Overcoming Cancer Persister Cells by Stabilizing the ATF4 Promoter G‐quadruplex
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine...
Saved in:
Published in | Advanced science Vol. 11; no. 35; pp. e2401748 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.09.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy.
Glutamine deprivation triggers metabolic adaptation, leading to the emergence of cancer persister cells that rely on stress‐induced ATF4 transcriptional reprogramming. For the first time, it is found that natural compound coptisine can stabilize the ATF4‐G4 and subsequently disrupt its interaction with transcription factor TFAP2A, ultimately restoring the effectiveness of glutamine‐restricted cancer therapies. The solution structures of coptisine‐ATF4‐G4 complexes are also determined. |
---|---|
AbstractList | Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy.
Glutamine deprivation triggers metabolic adaptation, leading to the emergence of cancer persister cells that rely on stress‐induced ATF4 transcriptional reprogramming. For the first time, it is found that natural compound coptisine can stabilize the ATF4‐G4 and subsequently disrupt its interaction with transcription factor TFAP2A, ultimately restoring the effectiveness of glutamine‐restricted cancer therapies. The solution structures of coptisine‐ATF4‐G4 complexes are also determined. Abstract Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 ( ATF4 ‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4 ‐G4. For the first time, the high‐resolution structure of the COP‐ ATF4‐ G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4 ‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐ G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Glutamine deprivation triggers metabolic adaptation, leading to the emergence of cancer persister cells that rely on stress‐induced ATF4 transcriptional reprogramming. For the first time, it is found that natural compound coptisine can stabilize the ATF4 ‐G4 and subsequently disrupt its interaction with transcription factor TFAP2A, ultimately restoring the effectiveness of glutamine‐restricted cancer therapies. The solution structures of coptisine‐ ATF4 ‐G4 complexes are also determined. Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 ( ATF4 ‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4 ‐G4. For the first time, the high‐resolution structure of the COP‐ ATF4‐ G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4 ‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐ G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2-activating transcription factor 4-alanine, serine, cysteine-preferring transporter 2 (GCN2-ATF4-ASCT2) axis. Central to this phenomenon is the stress-induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G-quadruplex structure located within the promoter region of ATF4 (ATF4-G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4-G4. For the first time, the high-resolution structure of the COP-ATF4-G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP-2 alpha (TFAP2A) and ATF4-G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4-G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine-restricted therapy.Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2-activating transcription factor 4-alanine, serine, cysteine-preferring transporter 2 (GCN2-ATF4-ASCT2) axis. Central to this phenomenon is the stress-induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G-quadruplex structure located within the promoter region of ATF4 (ATF4-G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4-G4. For the first time, the high-resolution structure of the COP-ATF4-G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP-2 alpha (TFAP2A) and ATF4-G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4-G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine-restricted therapy. |
Author | Wang, Kaibo Zang, Xin Kong, Lingyi Liu, Yushuang Xia, Yuanzheng Dong, Ruifang Xiao, Chengmei He, Xiaoyu Lin, Qing Li, Yipu |
AuthorAffiliation | 2 Shenzhen Research Institute of China Pharmaceutical University Shenzhen 518057 China 1 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 China – name: 2 Shenzhen Research Institute of China Pharmaceutical University Shenzhen 518057 China |
Author_xml | – sequence: 1 givenname: Chengmei surname: Xiao fullname: Xiao, Chengmei organization: China Pharmaceutical University – sequence: 2 givenname: Yipu surname: Li fullname: Li, Yipu organization: China Pharmaceutical University – sequence: 3 givenname: Yushuang surname: Liu fullname: Liu, Yushuang organization: China Pharmaceutical University – sequence: 4 givenname: Ruifang surname: Dong fullname: Dong, Ruifang organization: China Pharmaceutical University – sequence: 5 givenname: Xiaoyu surname: He fullname: He, Xiaoyu organization: China Pharmaceutical University – sequence: 6 givenname: Qing surname: Lin fullname: Lin, Qing organization: China Pharmaceutical University – sequence: 7 givenname: Xin surname: Zang fullname: Zang, Xin organization: China Pharmaceutical University – sequence: 8 givenname: Kaibo surname: Wang fullname: Wang, Kaibo email: kbwang@cpu.edu.cn organization: China Pharmaceutical University – sequence: 9 givenname: Yuanzheng orcidid: 0000-0002-8526-5184 surname: Xia fullname: Xia, Yuanzheng email: xiayz@cpu.edu.cn organization: Shenzhen Research Institute of China Pharmaceutical University – sequence: 10 givenname: Lingyi surname: Kong fullname: Kong, Lingyi email: cpu_lykong@126.com organization: China Pharmaceutical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38994891$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhi1URC90yxKNxIZNgm-TsVcoCrRUqtSiFraWxz5OHU3GqT0TGlY8As_Ik-AhJWq76cpH9nd-_-dyiPba0AJCbwgeE4zpB23XaUwx5ZhUXLxAB5RIMWKC870H8T46TmmBMSYlqzgRr9A-E1JyIckB-nqxhmjC0rfzYqZbA7G4hJh86nI0g6ZJRb0prjpd-8b_HKjuBorp9QkvLmNYhgE7_fPr922vbexXDdy9Ri-dbhIc359H6NvJ5-vZl9H5xenZbHo-MiXD2ZnltKycNJhJx4VhIvsjNWdOMCdprYV0AhtsgOrS6bIiUE6E5RWHEksr2RE62-raoBdqFf1Sx40K2qt_FyHOlY6dNw2oyhoGXE-wc4ZrMEIIXUurrRaM1o5lrY9brVVfL8EaaLuom0eij19af6PmYa0IyVVQQrPC-3uFGG57SJ1a-mRy_3QLoU-K4UrmIVUEZ_TdE3QR-tjmXilGsJxwQcRQ3tuHlnZe_o8uA-MtYGJIKYLbIQSrYT3UsB5qtx45gT9JML7TnQ9DSb55Nu2Hb2DzzCdq-un7lZCVYH8B_vnPAg |
CitedBy_id | crossref_primary_10_1039_D4AY01629G |
Cites_doi | 10.1021/jacs.2c00435 10.1186/s12986-020-00439-x 10.1016/j.cmet.2020.12.009 10.1016/j.neulet.2006.09.074 10.1021/jacs.3c05214 10.1016/S0006-291X(03)01318-4 10.1016/j.ccr.2014.04.008 10.1016/j.tem.2009.05.008 10.1002/path.4518 10.2337/db10-1246 10.1016/j.tibs.2010.05.003 10.1172/JCI69600 10.1021/jacs.9b02679 10.1158/1535-7163.MCT-20-0354 10.1016/j.tcb.2022.04.012 10.1101/gad.302349.117 10.1016/S1097-2765(03)00105-9 10.1038/emboj.2010.81 10.1016/j.bmcl.2023.129384 10.4161/cc.8.20.9522 10.4062/biomolther.2017.178 10.1016/S1875-5364(23)60505-9 10.1016/j.molcel.2013.02.008 10.1093/neuonc/noab219 10.3390/molecules25153465 10.1073/pnas.2217826120 10.1016/0006-3002(60)90779-4 10.1038/s12276-020-00504-8 10.1158/2159-8290.CD-20-0282 10.1002/ijc.28749 10.1021/jacs.7b07563 10.1016/j.celrep.2017.07.054 10.1021/acschembio.2c00615 10.1016/j.tibs.2022.03.006 10.1093/nar/gkab330 10.1038/s41467-022-31199-2 10.1038/s41556-019-0347-9 10.1093/nar/gkab681 10.1158/1535-7163.MCT-13-0870 10.1016/j.ccr.2012.09.021 10.1016/j.canlet.2019.09.011 10.1158/2159-8290.CD-18-0348 10.1016/j.tem.2017.07.003 10.1016/j.bmcl.2009.10.033 10.1111/j.1747-0285.2010.01048.x 10.1016/j.jss.2005.07.013 10.1126/science.122.3168.501 10.1093/nar/27.13.2760 10.1093/nar/gkr536 10.1172/JCI131859 10.1038/nprot.2017.150 10.1016/j.cell.2022.07.025 10.1038/s41467-020-17181-w 10.1038/nm.4464 10.1016/j.cmet.2020.07.009 10.1038/s41586-020-2124-0 10.1046/j.1432-1327.1999.00780.x 10.1021/acs.accounts.2c00337 10.1016/j.trecan.2017.01.005 10.1172/JCI0216784 10.1002/ijc.29535 10.1146/annurev.nutr.24.012003.132145 10.18632/oncotarget.17568 10.1038/s41467-022-33761-4 10.1016/j.cell.2020.10.027 10.1002/ijc.2910310104 10.1016/j.neo.2019.10.004 10.1038/ng.3662 10.1021/ja412128w 10.1111/j.1747-0285.2009.00827.x 10.2174/0929867326666190416165004 10.1016/j.molcel.2020.10.015 10.1038/d41586-022-01866-x 10.1021/jacs.9b12770 10.1016/j.cell.2020.11.018 10.1038/s41580-021-00378-2 10.1152/physrev.00026.2020 10.1016/j.molcel.2022.03.016 10.1016/j.critrevonc.2006.07.009 10.1158/1078-0432.CCR-12-2334 10.3945/an.115.011221 10.1016/j.trechm.2019.07.002 10.1038/s41573-020-00114-z 10.1517/14728222.2012.728207 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202401748 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7dc3e4a60ffc4aec888ab9dada832bf3 PMC11425212 38994891 10_1002_advs_202401748 ADVS8978 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210420; BK20221039 – fundername: Program for Jiangsu Province Innovative Research Scholar funderid: JSSCRC2021512 – fundername: National Natural Science Foundation of China funderid: 81973524; 82322065; 82173707; 82204241 – fundername: “Double First‐Class” University Project funderid: CPU2018GF03; CPUQNJC22_08 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: CX10316 – fundername: Special funds for science and technology development funderid: 2021Szvup163; ZY20198020 – fundername: Scientific Research Foundation for high‐level faculty, China Pharmaceutical University, Nanjing, China funderid: 3150020065 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20221039 – fundername: National Natural Science Foundation of China grantid: 81973524 – fundername: Special funds for science and technology development grantid: 2021Szvup163 – fundername: Program for Jiangsu Province Innovative Research Scholar grantid: JSSCRC2021512 – fundername: National Natural Science Foundation of China grantid: 82204241 – fundername: Scientific Research Foundation for high-level faculty, China Pharmaceutical University, Nanjing, China grantid: 3150020065 – fundername: "Double First-Class" University Project grantid: CPUQNJC22_08 – fundername: National Natural Science Foundation of China grantid: 82322065 – fundername: National Natural Science Foundation of China grantid: 82173707 – fundername: Special funds for science and technology development grantid: ZY20198020 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province grantid: CX10316 – fundername: Scientific Research Foundation for high‐level faculty, China Pharmaceutical University, Nanjing, China grantid: 3150020065 – fundername: “Double First‐Class” University Project grantid: CPU2018GF03; CPUQNJC22_08 – fundername: Special funds for science and technology development grantid: 2021Szvup163; ZY20198020 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN AAYXX CITATION EJD CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5308-3d4257f9c039f48c380151b43f83f92ba89f80c0ce2a5fa571e568d474e509d93 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:22:48 EDT 2025 Thu Aug 21 18:31:14 EDT 2025 Thu Jul 10 18:17:11 EDT 2025 Fri Jul 25 09:36:25 EDT 2025 Mon Jul 21 05:58:31 EDT 2025 Tue Aug 05 12:12:04 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Aug 20 07:26:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | G‐quadruplex coptisine ATF4 glutamine‐restrictive therapy |
Language | English |
License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5308-3d4257f9c039f48c380151b43f83f92ba89f80c0ce2a5fa571e568d474e509d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8526-5184 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401748 |
PMID | 38994891 |
PQID | 3109648189 |
PQPubID | 4365299 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7dc3e4a60ffc4aec888ab9dada832bf3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425212 proquest_miscellaneous_3079174710 proquest_journals_3109648189 pubmed_primary_38994891 crossref_primary_10_1002_advs_202401748 crossref_citationtrail_10_1002_advs_202401748 wiley_primary_10_1002_advs_202401748_ADVS8978 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 8 2017; 3 2021; 22 2022 2021; 32 101 2011; 60 2020; 17 2022; 24 1956; 16 2014; 25 2014 2011; 136 39 2012; 16 2020; 11 2020; 10 2021 2020; 49 25 1955 1960; 122 42 2010 2003 2006 2009 2009; 76 308 409 74 19 2014; 135 2013; 19 2017; 31 2020; 2 2021; 33 2015; 137 2022; 82 2020; 130 2010; 29 2013; 50 2020; 579 2022; 608 2007; 61 2016; 48 2002 2003; 110 11 2017; 20 2021; 49 2010; 35 2009; 20 2023; 120 2023; 18 1999; 27 2020; 80 2020; 183 2019; 467 1983; 31 2021; 184 2022; 47 1999; 265 2020; 32 2019; 141 2021 2023; 20 21 2018; 26 2018; 24 2017 2019 2019; 28 9 21 2022; 144 2016; 7 2009 2021 2006 2014 2013 2012; 8 20 131 13 123 22 2022; 185 2015; 236 2020; 27 2022; 13 2020 2005; 52 25 2020 2023; 142 145 2018 2017; 13 139 2020; 22 2022; 55 2023; 91 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_41_2 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_4_2 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_47_2 e_1_2_9_30_1 e_1_2_9_51_2 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_19_5 e_1_2_9_19_4 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_15_2 e_1_2_9_17_3 e_1_2_9_19_1 Roberts E. (e_1_2_9_5_1) 1956; 16 e_1_2_9_17_2 e_1_2_9_19_3 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_44_2 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_7_6 e_1_2_9_7_5 e_1_2_9_7_4 e_1_2_9_7_3 e_1_2_9_9_1 e_1_2_9_25_2 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 10 start-page: 1826 year: 2020 publication-title: Cancer Discov – volume: 3 start-page: 169 year: 2017 publication-title: Trends Cancer – volume: 142 145 start-page: 5204 year: 2020 2023 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 22 start-page: 587 year: 2021 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 185 start-page: 3356 year: 2022 publication-title: Cell – volume: 236 start-page: 278 year: 2015 publication-title: J Pathol – volume: 2 start-page: 123 year: 2020 publication-title: Trends Chem – volume: 27 start-page: 2760 year: 1999 publication-title: Nucleic Acids Res. – volume: 49 25 start-page: 9548 3465 year: 2021 2020 publication-title: Nucleic Acids Res. Molecules – volume: 80 start-page: 592 year: 2020 publication-title: Mol. Cell – volume: 49 start-page: 5905 year: 2021 publication-title: Nucleic Acids Res. – volume: 50 start-page: 200 year: 2013 publication-title: Mol. Cell – volume: 32 start-page: 391 year: 2020 publication-title: Cell Metab. – volume: 136 39 start-page: 2583 8005 year: 2014 2011 publication-title: J. Am. Chem. Soc. Nucleic Acids Res. – volume: 55 start-page: 2628 year: 2022 publication-title: Acc. Chem. Res. – volume: 52 25 start-page: 1496 59 year: 2020 2005 publication-title: Exp. Mol. Med. Annu. Rev. Nutr. – volume: 24 start-page: 194 year: 2018 publication-title: Nat. Med. – volume: 16 start-page: 970 year: 1956 publication-title: Cancer Res. – volume: 7 start-page: 798S year: 2016 publication-title: Adv Nutr – volume: 13 start-page: 3607 year: 2022 publication-title: Nat. Commun. – volume: 467 start-page: 29 year: 2019 publication-title: Cancer Lett – volume: 608 start-page: 675 year: 2022 publication-title: Nature – volume: 47 start-page: 558 year: 2022 publication-title: Trends Biochem. Sci. – volume: 20 start-page: 1654 year: 2017 publication-title: Cell Rep. – volume: 11 start-page: 3326 year: 2020 publication-title: Nat. Commun. – volume: 29 start-page: 2082 year: 2010 publication-title: EMBO J. – volume: 137 start-page: 1587 year: 2015 publication-title: Int. J. Cancer – volume: 17 start-page: 20 year: 2020 publication-title: Nutr Metab (Lond) – volume: 28 9 21 start-page: 794 396 889 year: 2017 2019 2019 publication-title: Trends Endocrinol. Metab. Cancer Discov Nat. Cell Biol. – volume: 135 start-page: 1060 year: 2014 publication-title: Int. J. Cancer – volume: 61 start-page: 208 year: 2007 publication-title: Crit. Rev. Oncol. Hematol. – volume: 18 start-page: 273 year: 2023 publication-title: ACS Chem. Biol. – volume: 35 start-page: 427 year: 2010 publication-title: Trends Biochem. Sci. – volume: 120 year: 2023 publication-title: Proc Natl Acad Sci U S A – volume: 48 start-page: 1267 year: 2016 publication-title: Nat. Genet. – volume: 183 start-page: 860 year: 2020 publication-title: Cell – volume: 31 start-page: 1738 year: 2017 publication-title: Genes Dev. – volume: 60 start-page: 746 year: 2011 publication-title: Diabetes – volume: 32 101 start-page: 920 1371 year: 2022 2021 publication-title: Trends Cell Biol. Physiol. Rev. – volume: 13 139 start-page: 551 year: 2018 2017 publication-title: Nat. Protoc. J. Am. Chem. Soc. – volume: 8 20 131 13 123 22 start-page: 3243 816 26 890 3678 631 year: 2009 2021 2006 2014 2013 2012 publication-title: Cell Cycle Mol. Cancer Ther. J. Surg. Res. Mol. Cancer Ther. J. Clin. Invest. Cancer Cell – volume: 24 start-page: 556 year: 2022 publication-title: Neuro Oncol – volume: 122 42 start-page: 501 187 year: 1955 1960 publication-title: Science Biochim. Biophys. Acta – volume: 13 start-page: 6016 year: 2022 publication-title: Nat. Commun. – volume: 20 21 start-page: 200 803 year: 2021 2023 publication-title: Nat Rev Drug Discov Chin. J. Nat. Med. – volume: 16 start-page: 1189 year: 2012 publication-title: Expert Opin. Ther. Targets – volume: 76 308 409 74 19 start-page: 480 50 192 57 6548 year: 2010 2003 2006 2009 2009 publication-title: Chem. Biol. Drug Des. Biochem. Biophys. Res. Commun. Neurosci. Lett. Chem. Biol. Drug Des. Bioorg. Med. Chem. Lett. – volume: 91 year: 2023 publication-title: Bioorg. Med. Chem. Lett. – volume: 25 start-page: 748 year: 2014 publication-title: Cancer Cell – volume: 82 start-page: 1821 year: 2022 publication-title: Mol. Cell – volume: 184 start-page: 226 year: 2021 publication-title: Cell – volume: 19 start-page: 560 year: 2013 publication-title: Clin. Cancer Res. – volume: 22 start-page: 22 year: 2020 publication-title: Neoplasia – volume: 110 11 start-page: 1383 619 year: 2002 2003 publication-title: J. Clin. Invest. Mol. Cell – volume: 579 start-page: 507 year: 2020 publication-title: Nature – volume: 144 start-page: 6361 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 265 start-page: 754 year: 1999 publication-title: Eur. J. Biochem. – volume: 27 start-page: 5317 year: 2020 publication-title: Curr. Med. Chem. – volume: 31 start-page: 13 year: 1983 publication-title: Int. J. Cancer – volume: 20 start-page: 436 year: 2009 publication-title: Trends Endocrinol. Metab. – volume: 26 start-page: 19 year: 2018 publication-title: Biomol Ther (Seoul) – volume: 130 start-page: 3865 year: 2020 publication-title: J. Clin. Invest. – volume: 33 start-page: 9 year: 2021 publication-title: Cell Metab. – volume: 8 year: 2017 publication-title: Oncotarget – ident: e_1_2_9_42_1 doi: 10.1021/jacs.2c00435 – ident: e_1_2_9_56_1 doi: 10.1186/s12986-020-00439-x – ident: e_1_2_9_57_1 doi: 10.1016/j.cmet.2020.12.009 – ident: e_1_2_9_19_3 doi: 10.1016/j.neulet.2006.09.074 – ident: e_1_2_9_40_2 doi: 10.1021/jacs.3c05214 – ident: e_1_2_9_19_2 doi: 10.1016/S0006-291X(03)01318-4 – ident: e_1_2_9_46_1 doi: 10.1016/j.ccr.2014.04.008 – ident: e_1_2_9_29_1 doi: 10.1016/j.tem.2009.05.008 – ident: e_1_2_9_55_1 doi: 10.1002/path.4518 – ident: e_1_2_9_49_1 doi: 10.2337/db10-1246 – ident: e_1_2_9_27_1 doi: 10.1016/j.tibs.2010.05.003 – ident: e_1_2_9_7_5 doi: 10.1172/JCI69600 – ident: e_1_2_9_26_1 doi: 10.1021/jacs.9b02679 – ident: e_1_2_9_7_2 doi: 10.1158/1535-7163.MCT-20-0354 – ident: e_1_2_9_51_1 doi: 10.1016/j.tcb.2022.04.012 – ident: e_1_2_9_12_1 doi: 10.1101/gad.302349.117 – ident: e_1_2_9_15_2 doi: 10.1016/S1097-2765(03)00105-9 – ident: e_1_2_9_28_1 doi: 10.1038/emboj.2010.81 – ident: e_1_2_9_21_1 doi: 10.1016/j.bmcl.2023.129384 – ident: e_1_2_9_7_1 doi: 10.4161/cc.8.20.9522 – ident: e_1_2_9_60_1 doi: 10.4062/biomolther.2017.178 – ident: e_1_2_9_25_2 doi: 10.1016/S1875-5364(23)60505-9 – ident: e_1_2_9_32_1 doi: 10.1016/j.molcel.2013.02.008 – ident: e_1_2_9_10_1 doi: 10.1093/neuonc/noab219 – ident: e_1_2_9_41_2 doi: 10.3390/molecules25153465 – ident: e_1_2_9_33_1 doi: 10.1073/pnas.2217826120 – ident: e_1_2_9_4_2 doi: 10.1016/0006-3002(60)90779-4 – ident: e_1_2_9_6_1 doi: 10.1038/s12276-020-00504-8 – ident: e_1_2_9_8_1 doi: 10.1158/2159-8290.CD-20-0282 – ident: e_1_2_9_52_1 doi: 10.1002/ijc.28749 – ident: e_1_2_9_44_2 doi: 10.1021/jacs.7b07563 – ident: e_1_2_9_34_1 doi: 10.1016/j.celrep.2017.07.054 – ident: e_1_2_9_24_1 doi: 10.1021/acschembio.2c00615 – ident: e_1_2_9_16_1 doi: 10.1016/j.tibs.2022.03.006 – ident: e_1_2_9_43_1 doi: 10.1093/nar/gkab330 – ident: e_1_2_9_22_1 doi: 10.1038/s41467-022-31199-2 – volume: 16 start-page: 970 year: 1956 ident: e_1_2_9_5_1 publication-title: Cancer Res. – ident: e_1_2_9_17_3 doi: 10.1038/s41556-019-0347-9 – ident: e_1_2_9_41_1 doi: 10.1093/nar/gkab681 – ident: e_1_2_9_7_4 doi: 10.1158/1535-7163.MCT-13-0870 – ident: e_1_2_9_7_6 doi: 10.1016/j.ccr.2012.09.021 – ident: e_1_2_9_36_1 doi: 10.1016/j.canlet.2019.09.011 – ident: e_1_2_9_17_2 doi: 10.1158/2159-8290.CD-18-0348 – ident: e_1_2_9_17_1 doi: 10.1016/j.tem.2017.07.003 – ident: e_1_2_9_19_5 doi: 10.1016/j.bmcl.2009.10.033 – ident: e_1_2_9_19_1 doi: 10.1111/j.1747-0285.2010.01048.x – ident: e_1_2_9_7_3 doi: 10.1016/j.jss.2005.07.013 – ident: e_1_2_9_4_1 doi: 10.1126/science.122.3168.501 – ident: e_1_2_9_45_1 doi: 10.1093/nar/27.13.2760 – ident: e_1_2_9_47_2 doi: 10.1093/nar/gkr536 – ident: e_1_2_9_64_1 doi: 10.1172/JCI131859 – ident: e_1_2_9_44_1 doi: 10.1038/nprot.2017.150 – ident: e_1_2_9_65_1 doi: 10.1016/j.cell.2022.07.025 – ident: e_1_2_9_62_1 doi: 10.1038/s41467-020-17181-w – ident: e_1_2_9_9_1 doi: 10.1038/nm.4464 – ident: e_1_2_9_11_1 doi: 10.1016/j.cmet.2020.07.009 – ident: e_1_2_9_61_1 doi: 10.1038/s41586-020-2124-0 – ident: e_1_2_9_58_1 doi: 10.1046/j.1432-1327.1999.00780.x – ident: e_1_2_9_20_1 doi: 10.1021/acs.accounts.2c00337 – ident: e_1_2_9_35_1 doi: 10.1016/j.trecan.2017.01.005 – ident: e_1_2_9_15_1 doi: 10.1172/JCI0216784 – ident: e_1_2_9_54_1 doi: 10.1002/ijc.29535 – ident: e_1_2_9_6_2 doi: 10.1146/annurev.nutr.24.012003.132145 – ident: e_1_2_9_63_1 doi: 10.18632/oncotarget.17568 – ident: e_1_2_9_38_1 doi: 10.1038/s41467-022-33761-4 – ident: e_1_2_9_3_1 doi: 10.1016/j.cell.2020.10.027 – ident: e_1_2_9_37_1 doi: 10.1002/ijc.2910310104 – ident: e_1_2_9_30_1 doi: 10.1016/j.neo.2019.10.004 – ident: e_1_2_9_39_1 doi: 10.1038/ng.3662 – ident: e_1_2_9_47_1 doi: 10.1021/ja412128w – ident: e_1_2_9_19_4 doi: 10.1111/j.1747-0285.2009.00827.x – ident: e_1_2_9_13_1 doi: 10.2174/0929867326666190416165004 – ident: e_1_2_9_31_1 doi: 10.1016/j.molcel.2020.10.015 – ident: e_1_2_9_2_1 doi: 10.1038/d41586-022-01866-x – ident: e_1_2_9_40_1 doi: 10.1021/jacs.9b12770 – ident: e_1_2_9_1_1 doi: 10.1016/j.cell.2020.11.018 – ident: e_1_2_9_50_1 doi: 10.1038/s41580-021-00378-2 – ident: e_1_2_9_51_2 doi: 10.1152/physrev.00026.2020 – ident: e_1_2_9_14_1 doi: 10.1016/j.molcel.2022.03.016 – ident: e_1_2_9_59_1 doi: 10.1016/j.critrevonc.2006.07.009 – ident: e_1_2_9_53_1 doi: 10.1158/1078-0432.CCR-12-2334 – ident: e_1_2_9_48_1 doi: 10.3945/an.115.011221 – ident: e_1_2_9_23_1 doi: 10.1016/j.trechm.2019.07.002 – ident: e_1_2_9_25_1 doi: 10.1038/s41573-020-00114-z – ident: e_1_2_9_18_1 doi: 10.1517/14728222.2012.728207 |
SSID | ssj0001537418 |
Score | 2.3165019 |
Snippet | Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies.... Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies.... Abstract Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2401748 |
SubjectTerms | Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism Amino acids ATF4 Brain cancer Cancer therapies Cell death Cell Line, Tumor Chemotherapy Clinical trials coptisine Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - genetics G-Quadruplexes Genomes Glutamine - genetics Glutamine - metabolism Glutamine - pharmacology glutamine‐restrictive therapy G‐quadruplex Humans Kinases Lung cancer Metabolism Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism NMR Nuclear magnetic resonance Physiology Promoter Regions, Genetic - genetics Proteins Transcription factors Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB6kT76ItVWjtWxBUB9CN8km2X1sj16L0KrYQt-W_YnCkda7nrQ-9U_o39i_xJkkF-5Q6YuvySQsM98w3ySz3wK8DZlVUpmYZpX0qXC5SI0peWqrGHihQqwt7Xc-PqmOzsTH8_J86agvmgnr5IE7x-3W3hVBmIrH6IQJDjs2Y5U33iAWbWx1PrHmLTVT3f7ggmRZFiqNPN81_iepc2MBQw4uV6pQK9b_N4b556DkMoFtK9D4KTzpqSPb65a8Do9C8wzW--Scsfe9gvSHDfjyCQGKUMKyxEYU1imjSXeK6JSNwmQyY_aGIc-kydhfZIU0kO2djgX73I7nodnh_e3dj7nx0_nlJFxvwtn44HR0lPZnJ6SuLOiTp6dkjMqhw6OQrsBKVGZWFFEWUeXWSBUld5zOAyujKesslBgtUYuAFMKr4jmsNRdNeAnMxGgjZr70GIEcW2bu8Zm6KjOvbF1XCaQLX2rXC4vT-RYT3Uki55p8rwffJ_BusL_sJDX-ablPoRmsSAq7vYAA0T1A9EMASWBrEVjd5-dMkx5qJZCsqAR2htuYWfS7xDThYo42vMZeFos3T-BFh4NhJaRKKKTKEpArCFlZ6uqd5vu3Vr2bNi_Thml0WwumB3ygkZ58ldjrv_ofzngNj-nN3ZDcFqxdTefhDbKqK7vdJtBvymEh9Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeoydpO7BNqV10qJEqBVurN8rMgrbLbbBcBJ34Cv5FfwkziTVnxusZjyZm37fE3hDwJpVVSmZiXlfQ5dyOeGyOK3FYxFEyFWFt87_z6sDo44a9OxWk6cFukssqVT-wctZ85PCPfQQTLikN4US_m5zl2jcLb1dRC4yrZBBcsYfO1ubd_ePTu8pRFMIRnWaE1FqMd4z8hSjcEMsjF5Vo06kD7_5Rp_l4w-Wsi20WiyQ1yPaWQdLeX-Ra5EpqbZCsZ6YI-S0jSz2-Rt29AUeH3IDzRMYq3pVjxjpJt6ThMpwtqv1DIN7FC9itSQTpId48nnB51ZXpA9vLHt-_nS-Pb5XwaPt8mJ5P94_FBnnoo5E4wPPr0aJRROWB85NIxiEiitJxFyaIaWSNVlIUrsC-YiEbUZRAgNV7zAKmEV-wO2WhmTbhHqInRRvAA0keHDTpk4WFOXYnSK1vXVUbyFS-1SwDj2Odiqnto5JFG3uuB9xl5OtDPe2iNv1LuoWgGKoTE7j7M2jOdLEzX3rHATVVEWJ4JDrb2xipvvAGnZSPLyPZKsDrZ6UJfalVGHg_DYGF4bWKaMFsCTVHDnhaCeJGRu70eDCtBdEIuVZkRuaYha0tdH2k-fuhQvPERMz6cBrZ1yvQfHmhIU95L2PPf__d_PCDXcE5fBrdNNi7aZXgIedOFfZSM4ycRQBiO priority: 102 providerName: ProQuest |
Title | Overcoming Cancer Persister Cells by Stabilizing the ATF4 Promoter G‐quadruplex |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401748 https://www.ncbi.nlm.nih.gov/pubmed/38994891 https://www.proquest.com/docview/3109648189 https://www.proquest.com/docview/3079174710 https://pubmed.ncbi.nlm.nih.gov/PMC11425212 https://doaj.org/article/7dc3e4a60ffc4aec888ab9dada832bf3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5Be-GCKL-BsjISEnCImsROYh-3S5cK0bLQVuotsmO7IK2yJdtFwIlH4Bl5EmaSbNoIEOIUKZmNnBmP57N35huApy42SirtwziTNhRlIkKt0yg0mXcRV87nhuqdDw6z_RPx-jQ9vVLF3_JD9Adu5BnNek0Ors1y55I0VNvPRLeNEQlBtbwOm1RfS-z5iZhdnrKknOhZqMMc7q5DLoVYMzdGyc7wFYPI1BD4_wl1_p48eRXUNlFpegtudnCSjVv7b8E1V92Grc5hl-x5xyr94g68e4uTFr8RQxWbkKlrRtnvZOWaTdx8vmTmK0PsSdmy30gKoSEbH08FmzUpeyj26uf3H59W2tar87n7chdOpnvHk_2w66cQlimnY1BLDupViUbwQpYco1MaG8G95F4lRkvlZVRG1CMs9TrNY5eiBUUuHMIKq_g92KgWlXsATHtvPK4G0vqSmnXIyOJv8iyNrTJ5ngUQrnVZlB3ZOPW8mBctTXJSkO6LXvcBPOvlz1uajb9K7pJpeimix25uLOqzovO2Ircld0JnkcfhaVfiNl8bZbXVuIAZzwPYXhu26Hx2WRBHaiYQwKgAnvSP0dvoLxRducUKZaIc97cY0KMA7rfzoB8JMRUKqeIA5GCGDIY6fFJ9_NAwelNBMxVRo9qayfQPHRQIWY4k7v8f_qf8I7hBN9scuW3YuKhX7jGCqgszavxmBJvjlwdvjvC6u3c4ez9qjih-AVf4H9Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QEuiPJcKGAkEHBYdR_eXfuAUBsaUtqGAqnU29Ze24AUJWnSAOXET-CX9Ef1lzCzj5SI16nX3VnJO_7mYXv8DcAjG2oppHJ-mArj8yLivlJJ4OvU2SCW1mWa7jvv9tLuPn99kBwswWlzF4bKKhufWDpqMypoj3yNGCxTjuFFvhgf-dQ1ik5XmxYaFSy27ckXXLJNn2-9xPl9HEWdzX6769ddBfwiiWkz0BBMnSxwKI6LIkYfnYSax07ETkZaCelEUATUKStxKslCm-B_8IxbDK6GyJfQ5S_zGJcyLVje2OztvTvf1UliooNp2CGDaE2Zz8QKjoETc3-xEP3KJgF_ymx_L9D8NXEuI1_nKlypU1a2XmFsBZbs8Bqs1E5hyp7WzNXPrsPbN2gYqE4Mh6xNcJowqrAnJE1Y2w4GU6ZPGOa3VJH7jaQw_WTr_Q5ne2VZIIq9Ovv-42imzGQ2HtivN2D_QrR7E1rD0dDeBqac0w49jjCuoIYgIjD4TZYmoZE6y1IP_EaXeVETmlNfjUFeUTFHOek-n-vegydz-XFF5fFXyQ2amrkUUXCXD0aTD3lt0XlmithylQYOh6dsIYRQWhplFDpJ7WIPVpuJzWu_MM3PUezBw_lrtGg6plFDO5qhTJDhGhqThsCDWxUO5iMhNkQuZOiBWEDIwlAX3ww_fSxZw-nSNF3URrWVYPqPDnJMi94LmYk7__6PB3Cp29_dyXe2ett34TJ9X5XgrULreDKz9zBnO9b3a0NhcHjRtvkTXEFTwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwlxQZRnoICRQMAh2jycxD4g1G67tBSWBVqpt2DHNiCtstvdLlBO_AR-Dz-HX8JMHltWvE69JhPJGX_zsD3-BuCeDbUUUjk_TIXxeRFxX6kk8HXqbBBL6zJN951fDNKdA_7sMDlcge_tXRgqq2x9YuWozbigPfIuMVimHMOL7LqmLGK41X8yOfKpgxSdtLbtNGqI7NmTT7h8mz3e3cK5vh9F_e393o7fdBjwiySmjUFDkHWywGE5LooY_XUSah47ETsZaSWkE0ERUNesxKkkC22C_8QzbjHQGiJiQve_muGqKOjA6ub2YPj6dIcniYkapmWKDKKuMh-JIRyDKK4DxFIkrBoG_CnL_b1Y89ckuoqC_YtwoUlf2UaNtzVYseUlWGscxIw9bFisH12GVy_RSFC1GBpZj6A1ZVRtT6iasp4djWZMnzDMdak69wtJYSrKNvb7nA2rEkEUe_rj67ejuTLT-WRkP1-BgzPR7lXolOPSXgemnNMOvY8wrqDmICIw-E2WJqGROstSD_xWl3nRkJtTj41RXtMyRznpPl_o3oMHC_lJTevxV8lNmpqFFNFxVw_G03d5Y915ZorYcpUGDoenbCGEUFoaZRQ6TO1iD9bbic0bHzHLTxHtwd3Fa7RuOrJRpR3PUSbIcD2NCUTgwbUaB4uREDMiFzL0QCwhZGmoy2_KD-8rBnG6QE2XtlFtFZj-o4McU6Q3Qmbixr__4w6cQ5vMn-8O9m7Cefq8rsZbh87xdG5vYfp2rG83dsLg7Vmb5k8511f2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Cancer+Persister+Cells+by+Stabilizing+the+ATF4+Promoter+G%E2%80%90quadruplex&rft.jtitle=Advanced+science&rft.au=Xiao%2C+Chengmei&rft.au=Li%2C+Yipu&rft.au=Liu%2C+Yushuang&rft.au=Dong%2C+Ruifang&rft.date=2024-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=35&rft_id=info:doi/10.1002%2Fadvs.202401748&rft_id=info%3Apmid%2F38994891&rft.externalDocID=PMC11425212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |