The HLA-II immunopeptidome of SARS-CoV-2

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 43; no. 1; p. 113596
Main Authors Weingarten-Gabbay, Shira, Chen, Da-Yuan, Sarkizova, Siranush, Taylor, Hannah B., Gentili, Matteo, Hernandez, Gabrielle M., Pearlman, Leah R., Bauer, Matthew R., Rice, Charles M., Clauser, Karl R., Hacohen, Nir, Carr, Steven A., Abelin, Jennifer G., Saeed, Mohsan, Sabeti, Pardis C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 23.01.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness. [Display omitted] •Immunopeptidome analysis of SARS-CoV-2 peptides naturally presented on HLA class II•Some HLA-II peptides originate from noncanonical SARS-CoV-2 proteins ORF9b and ORF3c•Class I and class II HLA complexes present different subsets of viral proteins Weingarten-Gabbay et al. map the repertoire of SARS-CoV-2 peptides naturally presented on HLA-II. The authors uncover HLA-II peptides originating from noncanonical ORFs and highlight striking differences between viral proteins that are presented on class I and class II HLAs, resulting in distinct targets for killer and helper T cells.
AbstractList Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4 T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4 and CD8 T cell epitopes to maximize vaccine effectiveness.
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness. [Display omitted] •Immunopeptidome analysis of SARS-CoV-2 peptides naturally presented on HLA class II•Some HLA-II peptides originate from noncanonical SARS-CoV-2 proteins ORF9b and ORF3c•Class I and class II HLA complexes present different subsets of viral proteins Weingarten-Gabbay et al. map the repertoire of SARS-CoV-2 peptides naturally presented on HLA-II. The authors uncover HLA-II peptides originating from noncanonical ORFs and highlight striking differences between viral proteins that are presented on class I and class II HLAs, resulting in distinct targets for killer and helper T cells.
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4 + T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4 + and CD8 + T cell epitopes to maximize vaccine effectiveness. Weingarten-Gabbay et al. map the repertoire of SARS-CoV-2 peptides naturally presented on HLA-II. The authors uncover HLA-II peptides originating from noncanonical ORFs and highlight striking differences between viral proteins that are presented on class I and class II HLAs, resulting in distinct targets for killer and helper T cells.
ArticleNumber 113596
Author Bauer, Matthew R.
Saeed, Mohsan
Hacohen, Nir
Sabeti, Pardis C.
Clauser, Karl R.
Sarkizova, Siranush
Abelin, Jennifer G.
Chen, Da-Yuan
Rice, Charles M.
Carr, Steven A.
Gentili, Matteo
Hernandez, Gabrielle M.
Weingarten-Gabbay, Shira
Taylor, Hannah B.
Pearlman, Leah R.
AuthorAffiliation 4 Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
12 These authors contributed equally
9 Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
14 Lead contact
1 Broad Institute of MIT and Harvard University, Cambridge, MA, USA
3 Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
7 Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
13 Senior author
2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
5 National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
10 Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
11 Howard Hughes Medical Institute, Chevy Chase, MD, USA
6 Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
8 Center for Cancer Research,
AuthorAffiliation_xml – name: 12 These authors contributed equally
– name: 9 Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
– name: 4 Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
– name: 8 Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
– name: 10 Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
– name: 5 National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
– name: 6 Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
– name: 14 Lead contact
– name: 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
– name: 7 Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
– name: 1 Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– name: 11 Howard Hughes Medical Institute, Chevy Chase, MD, USA
– name: 3 Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
– name: 13 Senior author
Author_xml – sequence: 1
  givenname: Shira
  surname: Weingarten-Gabbay
  fullname: Weingarten-Gabbay, Shira
  email: shirawg@broadinstitute.org
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 2
  givenname: Da-Yuan
  surname: Chen
  fullname: Chen, Da-Yuan
  organization: Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
– sequence: 3
  givenname: Siranush
  surname: Sarkizova
  fullname: Sarkizova, Siranush
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 4
  givenname: Hannah B.
  surname: Taylor
  fullname: Taylor, Hannah B.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 5
  givenname: Matteo
  surname: Gentili
  fullname: Gentili, Matteo
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 6
  givenname: Gabrielle M.
  surname: Hernandez
  fullname: Hernandez, Gabrielle M.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 7
  givenname: Leah R.
  surname: Pearlman
  fullname: Pearlman, Leah R.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 8
  givenname: Matthew R.
  surname: Bauer
  fullname: Bauer, Matthew R.
  organization: Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
– sequence: 9
  givenname: Charles M.
  surname: Rice
  fullname: Rice, Charles M.
  organization: Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
– sequence: 10
  givenname: Karl R.
  surname: Clauser
  fullname: Clauser, Karl R.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 11
  givenname: Nir
  surname: Hacohen
  fullname: Hacohen, Nir
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 12
  givenname: Steven A.
  surname: Carr
  fullname: Carr, Steven A.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 13
  givenname: Jennifer G.
  surname: Abelin
  fullname: Abelin, Jennifer G.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
– sequence: 14
  givenname: Mohsan
  surname: Saeed
  fullname: Saeed, Mohsan
  organization: Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
– sequence: 15
  givenname: Pardis C.
  surname: Sabeti
  fullname: Sabeti, Pardis C.
  organization: Broad Institute of MIT and Harvard University, Cambridge, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38117652$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC3UipbSf4DQHnvJ4mc7jsMBtFoBXWmlSrRwtRz7ufUqiYOTrcS_x0ta1HIAX2zZb76RZ16Roz72SMgboEugIN_tlhbbhMOSUcaXALys5QtyyhhAAUxUR0_OJ-R8HHc0L0kBavGSnHAFUMmSnZKLmztcXG5XxWazCF237-OAwxRc7HAR_eJ69fW6WMfvBXtNjr1pRzx_2M_It8-fbtaXxfbqy2a92ha25HTKhtI4ZWtbAjAjAUVtrfKVaYytFFW1laicqkEaLqGyrPK2Kb2nwglVYs3PyGbmumh2ekihM-mnjibo3xcx3WqTpmBb1K5RaCiUjaqd4NQ3vGI-_0wZNAINy6yPM2vYNx06i_2UTPsM-vylD3f6Nt5roErSCmgmXDwQUvyxx3HSXRhz9K3pMe5HzWoqyooLLvPo26dmf1wes84D7-cBm-I4JvTahslMIR68Q5tN9aFbvdNzt_rQrZ67zWLxl_iR_x_Zh1mGubL7gEmPNmBv0YWEdsqZhn8DfgE0vbyh
CitedBy_id crossref_primary_10_1038_s41467_024_54734_9
crossref_primary_10_1016_j_mcpro_2025_100913
crossref_primary_10_1038_s41467_024_53296_0
crossref_primary_10_1038_s41467_024_51959_6
Cites_doi 10.1128/JVI.00647-20
10.4049/jimmunol.1600808
10.1126/science.abd3871
10.1074/mcp.RA120.002201
10.4049/jimmunol.167.1.98
10.4049/jimmunol.2001438
10.1016/j.chom.2021.05.010
10.1084/jem.20202617
10.1002/eji.201545890
10.1016/j.meegid.2020.104353
10.1016/j.mcpro.2021.100116
10.1038/s41467-021-22905-7
10.1038/s41590-020-0782-6
10.1016/j.ebiom.2021.103410
10.3389/fimmu.2015.00546
10.3389/fimmu.2021.701501
10.1056/NEJMra2206573
10.1016/j.immuni.2020.10.006
10.1038/s41587-019-0322-9
10.4049/jimmunol.2100421
10.1038/s41577-020-00480-0
10.1016/j.celrep.2022.111485
10.1038/s41586-020-2798-3
10.1002/eji.201948126
10.1093/nar/gkx248
10.1084/jem.20200206
10.3389/fimmu.2018.02144
10.1038/s41586-020-2550-z
10.1016/j.cell.2021.01.007
10.1016/j.ijid.2022.06.046
10.1038/s41590-020-00808-x
10.1016/j.celrep.2020.108454
10.1056/NEJMoa2035389
10.1016/j.immuni.2020.11.004
10.4049/jimmunol.169.9.5089
10.1073/pnas.0711874105
10.1001/jama.2021.3199
10.1128/JVI.00862-21
10.1126/scitranslmed.abq1945
10.1038/s41586-020-2008-3
10.1038/s41467-023-36132-9
10.1038/s41467-021-22811-y
10.1038/s41541-021-00292-w
10.1126/science.abb3753
10.4049/jimmunol.2001400
10.1016/j.xpro.2022.101910
10.1038/s41598-021-92521-4
10.1016/j.cell.2023.04.007
10.1371/journal.pone.0268434
10.1172/JCI145476
10.1099/jgv.0.001469
10.1016/j.immuni.2020.12.002
10.1016/j.immuni.2017.02.007
10.1038/nrd.2017.243
10.1128/JVI.00599-16
10.1074/mcp.TIR117.000383
10.1111/jcmm.16200
10.1016/j.immuni.2019.08.012
10.1016/j.cell.2021.05.046
10.1016/S0042-6822(03)00281-2
10.1371/journal.ppat.1003129
10.1016/j.celrep.2021.109305
10.1038/s41467-023-37547-0
10.1016/j.cell.2020.10.039
10.1016/j.celrep.2021.109179
10.1126/science.add2897
10.1038/s41586-021-03653-6
10.1182/blood.2020008488
10.1128/JVI.02002-20
10.1016/j.celrep.2021.108815
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2023.113596
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 113596
ExternalDocumentID oai_doaj_org_article_db8ea015b89d430fb372f8118aea4ea2
PMC10860710
38117652
10_1016_j_celrep_2023_113596
S221112472301608X
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAXUO
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
NPM
7X8
5PM
ID FETCH-LOGICAL-c530t-126ad8c9c5112a61e49cc8f7abac78089c6e8d8916a3617c27fcb5ff04d485e93
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:16:55 EDT 2025
Thu Aug 21 18:35:14 EDT 2025
Fri Jul 11 04:17:03 EDT 2025
Mon Jul 21 05:58:49 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Tue Jul 01 02:59:40 EDT 2025
Sat Aug 10 15:31:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CP: Immunology
SARS-CoV-2
CD4+ T cell
noncanonical protein
CP: Microbiology
immunopeptidome
HLA-II
antigen processing and presentation
immunity
viral antigen
CD4(+) T cell
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-126ad8c9c5112a61e49cc8f7abac78089c6e8d8916a3617c27fcb5ff04d485e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
S.W.-G. and J.G.A. conceptualized the study. S.W.-G., J.G.A., and M.S. designed the experiments. D.-Y.C., H.B.T., M.G., G.M.H., L.R.P., and M.R.B. performed experiments. S.W.-G., S.S., H.B.T., K.R.C., and J.G.A. performed data analysis. N.H., S.A.C., M.S., and P.C.S. supervised the work. S.W.-G., J.G.A., M.S., and P.C.S. wrote the manuscript, with contributions from all of the authors.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2023.113596
PMID 38117652
PQID 2904573436
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_db8ea015b89d430fb372f8118aea4ea2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10860710
proquest_miscellaneous_2904573436
pubmed_primary_38117652
crossref_citationtrail_10_1016_j_celrep_2023_113596
crossref_primary_10_1016_j_celrep_2023_113596
elsevier_sciencedirect_doi_10_1016_j_celrep_2023_113596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-23
PublicationDateYYYYMMDD 2024-01-23
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Martínez-Flores, Zepeda-Cervantes, Cruz-Reséndiz, Aguirre-Sampieri, Sampieri, Vaca (bib7) 2021; 12
Joag, Wijeyesinghe, Stolley, Quarnstrom, Dileepan, Soerens, Sangala, O’Flanagan, Gavil, Hong (bib16) 2021; 206
Nielsen, Vibholm, Monrad, Olesen, Frattari, Pahus, Højen, Gunst, Erikstrup, Holleufer (bib19) 2021; 68
Becerra-Artiles, Nanaware, Muneeruddin, Weaver, Shaffer, Calvo-Calle, Stern (bib43) 2022
Mahajan, Kode, Bhojak, Karunakaran, Lee, Manoharan, Ramesh, Hv, Srivastava, Sathian (bib18) 2021; 11
Gangaev, Ketelaars, Isaeva, Patiwael, Dopler, Hoefakker, De Biasi, Gibellini, Mussini, Guaraldi (bib23) 2021; 12
Rucevic, Kourjian, Boucau, Blatnik, Garcia Bertran, Berberich, Walker, Riemer, Le Gall (bib36) 2016; 90
Forlani, Michaux, Pak, Huber, Marie Joseph, Ramia, Stevenson, Linnebacher, Accolla, Bassani-Sternberg (bib45) 2021; 20
Becerra-Artiles, Cruz, Leszyk, Sidney, Sette, Shaffer, Stern (bib44) 2019; 49
Lippolis, White, Marto, Luckey, Bullock, Shabanowitz, Hunt, Engelhard (bib56) 2002; 169
Shomuradova, Vagida, Sheetikov, Zornikova, Kiryukhin, Titov, Peshkova, Khmelevskaya, Dianov, Malasheva (bib21) 2020; 53
Dai, Gao (bib68) 2021; 21
Abelin, Harjanto, Malloy, Suri, Colson, Goulding, Creech, Serrano, Nasir, Nasrullah (bib54) 2019; 51
Arieta, Xie, Rothenberg, Diao, Harjanto, Meda, Marquart, Koenitzer, Sciuto, Lobo (bib10) 2023; 186
Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib6) 2021; 384
Chong, Marino, Pak, Racle, Daniel, Müller, Gfeller, Coukos, Bassani-Sternberg (bib32) 2018; 17
Grifoni, Sidney, Vita, Peters, Crotty, Weiskopf, Sette (bib60) 2021; 29
Le Bert, Tan, Kunasegaran, Tham, Hafezi, Chia, Chng, Lin, Tan, Linster (bib61) 2020; 584
Krammer (bib65) 2020; 586
Schellens, Meiring, Hoof, Spijkers, Poelen, van Gaans-van den Brink, Costa, Vennema, Keşmir, van Baarle, van Els (bib37) 2015; 6
Silva, Bomfim, Barbosa, Noda, Noronha, Fernandes, Machado, Durigon, Catanozi, Rodrigues (bib69) 2022; 17
Hajnik, Plante, Liang, Alameh, Tang, Bonam, Zhong, Adam, Scharton, Rafael (bib11) 2022; 14
Prakash, S., Srivastava, R., Coulon, P.-G., Dhanushkodi, N.R., Chentoufi, A.A., Tifrea, D.F., Edwards, R.A., Figueroa, C., Schubl, S.D., Hsieh, L., et al. Genome-Wide Asymptomatic B-Cell, CD4 and CD8 T-Cell Epitopes, that are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Immune Targets for Pre-Emptive Pan-Coronavirus Vaccines. SSRN Journal. .
Abelin, Keskin, Sarkizova, Hartigan, Zhang, Sidney, Stevens, Lane, Zhang, Eisenhaure (bib30) 2017; 46
Nelde, Bilich, Heitmann, Maringer, Salih, Roerden, Lübke, Bauer, Rieth, Wacker (bib26) 2021; 22
Deffrennes, Vedrenne, Stolzenberg, Piskurich, Barbieri, Ting, Charron, Alcaïde-Loridan (bib49) 2001; 167
McMurtrey, Lelic, Piazza, Chakrabarti, Yablonsky, Wahl, Bardet, Eckerd, Cook, Hess (bib35) 2008; 105
Pardi, Hogan, Porter, Weissman (bib3) 2018; 17
Finkel, Mizrahi, Nachshon (bib29) 2020
Sarkizova, Klaeger, Le, Li, Oliveira, Keshishian, Hartigan, Zhang, Braun, Ligon (bib33) 2020; 38
Andreatta, Alvarez, Nielsen (bib53) 2017; 45
Cassotta, Paparoditis, Geiger, Mettu, Landry, Donati, Benevento, Foglierini, Lewis, Lanzavecchia, Sallusto (bib52) 2020; 217
Ruiz Cuevas, Hardy, Hollý, Bonneil, Durette, Courcelles, Lanoix, Côté, Staudt, Lemieux (bib71) 2021; 34
Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qiu, Fisher, Takvorian, Bleck, Hsu, Fehr (bib73) 2020; 183
Peng, Mentzer, Liu, Yao, Yin, Dong, Dejnirattisai, Rostron, Supasa, Liu (bib62) 2020; 21
Keller, Harris, Jensen-Wachspress, Kankate, Lang, Lazarski, Durkee-Shock, Lee, Chaudhry, Webber (bib14) 2020; 136
Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib77) 2020; 579
Dutta, Mazumdar, Gordy (bib9) 2020; 94
Sette, Crotty (bib2) 2021; 184
Firth (bib57) 2020; 101
Wherry, Barouch (bib1) 2022; 377
Lee, Sandgren, Duette, Stylianou, Khanna, Eden, Blyth, Gottlieb, Cunningham, Palmer (bib17) 2021; 95
Cagliani, Forni, Clerici, Sironi (bib59) 2020; 83
Kyriakidis, López-Cortés, González, Grimaldos, Prado (bib64) 2021; 6
Barouch (bib67) 2022; 387
Oronsky, Larson, Caroen, Hedjran, Sanchez, Prokopenko, Reid (bib8) 2022; 122
Ovsyannikova, Johnson, Naylor, Muddiman, Poland (bib51) 2003; 312
Croft, Smith, Wong, Tan, Dudek, Flesch, Lin, Tscharke, Purcell (bib34) 2013; 9
Parker, Partridge, Wormald, Kawahara, Stalls, Aggelakopoulou, Parker, Powell Doherty, Ariosa Morejon, Lee (bib42) 2021; 35
Prakash, Srivastava, Coulon, Dhanushkodi, Chentoufi, Tifrea, Edwards, Figueroa, Schubl, Hsieh (bib27) 2021; 206
Stewart, Lu, O’Keefe, Valpadashi, Cruz-Zaragoza, Michel, Nguyen, Carnell, Lukhovitskaya, Milligan (bib72) 2022
Jungreis, Sealfon, Kellis (bib58) 2021; 12
Kared, Redd, Bloch, Bonny, Sumatoh, Kairi, Carbajo, Abel, Newell, Bettinotti (bib24) 2021; 131
Knierman, Lannan, Spindler, McMillian, Konrad, Siegel (bib41) 2020; 33
Neale, Ali, Kronsteiner, Longet, Abraham, Deeks, Brown, Moore, Stafford, Dobson (bib4) 2023
Tarke, Sidney, Kidd, Dan, Ramirez, Yu, Mateus, da Silva Antunes, Moore, Rubiro (bib28) 2021; 2
Abelin, Bergstrom, Rivera, Taylor, Klaeger, Xu, Verzani, Jackson White, Woldemichael, Virshup (bib76) 2023; 14
Weingarten-Gabbay, Klaeger, Sarkizova, Pearlman, Chen, Gallagher, Bauer, Taylor, Dunn, Tarr (bib39) 2021; 184
Chen, Ruan, Wang, Nie, Ma, Tan (bib13) 2021; 25
Rha, Jeong, Ko, Choi, Seo, Lee, Sa, Kim, Joo, Ahn (bib20) 2021; 54
Ferretti, Kula, Wang, Nguyen, Weinheimer, Dunlap, Xu, Nabilsi, Perullo, Cristofaro (bib22) 2020; 53
Ternette, Yang, Partridge, Llano, Cedeño, Fischer, Charles, Dudek, Mothe, Crespo (bib38) 2016; 46
Wosen, Mukhopadhyay, Macaubas, Mellins (bib48) 2018; 9
Chen, Khan, Close, Goel, Blum, Tavares, Kenney, Conway, Ewoldt, Chitalia (bib74) 2021; 95
Bruchez, Sha, Johnson, Chen, Stefani, McConnell, Gaucherand, Prins, Matreyek, Hume (bib50) 2020; 370
Neuwelt, Kimball, Johnson, Arnold, Bullock, Kaspar, Kleczko, Kwak, Wu, Heasley (bib47) 2020; 8
Le Bert, Clapham, Tan, Chia, Tham, Lim, Kunasegaran, Tan, Dutertre, Shankar (bib15) 2021; 218
Creech, Walker, Samuels (bib66) 2021; 325
Hos, Tondini, Camps, Rademaker, van den Bulk, Ruano, Janssen, de Ru, van den Elsen, de Miranda (bib46) 2022; 41
Bassani-Sternberg, Gfeller (bib31) 2016; 197
Taylor, Klaeger, Clauser, Sarkizova, Weingarten-Gabbay, Graham, Carr, Abelin (bib55) 2021; 20
Matchett, Joag, Stolley, Shepherd, Quarnstrom, Mickelson, Wijeyesinghe, Soerens, Becker, Thiede (bib12) 2021; 207
Weingarten-Gabbay, Pearlman, Chen, Klaeger, Taylor, Welch, Keskin, Carr, Abelin, Saeed, Sabeti (bib70) 2022; 3
Mateus, Grifoni, Tarke, Sidney, Ramirez, Dan, Burger, Rawlings, Smith, Phillips (bib25) 2020; 370
Gentili, Liu, Papanastasiou, Dele-Oni, Schwartz, Carlson, Al’Khafaji, Krug, Brown, Doench (bib75) 2023; 14
Sahin, Muik, Vogler, Derhovanessian, Kranz, Vormehr, Quandt, Bidmon, Ulges, Baum (bib5) 2021; 595
Nagler, Kalaora, Barbolin, Gangaev, Ketelaars, Alon, Pai, Benedek, Yahalom-Ronen, Erez (bib40) 2021; 35
Deffrennes (10.1016/j.celrep.2023.113596_bib49) 2001; 167
Le Bert (10.1016/j.celrep.2023.113596_bib15) 2021; 218
Dutta (10.1016/j.celrep.2023.113596_bib9) 2020; 94
Abelin (10.1016/j.celrep.2023.113596_bib30) 2017; 46
Barouch (10.1016/j.celrep.2023.113596_bib67) 2022; 387
Gentili (10.1016/j.celrep.2023.113596_bib75) 2023; 14
Hos (10.1016/j.celrep.2023.113596_bib46) 2022; 41
Ghosh (10.1016/j.celrep.2023.113596_bib73) 2020; 183
Jungreis (10.1016/j.celrep.2023.113596_bib58) 2021; 12
Nielsen (10.1016/j.celrep.2023.113596_bib19) 2021; 68
Becerra-Artiles (10.1016/j.celrep.2023.113596_bib43) 2022
Silva (10.1016/j.celrep.2023.113596_bib69) 2022; 17
Shomuradova (10.1016/j.celrep.2023.113596_bib21) 2020; 53
Bruchez (10.1016/j.celrep.2023.113596_bib50) 2020; 370
10.1016/j.celrep.2023.113596_bib63
Wherry (10.1016/j.celrep.2023.113596_bib1) 2022; 377
Sahin (10.1016/j.celrep.2023.113596_bib5) 2021; 595
Chong (10.1016/j.celrep.2023.113596_bib32) 2018; 17
Peng (10.1016/j.celrep.2023.113596_bib62) 2020; 21
Stewart (10.1016/j.celrep.2023.113596_bib72) 2022
Parker (10.1016/j.celrep.2023.113596_bib42) 2021; 35
Taylor (10.1016/j.celrep.2023.113596_bib55) 2021; 20
Oronsky (10.1016/j.celrep.2023.113596_bib8) 2022; 122
Finkel (10.1016/j.celrep.2023.113596_bib29) 2020
Neuwelt (10.1016/j.celrep.2023.113596_bib47) 2020; 8
Dai (10.1016/j.celrep.2023.113596_bib68) 2021; 21
Abelin (10.1016/j.celrep.2023.113596_bib76) 2023; 14
Baden (10.1016/j.celrep.2023.113596_bib6) 2021; 384
Mateus (10.1016/j.celrep.2023.113596_bib25) 2020; 370
Rucevic (10.1016/j.celrep.2023.113596_bib36) 2016; 90
Lee (10.1016/j.celrep.2023.113596_bib17) 2021; 95
Weingarten-Gabbay (10.1016/j.celrep.2023.113596_bib70) 2022; 3
Abelin (10.1016/j.celrep.2023.113596_bib54) 2019; 51
Le Bert (10.1016/j.celrep.2023.113596_bib61) 2020; 584
Bassani-Sternberg (10.1016/j.celrep.2023.113596_bib31) 2016; 197
Arieta (10.1016/j.celrep.2023.113596_bib10) 2023; 186
Andreatta (10.1016/j.celrep.2023.113596_bib53) 2017; 45
Neale (10.1016/j.celrep.2023.113596_bib4) 2023
Ovsyannikova (10.1016/j.celrep.2023.113596_bib51) 2003; 312
Keller (10.1016/j.celrep.2023.113596_bib14) 2020; 136
Gangaev (10.1016/j.celrep.2023.113596_bib23) 2021; 12
Kared (10.1016/j.celrep.2023.113596_bib24) 2021; 131
Joag (10.1016/j.celrep.2023.113596_bib16) 2021; 206
Prakash (10.1016/j.celrep.2023.113596_bib27) 2021; 206
Forlani (10.1016/j.celrep.2023.113596_bib45) 2021; 20
Wosen (10.1016/j.celrep.2023.113596_bib48) 2018; 9
Lippolis (10.1016/j.celrep.2023.113596_bib56) 2002; 169
Ternette (10.1016/j.celrep.2023.113596_bib38) 2016; 46
Firth (10.1016/j.celrep.2023.113596_bib57) 2020; 101
Krammer (10.1016/j.celrep.2023.113596_bib65) 2020; 586
Rha (10.1016/j.celrep.2023.113596_bib20) 2021; 54
Croft (10.1016/j.celrep.2023.113596_bib34) 2013; 9
Chen (10.1016/j.celrep.2023.113596_bib13) 2021; 25
McMurtrey (10.1016/j.celrep.2023.113596_bib35) 2008; 105
Mahajan (10.1016/j.celrep.2023.113596_bib18) 2021; 11
Sette (10.1016/j.celrep.2023.113596_bib2) 2021; 184
Nelde (10.1016/j.celrep.2023.113596_bib26) 2021; 22
Becerra-Artiles (10.1016/j.celrep.2023.113596_bib44) 2019; 49
Martínez-Flores (10.1016/j.celrep.2023.113596_bib7) 2021; 12
Cagliani (10.1016/j.celrep.2023.113596_bib59) 2020; 83
Pardi (10.1016/j.celrep.2023.113596_bib3) 2018; 17
Kyriakidis (10.1016/j.celrep.2023.113596_bib64) 2021; 6
Ruiz Cuevas (10.1016/j.celrep.2023.113596_bib71) 2021; 34
Sarkizova (10.1016/j.celrep.2023.113596_bib33) 2020; 38
Knierman (10.1016/j.celrep.2023.113596_bib41) 2020; 33
Tarke (10.1016/j.celrep.2023.113596_bib28) 2021; 2
Nagler (10.1016/j.celrep.2023.113596_bib40) 2021; 35
Grifoni (10.1016/j.celrep.2023.113596_bib60) 2021; 29
Creech (10.1016/j.celrep.2023.113596_bib66) 2021; 325
Cassotta (10.1016/j.celrep.2023.113596_bib52) 2020; 217
Ferretti (10.1016/j.celrep.2023.113596_bib22) 2020; 53
Chen (10.1016/j.celrep.2023.113596_bib74) 2021; 95
Weingarten-Gabbay (10.1016/j.celrep.2023.113596_bib39) 2021; 184
Matchett (10.1016/j.celrep.2023.113596_bib12) 2021; 207
Hajnik (10.1016/j.celrep.2023.113596_bib11) 2022; 14
Wu (10.1016/j.celrep.2023.113596_bib77) 2020; 579
Schellens (10.1016/j.celrep.2023.113596_bib37) 2015; 6
37398281 - bioRxiv. 2023 Jun 01
References_xml – volume: 11
  year: 2021
  ident: bib18
  article-title: Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals
  publication-title: Sci. Rep.
– volume: 167
  start-page: 98
  year: 2001
  end-page: 106
  ident: bib49
  article-title: Constitutive expression of MHC class II genes in melanoma cell lines results from the transcription of class II transactivator abnormally initiated from its B cell-specific promoter
  publication-title: J. Immunol.
– volume: 184
  start-page: 861
  year: 2021
  end-page: 880
  ident: bib2
  article-title: Adaptive immunity to SARS-CoV-2 and COVID-19
  publication-title: Cell
– volume: 33
  year: 2020
  ident: bib41
  article-title: The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell Rep.
– volume: 83
  year: 2020
  ident: bib59
  article-title: Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses
  publication-title: Infect. Genet. Evol.
– volume: 584
  start-page: 457
  year: 2020
  end-page: 462
  ident: bib61
  article-title: SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls
  publication-title: Nature
– volume: 9
  start-page: 2144
  year: 2018
  ident: bib48
  article-title: Epithelial MHC Class II Expression and Its Role in Antigen Presentation in the Gastrointestinal and Respiratory Tracts
  publication-title: Front. Immunol.
– volume: 41
  year: 2022
  ident: bib46
  article-title: Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA
  publication-title: Cell Rep.
– volume: 377
  start-page: 821
  year: 2022
  end-page: 822
  ident: bib1
  article-title: T cell immunity to COVID-19 vaccines
  publication-title: Science
– volume: 312
  start-page: 495
  year: 2003
  end-page: 506
  ident: bib51
  article-title: Naturally processed measles virus peptide eluted from class II HLA-DRB1
  publication-title: Virology
– volume: 95
  year: 2021
  ident: bib74
  article-title: SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway
  publication-title: J. Virol.
– volume: 595
  start-page: 572
  year: 2021
  end-page: 577
  ident: bib5
  article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans
  publication-title: Nature
– volume: 45
  start-page: W458
  year: 2017
  end-page: W463
  ident: bib53
  article-title: GibbsCluster: unsupervised clustering and alignment of peptide sequences
  publication-title: Nucleic Acids Res.
– volume: 90
  start-page: 8605
  year: 2016
  end-page: 8620
  ident: bib36
  article-title: Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses
  publication-title: J. Virol.
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  ident: bib77
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
– volume: 35
  year: 2021
  ident: bib42
  article-title: Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells
  publication-title: Cell Rep.
– volume: 14
  start-page: 1851
  year: 2023
  ident: bib76
  article-title: Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues
  publication-title: Nat. Commun.
– volume: 6
  start-page: 546
  year: 2015
  ident: bib37
  article-title: Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation
  publication-title: Front. Immunol.
– volume: 49
  start-page: 1167
  year: 2019
  end-page: 1185
  ident: bib44
  article-title: Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses
  publication-title: Eur. J. Immunol.
– volume: 94
  start-page: e00647-20
  year: 2020
  ident: bib9
  article-title: The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development
  publication-title: J. Virol.
– volume: 9
  year: 2013
  ident: bib34
  article-title: Kinetics of antigen expression and epitope presentation during virus infection
  publication-title: PLoS Pathog.
– volume: 184
  start-page: 3962
  year: 2021
  end-page: 3980.e17
  ident: bib39
  article-title: Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs
  publication-title: Cell
– volume: 21
  start-page: 1336
  year: 2020
  end-page: 1345
  ident: bib62
  article-title: Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19
  publication-title: Nat. Immunol.
– year: 2020
  ident: bib29
  article-title: The Coding Capacity of SARS-CoV-2
  publication-title: bioRxiv
– volume: 131
  year: 2021
  ident: bib24
  article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals
  publication-title: J. Clin. Invest.
– volume: 206
  start-page: 2566
  year: 2021
  end-page: 2582
  ident: bib27
  article-title: Genome-Wide B Cell, CD4+, and CD8+ T Cell Epitopes That Are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus Vaccines
  publication-title: J. Immunol.
– volume: 29
  start-page: 1076
  year: 2021
  end-page: 1092
  ident: bib60
  article-title: SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19
  publication-title: Cell Host Microbe
– volume: 105
  start-page: 2981
  year: 2008
  end-page: 2986
  ident: bib35
  article-title: Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: Prakash, S., Srivastava, R., Coulon, P.-G., Dhanushkodi, N.R., Chentoufi, A.A., Tifrea, D.F., Edwards, R.A., Figueroa, C., Schubl, S.D., Hsieh, L., et al. Genome-Wide Asymptomatic B-Cell, CD4 and CD8 T-Cell Epitopes, that are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Immune Targets for Pre-Emptive Pan-Coronavirus Vaccines. SSRN Journal. .
– volume: 22
  start-page: 74
  year: 2021
  end-page: 85
  ident: bib26
  article-title: SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition
  publication-title: Nat. Immunol.
– volume: 17
  start-page: 261
  year: 2018
  end-page: 279
  ident: bib3
  article-title: mRNA vaccines — a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
– volume: 68
  year: 2021
  ident: bib19
  article-title: SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity
  publication-title: EBioMedicine
– volume: 53
  start-page: 1245
  year: 2020
  end-page: 1257.e5
  ident: bib21
  article-title: SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors
  publication-title: Immunity
– year: 2023
  ident: bib4
  article-title: CD4+ and CD8+ T Cell and Antibody Correlates of Protection against Delta Vaccine Breakthrough Infection: A Nested Case-Control Study within the PITCH Study
  publication-title: medRxiv
– volume: 183
  start-page: 1520
  year: 2020
  end-page: 1535.e14
  ident: bib73
  article-title: β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway
  publication-title: Cell
– volume: 6
  start-page: 28
  year: 2021
  ident: bib64
  article-title: SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates
  publication-title: NPJ Vaccines
– volume: 12
  start-page: 2593
  year: 2021
  ident: bib23
  article-title: Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features
  publication-title: Nat. Commun.
– volume: 17
  year: 2022
  ident: bib69
  article-title: Immunization with SARS-CoV-2 Nucleocapsid protein triggers a pulmonary immune response in rats
  publication-title: PLoS One
– year: 2022
  ident: bib72
  article-title: The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity
  publication-title: bioRxiv
– volume: 34
  year: 2021
  ident: bib71
  article-title: Most non-canonical proteins uniquely populate the proteome or immunopeptidome
  publication-title: Cell Rep.
– volume: 14
  start-page: 611
  year: 2023
  ident: bib75
  article-title: ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling
  publication-title: Nat. Commun.
– volume: 14
  year: 2022
  ident: bib11
  article-title: Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models
  publication-title: Sci. Transl. Med.
– year: 2022
  ident: bib43
  article-title: Immunopeptidome Profiling of Human Coronavirus OC43-Infected Cells Identifies CD4 T Cell Epitopes Specific to Seasonal Coronaviruses or Cross-Reactive with SARS-CoV-2
  publication-title: bioRxiv
– volume: 25
  start-page: 1274
  year: 2021
  end-page: 1289
  ident: bib13
  article-title: T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research
  publication-title: J. Cell Mol. Med.
– volume: 207
  start-page: 376
  year: 2021
  end-page: 379
  ident: bib12
  article-title: Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity
  publication-title: J. Immunol.
– volume: 370
  start-page: 241
  year: 2020
  end-page: 247
  ident: bib50
  article-title: MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses
  publication-title: Science
– volume: 12
  start-page: 2642
  year: 2021
  ident: bib58
  article-title: SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes
  publication-title: Nat. Commun.
– volume: 186
  start-page: 2392
  year: 2023
  end-page: 2409.e21
  ident: bib10
  article-title: The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection
  publication-title: Cell
– volume: 370
  start-page: 89
  year: 2020
  end-page: 94
  ident: bib25
  article-title: Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans
  publication-title: Science
– volume: 20
  year: 2021
  ident: bib45
  article-title: CIITA-Transduced Glioblastoma Cells Uncover a Rich Repertoire of Clinically Relevant Tumor-Associated HLA-II Antigens
  publication-title: Mol. Cell. Proteomics
– volume: 206
  start-page: 931
  year: 2021
  end-page: 935
  ident: bib16
  article-title: Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses
  publication-title: J. Immunol.
– volume: 51
  start-page: 766
  year: 2019
  end-page: 779.e17
  ident: bib54
  article-title: Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction
  publication-title: Immunity
– volume: 325
  start-page: 1318
  year: 2021
  end-page: 1320
  ident: bib66
  article-title: SARS-CoV-2 Vaccines
  publication-title: JAMA
– volume: 54
  start-page: 44
  year: 2021
  end-page: 52.e3
  ident: bib20
  article-title: PD-1-Expressing SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, but Functional in Patients with COVID-19
  publication-title: Immunity
– volume: 217
  year: 2020
  ident: bib52
  article-title: Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin
  publication-title: J. Exp. Med.
– volume: 101
  start-page: 1085
  year: 2020
  end-page: 1089
  ident: bib57
  article-title: A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a
  publication-title: J. Gen. Virol.
– volume: 586
  start-page: 516
  year: 2020
  end-page: 527
  ident: bib65
  article-title: SARS-CoV-2 vaccines in development
  publication-title: Nature
– volume: 46
  start-page: 60
  year: 2016
  end-page: 69
  ident: bib38
  article-title: Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells
  publication-title: Eur. J. Immunol.
– volume: 21
  start-page: 73
  year: 2021
  end-page: 82
  ident: bib68
  article-title: Viral targets for vaccines against COVID-19
  publication-title: Nat. Rev. Immunol.
– volume: 387
  start-page: 1011
  year: 2022
  end-page: 1020
  ident: bib67
  article-title: Covid-19 Vaccines — Immunity, Variants, Boosters
  publication-title: N. Engl. J. Med.
– volume: 218
  year: 2021
  ident: bib15
  article-title: Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection
  publication-title: J. Exp. Med.
– volume: 122
  start-page: 529
  year: 2022
  end-page: 530
  ident: bib8
  article-title: Nucleocapsid as a next-generation COVID-19 vaccine candidate
  publication-title: Int. J. Infect. Dis.
– volume: 20
  year: 2021
  ident: bib55
  article-title: MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies
  publication-title: Mol. Cell. Proteomics
– volume: 2
  year: 2021
  ident: bib28
  article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases
  publication-title: Cell Rep. Med.
– volume: 17
  start-page: 533
  year: 2018
  end-page: 548
  ident: bib32
  article-title: High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome
  publication-title: Mol. Cell. Proteomics
– volume: 53
  start-page: 1095
  year: 2020
  end-page: 1107.e3
  ident: bib22
  article-title: Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein
  publication-title: Immunity
– volume: 38
  start-page: 199
  year: 2020
  end-page: 209
  ident: bib33
  article-title: A large peptidome dataset improves HLA class I epitope prediction across most of the human population
  publication-title: Nat. Biotechnol.
– volume: 197
  start-page: 2492
  year: 2016
  end-page: 2499
  ident: bib31
  article-title: Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions
  publication-title: J. Immunol.
– volume: 35
  year: 2021
  ident: bib40
  article-title: Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics
  publication-title: Cell Rep.
– volume: 169
  start-page: 5089
  year: 2002
  end-page: 5097
  ident: bib56
  article-title: Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets
  publication-title: J. Immunol.
– volume: 8
  year: 2020
  ident: bib47
  article-title: Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms
  publication-title: J. Immunother. Cancer
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: bib6
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 701501
  year: 2021
  ident: bib7
  article-title: SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants
  publication-title: Front. Immunol.
– volume: 95
  year: 2021
  ident: bib17
  article-title: Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity
  publication-title: J. Virol.
– volume: 46
  start-page: 315
  year: 2017
  end-page: 326
  ident: bib30
  article-title: Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction
  publication-title: Immunity
– volume: 3
  year: 2022
  ident: bib70
  article-title: HLA-I immunopeptidome profiling of human cells infected with high-containment enveloped viruses
  publication-title: STAR Protoc.
– volume: 136
  start-page: 2905
  year: 2020
  end-page: 2917
  ident: bib14
  article-title: SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein
  publication-title: Blood
– volume: 94
  start-page: e00647-20
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib9
  article-title: The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development
  publication-title: J. Virol.
  doi: 10.1128/JVI.00647-20
– volume: 197
  start-page: 2492
  year: 2016
  ident: 10.1016/j.celrep.2023.113596_bib31
  article-title: Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1600808
– volume: 370
  start-page: 89
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib25
  article-title: Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans
  publication-title: Science
  doi: 10.1126/science.abd3871
– volume: 20
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib45
  article-title: CIITA-Transduced Glioblastoma Cells Uncover a Rich Repertoire of Clinically Relevant Tumor-Associated HLA-II Antigens
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.RA120.002201
– volume: 167
  start-page: 98
  year: 2001
  ident: 10.1016/j.celrep.2023.113596_bib49
  article-title: Constitutive expression of MHC class II genes in melanoma cell lines results from the transcription of class II transactivator abnormally initiated from its B cell-specific promoter
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.1.98
– volume: 206
  start-page: 2566
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib27
  article-title: Genome-Wide B Cell, CD4+, and CD8+ T Cell Epitopes That Are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus Vaccines
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.2001438
– volume: 29
  start-page: 1076
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib60
  article-title: SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.05.010
– year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib72
  article-title: The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity
  publication-title: bioRxiv
– volume: 218
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib15
  article-title: Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20202617
– volume: 46
  start-page: 60
  year: 2016
  ident: 10.1016/j.celrep.2023.113596_bib38
  article-title: Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201545890
– volume: 83
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib59
  article-title: Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2020.104353
– volume: 8
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib47
  article-title: Cancer cell-intrinsic expression of MHC II in lung cancer cell lines is actively restricted by MEK/ERK signaling and epigenetic mechanisms
  publication-title: J. Immunother. Cancer
– ident: 10.1016/j.celrep.2023.113596_bib63
– volume: 20
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib55
  article-title: MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies
  publication-title: Mol. Cell. Proteomics
  doi: 10.1016/j.mcpro.2021.100116
– volume: 12
  start-page: 2642
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib58
  article-title: SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22905-7
– volume: 21
  start-page: 1336
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib62
  article-title: Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0782-6
– volume: 68
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib19
  article-title: SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103410
– volume: 6
  start-page: 546
  year: 2015
  ident: 10.1016/j.celrep.2023.113596_bib37
  article-title: Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00546
– volume: 12
  start-page: 701501
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib7
  article-title: SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.701501
– volume: 387
  start-page: 1011
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib67
  article-title: Covid-19 Vaccines — Immunity, Variants, Boosters
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra2206573
– volume: 53
  start-page: 1095
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib22
  article-title: Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.10.006
– volume: 38
  start-page: 199
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib33
  article-title: A large peptidome dataset improves HLA class I epitope prediction across most of the human population
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0322-9
– volume: 207
  start-page: 376
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib12
  article-title: Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.2100421
– volume: 21
  start-page: 73
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib68
  article-title: Viral targets for vaccines against COVID-19
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-00480-0
– volume: 41
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib46
  article-title: Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111485
– volume: 586
  start-page: 516
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib65
  article-title: SARS-CoV-2 vaccines in development
  publication-title: Nature
  doi: 10.1038/s41586-020-2798-3
– volume: 49
  start-page: 1167
  year: 2019
  ident: 10.1016/j.celrep.2023.113596_bib44
  article-title: Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201948126
– volume: 45
  start-page: W458
  year: 2017
  ident: 10.1016/j.celrep.2023.113596_bib53
  article-title: GibbsCluster: unsupervised clustering and alignment of peptide sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx248
– volume: 217
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib52
  article-title: Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20200206
– volume: 9
  start-page: 2144
  year: 2018
  ident: 10.1016/j.celrep.2023.113596_bib48
  article-title: Epithelial MHC Class II Expression and Its Role in Antigen Presentation in the Gastrointestinal and Respiratory Tracts
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02144
– volume: 584
  start-page: 457
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib61
  article-title: SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls
  publication-title: Nature
  doi: 10.1038/s41586-020-2550-z
– volume: 184
  start-page: 861
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib2
  article-title: Adaptive immunity to SARS-CoV-2 and COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.007
– volume: 122
  start-page: 529
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib8
  article-title: Nucleocapsid as a next-generation COVID-19 vaccine candidate
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2022.06.046
– volume: 22
  start-page: 74
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib26
  article-title: SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-00808-x
– volume: 33
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib41
  article-title: The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108454
– volume: 384
  start-page: 403
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib6
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 53
  start-page: 1245
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib21
  article-title: SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.11.004
– volume: 169
  start-page: 5089
  year: 2002
  ident: 10.1016/j.celrep.2023.113596_bib56
  article-title: Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.9.5089
– volume: 105
  start-page: 2981
  year: 2008
  ident: 10.1016/j.celrep.2023.113596_bib35
  article-title: Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711874105
– volume: 325
  start-page: 1318
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib66
  article-title: SARS-CoV-2 Vaccines
  publication-title: JAMA
  doi: 10.1001/jama.2021.3199
– volume: 95
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib74
  article-title: SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway
  publication-title: J. Virol.
  doi: 10.1128/JVI.00862-21
– volume: 14
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib11
  article-title: Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abq1945
– volume: 579
  start-page: 265
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib77
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib29
  article-title: The Coding Capacity of SARS-CoV-2
  publication-title: bioRxiv
– volume: 14
  start-page: 611
  year: 2023
  ident: 10.1016/j.celrep.2023.113596_bib75
  article-title: ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36132-9
– year: 2023
  ident: 10.1016/j.celrep.2023.113596_bib4
  article-title: CD4+ and CD8+ T Cell and Antibody Correlates of Protection against Delta Vaccine Breakthrough Infection: A Nested Case-Control Study within the PITCH Study
  publication-title: medRxiv
– volume: 12
  start-page: 2593
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib23
  article-title: Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22811-y
– volume: 6
  start-page: 28
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib64
  article-title: SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-021-00292-w
– volume: 370
  start-page: 241
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib50
  article-title: MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses
  publication-title: Science
  doi: 10.1126/science.abb3753
– volume: 206
  start-page: 931
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib16
  article-title: Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.2001400
– volume: 3
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib70
  article-title: HLA-I immunopeptidome profiling of human cells infected with high-containment enveloped viruses
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2022.101910
– volume: 11
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib18
  article-title: Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92521-4
– volume: 186
  start-page: 2392
  year: 2023
  ident: 10.1016/j.celrep.2023.113596_bib10
  article-title: The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection
  publication-title: Cell
  doi: 10.1016/j.cell.2023.04.007
– volume: 17
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib69
  article-title: Immunization with SARS-CoV-2 Nucleocapsid protein triggers a pulmonary immune response in rats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0268434
– volume: 131
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib24
  article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI145476
– volume: 101
  start-page: 1085
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib57
  article-title: A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001469
– volume: 54
  start-page: 44
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib20
  article-title: PD-1-Expressing SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, but Functional in Patients with COVID-19
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.12.002
– volume: 46
  start-page: 315
  year: 2017
  ident: 10.1016/j.celrep.2023.113596_bib30
  article-title: Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.007
– volume: 17
  start-page: 261
  year: 2018
  ident: 10.1016/j.celrep.2023.113596_bib3
  article-title: mRNA vaccines — a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.243
– volume: 2
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib28
  article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases
  publication-title: Cell Rep. Med.
– volume: 90
  start-page: 8605
  year: 2016
  ident: 10.1016/j.celrep.2023.113596_bib36
  article-title: Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses
  publication-title: J. Virol.
  doi: 10.1128/JVI.00599-16
– volume: 17
  start-page: 533
  year: 2018
  ident: 10.1016/j.celrep.2023.113596_bib32
  article-title: High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR117.000383
– volume: 25
  start-page: 1274
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib13
  article-title: T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.16200
– volume: 51
  start-page: 766
  year: 2019
  ident: 10.1016/j.celrep.2023.113596_bib54
  article-title: Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.08.012
– year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib43
  article-title: Immunopeptidome Profiling of Human Coronavirus OC43-Infected Cells Identifies CD4 T Cell Epitopes Specific to Seasonal Coronaviruses or Cross-Reactive with SARS-CoV-2
  publication-title: bioRxiv
– volume: 184
  start-page: 3962
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib39
  article-title: Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.046
– volume: 312
  start-page: 495
  year: 2003
  ident: 10.1016/j.celrep.2023.113596_bib51
  article-title: Naturally processed measles virus peptide eluted from class II HLA-DRB1∗03 recognized by T lymphocytes from human blood
  publication-title: Virology
  doi: 10.1016/S0042-6822(03)00281-2
– volume: 9
  year: 2013
  ident: 10.1016/j.celrep.2023.113596_bib34
  article-title: Kinetics of antigen expression and epitope presentation during virus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003129
– volume: 35
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib40
  article-title: Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109305
– volume: 14
  start-page: 1851
  year: 2023
  ident: 10.1016/j.celrep.2023.113596_bib76
  article-title: Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37547-0
– volume: 183
  start-page: 1520
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib73
  article-title: β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.039
– volume: 35
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib42
  article-title: Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109179
– volume: 377
  start-page: 821
  year: 2022
  ident: 10.1016/j.celrep.2023.113596_bib1
  article-title: T cell immunity to COVID-19 vaccines
  publication-title: Science
  doi: 10.1126/science.add2897
– volume: 595
  start-page: 572
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib5
  article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03653-6
– volume: 136
  start-page: 2905
  year: 2020
  ident: 10.1016/j.celrep.2023.113596_bib14
  article-title: SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein
  publication-title: Blood
  doi: 10.1182/blood.2020008488
– volume: 95
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib17
  article-title: Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity
  publication-title: J. Virol.
  doi: 10.1128/JVI.02002-20
– volume: 34
  year: 2021
  ident: 10.1016/j.celrep.2023.113596_bib71
  article-title: Most non-canonical proteins uniquely populate the proteome or immunopeptidome
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.108815
– reference: 37398281 - bioRxiv. 2023 Jun 01;:
SSID ssj0000601194
Score 2.4303896
Snippet Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113596
SubjectTerms antigen processing and presentation
CD4+ T cell
CP: Immunology
CP: Microbiology
HLA-II
immunity
immunopeptidome
noncanonical protein
SARS-CoV-2
viral antigen
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuqC2ULv1QkDj0YpGNndg5blHRUhUOUCpulj_G6laQIFgO_Htm4mS1Sw974Zo4sf3G9rwoM28YO6xUlN6pnMe8LLmsveYa_QLH01IinQ2iipScfHZeTa_kz-vyeqnUF8WEJXngBNxRcBos-iyn6yBFHp1QRdRIiy1YCbY7fdHnLX1MpTOYtMzkkCvXBXR5uLkHkqgsBFUyKUmnf8kXdZL9Ky7pf8r5MnJyyRWdvGXbPYfMJmns79gGNO_Zm1RV8mmHfUPTZ9NfE356ms0o_aO9o9CV0N5C1sbscnJxyY_bP7zYZVcnP34fT3lfEIH7UuRzPi4qG7SvPbEkW40BsfU6KuusVzrXta9AB42MzwpkJr5Q0bsyxlwGqUuoxQe22bQNfGQZgid8jKHQoZbCKQfo6yF3tXcwBjseMTFAY3yvFk5FK27MEBb2zyRADQFqEqAjxhdP3SW1jDXtvxPqi7akdd1dwBVg-hVg1q2AEVODzUxPGxIdwFfN1nR_MJjY4K6iXyW2gfbxwRQ1Ul0lpMA2e8nki0EKys2tSuxXryyGlVms3mlmfzvlbiprRZxu_zXm_Ylt4VwohogX4jPbnN8_whdkSHP3tdsMz5wkDSc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSki9IEoLLC8FqYderE1sJ3aO2xXVFkEPXYr2ZvkJqUqyWraH_ntm8lg19FCJY5xxYo_HM5-TeRByUsgonJUpjWmeU1E6RRXYBQraUgCc9byIGJz87bJYXIsvq3y1R-ZDLAy6Vfa6v9PprbbuW6Y9N6frqpouGZxdwDpJANFZkaoV6GEuVBvEtzrbfWfBfCNZWw8R6Sl2GCLoWjcvF243ARNXMo71TXLM3v_AQrWJ_EeG6jEQ_def8oGBOn9BnvfIMpl1gz8ke6F-SZ51tSbvj8gpCESy-DqjFxdJhUEhzRodWnzzOyRNTJazqyWdNz8oOybX55-_zxe0L5NAXc7TLUypMF650iF2MkUWgONORWmscVKlqnRFUF4BDjQc8IpjMjqbx5gKL1QeSv6K7NdNHd6QJBjBXYyeKV8KbqUNgABCaktnQxZMNiF8YI12fQ5xLGVxqwdnsRvdMVQjQ3XH0Amhu17rLofGE_RnyPUdLWbAbhuazU_di4D2VgUDWMaq0gueRssliwqOSwYmEQybEDmsmR4JFDyqeuL1n4Yl1rDX8AeKqUNz90ezEgCw5IIDzetuyXeD5BixW-TwXjUShtEsxnfq6lebzxuLXSHSe_vfQ35HDuAK3Yko4-_J_nZzFz4AWNraj-1u-AsKDQ9h
  priority: 102
  providerName: Elsevier
Title The HLA-II immunopeptidome of SARS-CoV-2
URI https://dx.doi.org/10.1016/j.celrep.2023.113596
https://www.ncbi.nlm.nih.gov/pubmed/38117652
https://www.proquest.com/docview/2904573436
https://pubmed.ncbi.nlm.nih.gov/PMC10860710
https://doaj.org/article/db8ea015b89d430fb372f8118aea4ea2
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERKXijfLowoSBy5GWduJ7QNC24pqF1EOlEV7s_wsi5akbLcS_ffM5LEQHiqXHBIn9owf8zmemY-Q56VMwjuZ05QXBRXaK6rALlBYLQXA2cDLhMHJx-_L6Vy8XRSLHdJztnYKPP_r1g75pObr1cvv3y5fw4R_9dNXy8fVOmL2ScaRpKTQ5TVyHWyTRE6D4w7wt2sz5jjDo2bG0JeLCdnH0_3jQwN71aT1H5itP2Hp796Vv5iro1tkr8OZ2aQdGLfJTqzukBst8-TlXfIChkc2fTehs1m2xBARkBoWj1B_jVmdspPJhxN6WH-i7B6ZH735eDilHWkC9QXPNyBSaYPy2iOSsuU4gv69StI666XKlfZlVEEBKrQc0ItnMnlXpJSLIFQRNb9Pdqu6ig9JFq3gPqXAVNCCO-ki4IGYO-1dHEc7HhHeq8b4LqM4ElusTO869sW0CjWoUNMqdETo9q2zNqPGFeUPUOvbspgPu7lRr09NN71McCpaQDZO6SB4nhyXLCnYPFkQIlo2IrLvM9NBixYywKeWV1T_rO9iAzMPj1NsFeuLc8M0wGHJBYcyD9ou3zaSY_xuWUC9ajAYBlIMn1TLz012b6S-Qtz36D8qfkxuQlPRjYgy_oTsbtYX8SmApI3bb34uwHW2ONhv5sAPaJQOhw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXxLMsUAgSBy7WJrYTO8ftimoXtj2wLdqbZTs2pCrJars98O-ZyWPV0EMlrn4k9njs-ZzMfEPIp0wG4ayMaYjTlIrcKarALlA4LQXA2YJnAYOTT8-y2YX4ukpXe2Tax8KgW2V39rdnenNadyXjTprjdVmOlwzuLmCdJIDoJIvV6gF5CGhA4u6cr453H1qQcCRpEiJiB4o9-hC6xs_L-auNR-ZKxjHBSYr0_bdMVMPkP7BUd5Hovw6VtyzUyVPypIOW0aQd_TOy56vn5FGbbPLPC_IZNCKaLSZ0Po9KjAqp1-jRUtS_fVSHaDn5vqTT-gdlL8nFyZfz6Yx2eRKoS3m8hSllplAudwieTJZ4ELlTQRprnFSxyl3mVaEACBoOgMUxGZxNQ4hFIVTqc_6K7Fd15V-TyBvBXQgFU0UuuJXWAwTwsc2d9Yk3yYjwXjTadSTimMviSvfeYpe6FahGgepWoCNCd73WLYnGPe2PUeq7tkiB3RTUm5-60wFdWOUNgBmr8kLwOFguWVBwXzIwCW_YiMh-zfRAo-BR5T2v_9gvsYbNhn9QTOXrm2vNckDAkgsObQ7bJd8NkmPIbpbCe9VAGQazGNZU5a-G0BuzXSHUe_PfQ_5AHs_OTxd6MT_79pYcQA36FlHG35H97ebGHwFy2tr3zc74C6-hEoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+HLA-II+immunopeptidome+of+SARS-CoV-2&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Weingarten-Gabbay%2C+Shira&rft.au=Chen%2C+Da-Yuan&rft.au=Sarkizova%2C+Siranush&rft.au=Taylor%2C+Hannah+B&rft.date=2024-01-23&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=43&rft.issue=1&rft.spage=113596&rft_id=info:doi/10.1016%2Fj.celrep.2023.113596&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon