The HLA-II immunopeptidome of SARS-CoV-2
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and...
Saved in:
Published in | Cell reports (Cambridge) Vol. 43; no. 1; p. 113596 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.01.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
[Display omitted]
•Immunopeptidome analysis of SARS-CoV-2 peptides naturally presented on HLA class II•Some HLA-II peptides originate from noncanonical SARS-CoV-2 proteins ORF9b and ORF3c•Class I and class II HLA complexes present different subsets of viral proteins
Weingarten-Gabbay et al. map the repertoire of SARS-CoV-2 peptides naturally presented on HLA-II. The authors uncover HLA-II peptides originating from noncanonical ORFs and highlight striking differences between viral proteins that are presented on class I and class II HLAs, resulting in distinct targets for killer and helper T cells. |
---|---|
AbstractList | Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4
T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4
and CD8
T cell epitopes to maximize vaccine effectiveness. Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness. Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness. [Display omitted] •Immunopeptidome analysis of SARS-CoV-2 peptides naturally presented on HLA class II•Some HLA-II peptides originate from noncanonical SARS-CoV-2 proteins ORF9b and ORF3c•Class I and class II HLA complexes present different subsets of viral proteins Weingarten-Gabbay et al. map the repertoire of SARS-CoV-2 peptides naturally presented on HLA-II. The authors uncover HLA-II peptides originating from noncanonical ORFs and highlight striking differences between viral proteins that are presented on class I and class II HLAs, resulting in distinct targets for killer and helper T cells. Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness. Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4 + T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4 + and CD8 + T cell epitopes to maximize vaccine effectiveness. Weingarten-Gabbay et al. map the repertoire of SARS-CoV-2 peptides naturally presented on HLA-II. The authors uncover HLA-II peptides originating from noncanonical ORFs and highlight striking differences between viral proteins that are presented on class I and class II HLAs, resulting in distinct targets for killer and helper T cells. |
ArticleNumber | 113596 |
Author | Bauer, Matthew R. Saeed, Mohsan Hacohen, Nir Sabeti, Pardis C. Clauser, Karl R. Sarkizova, Siranush Abelin, Jennifer G. Chen, Da-Yuan Rice, Charles M. Carr, Steven A. Gentili, Matteo Hernandez, Gabrielle M. Weingarten-Gabbay, Shira Taylor, Hannah B. Pearlman, Leah R. |
AuthorAffiliation | 4 Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA 12 These authors contributed equally 9 Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA 14 Lead contact 1 Broad Institute of MIT and Harvard University, Cambridge, MA, USA 3 Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA 7 Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 13 Senior author 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA 5 National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA 10 Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA 11 Howard Hughes Medical Institute, Chevy Chase, MD, USA 6 Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA 8 Center for Cancer Research, |
AuthorAffiliation_xml | – name: 12 These authors contributed equally – name: 9 Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA – name: 4 Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA – name: 8 Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA – name: 10 Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA – name: 5 National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA – name: 6 Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA – name: 14 Lead contact – name: 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA – name: 7 Department of Medicine, Massachusetts General Hospital, Boston, MA, USA – name: 1 Broad Institute of MIT and Harvard University, Cambridge, MA, USA – name: 11 Howard Hughes Medical Institute, Chevy Chase, MD, USA – name: 3 Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA – name: 13 Senior author |
Author_xml | – sequence: 1 givenname: Shira surname: Weingarten-Gabbay fullname: Weingarten-Gabbay, Shira email: shirawg@broadinstitute.org organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 2 givenname: Da-Yuan surname: Chen fullname: Chen, Da-Yuan organization: Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA – sequence: 3 givenname: Siranush surname: Sarkizova fullname: Sarkizova, Siranush organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 4 givenname: Hannah B. surname: Taylor fullname: Taylor, Hannah B. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 5 givenname: Matteo surname: Gentili fullname: Gentili, Matteo organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 6 givenname: Gabrielle M. surname: Hernandez fullname: Hernandez, Gabrielle M. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 7 givenname: Leah R. surname: Pearlman fullname: Pearlman, Leah R. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 8 givenname: Matthew R. surname: Bauer fullname: Bauer, Matthew R. organization: Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA – sequence: 9 givenname: Charles M. surname: Rice fullname: Rice, Charles M. organization: Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA – sequence: 10 givenname: Karl R. surname: Clauser fullname: Clauser, Karl R. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 11 givenname: Nir surname: Hacohen fullname: Hacohen, Nir organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 12 givenname: Steven A. surname: Carr fullname: Carr, Steven A. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 13 givenname: Jennifer G. surname: Abelin fullname: Abelin, Jennifer G. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA – sequence: 14 givenname: Mohsan surname: Saeed fullname: Saeed, Mohsan organization: Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA – sequence: 15 givenname: Pardis C. surname: Sabeti fullname: Sabeti, Pardis C. organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38117652$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAUhC3UipbSf4DQHnvJ4mc7jsMBtFoBXWmlSrRwtRz7ufUqiYOTrcS_x0ta1HIAX2zZb76RZ16Roz72SMgboEugIN_tlhbbhMOSUcaXALys5QtyyhhAAUxUR0_OJ-R8HHc0L0kBavGSnHAFUMmSnZKLmztcXG5XxWazCF237-OAwxRc7HAR_eJ69fW6WMfvBXtNjr1pRzx_2M_It8-fbtaXxfbqy2a92ha25HTKhtI4ZWtbAjAjAUVtrfKVaYytFFW1laicqkEaLqGyrPK2Kb2nwglVYs3PyGbmumh2ekihM-mnjibo3xcx3WqTpmBb1K5RaCiUjaqd4NQ3vGI-_0wZNAINy6yPM2vYNx06i_2UTPsM-vylD3f6Nt5roErSCmgmXDwQUvyxx3HSXRhz9K3pMe5HzWoqyooLLvPo26dmf1wes84D7-cBm-I4JvTahslMIR68Q5tN9aFbvdNzt_rQrZ67zWLxl_iR_x_Zh1mGubL7gEmPNmBv0YWEdsqZhn8DfgE0vbyh |
CitedBy_id | crossref_primary_10_1038_s41467_024_54734_9 crossref_primary_10_1016_j_mcpro_2025_100913 crossref_primary_10_1038_s41467_024_53296_0 crossref_primary_10_1038_s41467_024_51959_6 |
Cites_doi | 10.1128/JVI.00647-20 10.4049/jimmunol.1600808 10.1126/science.abd3871 10.1074/mcp.RA120.002201 10.4049/jimmunol.167.1.98 10.4049/jimmunol.2001438 10.1016/j.chom.2021.05.010 10.1084/jem.20202617 10.1002/eji.201545890 10.1016/j.meegid.2020.104353 10.1016/j.mcpro.2021.100116 10.1038/s41467-021-22905-7 10.1038/s41590-020-0782-6 10.1016/j.ebiom.2021.103410 10.3389/fimmu.2015.00546 10.3389/fimmu.2021.701501 10.1056/NEJMra2206573 10.1016/j.immuni.2020.10.006 10.1038/s41587-019-0322-9 10.4049/jimmunol.2100421 10.1038/s41577-020-00480-0 10.1016/j.celrep.2022.111485 10.1038/s41586-020-2798-3 10.1002/eji.201948126 10.1093/nar/gkx248 10.1084/jem.20200206 10.3389/fimmu.2018.02144 10.1038/s41586-020-2550-z 10.1016/j.cell.2021.01.007 10.1016/j.ijid.2022.06.046 10.1038/s41590-020-00808-x 10.1016/j.celrep.2020.108454 10.1056/NEJMoa2035389 10.1016/j.immuni.2020.11.004 10.4049/jimmunol.169.9.5089 10.1073/pnas.0711874105 10.1001/jama.2021.3199 10.1128/JVI.00862-21 10.1126/scitranslmed.abq1945 10.1038/s41586-020-2008-3 10.1038/s41467-023-36132-9 10.1038/s41467-021-22811-y 10.1038/s41541-021-00292-w 10.1126/science.abb3753 10.4049/jimmunol.2001400 10.1016/j.xpro.2022.101910 10.1038/s41598-021-92521-4 10.1016/j.cell.2023.04.007 10.1371/journal.pone.0268434 10.1172/JCI145476 10.1099/jgv.0.001469 10.1016/j.immuni.2020.12.002 10.1016/j.immuni.2017.02.007 10.1038/nrd.2017.243 10.1128/JVI.00599-16 10.1074/mcp.TIR117.000383 10.1111/jcmm.16200 10.1016/j.immuni.2019.08.012 10.1016/j.cell.2021.05.046 10.1016/S0042-6822(03)00281-2 10.1371/journal.ppat.1003129 10.1016/j.celrep.2021.109305 10.1038/s41467-023-37547-0 10.1016/j.cell.2020.10.039 10.1016/j.celrep.2021.109179 10.1126/science.add2897 10.1038/s41586-021-03653-6 10.1182/blood.2020008488 10.1128/JVI.02002-20 10.1016/j.celrep.2021.108815 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2023.113596 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 113596 |
ExternalDocumentID | oai_doaj_org_article_db8ea015b89d430fb372f8118aea4ea2 PMC10860710 38117652 10_1016_j_celrep_2023_113596 S221112472301608X |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAXUO ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION HZ~ IPNFZ RIG NPM 7X8 5PM |
ID | FETCH-LOGICAL-c530t-126ad8c9c5112a61e49cc8f7abac78089c6e8d8916a3617c27fcb5ff04d485e93 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:16:55 EDT 2025 Thu Aug 21 18:35:14 EDT 2025 Fri Jul 11 04:17:03 EDT 2025 Mon Jul 21 05:58:49 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Tue Jul 01 02:59:40 EDT 2025 Sat Aug 10 15:31:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CP: Immunology SARS-CoV-2 CD4+ T cell noncanonical protein CP: Microbiology immunopeptidome HLA-II antigen processing and presentation immunity viral antigen CD4(+) T cell |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-126ad8c9c5112a61e49cc8f7abac78089c6e8d8916a3617c27fcb5ff04d485e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS S.W.-G. and J.G.A. conceptualized the study. S.W.-G., J.G.A., and M.S. designed the experiments. D.-Y.C., H.B.T., M.G., G.M.H., L.R.P., and M.R.B. performed experiments. S.W.-G., S.S., H.B.T., K.R.C., and J.G.A. performed data analysis. N.H., S.A.C., M.S., and P.C.S. supervised the work. S.W.-G., J.G.A., M.S., and P.C.S. wrote the manuscript, with contributions from all of the authors. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2023.113596 |
PMID | 38117652 |
PQID | 2904573436 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db8ea015b89d430fb372f8118aea4ea2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10860710 proquest_miscellaneous_2904573436 pubmed_primary_38117652 crossref_citationtrail_10_1016_j_celrep_2023_113596 crossref_primary_10_1016_j_celrep_2023_113596 elsevier_sciencedirect_doi_10_1016_j_celrep_2023_113596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-23 |
PublicationDateYYYYMMDD | 2024-01-23 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Martínez-Flores, Zepeda-Cervantes, Cruz-Reséndiz, Aguirre-Sampieri, Sampieri, Vaca (bib7) 2021; 12 Joag, Wijeyesinghe, Stolley, Quarnstrom, Dileepan, Soerens, Sangala, O’Flanagan, Gavil, Hong (bib16) 2021; 206 Nielsen, Vibholm, Monrad, Olesen, Frattari, Pahus, Højen, Gunst, Erikstrup, Holleufer (bib19) 2021; 68 Becerra-Artiles, Nanaware, Muneeruddin, Weaver, Shaffer, Calvo-Calle, Stern (bib43) 2022 Mahajan, Kode, Bhojak, Karunakaran, Lee, Manoharan, Ramesh, Hv, Srivastava, Sathian (bib18) 2021; 11 Gangaev, Ketelaars, Isaeva, Patiwael, Dopler, Hoefakker, De Biasi, Gibellini, Mussini, Guaraldi (bib23) 2021; 12 Rucevic, Kourjian, Boucau, Blatnik, Garcia Bertran, Berberich, Walker, Riemer, Le Gall (bib36) 2016; 90 Forlani, Michaux, Pak, Huber, Marie Joseph, Ramia, Stevenson, Linnebacher, Accolla, Bassani-Sternberg (bib45) 2021; 20 Becerra-Artiles, Cruz, Leszyk, Sidney, Sette, Shaffer, Stern (bib44) 2019; 49 Lippolis, White, Marto, Luckey, Bullock, Shabanowitz, Hunt, Engelhard (bib56) 2002; 169 Shomuradova, Vagida, Sheetikov, Zornikova, Kiryukhin, Titov, Peshkova, Khmelevskaya, Dianov, Malasheva (bib21) 2020; 53 Dai, Gao (bib68) 2021; 21 Abelin, Harjanto, Malloy, Suri, Colson, Goulding, Creech, Serrano, Nasir, Nasrullah (bib54) 2019; 51 Arieta, Xie, Rothenberg, Diao, Harjanto, Meda, Marquart, Koenitzer, Sciuto, Lobo (bib10) 2023; 186 Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib6) 2021; 384 Chong, Marino, Pak, Racle, Daniel, Müller, Gfeller, Coukos, Bassani-Sternberg (bib32) 2018; 17 Grifoni, Sidney, Vita, Peters, Crotty, Weiskopf, Sette (bib60) 2021; 29 Le Bert, Tan, Kunasegaran, Tham, Hafezi, Chia, Chng, Lin, Tan, Linster (bib61) 2020; 584 Krammer (bib65) 2020; 586 Schellens, Meiring, Hoof, Spijkers, Poelen, van Gaans-van den Brink, Costa, Vennema, Keşmir, van Baarle, van Els (bib37) 2015; 6 Silva, Bomfim, Barbosa, Noda, Noronha, Fernandes, Machado, Durigon, Catanozi, Rodrigues (bib69) 2022; 17 Hajnik, Plante, Liang, Alameh, Tang, Bonam, Zhong, Adam, Scharton, Rafael (bib11) 2022; 14 Prakash, S., Srivastava, R., Coulon, P.-G., Dhanushkodi, N.R., Chentoufi, A.A., Tifrea, D.F., Edwards, R.A., Figueroa, C., Schubl, S.D., Hsieh, L., et al. Genome-Wide Asymptomatic B-Cell, CD4 and CD8 T-Cell Epitopes, that are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Immune Targets for Pre-Emptive Pan-Coronavirus Vaccines. SSRN Journal. . Abelin, Keskin, Sarkizova, Hartigan, Zhang, Sidney, Stevens, Lane, Zhang, Eisenhaure (bib30) 2017; 46 Nelde, Bilich, Heitmann, Maringer, Salih, Roerden, Lübke, Bauer, Rieth, Wacker (bib26) 2021; 22 Deffrennes, Vedrenne, Stolzenberg, Piskurich, Barbieri, Ting, Charron, Alcaïde-Loridan (bib49) 2001; 167 McMurtrey, Lelic, Piazza, Chakrabarti, Yablonsky, Wahl, Bardet, Eckerd, Cook, Hess (bib35) 2008; 105 Pardi, Hogan, Porter, Weissman (bib3) 2018; 17 Finkel, Mizrahi, Nachshon (bib29) 2020 Sarkizova, Klaeger, Le, Li, Oliveira, Keshishian, Hartigan, Zhang, Braun, Ligon (bib33) 2020; 38 Andreatta, Alvarez, Nielsen (bib53) 2017; 45 Cassotta, Paparoditis, Geiger, Mettu, Landry, Donati, Benevento, Foglierini, Lewis, Lanzavecchia, Sallusto (bib52) 2020; 217 Ruiz Cuevas, Hardy, Hollý, Bonneil, Durette, Courcelles, Lanoix, Côté, Staudt, Lemieux (bib71) 2021; 34 Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qiu, Fisher, Takvorian, Bleck, Hsu, Fehr (bib73) 2020; 183 Peng, Mentzer, Liu, Yao, Yin, Dong, Dejnirattisai, Rostron, Supasa, Liu (bib62) 2020; 21 Keller, Harris, Jensen-Wachspress, Kankate, Lang, Lazarski, Durkee-Shock, Lee, Chaudhry, Webber (bib14) 2020; 136 Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib77) 2020; 579 Dutta, Mazumdar, Gordy (bib9) 2020; 94 Sette, Crotty (bib2) 2021; 184 Firth (bib57) 2020; 101 Wherry, Barouch (bib1) 2022; 377 Lee, Sandgren, Duette, Stylianou, Khanna, Eden, Blyth, Gottlieb, Cunningham, Palmer (bib17) 2021; 95 Cagliani, Forni, Clerici, Sironi (bib59) 2020; 83 Kyriakidis, López-Cortés, González, Grimaldos, Prado (bib64) 2021; 6 Barouch (bib67) 2022; 387 Oronsky, Larson, Caroen, Hedjran, Sanchez, Prokopenko, Reid (bib8) 2022; 122 Ovsyannikova, Johnson, Naylor, Muddiman, Poland (bib51) 2003; 312 Croft, Smith, Wong, Tan, Dudek, Flesch, Lin, Tscharke, Purcell (bib34) 2013; 9 Parker, Partridge, Wormald, Kawahara, Stalls, Aggelakopoulou, Parker, Powell Doherty, Ariosa Morejon, Lee (bib42) 2021; 35 Prakash, Srivastava, Coulon, Dhanushkodi, Chentoufi, Tifrea, Edwards, Figueroa, Schubl, Hsieh (bib27) 2021; 206 Stewart, Lu, O’Keefe, Valpadashi, Cruz-Zaragoza, Michel, Nguyen, Carnell, Lukhovitskaya, Milligan (bib72) 2022 Jungreis, Sealfon, Kellis (bib58) 2021; 12 Kared, Redd, Bloch, Bonny, Sumatoh, Kairi, Carbajo, Abel, Newell, Bettinotti (bib24) 2021; 131 Knierman, Lannan, Spindler, McMillian, Konrad, Siegel (bib41) 2020; 33 Neale, Ali, Kronsteiner, Longet, Abraham, Deeks, Brown, Moore, Stafford, Dobson (bib4) 2023 Tarke, Sidney, Kidd, Dan, Ramirez, Yu, Mateus, da Silva Antunes, Moore, Rubiro (bib28) 2021; 2 Abelin, Bergstrom, Rivera, Taylor, Klaeger, Xu, Verzani, Jackson White, Woldemichael, Virshup (bib76) 2023; 14 Weingarten-Gabbay, Klaeger, Sarkizova, Pearlman, Chen, Gallagher, Bauer, Taylor, Dunn, Tarr (bib39) 2021; 184 Chen, Ruan, Wang, Nie, Ma, Tan (bib13) 2021; 25 Rha, Jeong, Ko, Choi, Seo, Lee, Sa, Kim, Joo, Ahn (bib20) 2021; 54 Ferretti, Kula, Wang, Nguyen, Weinheimer, Dunlap, Xu, Nabilsi, Perullo, Cristofaro (bib22) 2020; 53 Ternette, Yang, Partridge, Llano, Cedeño, Fischer, Charles, Dudek, Mothe, Crespo (bib38) 2016; 46 Wosen, Mukhopadhyay, Macaubas, Mellins (bib48) 2018; 9 Chen, Khan, Close, Goel, Blum, Tavares, Kenney, Conway, Ewoldt, Chitalia (bib74) 2021; 95 Bruchez, Sha, Johnson, Chen, Stefani, McConnell, Gaucherand, Prins, Matreyek, Hume (bib50) 2020; 370 Neuwelt, Kimball, Johnson, Arnold, Bullock, Kaspar, Kleczko, Kwak, Wu, Heasley (bib47) 2020; 8 Le Bert, Clapham, Tan, Chia, Tham, Lim, Kunasegaran, Tan, Dutertre, Shankar (bib15) 2021; 218 Creech, Walker, Samuels (bib66) 2021; 325 Hos, Tondini, Camps, Rademaker, van den Bulk, Ruano, Janssen, de Ru, van den Elsen, de Miranda (bib46) 2022; 41 Bassani-Sternberg, Gfeller (bib31) 2016; 197 Taylor, Klaeger, Clauser, Sarkizova, Weingarten-Gabbay, Graham, Carr, Abelin (bib55) 2021; 20 Matchett, Joag, Stolley, Shepherd, Quarnstrom, Mickelson, Wijeyesinghe, Soerens, Becker, Thiede (bib12) 2021; 207 Weingarten-Gabbay, Pearlman, Chen, Klaeger, Taylor, Welch, Keskin, Carr, Abelin, Saeed, Sabeti (bib70) 2022; 3 Mateus, Grifoni, Tarke, Sidney, Ramirez, Dan, Burger, Rawlings, Smith, Phillips (bib25) 2020; 370 Gentili, Liu, Papanastasiou, Dele-Oni, Schwartz, Carlson, Al’Khafaji, Krug, Brown, Doench (bib75) 2023; 14 Sahin, Muik, Vogler, Derhovanessian, Kranz, Vormehr, Quandt, Bidmon, Ulges, Baum (bib5) 2021; 595 Nagler, Kalaora, Barbolin, Gangaev, Ketelaars, Alon, Pai, Benedek, Yahalom-Ronen, Erez (bib40) 2021; 35 Deffrennes (10.1016/j.celrep.2023.113596_bib49) 2001; 167 Le Bert (10.1016/j.celrep.2023.113596_bib15) 2021; 218 Dutta (10.1016/j.celrep.2023.113596_bib9) 2020; 94 Abelin (10.1016/j.celrep.2023.113596_bib30) 2017; 46 Barouch (10.1016/j.celrep.2023.113596_bib67) 2022; 387 Gentili (10.1016/j.celrep.2023.113596_bib75) 2023; 14 Hos (10.1016/j.celrep.2023.113596_bib46) 2022; 41 Ghosh (10.1016/j.celrep.2023.113596_bib73) 2020; 183 Jungreis (10.1016/j.celrep.2023.113596_bib58) 2021; 12 Nielsen (10.1016/j.celrep.2023.113596_bib19) 2021; 68 Becerra-Artiles (10.1016/j.celrep.2023.113596_bib43) 2022 Silva (10.1016/j.celrep.2023.113596_bib69) 2022; 17 Shomuradova (10.1016/j.celrep.2023.113596_bib21) 2020; 53 Bruchez (10.1016/j.celrep.2023.113596_bib50) 2020; 370 10.1016/j.celrep.2023.113596_bib63 Wherry (10.1016/j.celrep.2023.113596_bib1) 2022; 377 Sahin (10.1016/j.celrep.2023.113596_bib5) 2021; 595 Chong (10.1016/j.celrep.2023.113596_bib32) 2018; 17 Peng (10.1016/j.celrep.2023.113596_bib62) 2020; 21 Stewart (10.1016/j.celrep.2023.113596_bib72) 2022 Parker (10.1016/j.celrep.2023.113596_bib42) 2021; 35 Taylor (10.1016/j.celrep.2023.113596_bib55) 2021; 20 Oronsky (10.1016/j.celrep.2023.113596_bib8) 2022; 122 Finkel (10.1016/j.celrep.2023.113596_bib29) 2020 Neuwelt (10.1016/j.celrep.2023.113596_bib47) 2020; 8 Dai (10.1016/j.celrep.2023.113596_bib68) 2021; 21 Abelin (10.1016/j.celrep.2023.113596_bib76) 2023; 14 Baden (10.1016/j.celrep.2023.113596_bib6) 2021; 384 Mateus (10.1016/j.celrep.2023.113596_bib25) 2020; 370 Rucevic (10.1016/j.celrep.2023.113596_bib36) 2016; 90 Lee (10.1016/j.celrep.2023.113596_bib17) 2021; 95 Weingarten-Gabbay (10.1016/j.celrep.2023.113596_bib70) 2022; 3 Abelin (10.1016/j.celrep.2023.113596_bib54) 2019; 51 Le Bert (10.1016/j.celrep.2023.113596_bib61) 2020; 584 Bassani-Sternberg (10.1016/j.celrep.2023.113596_bib31) 2016; 197 Arieta (10.1016/j.celrep.2023.113596_bib10) 2023; 186 Andreatta (10.1016/j.celrep.2023.113596_bib53) 2017; 45 Neale (10.1016/j.celrep.2023.113596_bib4) 2023 Ovsyannikova (10.1016/j.celrep.2023.113596_bib51) 2003; 312 Keller (10.1016/j.celrep.2023.113596_bib14) 2020; 136 Gangaev (10.1016/j.celrep.2023.113596_bib23) 2021; 12 Kared (10.1016/j.celrep.2023.113596_bib24) 2021; 131 Joag (10.1016/j.celrep.2023.113596_bib16) 2021; 206 Prakash (10.1016/j.celrep.2023.113596_bib27) 2021; 206 Forlani (10.1016/j.celrep.2023.113596_bib45) 2021; 20 Wosen (10.1016/j.celrep.2023.113596_bib48) 2018; 9 Lippolis (10.1016/j.celrep.2023.113596_bib56) 2002; 169 Ternette (10.1016/j.celrep.2023.113596_bib38) 2016; 46 Firth (10.1016/j.celrep.2023.113596_bib57) 2020; 101 Krammer (10.1016/j.celrep.2023.113596_bib65) 2020; 586 Rha (10.1016/j.celrep.2023.113596_bib20) 2021; 54 Croft (10.1016/j.celrep.2023.113596_bib34) 2013; 9 Chen (10.1016/j.celrep.2023.113596_bib13) 2021; 25 McMurtrey (10.1016/j.celrep.2023.113596_bib35) 2008; 105 Mahajan (10.1016/j.celrep.2023.113596_bib18) 2021; 11 Sette (10.1016/j.celrep.2023.113596_bib2) 2021; 184 Nelde (10.1016/j.celrep.2023.113596_bib26) 2021; 22 Becerra-Artiles (10.1016/j.celrep.2023.113596_bib44) 2019; 49 Martínez-Flores (10.1016/j.celrep.2023.113596_bib7) 2021; 12 Cagliani (10.1016/j.celrep.2023.113596_bib59) 2020; 83 Pardi (10.1016/j.celrep.2023.113596_bib3) 2018; 17 Kyriakidis (10.1016/j.celrep.2023.113596_bib64) 2021; 6 Ruiz Cuevas (10.1016/j.celrep.2023.113596_bib71) 2021; 34 Sarkizova (10.1016/j.celrep.2023.113596_bib33) 2020; 38 Knierman (10.1016/j.celrep.2023.113596_bib41) 2020; 33 Tarke (10.1016/j.celrep.2023.113596_bib28) 2021; 2 Nagler (10.1016/j.celrep.2023.113596_bib40) 2021; 35 Grifoni (10.1016/j.celrep.2023.113596_bib60) 2021; 29 Creech (10.1016/j.celrep.2023.113596_bib66) 2021; 325 Cassotta (10.1016/j.celrep.2023.113596_bib52) 2020; 217 Ferretti (10.1016/j.celrep.2023.113596_bib22) 2020; 53 Chen (10.1016/j.celrep.2023.113596_bib74) 2021; 95 Weingarten-Gabbay (10.1016/j.celrep.2023.113596_bib39) 2021; 184 Matchett (10.1016/j.celrep.2023.113596_bib12) 2021; 207 Hajnik (10.1016/j.celrep.2023.113596_bib11) 2022; 14 Wu (10.1016/j.celrep.2023.113596_bib77) 2020; 579 Schellens (10.1016/j.celrep.2023.113596_bib37) 2015; 6 37398281 - bioRxiv. 2023 Jun 01 |
References_xml | – volume: 11 year: 2021 ident: bib18 article-title: Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals publication-title: Sci. Rep. – volume: 167 start-page: 98 year: 2001 end-page: 106 ident: bib49 article-title: Constitutive expression of MHC class II genes in melanoma cell lines results from the transcription of class II transactivator abnormally initiated from its B cell-specific promoter publication-title: J. Immunol. – volume: 184 start-page: 861 year: 2021 end-page: 880 ident: bib2 article-title: Adaptive immunity to SARS-CoV-2 and COVID-19 publication-title: Cell – volume: 33 year: 2020 ident: bib41 article-title: The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell Rep. – volume: 83 year: 2020 ident: bib59 article-title: Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses publication-title: Infect. Genet. Evol. – volume: 584 start-page: 457 year: 2020 end-page: 462 ident: bib61 article-title: SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls publication-title: Nature – volume: 9 start-page: 2144 year: 2018 ident: bib48 article-title: Epithelial MHC Class II Expression and Its Role in Antigen Presentation in the Gastrointestinal and Respiratory Tracts publication-title: Front. Immunol. – volume: 41 year: 2022 ident: bib46 article-title: Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA publication-title: Cell Rep. – volume: 377 start-page: 821 year: 2022 end-page: 822 ident: bib1 article-title: T cell immunity to COVID-19 vaccines publication-title: Science – volume: 312 start-page: 495 year: 2003 end-page: 506 ident: bib51 article-title: Naturally processed measles virus peptide eluted from class II HLA-DRB1 publication-title: Virology – volume: 95 year: 2021 ident: bib74 article-title: SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway publication-title: J. Virol. – volume: 595 start-page: 572 year: 2021 end-page: 577 ident: bib5 article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans publication-title: Nature – volume: 45 start-page: W458 year: 2017 end-page: W463 ident: bib53 article-title: GibbsCluster: unsupervised clustering and alignment of peptide sequences publication-title: Nucleic Acids Res. – volume: 90 start-page: 8605 year: 2016 end-page: 8620 ident: bib36 article-title: Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses publication-title: J. Virol. – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bib77 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 35 year: 2021 ident: bib42 article-title: Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells publication-title: Cell Rep. – volume: 14 start-page: 1851 year: 2023 ident: bib76 article-title: Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues publication-title: Nat. Commun. – volume: 6 start-page: 546 year: 2015 ident: bib37 article-title: Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation publication-title: Front. Immunol. – volume: 49 start-page: 1167 year: 2019 end-page: 1185 ident: bib44 article-title: Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses publication-title: Eur. J. Immunol. – volume: 94 start-page: e00647-20 year: 2020 ident: bib9 article-title: The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development publication-title: J. Virol. – volume: 9 year: 2013 ident: bib34 article-title: Kinetics of antigen expression and epitope presentation during virus infection publication-title: PLoS Pathog. – volume: 184 start-page: 3962 year: 2021 end-page: 3980.e17 ident: bib39 article-title: Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs publication-title: Cell – volume: 21 start-page: 1336 year: 2020 end-page: 1345 ident: bib62 article-title: Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19 publication-title: Nat. Immunol. – year: 2020 ident: bib29 article-title: The Coding Capacity of SARS-CoV-2 publication-title: bioRxiv – volume: 131 year: 2021 ident: bib24 article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals publication-title: J. Clin. Invest. – volume: 206 start-page: 2566 year: 2021 end-page: 2582 ident: bib27 article-title: Genome-Wide B Cell, CD4+, and CD8+ T Cell Epitopes That Are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus Vaccines publication-title: J. Immunol. – volume: 29 start-page: 1076 year: 2021 end-page: 1092 ident: bib60 article-title: SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19 publication-title: Cell Host Microbe – volume: 105 start-page: 2981 year: 2008 end-page: 2986 ident: bib35 article-title: Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes publication-title: Proc. Natl. Acad. Sci. USA – reference: Prakash, S., Srivastava, R., Coulon, P.-G., Dhanushkodi, N.R., Chentoufi, A.A., Tifrea, D.F., Edwards, R.A., Figueroa, C., Schubl, S.D., Hsieh, L., et al. Genome-Wide Asymptomatic B-Cell, CD4 and CD8 T-Cell Epitopes, that are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Immune Targets for Pre-Emptive Pan-Coronavirus Vaccines. SSRN Journal. . – volume: 22 start-page: 74 year: 2021 end-page: 85 ident: bib26 article-title: SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition publication-title: Nat. Immunol. – volume: 17 start-page: 261 year: 2018 end-page: 279 ident: bib3 article-title: mRNA vaccines — a new era in vaccinology publication-title: Nat. Rev. Drug Discov. – volume: 68 year: 2021 ident: bib19 article-title: SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity publication-title: EBioMedicine – volume: 53 start-page: 1245 year: 2020 end-page: 1257.e5 ident: bib21 article-title: SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors publication-title: Immunity – year: 2023 ident: bib4 article-title: CD4+ and CD8+ T Cell and Antibody Correlates of Protection against Delta Vaccine Breakthrough Infection: A Nested Case-Control Study within the PITCH Study publication-title: medRxiv – volume: 183 start-page: 1520 year: 2020 end-page: 1535.e14 ident: bib73 article-title: β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway publication-title: Cell – volume: 6 start-page: 28 year: 2021 ident: bib64 article-title: SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates publication-title: NPJ Vaccines – volume: 12 start-page: 2593 year: 2021 ident: bib23 article-title: Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features publication-title: Nat. Commun. – volume: 17 year: 2022 ident: bib69 article-title: Immunization with SARS-CoV-2 Nucleocapsid protein triggers a pulmonary immune response in rats publication-title: PLoS One – year: 2022 ident: bib72 article-title: The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity publication-title: bioRxiv – volume: 34 year: 2021 ident: bib71 article-title: Most non-canonical proteins uniquely populate the proteome or immunopeptidome publication-title: Cell Rep. – volume: 14 start-page: 611 year: 2023 ident: bib75 article-title: ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling publication-title: Nat. Commun. – volume: 14 year: 2022 ident: bib11 article-title: Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models publication-title: Sci. Transl. Med. – year: 2022 ident: bib43 article-title: Immunopeptidome Profiling of Human Coronavirus OC43-Infected Cells Identifies CD4 T Cell Epitopes Specific to Seasonal Coronaviruses or Cross-Reactive with SARS-CoV-2 publication-title: bioRxiv – volume: 25 start-page: 1274 year: 2021 end-page: 1289 ident: bib13 article-title: T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research publication-title: J. Cell Mol. Med. – volume: 207 start-page: 376 year: 2021 end-page: 379 ident: bib12 article-title: Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity publication-title: J. Immunol. – volume: 370 start-page: 241 year: 2020 end-page: 247 ident: bib50 article-title: MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses publication-title: Science – volume: 12 start-page: 2642 year: 2021 ident: bib58 article-title: SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes publication-title: Nat. Commun. – volume: 186 start-page: 2392 year: 2023 end-page: 2409.e21 ident: bib10 article-title: The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection publication-title: Cell – volume: 370 start-page: 89 year: 2020 end-page: 94 ident: bib25 article-title: Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans publication-title: Science – volume: 20 year: 2021 ident: bib45 article-title: CIITA-Transduced Glioblastoma Cells Uncover a Rich Repertoire of Clinically Relevant Tumor-Associated HLA-II Antigens publication-title: Mol. Cell. Proteomics – volume: 206 start-page: 931 year: 2021 end-page: 935 ident: bib16 article-title: Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses publication-title: J. Immunol. – volume: 51 start-page: 766 year: 2019 end-page: 779.e17 ident: bib54 article-title: Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction publication-title: Immunity – volume: 325 start-page: 1318 year: 2021 end-page: 1320 ident: bib66 article-title: SARS-CoV-2 Vaccines publication-title: JAMA – volume: 54 start-page: 44 year: 2021 end-page: 52.e3 ident: bib20 article-title: PD-1-Expressing SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, but Functional in Patients with COVID-19 publication-title: Immunity – volume: 217 year: 2020 ident: bib52 article-title: Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin publication-title: J. Exp. Med. – volume: 101 start-page: 1085 year: 2020 end-page: 1089 ident: bib57 article-title: A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a publication-title: J. Gen. Virol. – volume: 586 start-page: 516 year: 2020 end-page: 527 ident: bib65 article-title: SARS-CoV-2 vaccines in development publication-title: Nature – volume: 46 start-page: 60 year: 2016 end-page: 69 ident: bib38 article-title: Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells publication-title: Eur. J. Immunol. – volume: 21 start-page: 73 year: 2021 end-page: 82 ident: bib68 article-title: Viral targets for vaccines against COVID-19 publication-title: Nat. Rev. Immunol. – volume: 387 start-page: 1011 year: 2022 end-page: 1020 ident: bib67 article-title: Covid-19 Vaccines — Immunity, Variants, Boosters publication-title: N. Engl. J. Med. – volume: 218 year: 2021 ident: bib15 article-title: Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection publication-title: J. Exp. Med. – volume: 122 start-page: 529 year: 2022 end-page: 530 ident: bib8 article-title: Nucleocapsid as a next-generation COVID-19 vaccine candidate publication-title: Int. J. Infect. Dis. – volume: 20 year: 2021 ident: bib55 article-title: MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies publication-title: Mol. Cell. Proteomics – volume: 2 year: 2021 ident: bib28 article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases publication-title: Cell Rep. Med. – volume: 17 start-page: 533 year: 2018 end-page: 548 ident: bib32 article-title: High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome publication-title: Mol. Cell. Proteomics – volume: 53 start-page: 1095 year: 2020 end-page: 1107.e3 ident: bib22 article-title: Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein publication-title: Immunity – volume: 38 start-page: 199 year: 2020 end-page: 209 ident: bib33 article-title: A large peptidome dataset improves HLA class I epitope prediction across most of the human population publication-title: Nat. Biotechnol. – volume: 197 start-page: 2492 year: 2016 end-page: 2499 ident: bib31 article-title: Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions publication-title: J. Immunol. – volume: 35 year: 2021 ident: bib40 article-title: Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics publication-title: Cell Rep. – volume: 169 start-page: 5089 year: 2002 end-page: 5097 ident: bib56 article-title: Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets publication-title: J. Immunol. – volume: 8 year: 2020 ident: bib47 article-title: Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms publication-title: J. Immunother. Cancer – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: bib6 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. – volume: 12 start-page: 701501 year: 2021 ident: bib7 article-title: SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants publication-title: Front. Immunol. – volume: 95 year: 2021 ident: bib17 article-title: Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity publication-title: J. Virol. – volume: 46 start-page: 315 year: 2017 end-page: 326 ident: bib30 article-title: Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction publication-title: Immunity – volume: 3 year: 2022 ident: bib70 article-title: HLA-I immunopeptidome profiling of human cells infected with high-containment enveloped viruses publication-title: STAR Protoc. – volume: 136 start-page: 2905 year: 2020 end-page: 2917 ident: bib14 article-title: SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein publication-title: Blood – volume: 94 start-page: e00647-20 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib9 article-title: The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development publication-title: J. Virol. doi: 10.1128/JVI.00647-20 – volume: 197 start-page: 2492 year: 2016 ident: 10.1016/j.celrep.2023.113596_bib31 article-title: Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions publication-title: J. Immunol. doi: 10.4049/jimmunol.1600808 – volume: 370 start-page: 89 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib25 article-title: Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans publication-title: Science doi: 10.1126/science.abd3871 – volume: 20 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib45 article-title: CIITA-Transduced Glioblastoma Cells Uncover a Rich Repertoire of Clinically Relevant Tumor-Associated HLA-II Antigens publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.RA120.002201 – volume: 167 start-page: 98 year: 2001 ident: 10.1016/j.celrep.2023.113596_bib49 article-title: Constitutive expression of MHC class II genes in melanoma cell lines results from the transcription of class II transactivator abnormally initiated from its B cell-specific promoter publication-title: J. Immunol. doi: 10.4049/jimmunol.167.1.98 – volume: 206 start-page: 2566 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib27 article-title: Genome-Wide B Cell, CD4+, and CD8+ T Cell Epitopes That Are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus Vaccines publication-title: J. Immunol. doi: 10.4049/jimmunol.2001438 – volume: 29 start-page: 1076 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib60 article-title: SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.05.010 – year: 2022 ident: 10.1016/j.celrep.2023.113596_bib72 article-title: The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity publication-title: bioRxiv – volume: 218 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib15 article-title: Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection publication-title: J. Exp. Med. doi: 10.1084/jem.20202617 – volume: 46 start-page: 60 year: 2016 ident: 10.1016/j.celrep.2023.113596_bib38 article-title: Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.201545890 – volume: 83 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib59 article-title: Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2020.104353 – volume: 8 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib47 article-title: Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms publication-title: J. Immunother. Cancer – ident: 10.1016/j.celrep.2023.113596_bib63 – volume: 20 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib55 article-title: MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies publication-title: Mol. Cell. Proteomics doi: 10.1016/j.mcpro.2021.100116 – volume: 12 start-page: 2642 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib58 article-title: SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes publication-title: Nat. Commun. doi: 10.1038/s41467-021-22905-7 – volume: 21 start-page: 1336 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib62 article-title: Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19 publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0782-6 – volume: 68 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib19 article-title: SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103410 – volume: 6 start-page: 546 year: 2015 ident: 10.1016/j.celrep.2023.113596_bib37 article-title: Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00546 – volume: 12 start-page: 701501 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib7 article-title: SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.701501 – volume: 387 start-page: 1011 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib67 article-title: Covid-19 Vaccines — Immunity, Variants, Boosters publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra2206573 – volume: 53 start-page: 1095 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib22 article-title: Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein publication-title: Immunity doi: 10.1016/j.immuni.2020.10.006 – volume: 38 start-page: 199 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib33 article-title: A large peptidome dataset improves HLA class I epitope prediction across most of the human population publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0322-9 – volume: 207 start-page: 376 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib12 article-title: Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.2100421 – volume: 21 start-page: 73 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib68 article-title: Viral targets for vaccines against COVID-19 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00480-0 – volume: 41 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib46 article-title: Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111485 – volume: 586 start-page: 516 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib65 article-title: SARS-CoV-2 vaccines in development publication-title: Nature doi: 10.1038/s41586-020-2798-3 – volume: 49 start-page: 1167 year: 2019 ident: 10.1016/j.celrep.2023.113596_bib44 article-title: Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses publication-title: Eur. J. Immunol. doi: 10.1002/eji.201948126 – volume: 45 start-page: W458 year: 2017 ident: 10.1016/j.celrep.2023.113596_bib53 article-title: GibbsCluster: unsupervised clustering and alignment of peptide sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx248 – volume: 217 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib52 article-title: Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin publication-title: J. Exp. Med. doi: 10.1084/jem.20200206 – volume: 9 start-page: 2144 year: 2018 ident: 10.1016/j.celrep.2023.113596_bib48 article-title: Epithelial MHC Class II Expression and Its Role in Antigen Presentation in the Gastrointestinal and Respiratory Tracts publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02144 – volume: 584 start-page: 457 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib61 article-title: SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls publication-title: Nature doi: 10.1038/s41586-020-2550-z – volume: 184 start-page: 861 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib2 article-title: Adaptive immunity to SARS-CoV-2 and COVID-19 publication-title: Cell doi: 10.1016/j.cell.2021.01.007 – volume: 122 start-page: 529 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib8 article-title: Nucleocapsid as a next-generation COVID-19 vaccine candidate publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2022.06.046 – volume: 22 start-page: 74 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib26 article-title: SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition publication-title: Nat. Immunol. doi: 10.1038/s41590-020-00808-x – volume: 33 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib41 article-title: The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108454 – volume: 384 start-page: 403 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib6 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 53 start-page: 1245 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib21 article-title: SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors publication-title: Immunity doi: 10.1016/j.immuni.2020.11.004 – volume: 169 start-page: 5089 year: 2002 ident: 10.1016/j.celrep.2023.113596_bib56 article-title: Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets publication-title: J. Immunol. doi: 10.4049/jimmunol.169.9.5089 – volume: 105 start-page: 2981 year: 2008 ident: 10.1016/j.celrep.2023.113596_bib35 article-title: Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711874105 – volume: 325 start-page: 1318 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib66 article-title: SARS-CoV-2 Vaccines publication-title: JAMA doi: 10.1001/jama.2021.3199 – volume: 95 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib74 article-title: SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway publication-title: J. Virol. doi: 10.1128/JVI.00862-21 – volume: 14 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib11 article-title: Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abq1945 – volume: 579 start-page: 265 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib77 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – year: 2020 ident: 10.1016/j.celrep.2023.113596_bib29 article-title: The Coding Capacity of SARS-CoV-2 publication-title: bioRxiv – volume: 14 start-page: 611 year: 2023 ident: 10.1016/j.celrep.2023.113596_bib75 article-title: ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling publication-title: Nat. Commun. doi: 10.1038/s41467-023-36132-9 – year: 2023 ident: 10.1016/j.celrep.2023.113596_bib4 article-title: CD4+ and CD8+ T Cell and Antibody Correlates of Protection against Delta Vaccine Breakthrough Infection: A Nested Case-Control Study within the PITCH Study publication-title: medRxiv – volume: 12 start-page: 2593 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib23 article-title: Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features publication-title: Nat. Commun. doi: 10.1038/s41467-021-22811-y – volume: 6 start-page: 28 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib64 article-title: SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates publication-title: NPJ Vaccines doi: 10.1038/s41541-021-00292-w – volume: 370 start-page: 241 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib50 article-title: MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses publication-title: Science doi: 10.1126/science.abb3753 – volume: 206 start-page: 931 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib16 article-title: Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses publication-title: J. Immunol. doi: 10.4049/jimmunol.2001400 – volume: 3 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib70 article-title: HLA-I immunopeptidome profiling of human cells infected with high-containment enveloped viruses publication-title: STAR Protoc. doi: 10.1016/j.xpro.2022.101910 – volume: 11 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib18 article-title: Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals publication-title: Sci. Rep. doi: 10.1038/s41598-021-92521-4 – volume: 186 start-page: 2392 year: 2023 ident: 10.1016/j.celrep.2023.113596_bib10 article-title: The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection publication-title: Cell doi: 10.1016/j.cell.2023.04.007 – volume: 17 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib69 article-title: Immunization with SARS-CoV-2 Nucleocapsid protein triggers a pulmonary immune response in rats publication-title: PLoS One doi: 10.1371/journal.pone.0268434 – volume: 131 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib24 article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals publication-title: J. Clin. Invest. doi: 10.1172/JCI145476 – volume: 101 start-page: 1085 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib57 article-title: A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001469 – volume: 54 start-page: 44 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib20 article-title: PD-1-Expressing SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, but Functional in Patients with COVID-19 publication-title: Immunity doi: 10.1016/j.immuni.2020.12.002 – volume: 46 start-page: 315 year: 2017 ident: 10.1016/j.celrep.2023.113596_bib30 article-title: Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction publication-title: Immunity doi: 10.1016/j.immuni.2017.02.007 – volume: 17 start-page: 261 year: 2018 ident: 10.1016/j.celrep.2023.113596_bib3 article-title: mRNA vaccines — a new era in vaccinology publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 – volume: 2 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib28 article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases publication-title: Cell Rep. Med. – volume: 90 start-page: 8605 year: 2016 ident: 10.1016/j.celrep.2023.113596_bib36 article-title: Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses publication-title: J. Virol. doi: 10.1128/JVI.00599-16 – volume: 17 start-page: 533 year: 2018 ident: 10.1016/j.celrep.2023.113596_bib32 article-title: High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR117.000383 – volume: 25 start-page: 1274 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib13 article-title: T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.16200 – volume: 51 start-page: 766 year: 2019 ident: 10.1016/j.celrep.2023.113596_bib54 article-title: Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction publication-title: Immunity doi: 10.1016/j.immuni.2019.08.012 – year: 2022 ident: 10.1016/j.celrep.2023.113596_bib43 article-title: Immunopeptidome Profiling of Human Coronavirus OC43-Infected Cells Identifies CD4 T Cell Epitopes Specific to Seasonal Coronaviruses or Cross-Reactive with SARS-CoV-2 publication-title: bioRxiv – volume: 184 start-page: 3962 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib39 article-title: Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs publication-title: Cell doi: 10.1016/j.cell.2021.05.046 – volume: 312 start-page: 495 year: 2003 ident: 10.1016/j.celrep.2023.113596_bib51 article-title: Naturally processed measles virus peptide eluted from class II HLA-DRB1∗03 recognized by T lymphocytes from human blood publication-title: Virology doi: 10.1016/S0042-6822(03)00281-2 – volume: 9 year: 2013 ident: 10.1016/j.celrep.2023.113596_bib34 article-title: Kinetics of antigen expression and epitope presentation during virus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003129 – volume: 35 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib40 article-title: Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109305 – volume: 14 start-page: 1851 year: 2023 ident: 10.1016/j.celrep.2023.113596_bib76 article-title: Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues publication-title: Nat. Commun. doi: 10.1038/s41467-023-37547-0 – volume: 183 start-page: 1520 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib73 article-title: β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway publication-title: Cell doi: 10.1016/j.cell.2020.10.039 – volume: 35 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib42 article-title: Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109179 – volume: 377 start-page: 821 year: 2022 ident: 10.1016/j.celrep.2023.113596_bib1 article-title: T cell immunity to COVID-19 vaccines publication-title: Science doi: 10.1126/science.add2897 – volume: 595 start-page: 572 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib5 article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans publication-title: Nature doi: 10.1038/s41586-021-03653-6 – volume: 136 start-page: 2905 year: 2020 ident: 10.1016/j.celrep.2023.113596_bib14 article-title: SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein publication-title: Blood doi: 10.1182/blood.2020008488 – volume: 95 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib17 article-title: Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity publication-title: J. Virol. doi: 10.1128/JVI.02002-20 – volume: 34 year: 2021 ident: 10.1016/j.celrep.2023.113596_bib71 article-title: Most non-canonical proteins uniquely populate the proteome or immunopeptidome publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108815 – reference: 37398281 - bioRxiv. 2023 Jun 01;: |
SSID | ssj0000601194 |
Score | 2.4303896 |
Snippet | Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113596 |
SubjectTerms | antigen processing and presentation CD4+ T cell CP: Immunology CP: Microbiology HLA-II immunity immunopeptidome noncanonical protein SARS-CoV-2 viral antigen |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuqC2ULv1QkDj0YpGNndg5blHRUhUOUCpulj_G6laQIFgO_Htm4mS1Sw974Zo4sf3G9rwoM28YO6xUlN6pnMe8LLmsveYa_QLH01IinQ2iipScfHZeTa_kz-vyeqnUF8WEJXngBNxRcBos-iyn6yBFHp1QRdRIiy1YCbY7fdHnLX1MpTOYtMzkkCvXBXR5uLkHkqgsBFUyKUmnf8kXdZL9Ky7pf8r5MnJyyRWdvGXbPYfMJmns79gGNO_Zm1RV8mmHfUPTZ9NfE356ms0o_aO9o9CV0N5C1sbscnJxyY_bP7zYZVcnP34fT3lfEIH7UuRzPi4qG7SvPbEkW40BsfU6KuusVzrXta9AB42MzwpkJr5Q0bsyxlwGqUuoxQe22bQNfGQZgid8jKHQoZbCKQfo6yF3tXcwBjseMTFAY3yvFk5FK27MEBb2zyRADQFqEqAjxhdP3SW1jDXtvxPqi7akdd1dwBVg-hVg1q2AEVODzUxPGxIdwFfN1nR_MJjY4K6iXyW2gfbxwRQ1Ul0lpMA2e8nki0EKys2tSuxXryyGlVms3mlmfzvlbiprRZxu_zXm_Ylt4VwohogX4jPbnN8_whdkSHP3tdsMz5wkDSc priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSki9IEoLLC8FqYderE1sJ3aO2xXVFkEPXYr2ZvkJqUqyWraH_ntm8lg19FCJY5xxYo_HM5-TeRByUsgonJUpjWmeU1E6RRXYBQraUgCc9byIGJz87bJYXIsvq3y1R-ZDLAy6Vfa6v9PprbbuW6Y9N6frqpouGZxdwDpJANFZkaoV6GEuVBvEtzrbfWfBfCNZWw8R6Sl2GCLoWjcvF243ARNXMo71TXLM3v_AQrWJ_EeG6jEQ_def8oGBOn9BnvfIMpl1gz8ke6F-SZ51tSbvj8gpCESy-DqjFxdJhUEhzRodWnzzOyRNTJazqyWdNz8oOybX55-_zxe0L5NAXc7TLUypMF650iF2MkUWgONORWmscVKlqnRFUF4BDjQc8IpjMjqbx5gKL1QeSv6K7NdNHd6QJBjBXYyeKV8KbqUNgABCaktnQxZMNiF8YI12fQ5xLGVxqwdnsRvdMVQjQ3XH0Amhu17rLofGE_RnyPUdLWbAbhuazU_di4D2VgUDWMaq0gueRssliwqOSwYmEQybEDmsmR4JFDyqeuL1n4Yl1rDX8AeKqUNz90ezEgCw5IIDzetuyXeD5BixW-TwXjUShtEsxnfq6lebzxuLXSHSe_vfQ35HDuAK3Yko4-_J_nZzFz4AWNraj-1u-AsKDQ9h priority: 102 providerName: Elsevier |
Title | The HLA-II immunopeptidome of SARS-CoV-2 |
URI | https://dx.doi.org/10.1016/j.celrep.2023.113596 https://www.ncbi.nlm.nih.gov/pubmed/38117652 https://www.proquest.com/docview/2904573436 https://pubmed.ncbi.nlm.nih.gov/PMC10860710 https://doaj.org/article/db8ea015b89d430fb372f8118aea4ea2 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERKXijfLowoSBy5GWduJ7QNC24pqF1EOlEV7s_wsi5akbLcS_ffM5LEQHiqXHBIn9owf8zmemY-Q56VMwjuZ05QXBRXaK6rALlBYLQXA2cDLhMHJx-_L6Vy8XRSLHdJztnYKPP_r1g75pObr1cvv3y5fw4R_9dNXy8fVOmL2ScaRpKTQ5TVyHWyTRE6D4w7wt2sz5jjDo2bG0JeLCdnH0_3jQwN71aT1H5itP2Hp796Vv5iro1tkr8OZ2aQdGLfJTqzukBst8-TlXfIChkc2fTehs1m2xBARkBoWj1B_jVmdspPJhxN6WH-i7B6ZH735eDilHWkC9QXPNyBSaYPy2iOSsuU4gv69StI666XKlfZlVEEBKrQc0ItnMnlXpJSLIFQRNb9Pdqu6ig9JFq3gPqXAVNCCO-ki4IGYO-1dHEc7HhHeq8b4LqM4ElusTO869sW0CjWoUNMqdETo9q2zNqPGFeUPUOvbspgPu7lRr09NN71McCpaQDZO6SB4nhyXLCnYPFkQIlo2IrLvM9NBixYywKeWV1T_rO9iAzMPj1NsFeuLc8M0wGHJBYcyD9ou3zaSY_xuWUC9ajAYBlIMn1TLz012b6S-Qtz36D8qfkxuQlPRjYgy_oTsbtYX8SmApI3bb34uwHW2ONhv5sAPaJQOhw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXxLMsUAgSBy7WJrYTO8ftimoXtj2wLdqbZTs2pCrJars98O-ZyWPV0EMlrn4k9njs-ZzMfEPIp0wG4ayMaYjTlIrcKarALlA4LQXA2YJnAYOTT8-y2YX4ukpXe2Tax8KgW2V39rdnenNadyXjTprjdVmOlwzuLmCdJIDoJIvV6gF5CGhA4u6cr453H1qQcCRpEiJiB4o9-hC6xs_L-auNR-ZKxjHBSYr0_bdMVMPkP7BUd5Hovw6VtyzUyVPypIOW0aQd_TOy56vn5FGbbPLPC_IZNCKaLSZ0Po9KjAqp1-jRUtS_fVSHaDn5vqTT-gdlL8nFyZfz6Yx2eRKoS3m8hSllplAudwieTJZ4ELlTQRprnFSxyl3mVaEACBoOgMUxGZxNQ4hFIVTqc_6K7Fd15V-TyBvBXQgFU0UuuJXWAwTwsc2d9Yk3yYjwXjTadSTimMviSvfeYpe6FahGgepWoCNCd73WLYnGPe2PUeq7tkiB3RTUm5-60wFdWOUNgBmr8kLwOFguWVBwXzIwCW_YiMh-zfRAo-BR5T2v_9gvsYbNhn9QTOXrm2vNckDAkgsObQ7bJd8NkmPIbpbCe9VAGQazGNZU5a-G0BuzXSHUe_PfQ_5AHs_OTxd6MT_79pYcQA36FlHG35H97ebGHwFy2tr3zc74C6-hEoE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+HLA-II+immunopeptidome+of+SARS-CoV-2&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Weingarten-Gabbay%2C+Shira&rft.au=Chen%2C+Da-Yuan&rft.au=Sarkizova%2C+Siranush&rft.au=Taylor%2C+Hannah+B&rft.date=2024-01-23&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=43&rft.issue=1&rft.spage=113596&rft_id=info:doi/10.1016%2Fj.celrep.2023.113596&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |