  end-page: 2431
  ident: b0175
  article-title: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment
  publication-title: Advanced Materials
– volume: 39
  start-page: 3833
  year: 2005
  end-page: 3843
  ident: b0035
  article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal
  publication-title: Environmental Science and Technology
– volume: 60
  start-page: 121
  year: 1996
  end-page: 131
  ident: b0080
  article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals
  publication-title: Soil Science Society of American Journal
– volume: 181
  start-page: 174
  year: 2012
  end-page: 181
  ident: b0110
  article-title: Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes
  publication-title: Chemical Engineering Journal
– volume: 82
  start-page: 93
  year: 2011
  end-page: 101
  ident: b0030
  article-title: Perlite incorporating gamma-Fe2O3 and alpha-MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal
  publication-title: Separation and Purification Technology
– volume: 190
  start-page: 501
  year: 2011
  end-page: 507
  ident: b0145
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: Journal of Hazardous Materials
– volume: 174
  start-page: 221
  year: 2011
  end-page: 230
  ident: b0120
  article-title: Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics
  publication-title: Chemical Engineering Journal
– volume: 42
  start-page: 9205
  year: 2007
  end-page: 9209
  ident: b0165
  article-title: A facile two-step hydrothermal route for the synthesis of gamma-Fe(2)O(3) nanocrystals and their magnetic properties
  publication-title: Journal of Materials Science
– volume: 258
  start-page: 1337
  year: 2011
  end-page: 1344
  ident: b0170
  article-title: Preparation, characterization and dye adsorption properties of gamma-Fe(2)O(3)/SiO(2)/chitosan composite
  publication-title: Applied Surface Science
– volume: 23
  start-page: 3255
  year: 2011
  end-page: 3272
  ident: b0075
  article-title: Polymorphous transformations of nanometric iron(III) oxide: a review
  publication-title: Chemistry of Materials
– volume: 91
  start-page: 2238
  year: 2010
  end-page: 2247
  ident: b0025
  article-title: Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal
  publication-title: Journal of EnvironmentalManagement
– volume: 424
  start-page: 1
  year: 2012
  end-page: 10
  ident: b0125
  article-title: Use of iron oxide nanomaterials in wastewater treatment: a review
  publication-title: Science of the Total Environment
– volume: 159
  start-page: 474
  year: 2011
  end-page: 480
  ident: b0015
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environmental Pollution
– volume: 186
  start-page: 1672
  year: 2011
  end-page: 1680
  ident: b0060
  article-title: Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment
  publication-title: Journal of Hazardous Materials
– year: 2012
  ident: b0130
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chemical Engineering Journal
– volume: 43
  start-page: 151
  year: 2003
  end-page: 162
  ident: b0070
  article-title: The removal of carbon monoxide by iron oxide nanoparticles
  publication-title: Applied Catalysis B-Environmental
– volume: 209–210
  start-page: 408
  year: 2012
  end-page: 413
  ident: b0135
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: Journal of Hazardous Matererials
– volume: 110
  start-page: 50
  year: 2012
  end-page: 56
  ident: b0045
  article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
  publication-title: Bioresource Technology
– volume: 37
  start-page: 5062
  year: 2003
  end-page: 5070
  ident: b0055
  article-title: Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides
  publication-title: Environmental Science and Technology
– volume: 166
  start-page: 1415
  year: 2009
  end-page: 1420
  ident: b0105
  article-title: As(V) adsorption on maghemite nanoparticles
  publication-title: Journal of Hazardous Materials
– volume: 158
  start-page: 2282
  year: 2010
  end-page: 2287
  ident: b0020
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil
  publication-title: Environmental Pollution
– volume: 320
  year: 2008
  ident: b0115
  article-title: Fire-derived charcoal causes loss of forest humus
  publication-title: Science
– volume: 29–30
  start-page: 208
  year: 2012
  end-page: 213
  ident: b0005
  article-title: The removal of arsenic from water using natural iron oxide minerals
  publication-title: Journal of Cleaner Production
– volume: 101
  start-page: 8868
  year: 2010
  end-page: 8872
  ident: b0040
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresource Technology
– volume: 102
  start-page: 6273
  year: 2011
  end-page: 6278
  ident: b0140
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresource Technology
– volume: 28
  start-page: 3918
  year: 2012
  end-page: 3930
  ident: b0010
  article-title: Synthesis and characterization of gamma-Fe
  publication-title: Langmuir
– volume: 40
  start-page: 2177
  year: 2002
  end-page: 2183
  ident: b0095
  article-title: Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water
  publication-title: Carbon
– volume: 29–30
  start-page: 208
  year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0005
  article-title: The removal of arsenic from water using natural iron oxide minerals
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2012.01.029
– volume: 39
  start-page: 3833
  issue: 10
  year: 2005
  ident: 10.1016/j.biortech.2012.11.132_b0035
  article-title: Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal
  publication-title: Environmental Science and Technology
  doi: 10.1021/es048179r
– volume: 41
  start-page: 435
  issue: 5
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0090
  article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes
  publication-title: Critical Reviews in Environmental Science and Technology
  doi: 10.1080/10643380902945771
– volume: 166
  start-page: 1415
  issue: 2–3
  year: 2009
  ident: 10.1016/j.biortech.2012.11.132_b0105
  article-title: As(V) adsorption on maghemite nanoparticles
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2008.12.069
– volume: 424
  start-page: 1
  year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0125
  article-title: Use of iron oxide nanomaterials in wastewater treatment: a review
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2012.02.023
– volume: 209–210
  start-page: 408
  year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0135
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: Journal of Hazardous Matererials
  doi: 10.1016/j.jhazmat.2012.01.046
– volume: 159
  start-page: 474
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0015
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2010.10.016
– volume: 23
  start-page: 3255
  issue: 14
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0075
  article-title: Polymorphous transformations of nanometric iron(III) oxide: a review
  publication-title: Chemistry of Materials
  doi: 10.1021/cm200397g
– volume: 101
  start-page: 8868
  issue: 22
  year: 2010
  ident: 10.1016/j.biortech.2012.11.132_b0040
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2010.06.088
– volume: 82
  start-page: 93
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0030
  article-title: Perlite incorporating gamma-Fe2O3 and alpha-MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal
  publication-title: Separation and Purification Technology
  doi: 10.1016/j.seppur.2011.08.030
– volume: 181
  start-page: 174
  year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0110
  article-title: Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2011.11.052
– volume: 142
  start-page: 1
  issue: 1–2
  year: 2007
  ident: 10.1016/j.biortech.2012.11.132_b0085
  article-title: Arsenic removal from water/wastewater using adsorbents – a critical review
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2007.01.006
– volume: 186
  start-page: 1672
  issue: 2–3
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0060
  article-title: Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2010.12.057
– volume: 40
  start-page: 2177
  issue: 12
  year: 2002
  ident: 10.1016/j.biortech.2012.11.132_b0095
  article-title: Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00076-3
– volume: 258
  start-page: 1337
  issue: 4
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0170
  article-title: Preparation, characterization and dye adsorption properties of gamma-Fe(2)O(3)/SiO(2)/chitosan composite
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2011.09.045
– volume: 43
  start-page: 151
  issue: 2
  year: 2003
  ident: 10.1016/j.biortech.2012.11.132_b0070
  article-title: The removal of carbon monoxide by iron oxide nanoparticles
  publication-title: Applied Catalysis B-Environmental
  doi: 10.1016/S0926-3373(02)00297-7
– volume: 174
  start-page: 221
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0120
  article-title: Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2011.09.003
– volume: 110
  start-page: 50
  year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0045
  article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2012.01.072
– year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0150
  article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar
  publication-title: Science of Total Environment
  doi: 10.1016/j.scitotenv.2012.07.038
– volume: 37
  start-page: 5062
  issue: 21
  year: 2003
  ident: 10.1016/j.biortech.2012.11.132_b0055
  article-title: Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides
  publication-title: Environmental Science and Technology
  doi: 10.1021/es0343712
– volume: 1
  start-page: 832
  issue: 12
  year: 2008
  ident: 10.1016/j.biortech.2012.11.132_b0065
  article-title: Australian climate-carbon cycle feedback reduced by soil black carbon
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo358
– year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0130
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2012.06.116
– volume: 190
  start-page: 501
  issue: 1–3
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0145
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2011.03.083
– volume: 60
  start-page: 121
  issue: 1
  year: 1996
  ident: 10.1016/j.biortech.2012.11.132_b0080
  article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals
  publication-title: Soil Science Society of American Journal
  doi: 10.2136/sssaj1996.03615995006000010020x
– volume: 91
  start-page: 2238
  issue: 11
  year: 2010
  ident: 10.1016/j.biortech.2012.11.132_b0025
  article-title: Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal
  publication-title: Journal of EnvironmentalManagement
– volume: 11
  start-page: 1981
  issue: 8
  year: 2009
  ident: 10.1016/j.biortech.2012.11.132_b0100
  article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-008-9558-x
– volume: 28
  start-page: 3918
  issue: 8
  year: 2012
  ident: 10.1016/j.biortech.2012.11.132_b0010
  article-title: Synthesis and characterization of gamma-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions
  publication-title: Langmuir
  doi: 10.1021/la204006d
– volume: 158
  start-page: 2282
  issue: 6
  year: 2010
  ident: 10.1016/j.biortech.2012.11.132_b0020
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2010.02.003
– volume: 320
  issue: 5876
  year: 2008
  ident: 10.1016/j.biortech.2012.11.132_b0115
  article-title: Fire-derived charcoal causes loss of forest humus
  publication-title: Science
  doi: 10.1126/science.1154960
– volume: 42
  start-page: 9205
  issue: 22
  year: 2007
  ident: 10.1016/j.biortech.2012.11.132_b0165
  article-title: A facile two-step hydrothermal route for the synthesis of gamma-Fe(2)O(3) nanocrystals and their magnetic properties
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-007-1887-0
– volume: 114
  start-page: 7611
  issue: 17
  year: 2010
  ident: 10.1016/j.biortech.2012.11.132_b0160
  article-title: Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers
  publication-title: Journal of Physical Chemistry C
  doi: 10.1021/jp911030n
– volume: 46
  start-page: 1950
  issue: 12
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0050
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Separation Science and Technology
  doi: 10.1080/01496395.2011.584604
– volume: 18
  start-page: 2426
  issue: 18
  year: 2006
  ident: 10.1016/j.biortech.2012.11.132_b0175
  article-title: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment
  publication-title: Advanced Materials
  doi: 10.1002/adma.200600504
– volume: 102
  start-page: 6273
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2012.11.132_b0140
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2011.03.006
SSID ssj0003172
Score 2.5918343
Snippet [Display omitted] ► A magnetic biochar can be fabricated via pyrolysis of FeCl3 treated biomass. ► Colloidal or nanosized γ-Fe2O3 particles grow within biochar...
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of...
A magnetic biochar based adsorbent with colloidal or nanosized γ-Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of...
A magnetic biochar based adsorbent with colloidal or nanosized gamma -Fe2O3 particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 457
SubjectTerms Adsorption
Arsenic
Arsenic - isolation & purification
Biochar
Biological and medical sciences
Biomass
Black carbon
Charcoal
Charcoal - chemistry
chemistry
energy-dispersive X-ray analysis
Ferric Compounds
Ferric Compounds - chemistry
Ferromagnetism
Fundamental and applied biological sciences. Psychology
isolation & purification
Kinetics
Magnets
Magnets - chemistry
Micrometers
Nanocomposite
Nanostructure
particle size
Particulate composites
Scanning electron microscopy
Sorption
transmission electron microscopy
Water Pollutants, Chemical
Water Pollutants, Chemical - isolation & purification
X-ray diffraction
X-ray photoelectron spectroscopy
X-rays
γ-Fe2O3
Title Preparation and characterization of a novel magnetic biochar for arsenic removal
URI https://dx.doi.org/10.1016/j.biortech.2012.11.132
https://www.ncbi.nlm.nih.gov/pubmed/23313693
https://www.proquest.com/docview/1289473846
https://www.proquest.com/docview/1365047259
https://www.proquest.com/docview/1500771321
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hemirqmrpa_tYuVKv2U1iO46Pq1XRtlURUovEzfITLQJntSw98tsZ57HAATj0kkMyTmyP4--zPP4G4JtmhQm5MFlurM2YEwF_KbwERD_vpXB1q8T0-6BaHLGfx_x4B-bDWZgUVtnP_d2c3s7W_Z1p35vT1XI5_ZPId80RgRDDalol2W3GRBrlk6ubMA_Ex3YnAY2zZH3rlPDpxCxTRGu7KVGUOHtMClreB1AvVvoCuy10-S7uJ6QtMO2_gpc9oySzrtKvYcfHPXg-O1n3qhp-D57Oh7Ru-OSWAuEbODxc-079u4lER0fsVsC5O59JmkA0ic0_f0bO9UlMZx4JNijZESS8BBfGPuK9tT9vcNS-haP973_ni6xPspBZTvNNxmWuteFlXVGXtkRd4WVRO0pzLZx21CLBkVxWwovcMiutEZW1vgy1MSHkjr6D3dhE_wEIs4FWQaJ3vWWeCYkrbxZ4YE5WAYnZCPjQs8r2CuQpEcaZGkLNTtXgEZU8gssThR4ZwXRbbtVpcDxaQg6OU3dGk0KgeLTs-I6nt58sRYGIX4sRfB1cr9B3aYNFR99cXijEeskERUr3gA1FTswErjofsOFJZQnrUozgfTe2bmpBKb5C0o__0cRP8Kxss3qkqJzPsLtZX_ovyK02Ztz-PGN4Mvvxa3FwDXUaJE4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UCrqmrpa_ugrtRr2CS24_i4WhUtBVZIBYmb5fiBFoGzWhZ-P-M8tnAADr3k4NiJ7bHn-yzb3wD80iyrfCqqJK2MSZgVHqcUPjyin3NS2LJRYjqaFdNT9ueMn23ApL8LE49Vdr6_9emNt-5SRl1vjhbz-ehvJN8lRwRCDCtpUbyAzahOxQewOd4_mM7WDhkhstlMwPxJLHDvovDFbjWPh1qbfYksRweym9H8MYx6vdDX2HO-DXnxOCdtsGnvLbzpSCUZt_V-BxsubMOr8fmyE9Zw27A16SO74Zt7IoTv4fh46VoB8DoQHSwxaw3n9oomqT3RJNS37pJc6fMQrz0SbFDMR5DzElwbu4BpS3dV48D9AKd7v08m06SLs5AYTtNVwmWqdcXzsqA27orazMmstJSmWlhtqUGOI7kshBOpYUaaShTGuNyXVeV9aulHGIQ6uM9AmPG08BIN7AxzTEhcfDPPPbOy8MjNhsD7nlWmEyGPsTAuVX_a7EL1FlHRIrhCUWiRIYzW5RatDMezJWRvOPVgQCnEimfL7jyw9PqXucgQ9EsxhJ-96RXaLu6x6ODqm2uFcC-ZoMjqnshDkRYzgQvPJ_LwKLSEdcmG8KkdW_9qQSl-QtIv_9HEH7A1PTk6VIf7s4Ov8DJvgnzEQzrfYLBa3rjvSLVW1U43le4AYsAm_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+characterization+of+a+novel+magnetic+biochar+for+arsenic+removal&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Ming&rft.au=Gao%2C+Bin&rft.au=Varnoosfaderani%2C+Sima&rft.au=Hebard%2C+Arthur&rft.date=2013-02-01&rft.issn=0960-8524&rft.volume=130&rft.spage=457&rft.epage=462&rft_id=info:doi/10.1016%2Fj.biortech.2012.11.132&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon