Reaction kinetics of hydrothermal carbonization of loblolly pine
•An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite rapid.•Reactions are modeled by parallel first-order degradation of hemicellulose and cellulose.•Mass transfer and reaction kinetics may both be import...
Saved in:
Published in | Bioresource technology Vol. 139; pp. 161 - 169 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite rapid.•Reactions are modeled by parallel first-order degradation of hemicellulose and cellulose.•Mass transfer and reaction kinetics may both be important.
Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. |
---|---|
AbstractList | Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed.Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. •An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite rapid.•Reactions are modeled by parallel first-order degradation of hemicellulose and cellulose.•Mass transfer and reaction kinetics may both be important. Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15 s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260 degree C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30 min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73 kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction kinetics is necessary for reactor design and optimization. In this study, the reaction kinetics and effects of particle size on HTC were investigated. Experiments were conducted in a novel two-chamber reactor maintaining isothermal conditions for 15s to 30min reaction times. Loblolly pine was treated at 200, 230, and 260°C. During the first few minutes of reaction, the solid-product mass yield decreases rapidly while the calorific value increases rapidly. A simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions. Activation energy of hemicellulose and cellulose degradation were determined to be 30 and 73kJ/mol, respectively. For short HTC times, both reaction and diffusion effects were observed. |
Author | Lynam, Joan G. Reza, M. Toufiq Yan, Wei Coronella, Charles J. Vásquez, Victor R. Uddin, M. Helal Hoekman, S. Kent |
Author_xml | – sequence: 1 givenname: M. Toufiq surname: Reza fullname: Reza, M. Toufiq organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA – sequence: 2 givenname: Wei surname: Yan fullname: Yan, Wei organization: Gas Technology Institute, Birmingham, AL 35203, USA – sequence: 3 givenname: M. Helal surname: Uddin fullname: Uddin, M. Helal organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA – sequence: 4 givenname: Joan G. surname: Lynam fullname: Lynam, Joan G. organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA – sequence: 5 givenname: S. Kent surname: Hoekman fullname: Hoekman, S. Kent organization: Division of Atmospheric Science, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA – sequence: 6 givenname: Charles J. surname: Coronella fullname: Coronella, Charles J. email: coronella@unr.edu organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA – sequence: 7 givenname: Victor R. surname: Vásquez fullname: Vásquez, Victor R. organization: Department of Chemical & Materials Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS0170, Reno, NV 89557, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27477905$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23651600$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctq3DAUBmBRUppJ2lcI3hS6sXt0sWRDFykhvUCgUJK1kKUjRlONNZU8henTx5kLhW5mpYW-_0ic_4pcjGlEQm4oNBSo_LhqhpDyhHbZMKC8AdEA616RBe0Ur1mv5AVZQC-h7lomLslVKSsA4FSxN-SScdlSCbAgtz_R2CmksfoVRpyCLVXy1XLncpqWmNcmVtbkIY3hr9mz-TamIaYYd9Vmjrwlr72JBd8dz2vy9OX-8e5b_fDj6_e7zw-1bTlMNRvcYMXQe-dbbruO9pR3vvcdesFk74WXirmeIR_QCUs592goCEeptIMT_Jp8OMzd5PR7i2XS61AsxmhGTNuiaQugFFBBz1PBqaRtP6_jLOVStkpJ1s305ki3wxqd3uSwNnmnT7ucwfsjMMWa6LMZbSj_nBJK9dDO7tPB2ZxKyei1DdN-uVM2IWoK-qVivdKnivVLxRqEhv0_5H_x0wtng7eHIM41_QmYdbEBR4suZLSTdimcG_EMsXzDgw |
CitedBy_id | crossref_primary_10_1016_j_biortech_2018_06_087 crossref_primary_10_1016_j_biteb_2021_100770 crossref_primary_10_1016_j_rser_2019_109514 crossref_primary_10_1021_acssuschemeng_9b02191 crossref_primary_10_1039_D0GC01281E crossref_primary_10_1021_acssuschemeng_7b00300 crossref_primary_10_1021_acssuschemeng_6b00292 crossref_primary_10_1080_17597269_2020_1759179 crossref_primary_10_1016_j_fuel_2021_122169 crossref_primary_10_1016_j_biortech_2021_125972 crossref_primary_10_1002_ep_11899 crossref_primary_10_3390_en14185890 crossref_primary_10_1021_acs_energyfuels_7b01523 crossref_primary_10_3390_fire7040106 crossref_primary_10_1007_s11581_020_03712_4 crossref_primary_10_2166_washdev_2015_017 crossref_primary_10_1080_09593330_2021_1995785 crossref_primary_10_1016_j_seta_2015_08_003 crossref_primary_10_1016_j_energy_2023_128524 crossref_primary_10_3390_en15155491 crossref_primary_10_1021_acsomega_1c05116 crossref_primary_10_1016_j_energy_2020_119020 crossref_primary_10_1016_j_apenergy_2014_06_038 crossref_primary_10_1007_s13399_014_0137_3 crossref_primary_10_3390_en12030516 crossref_primary_10_1016_j_biortech_2018_06_014 crossref_primary_10_1016_j_rser_2019_04_011 crossref_primary_10_3390_biomass2040017 crossref_primary_10_1007_s42823_025_00872_z crossref_primary_10_3390_en15062209 crossref_primary_10_3390_resources12070085 crossref_primary_10_1051_e3sconf_202560100012 crossref_primary_10_1016_j_jaap_2018_11_018 crossref_primary_10_1007_s11356_018_3888_8 crossref_primary_10_1016_j_biortech_2018_02_113 crossref_primary_10_1002_elps_201700366 crossref_primary_10_1016_j_biortech_2017_03_095 crossref_primary_10_1039_C8GC03957G crossref_primary_10_3390_en14071805 crossref_primary_10_1016_j_energy_2020_119635 crossref_primary_10_1016_j_supflu_2018_01_012 crossref_primary_10_1021_acs_energyfuels_7b03125 crossref_primary_10_1080_17597269_2021_1894780 crossref_primary_10_1007_s13399_015_0163_9 crossref_primary_10_1016_j_fuproc_2019_04_026 crossref_primary_10_1016_j_scp_2023_100991 crossref_primary_10_3390_en12050858 crossref_primary_10_1007_s12649_017_9914_0 crossref_primary_10_1016_j_rser_2021_111877 crossref_primary_10_3390_en16073217 crossref_primary_10_1021_acs_iecr_9b05643 crossref_primary_10_1016_j_envres_2025_121023 crossref_primary_10_1021_acs_energyfuels_9b02931 crossref_primary_10_1007_s13399_022_02314_6 crossref_primary_10_1007_s13399_019_00488_0 crossref_primary_10_1021_acssuschemeng_9b05928 crossref_primary_10_1016_j_biteb_2019_100210 crossref_primary_10_1016_j_ceja_2021_100233 crossref_primary_10_1016_j_fuel_2020_119009 crossref_primary_10_1007_s13399_019_00527_w crossref_primary_10_1016_j_energy_2025_134885 crossref_primary_10_1016_j_fuel_2023_129776 crossref_primary_10_1007_s13197_023_05868_z crossref_primary_10_1016_j_jaap_2017_07_023 crossref_primary_10_1007_s13399_014_0115_9 crossref_primary_10_1016_j_cej_2024_150680 crossref_primary_10_1016_j_jfueco_2023_100090 crossref_primary_10_1016_j_biortech_2018_07_032 crossref_primary_10_1016_j_biortech_2021_125835 crossref_primary_10_1016_j_biortech_2013_09_129 crossref_primary_10_3390_en14164752 crossref_primary_10_1061_JHTRBP_HZENG_1326 crossref_primary_10_1016_j_apenergy_2022_118981 crossref_primary_10_1039_D2SE01733D crossref_primary_10_1021_acs_iecr_1c03068 crossref_primary_10_1021_acs_energyfuels_3c01660 crossref_primary_10_1016_j_cej_2016_03_033 crossref_primary_10_1016_j_jenvman_2023_118441 crossref_primary_10_1016_j_biortech_2015_02_024 crossref_primary_10_1016_j_joei_2020_03_006 crossref_primary_10_1016_j_bcab_2021_102145 crossref_primary_10_3103_S036152191806006X crossref_primary_10_3390_en13164142 crossref_primary_10_1002_ep_11974 crossref_primary_10_1007_s13399_015_0192_4 crossref_primary_10_1080_15567036_2020_1796848 crossref_primary_10_1016_j_polymdegradstab_2025_111224 crossref_primary_10_3390_en14217132 crossref_primary_10_7209_tanso_2015_225 crossref_primary_10_1038_srep22644 crossref_primary_10_1007_s13762_016_1227_5 crossref_primary_10_1016_j_chemosphere_2022_136670 crossref_primary_10_1016_j_biombioe_2019_105384 crossref_primary_10_3390_en15124396 crossref_primary_10_1016_j_coal_2014_09_015 crossref_primary_10_3390_en11010216 crossref_primary_10_1080_07373937_2020_1786110 crossref_primary_10_1016_j_envres_2022_113532 crossref_primary_10_1016_j_jenvman_2016_03_006 crossref_primary_10_1021_acsomega_0c00737 crossref_primary_10_1016_j_biortech_2021_126112 crossref_primary_10_1016_j_biortech_2017_07_114 crossref_primary_10_1016_j_heliyon_2019_e01792 crossref_primary_10_1016_j_energy_2015_11_024 crossref_primary_10_1016_j_fuel_2021_122499 crossref_primary_10_1021_acs_energyfuels_9b02291 crossref_primary_10_1016_j_chemosphere_2021_131490 crossref_primary_10_3103_S1068364X22080038 crossref_primary_10_1016_j_biortech_2015_03_054 crossref_primary_10_1016_j_biortech_2014_07_010 crossref_primary_10_1016_j_wasman_2022_11_039 crossref_primary_10_1088_1755_1315_765_1_012001 crossref_primary_10_1016_j_renene_2023_04_120 crossref_primary_10_3934_energy_2016_1_173 crossref_primary_10_1080_17518253_2022_2028017 crossref_primary_10_1007_s00107_022_01805_7 crossref_primary_10_1021_acs_iecr_0c06280 crossref_primary_10_1016_j_biombioe_2014_01_038 crossref_primary_10_1016_j_biteb_2023_101643 crossref_primary_10_1007_s13399_017_0276_4 crossref_primary_10_1016_j_apenergy_2020_114810 crossref_primary_10_1016_j_biortech_2018_03_010 crossref_primary_10_1016_j_biortech_2014_03_008 crossref_primary_10_1016_j_fuel_2020_117837 crossref_primary_10_1021_acssuschemeng_8b02118 crossref_primary_10_1371_journal_pone_0304054 crossref_primary_10_3390_en11061379 crossref_primary_10_3103_S0361521918020076 crossref_primary_10_1039_D0GC00998A crossref_primary_10_1016_j_fuel_2022_123163 crossref_primary_10_1016_j_cherd_2021_11_018 crossref_primary_10_1016_j_enconman_2021_114116 crossref_primary_10_3390_en13082058 crossref_primary_10_1016_j_biombioe_2015_02_006 crossref_primary_10_1016_j_biortech_2015_03_044 crossref_primary_10_1016_j_renene_2019_07_142 crossref_primary_10_1007_s13399_015_0172_8 crossref_primary_10_1007_s12649_020_01255_3 crossref_primary_10_1016_j_jenvman_2025_124191 crossref_primary_10_1016_j_jestch_2016_08_015 crossref_primary_10_3390_molecules27206851 crossref_primary_10_1039_C5RA24561C crossref_primary_10_1002_ep_12312 crossref_primary_10_1016_j_biortech_2016_04_002 crossref_primary_10_1016_j_joei_2018_12_003 crossref_primary_10_3103_S0361521922040103 crossref_primary_10_1080_15567036_2018_1502846 crossref_primary_10_1016_j_biortech_2017_10_096 crossref_primary_10_1016_j_ccst_2021_100014 crossref_primary_10_1016_j_jaap_2014_11_004 crossref_primary_10_3390_en13010262 crossref_primary_10_1016_j_renene_2021_05_146 crossref_primary_10_1016_j_energy_2018_09_174 crossref_primary_10_1016_j_biombioe_2020_105509 crossref_primary_10_1016_j_fuel_2021_120450 crossref_primary_10_1016_j_scitotenv_2023_161532 crossref_primary_10_1016_j_biortech_2015_11_010 crossref_primary_10_1016_j_apenergy_2015_06_022 crossref_primary_10_1016_j_biortech_2017_07_173 crossref_primary_10_1016_j_biortech_2020_123442 crossref_primary_10_1016_j_fuel_2022_124544 crossref_primary_10_20964_2022_09_22 crossref_primary_10_3390_biomass3040020 crossref_primary_10_1016_j_est_2023_109114 crossref_primary_10_1016_j_biortech_2014_11_115 crossref_primary_10_3390_beverages5010012 |
Cites_doi | 10.1021/ef901273n 10.1385/ABAB:84-86:1-9:81 10.1016/j.biortech.2011.01.018 10.1039/b810100k 10.1021/es9031419 10.1515/HF.2009.054 10.1016/0008-6215(90)84096-D 10.1007/s001070050039 10.1016/S0896-8446(98)00059-X 10.1002/bbb.198 10.4155/bfs.10.81 10.1021/ie800870k 10.1002/ep.11601 10.1021/ie00004a026 10.1016/0079-6700(94)90033-7 10.1080/01621459.1949.10483310 10.1002/ep.10385 10.1021/ef101745n 10.1016/j.biortech.2011.02.035 10.1007/s12010-007-8070-6 10.1002/ep.11615 10.1016/j.biombioe.2004.01.002 10.1021/ie101946c 10.1016/j.jaap.2006.01.002 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
DOI | 10.1016/j.biortech.2013.04.028 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic Civil Engineering Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 169 |
ExternalDocumentID | 23651600 27477905 10_1016_j_biortech_2013_04_028 S0960852413006329 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c530t-2bdbc4b9fdf53c8819138f9f8ef4269f4f672d92e3bed4c133fea104d116cbd43 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 18:19:10 EDT 2025 Mon Jul 21 11:15:14 EDT 2025 Fri Jul 11 12:39:49 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Mon Jul 21 09:12:21 EDT 2025 Tue Jul 01 02:06:14 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 23 02:34:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy densification Pinus taeda L Lignocellulosic biomass Thermal pretreatment Wet torrefaction Heat treatment Densification Pinus taeda Lignocellulosics Biomass Chemical reaction kinetics Carbonization Torrefaction Energy Softwood forest tree Gymnospermae Coniferales Spermatophyta Pretreatment |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-2bdbc4b9fdf53c8819138f9f8ef4269f4f672d92e3bed4c133fea104d116cbd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23651600 |
PQID | 1366577628 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1500770141 proquest_miscellaneous_1431615900 proquest_miscellaneous_1366577628 pubmed_primary_23651600 pascalfrancis_primary_27477905 crossref_citationtrail_10_1016_j_biortech_2013_04_028 crossref_primary_10_1016_j_biortech_2013_04_028 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_04_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mok, Antal (b0105) 1992; 31 Jacobsen, Wyman (b0060) 2000; 84 Acharjee, Coronella, Vasquez (b0005) 2011; 102 Bandura, Lvov (b0015) 2006; 35 Reza (b0125) 2011 Levenspiel (b0075) 1999 Mittal, Chatterjee, Scott, Amidon (b0100) 2009; 63 (b0110) 2011 Garrote, Domínguez, Parajó (b0035) 1999; 53 Tester (b0135) 2005 Keiluweit, Nico, Johnson, Kleber (b0065) 2010; 44 Hoekman, Broch, Robbins (b0055) 2011; 25 Kobayashi, Okada, Hirakawa, Sato, Kobayashi, Hatano, Itaya, Mori (b0070) 2009; 48 Prins, Ptasinski, Janssen (b0120) 2006; 77 Goldberg, Tewari (b0045) 1988 Funke, Ziegler (b0030) 2010; 4 Metropolis, Ulam (b0090) 1949; 44 Antal, Mok, Richards (b0010) 1990; 199 Bobleter (b0020) 1994; 19 Yan, Hastings, Acharjee, Coronella, Vasquez (b0145) 2010; 24 (b0160) 1970; 379 Lynam, Coronella, Yan, Reza, Vasquez (b0085) 2011; 102 Zhang, Huang, Ramaswamy (b0155) 2008; 147 Cuiping, Chuanzhi, Yanyonjie, Haitao (b0025) 2004; 27 Libra, Ro, Kammann, Funke, Berge, Neubauer, Titirici, Fuhner, Bens, Kern, Emmerich (b0080) 2011; 2 Yan, Islam, Coronella, Vasquez (b0150) 2012; 31 Grénman, Eränen, Krogell, Willför, Salmi, Murzin (b0050) 2011; 50 Yan, Acharjee, Coronella, Vasquez (b0140) 2009; 28 Peterson, Vogel, Lachance, Froling, Antal, Tester (b0115) 2008; 1 Minowa, Zhen, Ogi (b0095) 1998; 13 Reza, Lynam, Vasquez, Coronella (b0130) 2012; 31 (10.1016/j.biortech.2013.04.028_b0160) 1970; 379 Yan (10.1016/j.biortech.2013.04.028_b0140) 2009; 28 Hoekman (10.1016/j.biortech.2013.04.028_b0055) 2011; 25 Grénman (10.1016/j.biortech.2013.04.028_b0050) 2011; 50 Mok (10.1016/j.biortech.2013.04.028_b0105) 1992; 31 Libra (10.1016/j.biortech.2013.04.028_b0080) 2011; 2 (10.1016/j.biortech.2013.04.028_b0110) 2011 Mittal (10.1016/j.biortech.2013.04.028_b0100) 2009; 63 Levenspiel (10.1016/j.biortech.2013.04.028_b0075) 1999 Cuiping (10.1016/j.biortech.2013.04.028_b0025) 2004; 27 Garrote (10.1016/j.biortech.2013.04.028_b0035) 1999; 53 Minowa (10.1016/j.biortech.2013.04.028_b0095) 1998; 13 Yan (10.1016/j.biortech.2013.04.028_b0150) 2012; 31 Reza (10.1016/j.biortech.2013.04.028_b0130) 2012; 31 Bandura (10.1016/j.biortech.2013.04.028_b0015) 2006; 35 Goldberg (10.1016/j.biortech.2013.04.028_b0045) 1988 Tester (10.1016/j.biortech.2013.04.028_b0135) 2005 Funke (10.1016/j.biortech.2013.04.028_b0030) 2010; 4 Bobleter (10.1016/j.biortech.2013.04.028_b0020) 1994; 19 Keiluweit (10.1016/j.biortech.2013.04.028_b0065) 2010; 44 Acharjee (10.1016/j.biortech.2013.04.028_b0005) 2011; 102 Prins (10.1016/j.biortech.2013.04.028_b0120) 2006; 77 Reza (10.1016/j.biortech.2013.04.028_b0125) 2011 Yan (10.1016/j.biortech.2013.04.028_b0145) 2010; 24 Metropolis (10.1016/j.biortech.2013.04.028_b0090) 1949; 44 Zhang (10.1016/j.biortech.2013.04.028_b0155) 2008; 147 Jacobsen (10.1016/j.biortech.2013.04.028_b0060) 2000; 84 Peterson (10.1016/j.biortech.2013.04.028_b0115) 2008; 1 Antal (10.1016/j.biortech.2013.04.028_b0010) 1990; 199 Lynam (10.1016/j.biortech.2013.04.028_b0085) 2011; 102 Kobayashi (10.1016/j.biortech.2013.04.028_b0070) 2009; 48 |
References_xml | – volume: 31 start-page: 200 year: 2012 end-page: 204 ident: b0150 article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass publication-title: Environ. Prog. Sustainable Energy – year: 2011 ident: b0125 article-title: Hydrothermal Carbonization of Lignocellulosic Biomass – volume: 53 start-page: 191 year: 1999 end-page: 202 ident: b0035 article-title: Hydrothermal processing of lignocellulosic materials publication-title: Eur. J. Wood Wood Prod. – year: 1988 ident: b0045 article-title: Thermodynamics Properties of Carbohydrates and Their Monophosphates: The Pentoses and Hexoses Chemical Thermodynamics Division – volume: 77 start-page: 28 year: 2006 end-page: 34 ident: b0120 article-title: Torrefaction of wood: part 1. Weight loss kinetics publication-title: J. Anal. Appl. Pyrolysis – volume: 63 start-page: 307 year: 2009 ident: b0100 article-title: Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: reaction kinetics publication-title: Holzforschung – volume: 50 start-page: 3818 year: 2011 end-page: 3828 ident: b0050 article-title: The kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system publication-title: Ind. Eng. Chem. Res. – volume: 13 start-page: 253 year: 1998 ident: b0095 article-title: Cellulose decomposition in hot-compressed water with alkali or nickel catalyst publication-title: J. Supercrit. Fluids – volume: 44 start-page: 335 year: 1949 end-page: 341 ident: b0090 article-title: The Monte Carlo method publication-title: J. Am. Stat. Assoc. – start-page: 381 year: 1999 end-page: 385 ident: b0075 article-title: Chemical Reaction Engineering – volume: 31 start-page: 225 year: 2012 end-page: 234 ident: b0130 article-title: Pelletization of biochar from hydrothermally carbonized wood publication-title: Environ. Prog. Sustainable Energy – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: b0065 article-title: Dynamic molecular structure of plant biomass derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 2 start-page: 89 year: 2011 end-page: 124 ident: b0080 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, process, and applications of wet and dry pyrolysis publication-title: Biofuels – volume: 28 start-page: 435 year: 2009 ident: b0140 article-title: Thermal pretreatment of lignocellulosic biomass publication-title: Environ. Prog. Sustainable Energy – volume: 379 start-page: 1 year: 1970 end-page: 9 ident: b0160 publication-title: Forage fiber analysis – volume: 31 start-page: 1157 year: 1992 end-page: 1161 ident: b0105 article-title: Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water publication-title: Ind. Eng. Chem. Res. – volume: 199 start-page: 91 year: 1990 end-page: 109 ident: b0010 article-title: Mechanism of formation of 5-(Hydroxymethyl)-2-Furaldehyde from publication-title: Carbohydr. Res. – volume: 1 start-page: 32 year: 2008 end-page: 65 ident: b0115 article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies publication-title: Energy Environ. Sci. – volume: 27 start-page: 119 year: 2004 end-page: 130 ident: b0025 article-title: Chemical elemental characteristics of biomass in China publication-title: Biomass Bioenergy – volume: 102 start-page: 4849 year: 2011 end-page: 4854 ident: b0005 article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass publication-title: Bioresour. Technol. – year: 2005 ident: b0135 article-title: Sustainable Energy – volume: 24 start-page: 4738 year: 2010 end-page: 4742 ident: b0145 article-title: Mass and energy balance of wet torrefaction of lignocellulosic biomass publication-title: Energy Fuels – volume: 147 start-page: 119 year: 2008 end-page: 131 ident: b0155 article-title: Reaction kinetics of the hydrothermal treatment of lignin publication-title: Appl. Biochem. Bioethanol. – volume: 48 start-page: 373 year: 2009 end-page: 379 ident: b0070 article-title: Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 1802 year: 2011 end-page: 1810 ident: b0055 article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass publication-title: Energy Fuels – volume: 35 start-page: 793 year: 2006 end-page: 800 ident: b0015 article-title: The ionization constant of water over wide range of temperature and density publication-title: J. Phys. Chem. – volume: 4 start-page: 160 year: 2010 end-page: 177 ident: b0030 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioprod. Biorefin. – volume: 19 start-page: 797 year: 1994 end-page: 841 ident: b0020 article-title: Hydrothermal degradation of polymers derived from plants publication-title: Prog. Polym. Sci. – volume: 84 start-page: 81 year: 2000 end-page: 96 ident: b0060 article-title: Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes publication-title: Appl. Biochem. Biotechnol. – start-page: 227 year: 2011 ident: b0110 publication-title: US Department of Energy – volume: 102 start-page: 6192 year: 2011 end-page: 6199 ident: b0085 article-title: Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass publication-title: Bioresour. Technol. – year: 2005 ident: 10.1016/j.biortech.2013.04.028_b0135 – start-page: 227 year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0110 – volume: 24 start-page: 4738 year: 2010 ident: 10.1016/j.biortech.2013.04.028_b0145 article-title: Mass and energy balance of wet torrefaction of lignocellulosic biomass publication-title: Energy Fuels doi: 10.1021/ef901273n – volume: 84 start-page: 81 year: 2000 ident: 10.1016/j.biortech.2013.04.028_b0060 article-title: Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:84-86:1-9:81 – volume: 102 start-page: 4849 year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0005 article-title: Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.01.018 – volume: 1 start-page: 32 year: 2008 ident: 10.1016/j.biortech.2013.04.028_b0115 article-title: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies publication-title: Energy Environ. Sci. doi: 10.1039/b810100k – volume: 35 start-page: 793 issue: 1 year: 2006 ident: 10.1016/j.biortech.2013.04.028_b0015 article-title: The ionization constant of water over wide range of temperature and density publication-title: J. Phys. Chem. – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.biortech.2013.04.028_b0065 article-title: Dynamic molecular structure of plant biomass derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 63 start-page: 307 year: 2009 ident: 10.1016/j.biortech.2013.04.028_b0100 article-title: Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: reaction kinetics publication-title: Holzforschung doi: 10.1515/HF.2009.054 – volume: 199 start-page: 91 year: 1990 ident: 10.1016/j.biortech.2013.04.028_b0010 article-title: Mechanism of formation of 5-(Hydroxymethyl)-2-Furaldehyde from D-glucose and sucrose publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(90)84096-D – volume: 53 start-page: 191 issue: 3 year: 1999 ident: 10.1016/j.biortech.2013.04.028_b0035 article-title: Hydrothermal processing of lignocellulosic materials publication-title: Eur. J. Wood Wood Prod. doi: 10.1007/s001070050039 – volume: 13 start-page: 253 year: 1998 ident: 10.1016/j.biortech.2013.04.028_b0095 article-title: Cellulose decomposition in hot-compressed water with alkali or nickel catalyst publication-title: J. Supercrit. Fluids doi: 10.1016/S0896-8446(98)00059-X – volume: 4 start-page: 160 year: 2010 ident: 10.1016/j.biortech.2013.04.028_b0030 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioprod. Biorefin. doi: 10.1002/bbb.198 – volume: 2 start-page: 89 issue: 1 year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0080 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, process, and applications of wet and dry pyrolysis publication-title: Biofuels doi: 10.4155/bfs.10.81 – volume: 48 start-page: 373 year: 2009 ident: 10.1016/j.biortech.2013.04.028_b0070 article-title: Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie800870k – start-page: 381 year: 1999 ident: 10.1016/j.biortech.2013.04.028_b0075 – year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0125 – volume: 31 start-page: 200 issue: 20 year: 2012 ident: 10.1016/j.biortech.2013.04.028_b0150 article-title: Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass publication-title: Environ. Prog. Sustainable Energy doi: 10.1002/ep.11601 – volume: 31 start-page: 1157 issue: 4 year: 1992 ident: 10.1016/j.biortech.2013.04.028_b0105 article-title: Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00004a026 – volume: 19 start-page: 797 year: 1994 ident: 10.1016/j.biortech.2013.04.028_b0020 article-title: Hydrothermal degradation of polymers derived from plants publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(94)90033-7 – volume: 379 start-page: 1 year: 1970 ident: 10.1016/j.biortech.2013.04.028_b0160 – volume: 44 start-page: 335 year: 1949 ident: 10.1016/j.biortech.2013.04.028_b0090 article-title: The Monte Carlo method publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1949.10483310 – volume: 28 start-page: 435 year: 2009 ident: 10.1016/j.biortech.2013.04.028_b0140 article-title: Thermal pretreatment of lignocellulosic biomass publication-title: Environ. Prog. Sustainable Energy doi: 10.1002/ep.10385 – volume: 25 start-page: 1802 year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0055 article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass publication-title: Energy Fuels doi: 10.1021/ef101745n – year: 1988 ident: 10.1016/j.biortech.2013.04.028_b0045 – volume: 102 start-page: 6192 year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0085 article-title: Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.035 – volume: 147 start-page: 119 year: 2008 ident: 10.1016/j.biortech.2013.04.028_b0155 article-title: Reaction kinetics of the hydrothermal treatment of lignin publication-title: Appl. Biochem. Bioethanol. doi: 10.1007/s12010-007-8070-6 – volume: 31 start-page: 225 issue: 2 year: 2012 ident: 10.1016/j.biortech.2013.04.028_b0130 article-title: Pelletization of biochar from hydrothermally carbonized wood publication-title: Environ. Prog. Sustainable Energy doi: 10.1002/ep.11615 – volume: 27 start-page: 119 year: 2004 ident: 10.1016/j.biortech.2013.04.028_b0025 article-title: Chemical elemental characteristics of biomass in China publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2004.01.002 – volume: 50 start-page: 3818 year: 2011 ident: 10.1016/j.biortech.2013.04.028_b0050 article-title: The kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101946c – volume: 77 start-page: 28 year: 2006 ident: 10.1016/j.biortech.2013.04.028_b0120 article-title: Torrefaction of wood: part 1. Weight loss kinetics publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2006.01.002 |
SSID | ssj0003172 |
Score | 2.5014594 |
Snippet | •An innovative reactor was designed to measure hydrothermal reaction kinetics.•At temperatures between 200 and 260°C, weight loss kinetics are quite... Hydrothermal carbonization (HTC) is a pretreatment process to convert diverse feedstocks to homogeneous energy-dense solid fuels. Understanding of reaction... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161 |
SubjectTerms | activation energy Biological and medical sciences Biomass Bioreactors Biotechnology Biotechnology - methods Carbon Carbon - metabolism Carbonization Cellulose Cellulose - metabolism Degradation drug effects Elastic Modulus Elastic Modulus - drug effects Energy densification feedstocks fuels Fundamental and applied biological sciences. Psychology hemicellulose Kinetics Lignocellulosic biomass metabolism methods Particle Size pharmacology Pine Pinus taeda Pinus taeda - drug effects Pinus taeda L Polysaccharides Polysaccharides - metabolism Reaction kinetics reaction mechanisms Reaction time Reactor design Solid fuels Temperature Thermal pretreatment Time Factors Water Water - pharmacology Wet torrefaction |
Title | Reaction kinetics of hydrothermal carbonization of loblolly pine |
URI | https://dx.doi.org/10.1016/j.biortech.2013.04.028 https://www.ncbi.nlm.nih.gov/pubmed/23651600 https://www.proquest.com/docview/1366577628 https://www.proquest.com/docview/1431615900 https://www.proquest.com/docview/1500770141 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK7rAWxbD1sWaPwAV2dWNbki3fFgQrsg3roVuB3gTJktqkWRyk6aGX_vaRst0HsLWHXSVStkVZJEHyI8AnVMlCl7mJC-1YzHOexNJaE7OSW6Fzwb2kauQfx_n4lH87E2drMOpqYSitsr37mzs93NbtyKDdzcFiMhn8JONbihAXQj2bUREf5wWd8sPb-zQP1I8hkoDEMVE_qBKeHpoJZbSGoETKAuQpdWX_u4LaWugr3Dbf9Lv4t0EaFNPRa3jVWpTRsHnpN7Dm5tuwOTxftqgabhtejrq2bjjzAIFwBz6fuKayIbrEQYJsjmofXdzYZajM-o0LV3pp6q5ck2ZntZlRh-pogSy7cHr05ddoHLdNFeJKsGQVZ8aaipvSWy9YJclfY9KXXjpPVa2e-7zIbJk5ZpzlFbqw3mn02Wya5pWxnO3B-ryeu32IPNNofngrCwLVL6TOSp_6nOHKSWJt2gPR7aSqWsRxanwxU11q2VR1ElAkAZVwhRLoweCOb9FgbjzLUXaCUo9Oj0LF8Cxv_5Fk7x5J_jrBl_XgoBO1QllRQEXPXX19pVJGcStUJ_IJGsIaSKk36xM0glCVKOW2B2-bs3T_FiwXKVql7_7jE9_DRha6eFCW8QdYXy2v3Ue0pVamH36WPrwYfv0-Pv4D5WgerQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigVQlBeC6UECY7pJrGddQ5IVC3Vlj4O0Eq9GTu2Ydtls9rdquqlf4o_yIyT9CFBe0C9JrHj-Es848zM9wG8R5MsdJGbuKcdi3nOk1haa2JWcCt0LriXVI28u5f3D_iXQ3E4B7_bWhhKq2zW_npND6t1c6TbzGZ3PBh0v5HzLUWIC6GdzYoms3LbnZ3ivm36cWsDQf6QZZuf99f7cSMtEJeCJbM4M9aU3BTeesFKSbsWJn3hpfNU2-m5z3uZLTLHjLO8xI2cdxp3LjZN89JYzrDfe3Cf43JBsgmr55d5JWiQQ-gCRxfT8K6UJR-tmgGl0IYoSMoCxyrJwP_dIj4c6yni5GuBjX97wMESbj6GR40LG63Vs_QE5txoCRbXfkwaGg-3BAvrrY4cnrlCefgUPn11dSlFdIwHiSM6qnz088xOQinYL-y41BNTtfWhdHZYmSFJYkdjbPIMDu5kqp_D_KgauZcQeabR3_FW9ojFvyd1VvjU5wx7ThJr0w6IdiZV2VCck9LGULW5bEeqRUARAirhChHoQPei3bgm-bi1RdECpa69rgot0a1tV64he3FL-kFAfGkdeNdCrRAriuDokatOpiplFChD-yVvuIbIDVISg73hGkE0TpTj24EX9bt0OQqWixTd4Ff_8YhvYaG_v7ujdrb2tl_DgyxIiFCK8zLMzyYn7g06cjOzEj6cCL7f9Zf6By74W6c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+kinetics+of+hydrothermal+carbonization+of+loblolly+pine&rft.jtitle=Bioresource+technology&rft.au=Reza%2C+M+Toufiq&rft.au=Yan%2C+Wei&rft.au=Uddin%2C+M+Helal&rft.au=Lynam%2C+Joan+G&rft.date=2013-07-01&rft.issn=0960-8524&rft.volume=139+p.161-169&rft.spage=161&rft.epage=169&rft_id=info:doi/10.1016%2Fj.biortech.2013.04.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |