Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments
•Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was systematically optimized using design of experiment (DoE) approach.•Highly efficient and scalable SSCF by co-culture yielded 99% of theoretical yield...
Saved in:
Published in | Bioresource technology Vol. 142; pp. 171 - 178 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was systematically optimized using design of experiment (DoE) approach.•Highly efficient and scalable SSCF by co-culture yielded 99% of theoretical yield.•Maximum ethanol concentration achieved by co-culture SSCF process was 28.6g/L.
Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses. |
---|---|
AbstractList | Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses. •Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was systematically optimized using design of experiment (DoE) approach.•Highly efficient and scalable SSCF by co-culture yielded 99% of theoretical yield.•Maximum ethanol concentration achieved by co-culture SSCF process was 28.6g/L. Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses. Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses. Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses.Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1°C. The optimized SSCF process reached ethanol titer of 15.2g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses. Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture was carried out to enhance ethanol production. The optimal saccharification solid loading was 5%. Key fermentation parameters for co-culture including cell ratio, agitation rate and temperature was rationally optimized using design of experiment (DoE). Optimized co-culture conditions for maximum ethanol production efficiency were at S. cerevisiae:S. stipitis cell ratio of 0.31, agitation rate of 116 rpm and temperature of 33.1 degree C. The optimized SSCF process reached ethanol titer of 15.2 g/L and ethanol yield of 99% of theoretical yield, consistent with the DoE model prediction. Moreover, SSCF process under high biomass concentration resulted in high ethanol concentration of 28.6 g/L. This work suggests the efficiency and scalability of the developed SSCF process which could provide an important basis for the economic feasibility of ethanol production from lignocelluloses. |
Author | Weerasaia, Khatiya Suriyachai, Nopparat Champreda, Verawat Laosiripojana, Navadol Unrean, Pornkamol |
Author_xml | – sequence: 1 givenname: Nopparat surname: Suriyachai fullname: Suriyachai, Nopparat organization: The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand – sequence: 2 givenname: Khatiya surname: Weerasaia fullname: Weerasaia, Khatiya organization: The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand – sequence: 3 givenname: Navadol surname: Laosiripojana fullname: Laosiripojana, Navadol organization: The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand – sequence: 4 givenname: Verawat surname: Champreda fullname: Champreda, Verawat organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand – sequence: 5 givenname: Pornkamol surname: Unrean fullname: Unrean, Pornkamol email: pornkamol.unr@biotec.or.th organization: National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27540217$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23735799$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks-O0zAQxiO0iO0uvMLKFyQuKY4dJ7XEAbTin7TSHhbOljMeb10lcbGdhfJ0PBpu0wqJS0-W7N_3zXi-uSouRj9iUdxUdFnRqnm7WXbOh4SwXjJa8SUVS0r5s2JRrVpeMtk2F8WCyoaWK8Hqy-Iqxg3NRNWyF8Ul4y0XrZSL4s_9NrnB_UZDohumPukR_RRJ1ABrHZx1oJPzI9GjIeBLi2HAMc133pLgAElMQf8k1geCaa1H35Nt8GaCA9TtyMNs5ocdYCSAAZ9cdBoPpg-wRptt4_E5Jrd1ycV9NcgNTQHJFN34SAxG93ioir-2GNy-kfiyeG51H_HV8bwuvn_6-O32S3l3__nr7Ye7EgSnqRSMVWhNJ0wtTQe0q7HTogZua2wNdlQyFFxqaRuwhumK0VUnmxZWwiIi49fFm9k3f-3HhDGpwUXAvp8HpipBabsSouHn0bpuWNtITs-jXEpBaypWGb05olM3oFHbPAAdduqUZQZeHwEdQfc26BFc_Me1oqasajP3buYg-BgDWgVuDjTH6HpVUbVfMbVRpxVT-xVTVKi8QFne_Cc_VTgrfD8LMcf05DCoCA5HQOMCQlLGu3MWfwEov_WZ |
CitedBy_id | crossref_primary_10_1016_j_rser_2019_109479 crossref_primary_10_1002_ep_13233 crossref_primary_10_1016_j_biotechadv_2019_107500 crossref_primary_10_1016_j_renene_2019_05_048 crossref_primary_10_1016_j_biortech_2014_01_016 crossref_primary_10_1016_j_renene_2016_08_019 crossref_primary_10_1016_j_procbio_2019_06_019 crossref_primary_10_1186_s40643_015_0069_1 crossref_primary_10_1021_acsomega_0c04054 crossref_primary_10_1007_s10068_015_0182_0 crossref_primary_10_1515_biol_2020_0019 crossref_primary_10_3390_molecules29102275 crossref_primary_10_1007_s10068_024_01670_5 crossref_primary_10_1016_j_bej_2019_02_019 crossref_primary_10_1039_C5AY00337G crossref_primary_10_1007_s12223_015_0420_0 crossref_primary_10_1007_s12649_022_01861_3 crossref_primary_10_1016_j_apenergy_2015_05_008 crossref_primary_10_1016_j_biortech_2021_125583 crossref_primary_10_1016_j_ijhydene_2022_06_224 crossref_primary_10_1186_s13068_019_1431_x crossref_primary_10_1016_j_biombioe_2018_01_008 crossref_primary_10_1016_j_renene_2017_10_094 crossref_primary_10_1186_s40643_015_0079_z crossref_primary_10_1016_j_biortech_2019_121844 crossref_primary_10_1016_j_biortech_2018_07_130 crossref_primary_10_1016_j_enconman_2016_06_081 crossref_primary_10_1016_j_biortech_2016_05_068 crossref_primary_10_1016_j_energy_2018_06_126 crossref_primary_10_1016_j_biortech_2017_06_159 crossref_primary_10_1016_j_biombioe_2016_07_012 crossref_primary_10_3389_fmicb_2018_03264 crossref_primary_10_1177_0958305X211045010 crossref_primary_10_1016_j_energy_2017_01_090 crossref_primary_10_1016_j_jtice_2015_04_026 crossref_primary_10_1007_s00253_019_10146_0 crossref_primary_10_1016_j_biortech_2016_09_119 crossref_primary_10_3390_en16124657 crossref_primary_10_1080_15435075_2015_1088855 crossref_primary_10_1016_j_jbiotec_2014_03_028 crossref_primary_10_1007_s13205_017_1021_1 crossref_primary_10_1007_s13399_020_01269_w crossref_primary_10_1016_j_biortech_2013_09_082 crossref_primary_10_1016_j_renene_2020_07_031 crossref_primary_10_1016_j_biortech_2017_01_077 crossref_primary_10_1007_s12155_017_9851_6 crossref_primary_10_3390_su15119137 crossref_primary_10_1016_j_csbj_2020_12_029 crossref_primary_10_1007_s12257_014_0465_y crossref_primary_10_1016_j_biortech_2020_123511 crossref_primary_10_1186_s40643_018_0203_y crossref_primary_10_1016_j_biortech_2016_11_110 crossref_primary_10_1007_s00253_015_7173_1 crossref_primary_10_1080_21655979_2019_1644853 crossref_primary_10_1016_j_clet_2021_100235 crossref_primary_10_1007_s12010_015_1846_1 crossref_primary_10_1016_j_biortech_2014_11_116 crossref_primary_10_1016_j_ijbiomac_2025_141620 crossref_primary_10_1016_j_biortech_2015_02_117 |
Cites_doi | 10.1016/j.jbiotec.2006.05.001 10.1016/j.pecs.2010.01.003 10.1002/bit.21636 10.1016/j.enzmictec.2005.06.024 10.1016/j.enzmictec.2011.07.003 10.1002/btpr.1595 10.1016/j.jbiosc.2010.11.003 10.1016/j.biortech.2009.10.079 10.1016/j.procbio.2007.03.012 10.1021/bp0340180 10.1385/ABAB:134:3:273 10.1016/j.biortech.2011.03.019 10.4061/2011/787532 10.1016/S0960-8524(98)00085-6 10.1002/yea.320040406 10.1021/ac60147a030 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
DOI | 10.1016/j.biortech.2013.05.003 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 178 |
ExternalDocumentID | 23735799 27540217 10_1016_j_biortech_2013_05_003 S0960852413007633 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c530t-5221efdb5d49dbc0b4eba54c3f4e7deb092e539a9f6cfd2a1208b967c85feee23 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 16:55:13 EDT 2025 Fri Jul 11 08:32:33 EDT 2025 Fri Jul 11 00:01:29 EDT 2025 Mon Jul 21 05:48:38 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 02:06:15 EDT 2025 Fri Feb 23 02:34:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Simultaneous saccharification and co-fermentation (SSCF) optimization Ethanol Co-culture Design of experiment Ascomycota Rice straw Cereal by product Saccharification Fermentation Optimization Fungi Experimental design Saccharomyces cerevisiae |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-5221efdb5d49dbc0b4eba54c3f4e7deb092e539a9f6cfd2a1208b967c85feee23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23735799 |
PQID | 1399504058 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1500785563 proquest_miscellaneous_1446276930 proquest_miscellaneous_1399504058 pubmed_primary_23735799 pascalfrancis_primary_27540217 crossref_citationtrail_10_1016_j_biortech_2013_05_003 crossref_primary_10_1016_j_biortech_2013_05_003 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templeton (b0060) 2008 Unrean, Nguyen (b0065) 2012; 28 Binod (b0005) 2010; 101 Cara, Moya, Ballesteros, Negro, Gonzalez, Ruiz (b0015) 2007; 42 Shinozaki, Kitamoto (b0055) 2011; 111 Brodeur, Yau, Badal, Collier, Ramachandran, Ramakrishnan (b0010) 2011 Miller (b0025) 1959; 31 Urk, Mark, Scheffers, Van-Dijken (b0070) 1988; 4 Nigam, Singh (b0030) 2011; 37 Qian, Tian, Li, Zhang, Pan, Yang (b0040) 2006; 134 Yadav, Naseeruddin, Prashanthi, Sateesh, Rao (b0085) 2011; 102 Zhao, Song, Liu (b0090) 2011; 49 Meinander, Hahn-hagerdal (b0020) 1999; 68 Wingren, Galbe, Zacchi (b0080) 2003; 19 Ohgren, Bengtsson, Gorwa-Grauslund, Galbe, Hahn-Hagerdal, Zacchi (b0035) 2006; 126 Ruohonen, Aristidou, Frey, Penttila, Kallio (b0050) 2006; 39 Rudolf, Baudel, Zacchi, Hahn-Hagerdal, Liden (b0045) 2008; 99 Qian (10.1016/j.biortech.2013.05.003_b0040) 2006; 134 Shinozaki (10.1016/j.biortech.2013.05.003_b0055) 2011; 111 Wingren (10.1016/j.biortech.2013.05.003_b0080) 2003; 19 Binod (10.1016/j.biortech.2013.05.003_b0005) 2010; 101 Ruohonen (10.1016/j.biortech.2013.05.003_b0050) 2006; 39 Meinander (10.1016/j.biortech.2013.05.003_b0020) 1999; 68 Nigam (10.1016/j.biortech.2013.05.003_b0030) 2011; 37 Unrean (10.1016/j.biortech.2013.05.003_b0065) 2012; 28 Ohgren (10.1016/j.biortech.2013.05.003_b0035) 2006; 126 Urk (10.1016/j.biortech.2013.05.003_b0070) 1988; 4 Zhao (10.1016/j.biortech.2013.05.003_b0090) 2011; 49 Brodeur (10.1016/j.biortech.2013.05.003_b0010) 2011 Miller (10.1016/j.biortech.2013.05.003_b0025) 1959; 31 Yadav (10.1016/j.biortech.2013.05.003_b0085) 2011; 102 Sluiter (10.1016/j.biortech.2013.05.003_b0060) 2008 Rudolf (10.1016/j.biortech.2013.05.003_b0045) 2008; 99 Cara (10.1016/j.biortech.2013.05.003_b0015) 2007; 42 |
References_xml | – volume: 68 start-page: 79 year: 1999 end-page: 87 ident: b0020 article-title: Fermentation of xylose/glucose mixtures by metabolically engineered publication-title: Bioresour. Technol. – volume: 134 start-page: 273 year: 2006 end-page: 283 ident: b0040 article-title: Ethanol production from diluted-acid softwood hydrolysate by co-culture publication-title: Appl. Biochem. Biotechnol. – volume: 19 start-page: 1109 year: 2003 end-page: 1117 ident: b0080 article-title: Techno-economic evaluation of producing ethanol from soft wood a comparison of SSF and SHF and identification of bottlenecks publication-title: Biotechnol. Prog. – volume: 111 start-page: 320 year: 2011 end-page: 325 ident: b0055 article-title: Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process publication-title: Biosci. Bioeng. – volume: 102 start-page: 6473 year: 2011 end-page: 6478 ident: b0085 article-title: Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of publication-title: Bioresour. Technol. – volume: 101 start-page: 4767 year: 2010 end-page: 4774 ident: b0005 article-title: Bioethanol production from rice straw: an review publication-title: Bioresour. Technol. – volume: 39 start-page: 6 year: 2006 end-page: 14 ident: b0050 article-title: Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast publication-title: Enzyme Microb. Technol. – year: 2011 ident: b0010 article-title: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review publication-title: Enzyme Res. – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: b0025 article-title: Using dinitrosalicylic acid for determination of reducing sugar publication-title: Anal. Chem. – volume: 37 start-page: 52 year: 2011 end-page: 68 ident: b0030 article-title: Production of liquid biofuels from renewable resources publication-title: Prog. Energy – volume: 49 start-page: 413 year: 2011 end-page: 419 ident: b0090 article-title: Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreatment sugarcane bagasse for ethanol and 2,3-butanediol production publication-title: Enzyme Microb. Technol. – volume: 4 start-page: 283 year: 1988 end-page: 291 ident: b0070 article-title: Metabolic responses of publication-title: Yeast – volume: 42 start-page: 1003 year: 2007 end-page: 1009 ident: b0015 article-title: Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass publication-title: Process Biochem. – volume: 99 start-page: 783 year: 2008 end-page: 790 ident: b0045 article-title: Simultaneous saccharification and fermentation of steam pretreated bagasse using publication-title: Biotechnol. Bioeng. – volume: 126 start-page: 488 year: 2006 end-page: 498 ident: b0035 article-title: Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with publication-title: J. Biotechnol. – year: 2008 ident: b0060 article-title: Determination of Structural Carbohydrates and Lignin in Biomass – volume: 28 start-page: 1119 year: 2012 end-page: 1125 ident: b0065 article-title: Rational optimization of culture conditions for the most efficient ethanol production in publication-title: Biotechnol. Prog. – volume: 126 start-page: 488 year: 2006 ident: 10.1016/j.biortech.2013.05.003_b0035 article-title: Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.05.001 – volume: 37 start-page: 52 year: 2011 ident: 10.1016/j.biortech.2013.05.003_b0030 article-title: Production of liquid biofuels from renewable resources publication-title: Prog. Energy doi: 10.1016/j.pecs.2010.01.003 – volume: 99 start-page: 783 year: 2008 ident: 10.1016/j.biortech.2013.05.003_b0045 article-title: Simultaneous saccharification and fermentation of steam pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21636 – volume: 39 start-page: 6 year: 2006 ident: 10.1016/j.biortech.2013.05.003_b0050 article-title: Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2005.06.024 – volume: 49 start-page: 413 year: 2011 ident: 10.1016/j.biortech.2013.05.003_b0090 article-title: Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreatment sugarcane bagasse for ethanol and 2,3-butanediol production publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2011.07.003 – year: 2008 ident: 10.1016/j.biortech.2013.05.003_b0060 – volume: 28 start-page: 1119 year: 2012 ident: 10.1016/j.biortech.2013.05.003_b0065 article-title: Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments publication-title: Biotechnol. Prog. doi: 10.1002/btpr.1595 – volume: 111 start-page: 320 year: 2011 ident: 10.1016/j.biortech.2013.05.003_b0055 article-title: Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process publication-title: Biosci. Bioeng. doi: 10.1016/j.jbiosc.2010.11.003 – volume: 101 start-page: 4767 year: 2010 ident: 10.1016/j.biortech.2013.05.003_b0005 article-title: Bioethanol production from rice straw: an review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.079 – volume: 42 start-page: 1003 year: 2007 ident: 10.1016/j.biortech.2013.05.003_b0015 article-title: Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass publication-title: Process Biochem. doi: 10.1016/j.procbio.2007.03.012 – volume: 19 start-page: 1109 year: 2003 ident: 10.1016/j.biortech.2013.05.003_b0080 article-title: Techno-economic evaluation of producing ethanol from soft wood a comparison of SSF and SHF and identification of bottlenecks publication-title: Biotechnol. Prog. doi: 10.1021/bp0340180 – volume: 134 start-page: 273 year: 2006 ident: 10.1016/j.biortech.2013.05.003_b0040 article-title: Ethanol production from diluted-acid softwood hydrolysate by co-culture publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:134:3:273 – volume: 102 start-page: 6473 year: 2011 ident: 10.1016/j.biortech.2013.05.003_b0085 article-title: Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.019 – year: 2011 ident: 10.1016/j.biortech.2013.05.003_b0010 article-title: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review publication-title: Enzyme Res. doi: 10.4061/2011/787532 – volume: 68 start-page: 79 year: 1999 ident: 10.1016/j.biortech.2013.05.003_b0020 article-title: Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from pichia stipitis with and without overexpression of TAL1 publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(98)00085-6 – volume: 4 start-page: 283 year: 1988 ident: 10.1016/j.biortech.2013.05.003_b0070 article-title: Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess publication-title: Yeast doi: 10.1002/yea.320040406 – volume: 31 start-page: 426 year: 1959 ident: 10.1016/j.biortech.2013.05.003_b0025 article-title: Using dinitrosalicylic acid for determination of reducing sugar publication-title: Anal. Chem. doi: 10.1021/ac60147a030 |
SSID | ssj0003172 |
Score | 2.348102 |
Snippet | •Co-culture SSCF process of rice straw for ethanol production was optimized.•Effect of solid loading on enzyme hydrolysis was examined.•Co-culture was... Herein an ethanol production process from rice straw was optimized. Simultaneous saccharification and co-fermentation (SSCF) using Saccharomyces cerevisiae and... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 171 |
SubjectTerms | agitation Biological and medical sciences Biomass Biotechnology Co-culture coculture Coculture Techniques Design of experiment Design of experiments economic feasibility Ethanol Ethanol - metabolism ethanol production Ethyl alcohol experimental design Fermentation Food industries Fundamental and applied biological sciences. Psychology Mathematical models Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Oryza - metabolism Rice rice straw Saccharification Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Scheffersomyces stipitis Simultaneous saccharification and co-fermentation (SSCF) optimization Straw temperature Use and upgrading of agricultural and food by-products. Biotechnology |
Title | Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments |
URI | https://dx.doi.org/10.1016/j.biortech.2013.05.003 https://www.ncbi.nlm.nih.gov/pubmed/23735799 https://www.proquest.com/docview/1399504058 https://www.proquest.com/docview/1446276930 https://www.proquest.com/docview/1500785563 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgCEEJTX8lgZiWu6iR-bzXG1olpAlMNSqbfIzypVm0TNVqg99Lfx05hxnG4rRHvgmoztPL6Mx_E33xDyyaXcc52zxOo0T4TlItFaFYlNVa4yLqY66BZ8358uD8TXQ3m4RRZDLgzSKqPv73168NbxyCQ-zUlbVZMVBt8zGfaFYDHOUfFTiBxRvnu1oXnA_Bh2EsA4QesbWcLHu7pCRmvYlMh4UPAcimf9PUE9aVUHj8339S7-HZCGiWnvGXkaI0o67y_6Odly9Q55PD86i6oaboc8XAxl3eDMDQXCF-T3D3AZp9Wls7SrkFyoatecd7RTBvOxkEcUXh1VtaWmSTw48pitVNPGU5Qkovi35BeF6Jc6_BHfnNC215FFI31BV31nzekFOCVqArO4q5QLna4ANVijpYunweW0qLOEo8UboEjOP6I2kE1w1E1Zgu4lOdj7_HOxTGJRh8RInq5h4csy562WVhRWm1QLp5UUhnvhcut0WjAneaEKPzXeMpWxdKaLaW5m0jvnGH9Ftuumdm8IZRBqOKGgo0yLTKeKcW2tAUSkikuvR0QOb7I0UfEcC2-clAO17bgcEFAiAspUolbqiEyu27W95se9LYoBKOUt9JYwMd3bdnwLWddDshyiaVgxjsjHAWolYAU3dHoslBnmJYMXlrM7bGC9z0LByztsJEaKKBU3Iq97LG-ugudc5kXx9j9u8R15xEIVEeRNvifb67Nz9wFiubUeh491TB7Mv3xb7v8Bb55RJQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFLUQLGhVoZa-pg_qSu0yjONHMll0gWjRUB5dDEjsUjt2UBAkERmEpov-VH-gn9Z7nYQBVYVFxTbxK_HJ9XV87zmEfHBM5MLEPLCGxYG0QgbG6CSwTMc6FDIynrdgbz8aH8qvR-pogfzqc2EwrLKz_a1N99a6uzLs3uawLorhBJ3vkfLnQrAZF72C9Y6bXcK-rfm0_Rkm-SPnW18ONsdBJy0QZEqwKWy_eOhya5SViTUZM9IZrWQmculi6wxLuFMi0UkeZbnlOuRsZJIozkYqd84h2wHY_SUJ5gJlE9Z_zuNKYEH2RxcwugCHdy0t-WTdFBhC609BQuEpQ3u1rr9XxEe1bmCe8lZg498esF8Jtx6Tlc6FpRvtW3pCFly5Sh5uHJ93NB5ulSxv9jpycOca5eFT8vsb2Kiz4oeztCkwmlGXrrpoaKMzTADDwCWPFapLS7MqyGHl6NKjSlrlFDmQKP6euaTgblOHf_6rU1q3xLVYyMzopG2sOpuBFaSZD2VuCu18oxOAKYrCNN1tsHE1Ejthb90DUMwGOKbWR7dgr3MdhOYZObyXqX5OFsuqdC8J5eDbOKmhodDI0DDNhbE2AwgyLVRuBkT1M5lmHcU6Kn2cpn0s3UnaIyBFBKRMITnrgAyv6tUtycidNZIeKOmNzyWFlfDOums3kHXVJY_BfYct6oC876GWAlbwBKnFQhpiIjSYfTW6pYyUEfcKm7eUUeiaIjfdgLxosTwfhYiFipPk1X884juyPD7Y2013t_d3XpMH3EuYYNDmG7I4Pb9wb8GRnJo1_-FS8v2-LcUf9AiPKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+simultaneous+saccharification+and+co-fermentation+of+rice+straw+for+ethanol+production+by+Saccharomyces+cerevisiae+and+Scheffersomyces+stipitis+co-culture+using+design+of+experiments&rft.jtitle=Bioresource+technology&rft.au=Suriyachai%2C+Nopparat&rft.au=Weerasaia%2C+Khatiya&rft.au=Laosiripojana%2C+Navadol&rft.au=Champreda%2C+Verawat&rft.date=2013-08-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=142&rft.spage=171&rft_id=info:doi/10.1016%2Fj.biortech.2013.05.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |