Reaction kinetics of hydrothermal carbonization of loblolly pine

•An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite rapid.•Reactions are modeled by parallel first-order degradation of hemicellulose and cellulose.•Mass transfer and reaction kinetics may both be import...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 139; pp. 161 - 169
Main Authors Reza, M. Toufiq, Yan, Wei, Uddin, M. Helal, Lynam, Joan G., Hoekman, S. Kent, Coronella, Charles J., Vásquez, Victor R.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite rapid.•Reactions are modeled by parallel first-order degradation of hemicellulose and cellulose.•Mass transfer and reaction kinetics may both be important. Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.
AbstractList Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.
•An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite rapid.•Reactions are modeled by parallel first-order degradation of hemicellulose and cellulose.•Mass transfer and reaction kinetics may both be important. Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.
Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15 s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260 degree C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.
Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.
Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.
Author Lynam, Joan G.
Reza, M. Toufiq
Yan, Wei
Coronella, Charles J.
Vásquez, Victor R.
Uddin, M. Helal
Hoekman, S. Kent
Author_xml – sequence: 1
  givenname: M. Toufiq
  surname: Reza
  fullname: Reza, M. Toufiq
  organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA
– sequence: 2
  givenname: Wei
  surname: Yan
  fullname: Yan, Wei
  organization: Gas Technology Institute, Birmingham, AL 35203, USA
– sequence: 3
  givenname: M. Helal
  surname: Uddin
  fullname: Uddin, M. Helal
  organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA
– sequence: 4
  givenname: Joan G.
  surname: Lynam
  fullname: Lynam, Joan G.
  organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA
– sequence: 5
  givenname: S. Kent
  surname: Hoekman
  fullname: Hoekman, S. Kent
  organization: Division of Atmospheric Science, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
– sequence: 6
  givenname: Charles J.
  surname: Coronella
  fullname: Coronella, Charles J.
  email: coronella@unr.edu
  organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA
– sequence: 7
  givenname: Victor R.
  surname: Vásquez
  fullname: Vásquez, Victor R.
  organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27477905$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23651600$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctq3DAUBmBRUppJ2lcI3hS6sXt0sWRDFykhvUCgUJK1kKUjRlONNZU8henTx5kLhW5mpYW-_0ic_4pcjGlEQm4oNBSo_LhqhpDyhHbZMKC8AdEA616RBe0Ur1mv5AVZQC-h7lomLslVKSsA4FSxN-SScdlSCbAgtz_R2CmksfoVRpyCLVXy1XLncpqWmNcmVtbkIY3hr9mz-TamIaYYd9Vmjrwlr72JBd8dz2vy9OX-8e5b_fDj6_e7zw-1bTlMNRvcYMXQe-dbbruO9pR3vvcdesFk74WXirmeIR_QCUs592goCEeptIMT_Jp8OMzd5PR7i2XS61AsxmhGTNuiaQugFFBBz1PBqaRtP6_jLOVStkpJ1s305ki3wxqd3uSwNnmnT7ucwfsjMMWa6LMZbSj_nBJK9dDO7tPB2ZxKyei1DdN-uVM2IWoK-qVivdKnivVLxRqEhv0_5H_x0wtng7eHIM41_QmYdbEBR4suZLSTdimcG_EMsXzDgw
CitedBy_id crossref_primary_10_1016_j_biortech_2018_06_087
crossref_primary_10_1016_j_biteb_2021_100770
crossref_primary_10_1016_j_rser_2019_109514
crossref_primary_10_1021_acssuschemeng_9b02191
crossref_primary_10_1039_D0GC01281E
crossref_primary_10_1021_acssuschemeng_7b00300
crossref_primary_10_1021_acssuschemeng_6b00292
crossref_primary_10_1080_17597269_2020_1759179
crossref_primary_10_1016_j_fuel_2021_122169
crossref_primary_10_1016_j_biortech_2021_125972
crossref_primary_10_1002_ep_11899
crossref_primary_10_3390_en14185890
crossref_primary_10_1021_acs_energyfuels_7b01523
crossref_primary_10_3390_fire7040106
crossref_primary_10_1007_s11581_020_03712_4
crossref_primary_10_2166_washdev_2015_017
crossref_primary_10_1080_09593330_2021_1995785
crossref_primary_10_1016_j_seta_2015_08_003
crossref_primary_10_1016_j_energy_2023_128524
crossref_primary_10_3390_en15155491
crossref_primary_10_1021_acsomega_1c05116
crossref_primary_10_1016_j_energy_2020_119020
crossref_primary_10_1016_j_apenergy_2014_06_038
crossref_primary_10_1007_s13399_014_0137_3
crossref_primary_10_3390_en12030516
crossref_primary_10_1016_j_biortech_2018_06_014
crossref_primary_10_1016_j_rser_2019_04_011
crossref_primary_10_3390_biomass2040017
crossref_primary_10_1007_s42823_025_00872_z
crossref_primary_10_3390_en15062209
crossref_primary_10_3390_resources12070085
crossref_primary_10_1051_e3sconf_202560100012
crossref_primary_10_1016_j_jaap_2018_11_018
crossref_primary_10_1007_s11356_018_3888_8
crossref_primary_10_1016_j_biortech_2018_02_113
crossref_primary_10_1002_elps_201700366
crossref_primary_10_1016_j_biortech_2017_03_095
crossref_primary_10_1039_C8GC03957G
crossref_primary_10_3390_en14071805
crossref_primary_10_1016_j_energy_2020_119635
crossref_primary_10_1016_j_supflu_2018_01_012
crossref_primary_10_1021_acs_energyfuels_7b03125
crossref_primary_10_1080_17597269_2021_1894780
crossref_primary_10_1007_s13399_015_0163_9
crossref_primary_10_1016_j_fuproc_2019_04_026
crossref_primary_10_1016_j_scp_2023_100991
crossref_primary_10_3390_en12050858
crossref_primary_10_1007_s12649_017_9914_0
crossref_primary_10_1016_j_rser_2021_111877
crossref_primary_10_3390_en16073217
crossref_primary_10_1021_acs_iecr_9b05643
crossref_primary_10_1016_j_envres_2025_121023
crossref_primary_10_1021_acs_energyfuels_9b02931
crossref_primary_10_1007_s13399_022_02314_6
crossref_primary_10_1007_s13399_019_00488_0
crossref_primary_10_1021_acssuschemeng_9b05928
crossref_primary_10_1016_j_biteb_2019_100210
crossref_primary_10_1016_j_ceja_2021_100233
crossref_primary_10_1016_j_fuel_2020_119009
crossref_primary_10_1007_s13399_019_00527_w
crossref_primary_10_1016_j_energy_2025_134885
crossref_primary_10_1016_j_fuel_2023_129776
crossref_primary_10_1007_s13197_023_05868_z
crossref_primary_10_1016_j_jaap_2017_07_023
crossref_primary_10_1007_s13399_014_0115_9
crossref_primary_10_1016_j_cej_2024_150680
crossref_primary_10_1016_j_jfueco_2023_100090
crossref_primary_10_1016_j_biortech_2018_07_032
crossref_primary_10_1016_j_biortech_2021_125835
crossref_primary_10_1016_j_biortech_2013_09_129
crossref_primary_10_3390_en14164752
crossref_primary_10_1061_JHTRBP_HZENG_1326
crossref_primary_10_1016_j_apenergy_2022_118981
crossref_primary_10_1039_D2SE01733D
crossref_primary_10_1021_acs_iecr_1c03068
crossref_primary_10_1021_acs_energyfuels_3c01660
crossref_primary_10_1016_j_cej_2016_03_033
crossref_primary_10_1016_j_jenvman_2023_118441
crossref_primary_10_1016_j_biortech_2015_02_024
crossref_primary_10_1016_j_joei_2020_03_006
crossref_primary_10_1016_j_bcab_2021_102145
crossref_primary_10_3103_S036152191806006X
crossref_primary_10_3390_en13164142
crossref_primary_10_1002_ep_11974
crossref_primary_10_1007_s13399_015_0192_4
crossref_primary_10_1080_15567036_2020_1796848
crossref_primary_10_1016_j_polymdegradstab_2025_111224
crossref_primary_10_3390_en14217132
crossref_primary_10_7209_tanso_2015_225
crossref_primary_10_1038_srep22644
crossref_primary_10_1007_s13762_016_1227_5
crossref_primary_10_1016_j_chemosphere_2022_136670
crossref_primary_10_1016_j_biombioe_2019_105384
crossref_primary_10_3390_en15124396
crossref_primary_10_1016_j_coal_2014_09_015
crossref_primary_10_3390_en11010216
crossref_primary_10_1080_07373937_2020_1786110
crossref_primary_10_1016_j_envres_2022_113532
crossref_primary_10_1016_j_jenvman_2016_03_006
crossref_primary_10_1021_acsomega_0c00737
crossref_primary_10_1016_j_biortech_2021_126112
crossref_primary_10_1016_j_biortech_2017_07_114
crossref_primary_10_1016_j_heliyon_2019_e01792
crossref_primary_10_1016_j_energy_2015_11_024
crossref_primary_10_1016_j_fuel_2021_122499
crossref_primary_10_1021_acs_energyfuels_9b02291
crossref_primary_10_1016_j_chemosphere_2021_131490
crossref_primary_10_3103_S1068364X22080038
crossref_primary_10_1016_j_biortech_2015_03_054
crossref_primary_10_1016_j_biortech_2014_07_010
crossref_primary_10_1016_j_wasman_2022_11_039
crossref_primary_10_1088_1755_1315_765_1_012001
crossref_primary_10_1016_j_renene_2023_04_120
crossref_primary_10_3934_energy_2016_1_173
crossref_primary_10_1080_17518253_2022_2028017
crossref_primary_10_1007_s00107_022_01805_7
crossref_primary_10_1021_acs_iecr_0c06280
crossref_primary_10_1016_j_biombioe_2014_01_038
crossref_primary_10_1016_j_biteb_2023_101643
crossref_primary_10_1007_s13399_017_0276_4
crossref_primary_10_1016_j_apenergy_2020_114810
crossref_primary_10_1016_j_biortech_2018_03_010
crossref_primary_10_1016_j_biortech_2014_03_008
crossref_primary_10_1016_j_fuel_2020_117837
crossref_primary_10_1021_acssuschemeng_8b02118
crossref_primary_10_1371_journal_pone_0304054
crossref_primary_10_3390_en11061379
crossref_primary_10_3103_S0361521918020076
crossref_primary_10_1039_D0GC00998A
crossref_primary_10_1016_j_fuel_2022_123163
crossref_primary_10_1016_j_cherd_2021_11_018
crossref_primary_10_1016_j_enconman_2021_114116
crossref_primary_10_3390_en13082058
crossref_primary_10_1016_j_biombioe_2015_02_006
crossref_primary_10_1016_j_biortech_2015_03_044
crossref_primary_10_1016_j_renene_2019_07_142
crossref_primary_10_1007_s13399_015_0172_8
crossref_primary_10_1007_s12649_020_01255_3
crossref_primary_10_1016_j_jenvman_2025_124191
crossref_primary_10_1016_j_jestch_2016_08_015
crossref_primary_10_3390_molecules27206851
crossref_primary_10_1039_C5RA24561C
crossref_primary_10_1002_ep_12312
crossref_primary_10_1016_j_biortech_2016_04_002
crossref_primary_10_1016_j_joei_2018_12_003
crossref_primary_10_3103_S0361521922040103
crossref_primary_10_1080_15567036_2018_1502846
crossref_primary_10_1016_j_biortech_2017_10_096
crossref_primary_10_1016_j_ccst_2021_100014
crossref_primary_10_1016_j_jaap_2014_11_004
crossref_primary_10_3390_en13010262
crossref_primary_10_1016_j_renene_2021_05_146
crossref_primary_10_1016_j_energy_2018_09_174
crossref_primary_10_1016_j_biombioe_2020_105509
crossref_primary_10_1016_j_fuel_2021_120450
crossref_primary_10_1016_j_scitotenv_2023_161532
crossref_primary_10_1016_j_biortech_2015_11_010
crossref_primary_10_1016_j_apenergy_2015_06_022
crossref_primary_10_1016_j_biortech_2017_07_173
crossref_primary_10_1016_j_biortech_2020_123442
crossref_primary_10_1016_j_fuel_2022_124544
crossref_primary_10_20964_2022_09_22
crossref_primary_10_3390_biomass3040020
crossref_primary_10_1016_j_est_2023_109114
crossref_primary_10_1016_j_biortech_2014_11_115
crossref_primary_10_3390_beverages5010012
Cites_doi 10.1021/ef901273n
10.1385/ABAB:84-86:1-9:81
10.1016/j.biortech.2011.01.018
10.1039/b810100k
10.1021/es9031419
10.1515/HF.2009.054
10.1016/0008-6215(90)84096-D
10.1007/s001070050039
10.1016/S0896-8446(98)00059-X
10.1002/bbb.198
10.4155/bfs.10.81
10.1021/ie800870k
10.1002/ep.11601
10.1021/ie00004a026
10.1016/0079-6700(94)90033-7
10.1080/01621459.1949.10483310
10.1002/ep.10385
10.1021/ef101745n
10.1016/j.biortech.2011.02.035
10.1007/s12010-007-8070-6
10.1002/ep.11615
10.1016/j.biombioe.2004.01.002
10.1021/ie101946c
10.1016/j.jaap.2006.01.002
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
DOI 10.1016/j.biortech.2013.04.028
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic

Civil Engineering Abstracts
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 169
ExternalDocumentID 23651600
27477905
10_1016_j_biortech_2013_04_028
S0960852413006329
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
ID FETCH-LOGICAL-c530t-2bdbc4b9fdf53c8819138f9f8ef4269f4f672d92e3bed4c133fea104d116cbd43
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 18:19:10 EDT 2025
Mon Jul 21 11:15:14 EDT 2025
Fri Jul 11 12:39:49 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Mon Jul 21 09:12:21 EDT 2025
Tue Jul 01 02:06:14 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy densification
Pinus taeda L
Lignocellulosic biomass
Thermal pretreatment
Wet torrefaction
Heat treatment
Densification
Pinus taeda
Lignocellulosics
Biomass
Chemical reaction kinetics
Carbonization
Torrefaction
Energy
Softwood forest tree
Gymnospermae
Coniferales
Spermatophyta
Pretreatment
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-2bdbc4b9fdf53c8819138f9f8ef4269f4f672d92e3bed4c133fea104d116cbd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23651600
PQID 1366577628
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1500770141
proquest_miscellaneous_1431615900
proquest_miscellaneous_1366577628
pubmed_primary_23651600
pascalfrancis_primary_27477905
crossref_citationtrail_10_1016_j_biortech_2013_04_028
crossref_primary_10_1016_j_biortech_2013_04_028
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_04_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mok, Antal (b0105) 1992; 31
Jacobsen, Wyman (b0060) 2000; 84
Acharjee, Coronella, Vasquez (b0005) 2011; 102
Bandura, Lvov (b0015) 2006; 35
Reza (b0125) 2011
Levenspiel (b0075) 1999
Mittal, Chatterjee, Scott, Amidon (b0100) 2009; 63
(b0110) 2011
Garrote, Domínguez, Parajó (b0035) 1999; 53
Tester (b0135) 2005
Keiluweit, Nico, Johnson, Kleber (b0065) 2010; 44
Hoekman, Broch, Robbins (b0055) 2011; 25
Kobayashi, Okada, Hirakawa, Sato, Kobayashi, Hatano, Itaya, Mori (b0070) 2009; 48
Prins, Ptasinski, Janssen (b0120) 2006; 77
Goldberg, Tewari (b0045) 1988
Funke, Ziegler (b0030) 2010; 4
Metropolis, Ulam (b0090) 1949; 44
Antal, Mok, Richards (b0010) 1990; 199
Bobleter (b0020) 1994; 19
Yan, Hastings, Acharjee, Coronella, Vasquez (b0145) 2010; 24
(b0160) 1970; 379
Lynam, Coronella, Yan, Reza, Vasquez (b0085) 2011; 102
Zhang, Huang, Ramaswamy (b0155) 2008; 147
Cuiping, Chuanzhi, Yanyonjie, Haitao (b0025) 2004; 27
Libra, Ro, Kammann, Funke, Berge, Neubauer, Titirici, Fuhner, Bens, Kern, Emmerich (b0080) 2011; 2
Yan, Islam, Coronella, Vasquez (b0150) 2012; 31
Grénman, Eränen, Krogell, Willför, Salmi, Murzin (b0050) 2011; 50
Yan, Acharjee, Coronella, Vasquez (b0140) 2009; 28
Peterson, Vogel, Lachance, Froling, Antal, Tester (b0115) 2008; 1
Minowa, Zhen, Ogi (b0095) 1998; 13
Reza, Lynam, Vasquez, Coronella (b0130) 2012; 31
(10.1016/j.biortech.2013.04.028_b0160) 1970; 379
Yan (10.1016/j.biortech.2013.04.028_b0140) 2009; 28
Hoekman (10.1016/j.biortech.2013.04.028_b0055) 2011; 25
Grénman (10.1016/j.biortech.2013.04.028_b0050) 2011; 50
Mok (10.1016/j.biortech.2013.04.028_b0105) 1992; 31
Libra (10.1016/j.biortech.2013.04.028_b0080) 2011; 2
(10.1016/j.biortech.2013.04.028_b0110) 2011
Mittal (10.1016/j.biortech.2013.04.028_b0100) 2009; 63
Levenspiel (10.1016/j.biortech.2013.04.028_b0075) 1999
Cuiping (10.1016/j.biortech.2013.04.028_b0025) 2004; 27
Garrote (10.1016/j.biortech.2013.04.028_b0035) 1999; 53
Minowa (10.1016/j.biortech.2013.04.028_b0095) 1998; 13
Yan (10.1016/j.biortech.2013.04.028_b0150) 2012; 31
Reza (10.1016/j.biortech.2013.04.028_b0130) 2012; 31
Bandura (10.1016/j.biortech.2013.04.028_b0015) 2006; 35
Goldberg (10.1016/j.biortech.2013.04.028_b0045) 1988
Tester (10.1016/j.biortech.2013.04.028_b0135) 2005
Funke (10.1016/j.biortech.2013.04.028_b0030) 2010; 4
Bobleter (10.1016/j.biortech.2013.04.028_b0020) 1994; 19
Keiluweit (10.1016/j.biortech.2013.04.028_b0065) 2010; 44
Acharjee (10.1016/j.biortech.2013.04.028_b0005) 2011; 102
Prins (10.1016/j.biortech.2013.04.028_b0120) 2006; 77
Reza (10.1016/j.biortech.2013.04.028_b0125) 2011
Yan (10.1016/j.biortech.2013.04.028_b0145) 2010; 24
Metropolis (10.1016/j.biortech.2013.04.028_b0090) 1949; 44
Zhang (10.1016/j.biortech.2013.04.028_b0155) 2008; 147
Jacobsen (10.1016/j.biortech.2013.04.028_b0060) 2000; 84
Peterson (10.1016/j.biortech.2013.04.028_b0115) 2008; 1
Antal (10.1016/j.biortech.2013.04.028_b0010) 1990; 199
Lynam (10.1016/j.biortech.2013.04.028_b0085) 2011; 102
Kobayashi (10.1016/j.biortech.2013.04.028_b0070) 2009; 48
References_xml – volume: 31
  start-page: 200
  year: 2012
  end-page: 204
  ident: b0150
  article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass
  publication-title: Environ. Prog. Sustainable Energy
– year: 2011
  ident: b0125
  article-title: Hydrothermal Carbonization of Lignocellulosic Biomass
– volume: 53
  start-page: 191
  year: 1999
  end-page: 202
  ident: b0035
  article-title: Hydrothermal processing of lignocellulosic materials
  publication-title: Eur. J. Wood Wood Prod.
– year: 1988
  ident: b0045
  article-title: Thermodynamics Properties of Carbohydrates and Their Monophosphates: The Pentoses and Hexoses Chemical Thermodynamics Division
– volume: 77
  start-page: 28
  year: 2006
  end-page: 34
  ident: b0120
  article-title: Torrefaction of wood: part 1. Weight loss kinetics
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 63
  start-page: 307
  year: 2009
  ident: b0100
  article-title: Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: reaction kinetics
  publication-title: Holzforschung
– volume: 50
  start-page: 3818
  year: 2011
  end-page: 3828
  ident: b0050
  article-title: The kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system
  publication-title: Ind. Eng. Chem. Res.
– volume: 13
  start-page: 253
  year: 1998
  ident: b0095
  article-title: Cellulose decomposition in hot-compressed water with alkali or nickel catalyst
  publication-title: J. Supercrit. Fluids
– volume: 44
  start-page: 335
  year: 1949
  end-page: 341
  ident: b0090
  article-title: The Monte Carlo method
  publication-title: J. Am. Stat. Assoc.
– start-page: 381
  year: 1999
  end-page: 385
  ident: b0075
  article-title: Chemical Reaction Engineering
– volume: 31
  start-page: 225
  year: 2012
  end-page: 234
  ident: b0130
  article-title: Pelletization of biochar from hydrothermally carbonized wood
  publication-title: Environ. Prog. Sustainable Energy
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: b0065
  article-title: Dynamic molecular structure of plant biomass derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 89
  year: 2011
  end-page: 124
  ident: b0080
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, process, and applications of wet and dry pyrolysis
  publication-title: Biofuels
– volume: 28
  start-page: 435
  year: 2009
  ident: b0140
  article-title: Thermal pretreatment of lignocellulosic biomass
  publication-title: Environ. Prog. Sustainable Energy
– volume: 379
  start-page: 1
  year: 1970
  end-page: 9
  ident: b0160
  publication-title: Forage fiber analysis
– volume: 31
  start-page: 1157
  year: 1992
  end-page: 1161
  ident: b0105
  article-title: Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water
  publication-title: Ind. Eng. Chem. Res.
– volume: 199
  start-page: 91
  year: 1990
  end-page: 109
  ident: b0010
  article-title: Mechanism of formation of 5-(Hydroxymethyl)-2-Furaldehyde from
  publication-title: Carbohydr. Res.
– volume: 1
  start-page: 32
  year: 2008
  end-page: 65
  ident: b0115
  article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 119
  year: 2004
  end-page: 130
  ident: b0025
  article-title: Chemical elemental characteristics of biomass in China
  publication-title: Biomass Bioenergy
– volume: 102
  start-page: 4849
  year: 2011
  end-page: 4854
  ident: b0005
  article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass
  publication-title: Bioresour. Technol.
– year: 2005
  ident: b0135
  article-title: Sustainable Energy
– volume: 24
  start-page: 4738
  year: 2010
  end-page: 4742
  ident: b0145
  article-title: Mass and energy balance of wet torrefaction of lignocellulosic biomass
  publication-title: Energy Fuels
– volume: 147
  start-page: 119
  year: 2008
  end-page: 131
  ident: b0155
  article-title: Reaction kinetics of the hydrothermal treatment of lignin
  publication-title: Appl. Biochem. Bioethanol.
– volume: 48
  start-page: 373
  year: 2009
  end-page: 379
  ident: b0070
  article-title: Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass
  publication-title: Ind. Eng. Chem. Res.
– volume: 25
  start-page: 1802
  year: 2011
  end-page: 1810
  ident: b0055
  article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass
  publication-title: Energy Fuels
– volume: 35
  start-page: 793
  year: 2006
  end-page: 800
  ident: b0015
  article-title: The ionization constant of water over wide range of temperature and density
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: 160
  year: 2010
  end-page: 177
  ident: b0030
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioprod. Biorefin.
– volume: 19
  start-page: 797
  year: 1994
  end-page: 841
  ident: b0020
  article-title: Hydrothermal degradation of polymers derived from plants
  publication-title: Prog. Polym. Sci.
– volume: 84
  start-page: 81
  year: 2000
  end-page: 96
  ident: b0060
  article-title: Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes
  publication-title: Appl. Biochem. Biotechnol.
– start-page: 227
  year: 2011
  ident: b0110
  publication-title: US Department of Energy
– volume: 102
  start-page: 6192
  year: 2011
  end-page: 6199
  ident: b0085
  article-title: Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass
  publication-title: Bioresour. Technol.
– year: 2005
  ident: 10.1016/j.biortech.2013.04.028_b0135
– start-page: 227
  year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0110
– volume: 24
  start-page: 4738
  year: 2010
  ident: 10.1016/j.biortech.2013.04.028_b0145
  article-title: Mass and energy balance of wet torrefaction of lignocellulosic biomass
  publication-title: Energy Fuels
  doi: 10.1021/ef901273n
– volume: 84
  start-page: 81
  year: 2000
  ident: 10.1016/j.biortech.2013.04.028_b0060
  article-title: Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:84-86:1-9:81
– volume: 102
  start-page: 4849
  year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0005
  article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.01.018
– volume: 1
  start-page: 32
  year: 2008
  ident: 10.1016/j.biortech.2013.04.028_b0115
  article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b810100k
– volume: 35
  start-page: 793
  issue: 1
  year: 2006
  ident: 10.1016/j.biortech.2013.04.028_b0015
  article-title: The ionization constant of water over wide range of temperature and density
  publication-title: J. Phys. Chem.
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.biortech.2013.04.028_b0065
  article-title: Dynamic molecular structure of plant biomass derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 63
  start-page: 307
  year: 2009
  ident: 10.1016/j.biortech.2013.04.028_b0100
  article-title: Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: reaction kinetics
  publication-title: Holzforschung
  doi: 10.1515/HF.2009.054
– volume: 199
  start-page: 91
  year: 1990
  ident: 10.1016/j.biortech.2013.04.028_b0010
  article-title: Mechanism of formation of 5-(Hydroxymethyl)-2-Furaldehyde from D-glucose and sucrose
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(90)84096-D
– volume: 53
  start-page: 191
  issue: 3
  year: 1999
  ident: 10.1016/j.biortech.2013.04.028_b0035
  article-title: Hydrothermal processing of lignocellulosic materials
  publication-title: Eur. J. Wood Wood Prod.
  doi: 10.1007/s001070050039
– volume: 13
  start-page: 253
  year: 1998
  ident: 10.1016/j.biortech.2013.04.028_b0095
  article-title: Cellulose decomposition in hot-compressed water with alkali or nickel catalyst
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/S0896-8446(98)00059-X
– volume: 4
  start-page: 160
  year: 2010
  ident: 10.1016/j.biortech.2013.04.028_b0030
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioprod. Biorefin.
  doi: 10.1002/bbb.198
– volume: 2
  start-page: 89
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0080
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, process, and applications of wet and dry pyrolysis
  publication-title: Biofuels
  doi: 10.4155/bfs.10.81
– volume: 48
  start-page: 373
  year: 2009
  ident: 10.1016/j.biortech.2013.04.028_b0070
  article-title: Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800870k
– start-page: 381
  year: 1999
  ident: 10.1016/j.biortech.2013.04.028_b0075
– year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0125
– volume: 31
  start-page: 200
  issue: 20
  year: 2012
  ident: 10.1016/j.biortech.2013.04.028_b0150
  article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass
  publication-title: Environ. Prog. Sustainable Energy
  doi: 10.1002/ep.11601
– volume: 31
  start-page: 1157
  issue: 4
  year: 1992
  ident: 10.1016/j.biortech.2013.04.028_b0105
  article-title: Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00004a026
– volume: 19
  start-page: 797
  year: 1994
  ident: 10.1016/j.biortech.2013.04.028_b0020
  article-title: Hydrothermal degradation of polymers derived from plants
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(94)90033-7
– volume: 379
  start-page: 1
  year: 1970
  ident: 10.1016/j.biortech.2013.04.028_b0160
– volume: 44
  start-page: 335
  year: 1949
  ident: 10.1016/j.biortech.2013.04.028_b0090
  article-title: The Monte Carlo method
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1949.10483310
– volume: 28
  start-page: 435
  year: 2009
  ident: 10.1016/j.biortech.2013.04.028_b0140
  article-title: Thermal pretreatment of lignocellulosic biomass
  publication-title: Environ. Prog. Sustainable Energy
  doi: 10.1002/ep.10385
– volume: 25
  start-page: 1802
  year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0055
  article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass
  publication-title: Energy Fuels
  doi: 10.1021/ef101745n
– year: 1988
  ident: 10.1016/j.biortech.2013.04.028_b0045
– volume: 102
  start-page: 6192
  year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0085
  article-title: Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.02.035
– volume: 147
  start-page: 119
  year: 2008
  ident: 10.1016/j.biortech.2013.04.028_b0155
  article-title: Reaction kinetics of the hydrothermal treatment of lignin
  publication-title: Appl. Biochem. Bioethanol.
  doi: 10.1007/s12010-007-8070-6
– volume: 31
  start-page: 225
  issue: 2
  year: 2012
  ident: 10.1016/j.biortech.2013.04.028_b0130
  article-title: Pelletization of biochar from hydrothermally carbonized wood
  publication-title: Environ. Prog. Sustainable Energy
  doi: 10.1002/ep.11615
– volume: 27
  start-page: 119
  year: 2004
  ident: 10.1016/j.biortech.2013.04.028_b0025
  article-title: Chemical elemental characteristics of biomass in China
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2004.01.002
– volume: 50
  start-page: 3818
  year: 2011
  ident: 10.1016/j.biortech.2013.04.028_b0050
  article-title: The kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101946c
– volume: 77
  start-page: 28
  year: 2006
  ident: 10.1016/j.biortech.2013.04.028_b0120
  article-title: Torrefaction of wood: part 1. Weight loss kinetics
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2006.01.002
SSID ssj0003172
Score 2.5014594
Snippet •An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite...
Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161
SubjectTerms activation energy
Biological and medical sciences
Biomass
Bioreactors
Biotechnology
Biotechnology - methods
Carbon
Carbon - metabolism
Carbonization
Cellulose
Cellulose - metabolism
Degradation
drug effects
Elastic Modulus
Elastic Modulus - drug effects
Energy densification
feedstocks
fuels
Fundamental and applied biological sciences. Psychology
hemicellulose
Kinetics
Lignocellulosic biomass
metabolism
methods
Particle Size
pharmacology
Pine
Pinus taeda
Pinus taeda - drug effects
Pinus taeda L
Polysaccharides
Polysaccharides - metabolism
Reaction kinetics
reaction mechanisms
Reaction time
Reactor design
Solid fuels
Temperature
Thermal pretreatment
Time Factors
Water
Water - pharmacology
Wet torrefaction
Title Reaction kinetics of hydrothermal carbonization of loblolly pine
URI https://dx.doi.org/10.1016/j.biortech.2013.04.028
https://www.ncbi.nlm.nih.gov/pubmed/23651600
https://www.proquest.com/docview/1366577628
https://www.proquest.com/docview/1431615900
https://www.proquest.com/docview/1500770141
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK7rAWxbD1sWaPwAV2dWNbki3fFgQrsg3roVuB3gTJktqkWRyk6aGX_vaRst0HsLWHXSVStkVZJEHyI8AnVMlCl7mJC-1YzHOexNJaE7OSW6Fzwb2kauQfx_n4lH87E2drMOpqYSitsr37mzs93NbtyKDdzcFiMhn8JONbihAXQj2bUREf5wWd8sPb-zQP1I8hkoDEMVE_qBKeHpoJZbSGoETKAuQpdWX_u4LaWugr3Dbf9Lv4t0EaFNPRa3jVWpTRsHnpN7Dm5tuwOTxftqgabhtejrq2bjjzAIFwBz6fuKayIbrEQYJsjmofXdzYZajM-o0LV3pp6q5ck2ZntZlRh-pogSy7cHr05ddoHLdNFeJKsGQVZ8aaipvSWy9YJclfY9KXXjpPVa2e-7zIbJk5ZpzlFbqw3mn02Wya5pWxnO3B-ryeu32IPNNofngrCwLVL6TOSp_6nOHKSWJt2gPR7aSqWsRxanwxU11q2VR1ElAkAZVwhRLoweCOb9FgbjzLUXaCUo9Oj0LF8Cxv_5Fk7x5J_jrBl_XgoBO1QllRQEXPXX19pVJGcStUJ_IJGsIaSKk36xM0glCVKOW2B2-bs3T_FiwXKVql7_7jE9_DRha6eFCW8QdYXy2v3Ue0pVamH36WPrwYfv0-Pv4D5WgerQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigVQlBeC6UECY7pJrGddQ5IVC3Vlj4O0Eq9GTu2Ydtls9rdquqlf4o_yIyT9CFBe0C9JrHj-Es848zM9wG8R5MsdJGbuKcdi3nOk1haa2JWcCt0LriXVI28u5f3D_iXQ3E4B7_bWhhKq2zW_npND6t1c6TbzGZ3PBh0v5HzLUWIC6GdzYoms3LbnZ3ivm36cWsDQf6QZZuf99f7cSMtEJeCJbM4M9aU3BTeesFKSbsWJn3hpfNU2-m5z3uZLTLHjLO8xI2cdxp3LjZN89JYzrDfe3Cf43JBsgmr55d5JWiQQ-gCRxfT8K6UJR-tmgGl0IYoSMoCxyrJwP_dIj4c6yni5GuBjX97wMESbj6GR40LG63Vs_QE5txoCRbXfkwaGg-3BAvrrY4cnrlCefgUPn11dSlFdIwHiSM6qnz088xOQinYL-y41BNTtfWhdHZYmSFJYkdjbPIMDu5kqp_D_KgauZcQeabR3_FW9ojFvyd1VvjU5wx7ThJr0w6IdiZV2VCck9LGULW5bEeqRUARAirhChHoQPei3bgm-bi1RdECpa69rgot0a1tV64he3FL-kFAfGkdeNdCrRAriuDokatOpiplFChD-yVvuIbIDVISg73hGkE0TpTj24EX9bt0OQqWixTd4Ff_8YhvYaG_v7ujdrb2tl_DgyxIiFCK8zLMzyYn7g06cjOzEj6cCL7f9Zf6By74W6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+kinetics+of+hydrothermal+carbonization+of+loblolly+pine&rft.jtitle=Bioresource+technology&rft.au=Reza%2C+M+Toufiq&rft.au=Yan%2C+Wei&rft.au=Uddin%2C+M+Helal&rft.au=Lynam%2C+Joan+G&rft.date=2013-07-01&rft.issn=0960-8524&rft.volume=139+p.161-169&rft.spage=161&rft.epage=169&rft_id=info:doi/10.1016%2Fj.biortech.2013.04.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon