Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments

•Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was systematically optimized using design of experiment (DoE) approach.•Highly efficient and scalable SSCF by co-culture yielded 99% of theoretical yield...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 142; pp. 171 - 178
Main Authors Suriyachai, Nopparat, Weerasaia, Khatiya, Laosiripojana, Navadol, Champreda, Verawat, Unrean, Pornkamol
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was systematically optimized using design of experiment (DoE) approach.•Highly efficient and scalable SSCF by co-culture yielded 99% of theoretical yield.•Maximum ethanol concentration achieved by co-culture SSCF process was 28.6g/L. Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.
AbstractList Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.
•Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was systematically optimized using design of experiment (DoE) approach.•Highly efficient and scalable SSCF by co-culture yielded 99% of theoretical yield.•Maximum ethanol concentration achieved by co-culture SSCF process was 28.6g/L. Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.
Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.
Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.
Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1 degree C. The optimized SSCF process reached ethanol titer of 15.2 g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6 g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.
Author Weerasaia, Khatiya
Suriyachai, Nopparat
Champreda, Verawat
Laosiripojana, Navadol
Unrean, Pornkamol
Author_xml – sequence: 1
  givenname: Nopparat
  surname: Suriyachai
  fullname: Suriyachai, Nopparat
  organization: The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand
– sequence: 2
  givenname: Khatiya
  surname: Weerasaia
  fullname: Weerasaia, Khatiya
  organization: The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand
– sequence: 3
  givenname: Navadol
  surname: Laosiripojana
  fullname: Laosiripojana, Navadol
  organization: The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand
– sequence: 4
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
– sequence: 5
  givenname: Pornkamol
  surname: Unrean
  fullname: Unrean, Pornkamol
  email: pornkamol.unr@biotec.or.th
  organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27540217$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23735799$$D View this record in MEDLINE/PubMed
BookMark eNqFks-O0zAQxiO0iO0uvMLKFyQuKY4dJ7XEAbTin7TSHhbOljMeb10lcbGdhfJ0PBpu0wqJS0-W7N_3zXi-uSouRj9iUdxUdFnRqnm7WXbOh4SwXjJa8SUVS0r5s2JRrVpeMtk2F8WCyoaWK8Hqy-Iqxg3NRNWyF8Ul4y0XrZSL4s_9NrnB_UZDohumPukR_RRJ1ABrHZx1oJPzI9GjIeBLi2HAMc133pLgAElMQf8k1geCaa1H35Nt8GaCA9TtyMNs5ocdYCSAAZ9cdBoPpg-wRptt4_E5Jrd1ycV9NcgNTQHJFN34SAxG93ioir-2GNy-kfiyeG51H_HV8bwuvn_6-O32S3l3__nr7Ye7EgSnqRSMVWhNJ0wtTQe0q7HTogZua2wNdlQyFFxqaRuwhumK0VUnmxZWwiIi49fFm9k3f-3HhDGpwUXAvp8HpipBabsSouHn0bpuWNtITs-jXEpBaypWGb05olM3oFHbPAAdduqUZQZeHwEdQfc26BFc_Me1oqasajP3buYg-BgDWgVuDjTH6HpVUbVfMbVRpxVT-xVTVKi8QFne_Cc_VTgrfD8LMcf05DCoCA5HQOMCQlLGu3MWfwEov_WZ
CitedBy_id crossref_primary_10_1016_j_rser_2019_109479
crossref_primary_10_1002_ep_13233
crossref_primary_10_1016_j_biotechadv_2019_107500
crossref_primary_10_1016_j_renene_2019_05_048
crossref_primary_10_1016_j_biortech_2014_01_016
crossref_primary_10_1016_j_renene_2016_08_019
crossref_primary_10_1016_j_procbio_2019_06_019
crossref_primary_10_1186_s40643_015_0069_1
crossref_primary_10_1021_acsomega_0c04054
crossref_primary_10_1007_s10068_015_0182_0
crossref_primary_10_1515_biol_2020_0019
crossref_primary_10_3390_molecules29102275
crossref_primary_10_1007_s10068_024_01670_5
crossref_primary_10_1016_j_bej_2019_02_019
crossref_primary_10_1039_C5AY00337G
crossref_primary_10_1007_s12223_015_0420_0
crossref_primary_10_1007_s12649_022_01861_3
crossref_primary_10_1016_j_apenergy_2015_05_008
crossref_primary_10_1016_j_biortech_2021_125583
crossref_primary_10_1016_j_ijhydene_2022_06_224
crossref_primary_10_1186_s13068_019_1431_x
crossref_primary_10_1016_j_biombioe_2018_01_008
crossref_primary_10_1016_j_renene_2017_10_094
crossref_primary_10_1186_s40643_015_0079_z
crossref_primary_10_1016_j_biortech_2019_121844
crossref_primary_10_1016_j_biortech_2018_07_130
crossref_primary_10_1016_j_enconman_2016_06_081
crossref_primary_10_1016_j_biortech_2016_05_068
crossref_primary_10_1016_j_energy_2018_06_126
crossref_primary_10_1016_j_biortech_2017_06_159
crossref_primary_10_1016_j_biombioe_2016_07_012
crossref_primary_10_3389_fmicb_2018_03264
crossref_primary_10_1177_0958305X211045010
crossref_primary_10_1016_j_energy_2017_01_090
crossref_primary_10_1016_j_jtice_2015_04_026
crossref_primary_10_1007_s00253_019_10146_0
crossref_primary_10_1016_j_biortech_2016_09_119
crossref_primary_10_3390_en16124657
crossref_primary_10_1080_15435075_2015_1088855
crossref_primary_10_1016_j_jbiotec_2014_03_028
crossref_primary_10_1007_s13205_017_1021_1
crossref_primary_10_1007_s13399_020_01269_w
crossref_primary_10_1016_j_biortech_2013_09_082
crossref_primary_10_1016_j_renene_2020_07_031
crossref_primary_10_1016_j_biortech_2017_01_077
crossref_primary_10_1007_s12155_017_9851_6
crossref_primary_10_3390_su15119137
crossref_primary_10_1016_j_csbj_2020_12_029
crossref_primary_10_1007_s12257_014_0465_y
crossref_primary_10_1016_j_biortech_2020_123511
crossref_primary_10_1186_s40643_018_0203_y
crossref_primary_10_1016_j_biortech_2016_11_110
crossref_primary_10_1007_s00253_015_7173_1
crossref_primary_10_1080_21655979_2019_1644853
crossref_primary_10_1016_j_clet_2021_100235
crossref_primary_10_1007_s12010_015_1846_1
crossref_primary_10_1016_j_biortech_2014_11_116
crossref_primary_10_1016_j_ijbiomac_2025_141620
crossref_primary_10_1016_j_biortech_2015_02_117
Cites_doi 10.1016/j.jbiotec.2006.05.001
10.1016/j.pecs.2010.01.003
10.1002/bit.21636
10.1016/j.enzmictec.2005.06.024
10.1016/j.enzmictec.2011.07.003
10.1002/btpr.1595
10.1016/j.jbiosc.2010.11.003
10.1016/j.biortech.2009.10.079
10.1016/j.procbio.2007.03.012
10.1021/bp0340180
10.1385/ABAB:134:3:273
10.1016/j.biortech.2011.03.019
10.4061/2011/787532
10.1016/S0960-8524(98)00085-6
10.1002/yea.320040406
10.1021/ac60147a030
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
DOI 10.1016/j.biortech.2013.05.003
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 178
ExternalDocumentID 23735799
27540217
10_1016_j_biortech_2013_05_003
S0960852413007633
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
ID FETCH-LOGICAL-c530t-5221efdb5d49dbc0b4eba54c3f4e7deb092e539a9f6cfd2a1208b967c85feee23
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 16:55:13 EDT 2025
Fri Jul 11 08:32:33 EDT 2025
Fri Jul 11 00:01:29 EDT 2025
Mon Jul 21 05:48:38 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 02:06:15 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Simultaneous saccharification and co-fermentation (SSCF) optimization
Ethanol
Co-culture
Design of experiment
Ascomycota
Rice straw
Cereal by product
Saccharification
Fermentation
Optimization
Fungi
Experimental design
Saccharomyces cerevisiae
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-5221efdb5d49dbc0b4eba54c3f4e7deb092e539a9f6cfd2a1208b967c85feee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23735799
PQID 1399504058
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1500785563
proquest_miscellaneous_1446276930
proquest_miscellaneous_1399504058
pubmed_primary_23735799
pascalfrancis_primary_27540217
crossref_citationtrail_10_1016_j_biortech_2013_05_003
crossref_primary_10_1016_j_biortech_2013_05_003
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templeton (b0060) 2008
Unrean, Nguyen (b0065) 2012; 28
Binod (b0005) 2010; 101
Cara, Moya, Ballesteros, Negro, Gonzalez, Ruiz (b0015) 2007; 42
Shinozaki, Kitamoto (b0055) 2011; 111
Brodeur, Yau, Badal, Collier, Ramachandran, Ramakrishnan (b0010) 2011
Miller (b0025) 1959; 31
Urk, Mark, Scheffers, Van-Dijken (b0070) 1988; 4
Nigam, Singh (b0030) 2011; 37
Qian, Tian, Li, Zhang, Pan, Yang (b0040) 2006; 134
Yadav, Naseeruddin, Prashanthi, Sateesh, Rao (b0085) 2011; 102
Zhao, Song, Liu (b0090) 2011; 49
Meinander, Hahn-hagerdal (b0020) 1999; 68
Wingren, Galbe, Zacchi (b0080) 2003; 19
Ohgren, Bengtsson, Gorwa-Grauslund, Galbe, Hahn-Hagerdal, Zacchi (b0035) 2006; 126
Ruohonen, Aristidou, Frey, Penttila, Kallio (b0050) 2006; 39
Rudolf, Baudel, Zacchi, Hahn-Hagerdal, Liden (b0045) 2008; 99
Qian (10.1016/j.biortech.2013.05.003_b0040) 2006; 134
Shinozaki (10.1016/j.biortech.2013.05.003_b0055) 2011; 111
Wingren (10.1016/j.biortech.2013.05.003_b0080) 2003; 19
Binod (10.1016/j.biortech.2013.05.003_b0005) 2010; 101
Ruohonen (10.1016/j.biortech.2013.05.003_b0050) 2006; 39
Meinander (10.1016/j.biortech.2013.05.003_b0020) 1999; 68
Nigam (10.1016/j.biortech.2013.05.003_b0030) 2011; 37
Unrean (10.1016/j.biortech.2013.05.003_b0065) 2012; 28
Ohgren (10.1016/j.biortech.2013.05.003_b0035) 2006; 126
Urk (10.1016/j.biortech.2013.05.003_b0070) 1988; 4
Zhao (10.1016/j.biortech.2013.05.003_b0090) 2011; 49
Brodeur (10.1016/j.biortech.2013.05.003_b0010) 2011
Miller (10.1016/j.biortech.2013.05.003_b0025) 1959; 31
Yadav (10.1016/j.biortech.2013.05.003_b0085) 2011; 102
Sluiter (10.1016/j.biortech.2013.05.003_b0060) 2008
Rudolf (10.1016/j.biortech.2013.05.003_b0045) 2008; 99
Cara (10.1016/j.biortech.2013.05.003_b0015) 2007; 42
References_xml – volume: 68
  start-page: 79
  year: 1999
  end-page: 87
  ident: b0020
  article-title: Fermentation of xylose/glucose mixtures by metabolically engineered
  publication-title: Bioresour. Technol.
– volume: 134
  start-page: 273
  year: 2006
  end-page: 283
  ident: b0040
  article-title: Ethanol production from diluted-acid softwood hydrolysate by co-culture
  publication-title: Appl. Biochem. Biotechnol.
– volume: 19
  start-page: 1109
  year: 2003
  end-page: 1117
  ident: b0080
  article-title: Techno-economic evaluation of producing ethanol from soft wood a comparison of SSF and SHF and identification of bottlenecks
  publication-title: Biotechnol. Prog.
– volume: 111
  start-page: 320
  year: 2011
  end-page: 325
  ident: b0055
  article-title: Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process
  publication-title: Biosci. Bioeng.
– volume: 102
  start-page: 6473
  year: 2011
  end-page: 6478
  ident: b0085
  article-title: Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 4767
  year: 2010
  end-page: 4774
  ident: b0005
  article-title: Bioethanol production from rice straw: an review
  publication-title: Bioresour. Technol.
– volume: 39
  start-page: 6
  year: 2006
  end-page: 14
  ident: b0050
  article-title: Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast
  publication-title: Enzyme Microb. Technol.
– year: 2011
  ident: b0010
  article-title: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review
  publication-title: Enzyme Res.
– volume: 31
  start-page: 426
  year: 1959
  end-page: 428
  ident: b0025
  article-title: Using dinitrosalicylic acid for determination of reducing sugar
  publication-title: Anal. Chem.
– volume: 37
  start-page: 52
  year: 2011
  end-page: 68
  ident: b0030
  article-title: Production of liquid biofuels from renewable resources
  publication-title: Prog. Energy
– volume: 49
  start-page: 413
  year: 2011
  end-page: 419
  ident: b0090
  article-title: Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreatment sugarcane bagasse for ethanol and 2,3-butanediol production
  publication-title: Enzyme Microb. Technol.
– volume: 4
  start-page: 283
  year: 1988
  end-page: 291
  ident: b0070
  article-title: Metabolic responses of
  publication-title: Yeast
– volume: 42
  start-page: 1003
  year: 2007
  end-page: 1009
  ident: b0015
  article-title: Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass
  publication-title: Process Biochem.
– volume: 99
  start-page: 783
  year: 2008
  end-page: 790
  ident: b0045
  article-title: Simultaneous saccharification and fermentation of steam pretreated bagasse using
  publication-title: Biotechnol. Bioeng.
– volume: 126
  start-page: 488
  year: 2006
  end-page: 498
  ident: b0035
  article-title: Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with
  publication-title: J. Biotechnol.
– year: 2008
  ident: b0060
  article-title: Determination of Structural Carbohydrates and Lignin in Biomass
– volume: 28
  start-page: 1119
  year: 2012
  end-page: 1125
  ident: b0065
  article-title: Rational optimization of culture conditions for the most efficient ethanol production in
  publication-title: Biotechnol. Prog.
– volume: 126
  start-page: 488
  year: 2006
  ident: 10.1016/j.biortech.2013.05.003_b0035
  article-title: Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.05.001
– volume: 37
  start-page: 52
  year: 2011
  ident: 10.1016/j.biortech.2013.05.003_b0030
  article-title: Production of liquid biofuels from renewable resources
  publication-title: Prog. Energy
  doi: 10.1016/j.pecs.2010.01.003
– volume: 99
  start-page: 783
  year: 2008
  ident: 10.1016/j.biortech.2013.05.003_b0045
  article-title: Simultaneous saccharification and fermentation of steam pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21636
– volume: 39
  start-page: 6
  year: 2006
  ident: 10.1016/j.biortech.2013.05.003_b0050
  article-title: Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2005.06.024
– volume: 49
  start-page: 413
  year: 2011
  ident: 10.1016/j.biortech.2013.05.003_b0090
  article-title: Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreatment sugarcane bagasse for ethanol and 2,3-butanediol production
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2011.07.003
– year: 2008
  ident: 10.1016/j.biortech.2013.05.003_b0060
– volume: 28
  start-page: 1119
  year: 2012
  ident: 10.1016/j.biortech.2013.05.003_b0065
  article-title: Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1595
– volume: 111
  start-page: 320
  year: 2011
  ident: 10.1016/j.biortech.2013.05.003_b0055
  article-title: Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process
  publication-title: Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2010.11.003
– volume: 101
  start-page: 4767
  year: 2010
  ident: 10.1016/j.biortech.2013.05.003_b0005
  article-title: Bioethanol production from rice straw: an review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.079
– volume: 42
  start-page: 1003
  year: 2007
  ident: 10.1016/j.biortech.2013.05.003_b0015
  article-title: Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2007.03.012
– volume: 19
  start-page: 1109
  year: 2003
  ident: 10.1016/j.biortech.2013.05.003_b0080
  article-title: Techno-economic evaluation of producing ethanol from soft wood a comparison of SSF and SHF and identification of bottlenecks
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0340180
– volume: 134
  start-page: 273
  year: 2006
  ident: 10.1016/j.biortech.2013.05.003_b0040
  article-title: Ethanol production from diluted-acid softwood hydrolysate by co-culture
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:134:3:273
– volume: 102
  start-page: 6473
  year: 2011
  ident: 10.1016/j.biortech.2013.05.003_b0085
  article-title: Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.019
– year: 2011
  ident: 10.1016/j.biortech.2013.05.003_b0010
  article-title: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review
  publication-title: Enzyme Res.
  doi: 10.4061/2011/787532
– volume: 68
  start-page: 79
  year: 1999
  ident: 10.1016/j.biortech.2013.05.003_b0020
  article-title: Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from pichia stipitis with and without overexpression of TAL1
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(98)00085-6
– volume: 4
  start-page: 283
  year: 1988
  ident: 10.1016/j.biortech.2013.05.003_b0070
  article-title: Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess
  publication-title: Yeast
  doi: 10.1002/yea.320040406
– volume: 31
  start-page: 426
  year: 1959
  ident: 10.1016/j.biortech.2013.05.003_b0025
  article-title: Using dinitrosalicylic acid for determination of reducing sugar
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
SSID ssj0003172
Score 2.348102
Snippet •Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was...
Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms agitation
Biological and medical sciences
Biomass
Biotechnology
Co-culture
coculture
Coculture Techniques
Design of experiment
Design of experiments
economic feasibility
Ethanol
Ethanol - metabolism
ethanol production
Ethyl alcohol
experimental design
Fermentation
Food industries
Fundamental and applied biological sciences. Psychology
Mathematical models
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Oryza - metabolism
Rice
rice straw
Saccharification
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Scheffersomyces stipitis
Simultaneous saccharification and co-fermentation (SSCF) optimization
Straw
temperature
Use and upgrading of agricultural and food by-products. Biotechnology
Title Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments
URI https://dx.doi.org/10.1016/j.biortech.2013.05.003
https://www.ncbi.nlm.nih.gov/pubmed/23735799
https://www.proquest.com/docview/1399504058
https://www.proquest.com/docview/1446276930
https://www.proquest.com/docview/1500785563
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgCEEJTX8lgZiWu6iR-bzXG1olpAlMNSqbfIzypVm0TNVqg99Lfx05hxnG4rRHvgmoztPL6Mx_E33xDyyaXcc52zxOo0T4TlItFaFYlNVa4yLqY66BZ8358uD8TXQ3m4RRZDLgzSKqPv73168NbxyCQ-zUlbVZMVBt8zGfaFYDHOUfFTiBxRvnu1oXnA_Bh2EsA4QesbWcLHu7pCRmvYlMh4UPAcimf9PUE9aVUHj8339S7-HZCGiWnvGXkaI0o67y_6Odly9Q55PD86i6oaboc8XAxl3eDMDQXCF-T3D3AZp9Wls7SrkFyoatecd7RTBvOxkEcUXh1VtaWmSTw48pitVNPGU5Qkovi35BeF6Jc6_BHfnNC215FFI31BV31nzekFOCVqArO4q5QLna4ANVijpYunweW0qLOEo8UboEjOP6I2kE1w1E1Zgu4lOdj7_HOxTGJRh8RInq5h4csy562WVhRWm1QLp5UUhnvhcut0WjAneaEKPzXeMpWxdKaLaW5m0jvnGH9Ftuumdm8IZRBqOKGgo0yLTKeKcW2tAUSkikuvR0QOb7I0UfEcC2-clAO17bgcEFAiAspUolbqiEyu27W95se9LYoBKOUt9JYwMd3bdnwLWddDshyiaVgxjsjHAWolYAU3dHoslBnmJYMXlrM7bGC9z0LByztsJEaKKBU3Iq97LG-ugudc5kXx9j9u8R15xEIVEeRNvifb67Nz9wFiubUeh491TB7Mv3xb7v8Bb55RJQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLUQLGhVoZa-pg_qSu0yjONHMll0gWjRUB5dDEjsUjt2UBAkERmEpov-VH-gn9Z7nYQBVYVFxTbxK_HJ9XV87zmEfHBM5MLEPLCGxYG0QgbG6CSwTMc6FDIynrdgbz8aH8qvR-pogfzqc2EwrLKz_a1N99a6uzLs3uawLorhBJ3vkfLnQrAZF72C9Y6bXcK-rfm0_Rkm-SPnW18ONsdBJy0QZEqwKWy_eOhya5SViTUZM9IZrWQmculi6wxLuFMi0UkeZbnlOuRsZJIozkYqd84h2wHY_SUJ5gJlE9Z_zuNKYEH2RxcwugCHdy0t-WTdFBhC609BQuEpQ3u1rr9XxEe1bmCe8lZg498esF8Jtx6Tlc6FpRvtW3pCFly5Sh5uHJ93NB5ulSxv9jpycOca5eFT8vsb2Kiz4oeztCkwmlGXrrpoaKMzTADDwCWPFapLS7MqyGHl6NKjSlrlFDmQKP6euaTgblOHf_6rU1q3xLVYyMzopG2sOpuBFaSZD2VuCu18oxOAKYrCNN1tsHE1Ejthb90DUMwGOKbWR7dgr3MdhOYZObyXqX5OFsuqdC8J5eDbOKmhodDI0DDNhbE2AwgyLVRuBkT1M5lmHcU6Kn2cpn0s3UnaIyBFBKRMITnrgAyv6tUtycidNZIeKOmNzyWFlfDOums3kHXVJY_BfYct6oC876GWAlbwBKnFQhpiIjSYfTW6pYyUEfcKm7eUUeiaIjfdgLxosTwfhYiFipPk1X884juyPD7Y2013t_d3XpMH3EuYYNDmG7I4Pb9wb8GRnJo1_-FS8v2-LcUf9AiPKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+simultaneous+saccharification+and+co-fermentation+of+rice+straw+for+ethanol+production+by+Saccharomyces+cerevisiae+and+Scheffersomyces+stipitis+co-culture+using+design+of+experiments&rft.jtitle=Bioresource+technology&rft.au=Suriyachai%2C+Nopparat&rft.au=Weerasaia%2C+Khatiya&rft.au=Laosiripojana%2C+Navadol&rft.au=Champreda%2C+Verawat&rft.date=2013-08-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=142&rft.spage=171&rft_id=info:doi/10.1016%2Fj.biortech.2013.05.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon