Overcoming Cancer Persister Cells by Stabilizing the ATF4 Promoter G‐quadruplex

Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 35; pp. e2401748 - n/a
Main Authors Xiao, Chengmei, Li, Yipu, Liu, Yushuang, Dong, Ruifang, He, Xiaoyu, Lin, Qing, Zang, Xin, Wang, Kaibo, Xia, Yuanzheng, Kong, Lingyi
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.09.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Glutamine deprivation triggers metabolic adaptation, leading to the emergence of cancer persister cells that rely on stress‐induced ATF4 transcriptional reprogramming. For the first time, it is found that natural compound coptisine can stabilize the ATF4‐G4 and subsequently disrupt its interaction with transcription factor TFAP2A, ultimately restoring the effectiveness of glutamine‐restricted cancer therapies. The solution structures of coptisine‐ATF4‐G4 complexes are also determined.
AbstractList Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Glutamine deprivation triggers metabolic adaptation, leading to the emergence of cancer persister cells that rely on stress‐induced ATF4 transcriptional reprogramming. For the first time, it is found that natural compound coptisine can stabilize the ATF4‐G4 and subsequently disrupt its interaction with transcription factor TFAP2A, ultimately restoring the effectiveness of glutamine‐restricted cancer therapies. The solution structures of coptisine‐ATF4‐G4 complexes are also determined.
Abstract Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy.
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 ( ATF4 ‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4 ‐G4. For the first time, the high‐resolution structure of the COP‐ ATF4‐ G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4 ‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐ G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy. Glutamine deprivation triggers metabolic adaptation, leading to the emergence of cancer persister cells that rely on stress‐induced ATF4 transcriptional reprogramming. For the first time, it is found that natural compound coptisine can stabilize the ATF4 ‐G4 and subsequently disrupt its interaction with transcription factor TFAP2A, ultimately restoring the effectiveness of glutamine‐restricted cancer therapies. The solution structures of coptisine‐ ATF4 ‐G4 complexes are also determined.
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 (ATF4‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4‐G4. For the first time, the high‐resolution structure of the COP‐ATF4‐G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy.
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2‐activating transcription factor 4‐alanine, serine, cysteine‐preferring transporter 2 (GCN2‐ATF4‐ASCT2) axis. Central to this phenomenon is the stress‐induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G‐quadruplex structure located within the promoter region of ATF4 ( ATF4 ‐G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4 ‐G4. For the first time, the high‐resolution structure of the COP‐ ATF4‐ G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP‐2 alpha (TFAP2A) and ATF4 ‐G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4‐ G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine‐restricted therapy.
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2-activating transcription factor 4-alanine, serine, cysteine-preferring transporter 2 (GCN2-ATF4-ASCT2) axis. Central to this phenomenon is the stress-induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G-quadruplex structure located within the promoter region of ATF4 (ATF4-G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4-G4. For the first time, the high-resolution structure of the COP-ATF4-G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP-2 alpha (TFAP2A) and ATF4-G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4-G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine-restricted therapy.Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2-activating transcription factor 4-alanine, serine, cysteine-preferring transporter 2 (GCN2-ATF4-ASCT2) axis. Central to this phenomenon is the stress-induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G-quadruplex structure located within the promoter region of ATF4 (ATF4-G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4-G4. For the first time, the high-resolution structure of the COP-ATF4-G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP-2 alpha (TFAP2A) and ATF4-G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4-G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine-restricted therapy.
Author Wang, Kaibo
Zang, Xin
Kong, Lingyi
Liu, Yushuang
Xia, Yuanzheng
Dong, Ruifang
Xiao, Chengmei
He, Xiaoyu
Lin, Qing
Li, Yipu
AuthorAffiliation 2 Shenzhen Research Institute of China Pharmaceutical University Shenzhen 518057 China
1 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 China
– name: 2 Shenzhen Research Institute of China Pharmaceutical University Shenzhen 518057 China
Author_xml – sequence: 1
  givenname: Chengmei
  surname: Xiao
  fullname: Xiao, Chengmei
  organization: China Pharmaceutical University
– sequence: 2
  givenname: Yipu
  surname: Li
  fullname: Li, Yipu
  organization: China Pharmaceutical University
– sequence: 3
  givenname: Yushuang
  surname: Liu
  fullname: Liu, Yushuang
  organization: China Pharmaceutical University
– sequence: 4
  givenname: Ruifang
  surname: Dong
  fullname: Dong, Ruifang
  organization: China Pharmaceutical University
– sequence: 5
  givenname: Xiaoyu
  surname: He
  fullname: He, Xiaoyu
  organization: China Pharmaceutical University
– sequence: 6
  givenname: Qing
  surname: Lin
  fullname: Lin, Qing
  organization: China Pharmaceutical University
– sequence: 7
  givenname: Xin
  surname: Zang
  fullname: Zang, Xin
  organization: China Pharmaceutical University
– sequence: 8
  givenname: Kaibo
  surname: Wang
  fullname: Wang, Kaibo
  email: kbwang@cpu.edu.cn
  organization: China Pharmaceutical University
– sequence: 9
  givenname: Yuanzheng
  orcidid: 0000-0002-8526-5184
  surname: Xia
  fullname: Xia, Yuanzheng
  email: xiayz@cpu.edu.cn
  organization: Shenzhen Research Institute of China Pharmaceutical University
– sequence: 10
  givenname: Lingyi
  surname: Kong
  fullname: Kong, Lingyi
  email: cpu_lykong@126.com
  organization: China Pharmaceutical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38994891$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1URC90yxKNxIZNgm-TsVcoCrRUqtSiFraWxz5OHU3GqT0TGlY8As_Ik-AhJWq76cpH9nd-_-dyiPba0AJCbwgeE4zpB23XaUwx5ZhUXLxAB5RIMWKC870H8T46TmmBMSYlqzgRr9A-E1JyIckB-nqxhmjC0rfzYqZbA7G4hJh86nI0g6ZJRb0prjpd-8b_HKjuBorp9QkvLmNYhgE7_fPr922vbexXDdy9Ri-dbhIc359H6NvJ5-vZl9H5xenZbHo-MiXD2ZnltKycNJhJx4VhIvsjNWdOMCdprYV0AhtsgOrS6bIiUE6E5RWHEksr2RE62-raoBdqFf1Sx40K2qt_FyHOlY6dNw2oyhoGXE-wc4ZrMEIIXUurrRaM1o5lrY9brVVfL8EaaLuom0eij19af6PmYa0IyVVQQrPC-3uFGG57SJ1a-mRy_3QLoU-K4UrmIVUEZ_TdE3QR-tjmXilGsJxwQcRQ3tuHlnZe_o8uA-MtYGJIKYLbIQSrYT3UsB5qtx45gT9JML7TnQ9DSb55Nu2Hb2DzzCdq-un7lZCVYH8B_vnPAg
CitedBy_id crossref_primary_10_1039_D4AY01629G
Cites_doi 10.1021/jacs.2c00435
10.1186/s12986-020-00439-x
10.1016/j.cmet.2020.12.009
10.1016/j.neulet.2006.09.074
10.1021/jacs.3c05214
10.1016/S0006-291X(03)01318-4
10.1016/j.ccr.2014.04.008
10.1016/j.tem.2009.05.008
10.1002/path.4518
10.2337/db10-1246
10.1016/j.tibs.2010.05.003
10.1172/JCI69600
10.1021/jacs.9b02679
10.1158/1535-7163.MCT-20-0354
10.1016/j.tcb.2022.04.012
10.1101/gad.302349.117
10.1016/S1097-2765(03)00105-9
10.1038/emboj.2010.81
10.1016/j.bmcl.2023.129384
10.4161/cc.8.20.9522
10.4062/biomolther.2017.178
10.1016/S1875-5364(23)60505-9
10.1016/j.molcel.2013.02.008
10.1093/neuonc/noab219
10.3390/molecules25153465
10.1073/pnas.2217826120
10.1016/0006-3002(60)90779-4
10.1038/s12276-020-00504-8
10.1158/2159-8290.CD-20-0282
10.1002/ijc.28749
10.1021/jacs.7b07563
10.1016/j.celrep.2017.07.054
10.1021/acschembio.2c00615
10.1016/j.tibs.2022.03.006
10.1093/nar/gkab330
10.1038/s41467-022-31199-2
10.1038/s41556-019-0347-9
10.1093/nar/gkab681
10.1158/1535-7163.MCT-13-0870
10.1016/j.ccr.2012.09.021
10.1016/j.canlet.2019.09.011
10.1158/2159-8290.CD-18-0348
10.1016/j.tem.2017.07.003
10.1016/j.bmcl.2009.10.033
10.1111/j.1747-0285.2010.01048.x
10.1016/j.jss.2005.07.013
10.1126/science.122.3168.501
10.1093/nar/27.13.2760
10.1093/nar/gkr536
10.1172/JCI131859
10.1038/nprot.2017.150
10.1016/j.cell.2022.07.025
10.1038/s41467-020-17181-w
10.1038/nm.4464
10.1016/j.cmet.2020.07.009
10.1038/s41586-020-2124-0
10.1046/j.1432-1327.1999.00780.x
10.1021/acs.accounts.2c00337
10.1016/j.trecan.2017.01.005
10.1172/JCI0216784
10.1002/ijc.29535
10.1146/annurev.nutr.24.012003.132145
10.18632/oncotarget.17568
10.1038/s41467-022-33761-4
10.1016/j.cell.2020.10.027
10.1002/ijc.2910310104
10.1016/j.neo.2019.10.004
10.1038/ng.3662
10.1021/ja412128w
10.1111/j.1747-0285.2009.00827.x
10.2174/0929867326666190416165004
10.1016/j.molcel.2020.10.015
10.1038/d41586-022-01866-x
10.1021/jacs.9b12770
10.1016/j.cell.2020.11.018
10.1038/s41580-021-00378-2
10.1152/physrev.00026.2020
10.1016/j.molcel.2022.03.016
10.1016/j.critrevonc.2006.07.009
10.1158/1078-0432.CCR-12-2334
10.3945/an.115.011221
10.1016/j.trechm.2019.07.002
10.1038/s41573-020-00114-z
10.1517/14728222.2012.728207
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202401748
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7dc3e4a60ffc4aec888ab9dada832bf3
PMC11425212
38994891
10_1002_advs_202401748
ADVS8978
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210420; BK20221039
– fundername: Program for Jiangsu Province Innovative Research Scholar
  funderid: JSSCRC2021512
– fundername: National Natural Science Foundation of China
  funderid: 81973524; 82322065; 82173707; 82204241
– fundername: “Double First‐Class” University Project
  funderid: CPU2018GF03; CPUQNJC22_08
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  funderid: CX10316
– fundername: Special funds for science and technology development
  funderid: 2021Szvup163; ZY20198020
– fundername: Scientific Research Foundation for high‐level faculty, China Pharmaceutical University, Nanjing, China
  funderid: 3150020065
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20221039
– fundername: National Natural Science Foundation of China
  grantid: 81973524
– fundername: Special funds for science and technology development
  grantid: 2021Szvup163
– fundername: Program for Jiangsu Province Innovative Research Scholar
  grantid: JSSCRC2021512
– fundername: National Natural Science Foundation of China
  grantid: 82204241
– fundername: Scientific Research Foundation for high-level faculty, China Pharmaceutical University, Nanjing, China
  grantid: 3150020065
– fundername: "Double First-Class" University Project
  grantid: CPUQNJC22_08
– fundername: National Natural Science Foundation of China
  grantid: 82322065
– fundername: National Natural Science Foundation of China
  grantid: 82173707
– fundername: Special funds for science and technology development
  grantid: ZY20198020
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: CX10316
– fundername: Scientific Research Foundation for high‐level faculty, China Pharmaceutical University, Nanjing, China
  grantid: 3150020065
– fundername: “Double First‐Class” University Project
  grantid: CPU2018GF03; CPUQNJC22_08
– fundername: Special funds for science and technology development
  grantid: 2021Szvup163; ZY20198020
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
CITATION
EJD
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5308-3d4257f9c039f48c380151b43f83f92ba89f80c0ce2a5fa571e568d474e509d93
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:22:48 EDT 2025
Thu Aug 21 18:31:14 EDT 2025
Thu Jul 10 18:17:11 EDT 2025
Fri Jul 25 09:36:25 EDT 2025
Mon Jul 21 05:58:31 EDT 2025
Tue Aug 05 12:12:04 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Aug 20 07:26:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords G‐quadruplex
coptisine
ATF4
glutamine‐restrictive therapy
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5308-3d4257f9c039f48c380151b43f83f92ba89f80c0ce2a5fa571e568d474e509d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8526-5184
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401748
PMID 38994891
PQID 3109648189
PQPubID 4365299
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_7dc3e4a60ffc4aec888ab9dada832bf3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425212
proquest_miscellaneous_3079174710
proquest_journals_3109648189
pubmed_primary_38994891
crossref_primary_10_1002_advs_202401748
crossref_citationtrail_10_1002_advs_202401748
wiley_primary_10_1002_advs_202401748_ADVS8978
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 8
2017; 3
2021; 22
2022 2021; 32 101
2011; 60
2020; 17
2022; 24
1956; 16
2014; 25
2014 2011; 136 39
2012; 16
2020; 11
2020; 10
2021 2020; 49 25
1955 1960; 122 42
2010 2003 2006 2009 2009; 76 308 409 74 19
2014; 135
2013; 19
2017; 31
2020; 2
2021; 33
2015; 137
2022; 82
2020; 130
2010; 29
2013; 50
2020; 579
2022; 608
2007; 61
2016; 48
2002 2003; 110 11
2017; 20
2021; 49
2010; 35
2009; 20
2023; 120
2023; 18
1999; 27
2020; 80
2020; 183
2019; 467
1983; 31
2021; 184
2022; 47
1999; 265
2020; 32
2019; 141
2021 2023; 20 21
2018; 26
2018; 24
2017 2019 2019; 28 9 21
2022; 144
2016; 7
2009 2021 2006 2014 2013 2012; 8 20 131 13 123 22
2022; 185
2015; 236
2020; 27
2022; 13
2020 2005; 52 25
2020 2023; 142 145
2018 2017; 13 139
2020; 22
2022; 55
2023; 91
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_41_2
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_4_2
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_47_2
e_1_2_9_30_1
e_1_2_9_51_2
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_19_5
e_1_2_9_19_4
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_15_2
e_1_2_9_17_3
e_1_2_9_19_1
Roberts E. (e_1_2_9_5_1) 1956; 16
e_1_2_9_17_2
e_1_2_9_19_3
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_44_2
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_7_6
e_1_2_9_7_5
e_1_2_9_7_4
e_1_2_9_7_3
e_1_2_9_9_1
e_1_2_9_25_2
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 1826
  year: 2020
  publication-title: Cancer Discov
– volume: 3
  start-page: 169
  year: 2017
  publication-title: Trends Cancer
– volume: 142 145
  start-page: 5204
  year: 2020 2023
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 22
  start-page: 587
  year: 2021
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 185
  start-page: 3356
  year: 2022
  publication-title: Cell
– volume: 236
  start-page: 278
  year: 2015
  publication-title: J Pathol
– volume: 2
  start-page: 123
  year: 2020
  publication-title: Trends Chem
– volume: 27
  start-page: 2760
  year: 1999
  publication-title: Nucleic Acids Res.
– volume: 49 25
  start-page: 9548 3465
  year: 2021 2020
  publication-title: Nucleic Acids Res. Molecules
– volume: 80
  start-page: 592
  year: 2020
  publication-title: Mol. Cell
– volume: 49
  start-page: 5905
  year: 2021
  publication-title: Nucleic Acids Res.
– volume: 50
  start-page: 200
  year: 2013
  publication-title: Mol. Cell
– volume: 32
  start-page: 391
  year: 2020
  publication-title: Cell Metab.
– volume: 136 39
  start-page: 2583 8005
  year: 2014 2011
  publication-title: J. Am. Chem. Soc. Nucleic Acids Res.
– volume: 55
  start-page: 2628
  year: 2022
  publication-title: Acc. Chem. Res.
– volume: 52 25
  start-page: 1496 59
  year: 2020 2005
  publication-title: Exp. Mol. Med. Annu. Rev. Nutr.
– volume: 24
  start-page: 194
  year: 2018
  publication-title: Nat. Med.
– volume: 16
  start-page: 970
  year: 1956
  publication-title: Cancer Res.
– volume: 7
  start-page: 798S
  year: 2016
  publication-title: Adv Nutr
– volume: 13
  start-page: 3607
  year: 2022
  publication-title: Nat. Commun.
– volume: 467
  start-page: 29
  year: 2019
  publication-title: Cancer Lett
– volume: 608
  start-page: 675
  year: 2022
  publication-title: Nature
– volume: 47
  start-page: 558
  year: 2022
  publication-title: Trends Biochem. Sci.
– volume: 20
  start-page: 1654
  year: 2017
  publication-title: Cell Rep.
– volume: 11
  start-page: 3326
  year: 2020
  publication-title: Nat. Commun.
– volume: 29
  start-page: 2082
  year: 2010
  publication-title: EMBO J.
– volume: 137
  start-page: 1587
  year: 2015
  publication-title: Int. J. Cancer
– volume: 17
  start-page: 20
  year: 2020
  publication-title: Nutr Metab (Lond)
– volume: 28 9 21
  start-page: 794 396 889
  year: 2017 2019 2019
  publication-title: Trends Endocrinol. Metab. Cancer Discov Nat. Cell Biol.
– volume: 135
  start-page: 1060
  year: 2014
  publication-title: Int. J. Cancer
– volume: 61
  start-page: 208
  year: 2007
  publication-title: Crit. Rev. Oncol. Hematol.
– volume: 18
  start-page: 273
  year: 2023
  publication-title: ACS Chem. Biol.
– volume: 35
  start-page: 427
  year: 2010
  publication-title: Trends Biochem. Sci.
– volume: 120
  year: 2023
  publication-title: Proc Natl Acad Sci U S A
– volume: 48
  start-page: 1267
  year: 2016
  publication-title: Nat. Genet.
– volume: 183
  start-page: 860
  year: 2020
  publication-title: Cell
– volume: 31
  start-page: 1738
  year: 2017
  publication-title: Genes Dev.
– volume: 60
  start-page: 746
  year: 2011
  publication-title: Diabetes
– volume: 32 101
  start-page: 920 1371
  year: 2022 2021
  publication-title: Trends Cell Biol. Physiol. Rev.
– volume: 13 139
  start-page: 551
  year: 2018 2017
  publication-title: Nat. Protoc. J. Am. Chem. Soc.
– volume: 8 20 131 13 123 22
  start-page: 3243 816 26 890 3678 631
  year: 2009 2021 2006 2014 2013 2012
  publication-title: Cell Cycle Mol. Cancer Ther. J. Surg. Res. Mol. Cancer Ther. J. Clin. Invest. Cancer Cell
– volume: 24
  start-page: 556
  year: 2022
  publication-title: Neuro Oncol
– volume: 122 42
  start-page: 501 187
  year: 1955 1960
  publication-title: Science Biochim. Biophys. Acta
– volume: 13
  start-page: 6016
  year: 2022
  publication-title: Nat. Commun.
– volume: 20 21
  start-page: 200 803
  year: 2021 2023
  publication-title: Nat Rev Drug Discov Chin. J. Nat. Med.
– volume: 16
  start-page: 1189
  year: 2012
  publication-title: Expert Opin. Ther. Targets
– volume: 76 308 409 74 19
  start-page: 480 50 192 57 6548
  year: 2010 2003 2006 2009 2009
  publication-title: Chem. Biol. Drug Des. Biochem. Biophys. Res. Commun. Neurosci. Lett. Chem. Biol. Drug Des. Bioorg. Med. Chem. Lett.
– volume: 91
  year: 2023
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 25
  start-page: 748
  year: 2014
  publication-title: Cancer Cell
– volume: 82
  start-page: 1821
  year: 2022
  publication-title: Mol. Cell
– volume: 184
  start-page: 226
  year: 2021
  publication-title: Cell
– volume: 19
  start-page: 560
  year: 2013
  publication-title: Clin. Cancer Res.
– volume: 22
  start-page: 22
  year: 2020
  publication-title: Neoplasia
– volume: 110 11
  start-page: 1383 619
  year: 2002 2003
  publication-title: J. Clin. Invest. Mol. Cell
– volume: 579
  start-page: 507
  year: 2020
  publication-title: Nature
– volume: 144
  start-page: 6361
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 265
  start-page: 754
  year: 1999
  publication-title: Eur. J. Biochem.
– volume: 27
  start-page: 5317
  year: 2020
  publication-title: Curr. Med. Chem.
– volume: 31
  start-page: 13
  year: 1983
  publication-title: Int. J. Cancer
– volume: 20
  start-page: 436
  year: 2009
  publication-title: Trends Endocrinol. Metab.
– volume: 26
  start-page: 19
  year: 2018
  publication-title: Biomol Ther (Seoul)
– volume: 130
  start-page: 3865
  year: 2020
  publication-title: J. Clin. Invest.
– volume: 33
  start-page: 9
  year: 2021
  publication-title: Cell Metab.
– volume: 8
  year: 2017
  publication-title: Oncotarget
– ident: e_1_2_9_42_1
  doi: 10.1021/jacs.2c00435
– ident: e_1_2_9_56_1
  doi: 10.1186/s12986-020-00439-x
– ident: e_1_2_9_57_1
  doi: 10.1016/j.cmet.2020.12.009
– ident: e_1_2_9_19_3
  doi: 10.1016/j.neulet.2006.09.074
– ident: e_1_2_9_40_2
  doi: 10.1021/jacs.3c05214
– ident: e_1_2_9_19_2
  doi: 10.1016/S0006-291X(03)01318-4
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ccr.2014.04.008
– ident: e_1_2_9_29_1
  doi: 10.1016/j.tem.2009.05.008
– ident: e_1_2_9_55_1
  doi: 10.1002/path.4518
– ident: e_1_2_9_49_1
  doi: 10.2337/db10-1246
– ident: e_1_2_9_27_1
  doi: 10.1016/j.tibs.2010.05.003
– ident: e_1_2_9_7_5
  doi: 10.1172/JCI69600
– ident: e_1_2_9_26_1
  doi: 10.1021/jacs.9b02679
– ident: e_1_2_9_7_2
  doi: 10.1158/1535-7163.MCT-20-0354
– ident: e_1_2_9_51_1
  doi: 10.1016/j.tcb.2022.04.012
– ident: e_1_2_9_12_1
  doi: 10.1101/gad.302349.117
– ident: e_1_2_9_15_2
  doi: 10.1016/S1097-2765(03)00105-9
– ident: e_1_2_9_28_1
  doi: 10.1038/emboj.2010.81
– ident: e_1_2_9_21_1
  doi: 10.1016/j.bmcl.2023.129384
– ident: e_1_2_9_7_1
  doi: 10.4161/cc.8.20.9522
– ident: e_1_2_9_60_1
  doi: 10.4062/biomolther.2017.178
– ident: e_1_2_9_25_2
  doi: 10.1016/S1875-5364(23)60505-9
– ident: e_1_2_9_32_1
  doi: 10.1016/j.molcel.2013.02.008
– ident: e_1_2_9_10_1
  doi: 10.1093/neuonc/noab219
– ident: e_1_2_9_41_2
  doi: 10.3390/molecules25153465
– ident: e_1_2_9_33_1
  doi: 10.1073/pnas.2217826120
– ident: e_1_2_9_4_2
  doi: 10.1016/0006-3002(60)90779-4
– ident: e_1_2_9_6_1
  doi: 10.1038/s12276-020-00504-8
– ident: e_1_2_9_8_1
  doi: 10.1158/2159-8290.CD-20-0282
– ident: e_1_2_9_52_1
  doi: 10.1002/ijc.28749
– ident: e_1_2_9_44_2
  doi: 10.1021/jacs.7b07563
– ident: e_1_2_9_34_1
  doi: 10.1016/j.celrep.2017.07.054
– ident: e_1_2_9_24_1
  doi: 10.1021/acschembio.2c00615
– ident: e_1_2_9_16_1
  doi: 10.1016/j.tibs.2022.03.006
– ident: e_1_2_9_43_1
  doi: 10.1093/nar/gkab330
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467-022-31199-2
– volume: 16
  start-page: 970
  year: 1956
  ident: e_1_2_9_5_1
  publication-title: Cancer Res.
– ident: e_1_2_9_17_3
  doi: 10.1038/s41556-019-0347-9
– ident: e_1_2_9_41_1
  doi: 10.1093/nar/gkab681
– ident: e_1_2_9_7_4
  doi: 10.1158/1535-7163.MCT-13-0870
– ident: e_1_2_9_7_6
  doi: 10.1016/j.ccr.2012.09.021
– ident: e_1_2_9_36_1
  doi: 10.1016/j.canlet.2019.09.011
– ident: e_1_2_9_17_2
  doi: 10.1158/2159-8290.CD-18-0348
– ident: e_1_2_9_17_1
  doi: 10.1016/j.tem.2017.07.003
– ident: e_1_2_9_19_5
  doi: 10.1016/j.bmcl.2009.10.033
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1747-0285.2010.01048.x
– ident: e_1_2_9_7_3
  doi: 10.1016/j.jss.2005.07.013
– ident: e_1_2_9_4_1
  doi: 10.1126/science.122.3168.501
– ident: e_1_2_9_45_1
  doi: 10.1093/nar/27.13.2760
– ident: e_1_2_9_47_2
  doi: 10.1093/nar/gkr536
– ident: e_1_2_9_64_1
  doi: 10.1172/JCI131859
– ident: e_1_2_9_44_1
  doi: 10.1038/nprot.2017.150
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cell.2022.07.025
– ident: e_1_2_9_62_1
  doi: 10.1038/s41467-020-17181-w
– ident: e_1_2_9_9_1
  doi: 10.1038/nm.4464
– ident: e_1_2_9_11_1
  doi: 10.1016/j.cmet.2020.07.009
– ident: e_1_2_9_61_1
  doi: 10.1038/s41586-020-2124-0
– ident: e_1_2_9_58_1
  doi: 10.1046/j.1432-1327.1999.00780.x
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.accounts.2c00337
– ident: e_1_2_9_35_1
  doi: 10.1016/j.trecan.2017.01.005
– ident: e_1_2_9_15_1
  doi: 10.1172/JCI0216784
– ident: e_1_2_9_54_1
  doi: 10.1002/ijc.29535
– ident: e_1_2_9_6_2
  doi: 10.1146/annurev.nutr.24.012003.132145
– ident: e_1_2_9_63_1
  doi: 10.18632/oncotarget.17568
– ident: e_1_2_9_38_1
  doi: 10.1038/s41467-022-33761-4
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cell.2020.10.027
– ident: e_1_2_9_37_1
  doi: 10.1002/ijc.2910310104
– ident: e_1_2_9_30_1
  doi: 10.1016/j.neo.2019.10.004
– ident: e_1_2_9_39_1
  doi: 10.1038/ng.3662
– ident: e_1_2_9_47_1
  doi: 10.1021/ja412128w
– ident: e_1_2_9_19_4
  doi: 10.1111/j.1747-0285.2009.00827.x
– ident: e_1_2_9_13_1
  doi: 10.2174/0929867326666190416165004
– ident: e_1_2_9_31_1
  doi: 10.1016/j.molcel.2020.10.015
– ident: e_1_2_9_2_1
  doi: 10.1038/d41586-022-01866-x
– ident: e_1_2_9_40_1
  doi: 10.1021/jacs.9b12770
– ident: e_1_2_9_1_1
  doi: 10.1016/j.cell.2020.11.018
– ident: e_1_2_9_50_1
  doi: 10.1038/s41580-021-00378-2
– ident: e_1_2_9_51_2
  doi: 10.1152/physrev.00026.2020
– ident: e_1_2_9_14_1
  doi: 10.1016/j.molcel.2022.03.016
– ident: e_1_2_9_59_1
  doi: 10.1016/j.critrevonc.2006.07.009
– ident: e_1_2_9_53_1
  doi: 10.1158/1078-0432.CCR-12-2334
– ident: e_1_2_9_48_1
  doi: 10.3945/an.115.011221
– ident: e_1_2_9_23_1
  doi: 10.1016/j.trechm.2019.07.002
– ident: e_1_2_9_25_1
  doi: 10.1038/s41573-020-00114-z
– ident: e_1_2_9_18_1
  doi: 10.1517/14728222.2012.728207
SSID ssj0001537418
Score 2.3165019
Snippet Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant malignancies....
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies....
Abstract Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment‐resistant...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2401748
SubjectTerms Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - metabolism
Amino acids
ATF4
Brain cancer
Cancer therapies
Cell death
Cell Line, Tumor
Chemotherapy
Clinical trials
coptisine
Drug Resistance, Neoplasm - drug effects
Drug Resistance, Neoplasm - genetics
G-Quadruplexes
Genomes
Glutamine - genetics
Glutamine - metabolism
Glutamine - pharmacology
glutamine‐restrictive therapy
G‐quadruplex
Humans
Kinases
Lung cancer
Metabolism
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
NMR
Nuclear magnetic resonance
Physiology
Promoter Regions, Genetic - genetics
Proteins
Transcription factors
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB6kT76ItVWjtWxBUB9CN8km2X1sj16L0KrYQt-W_YnCkda7nrQ-9U_o39i_xJkkF-5Q6YuvySQsM98w3ySz3wK8DZlVUpmYZpX0qXC5SI0peWqrGHihQqwt7Xc-PqmOzsTH8_J86agvmgnr5IE7x-3W3hVBmIrH6IQJDjs2Y5U33iAWbWx1PrHmLTVT3f7ggmRZFiqNPN81_iepc2MBQw4uV6pQK9b_N4b556DkMoFtK9D4KTzpqSPb65a8Do9C8wzW--Scsfe9gvSHDfjyCQGKUMKyxEYU1imjSXeK6JSNwmQyY_aGIc-kydhfZIU0kO2djgX73I7nodnh_e3dj7nx0_nlJFxvwtn44HR0lPZnJ6SuLOiTp6dkjMqhw6OQrsBKVGZWFFEWUeXWSBUld5zOAyujKesslBgtUYuAFMKr4jmsNRdNeAnMxGgjZr70GIEcW2bu8Zm6KjOvbF1XCaQLX2rXC4vT-RYT3Uki55p8rwffJ_BusL_sJDX-ablPoRmsSAq7vYAA0T1A9EMASWBrEVjd5-dMkx5qJZCsqAR2htuYWfS7xDThYo42vMZeFos3T-BFh4NhJaRKKKTKEpArCFlZ6uqd5vu3Vr2bNi_Thml0WwumB3ygkZ58ldjrv_ofzngNj-nN3ZDcFqxdTefhDbKqK7vdJtBvymEh9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeoydpO7BNqV10qJEqBVurN8rMgrbLbbBcBJ34Cv5FfwkziTVnxusZjyZm37fE3hDwJpVVSmZiXlfQ5dyOeGyOK3FYxFEyFWFt87_z6sDo44a9OxWk6cFukssqVT-wctZ85PCPfQQTLikN4US_m5zl2jcLb1dRC4yrZBBcsYfO1ubd_ePTu8pRFMIRnWaE1FqMd4z8hSjcEMsjF5Vo06kD7_5Rp_l4w-Wsi20WiyQ1yPaWQdLeX-Ra5EpqbZCsZ6YI-S0jSz2-Rt29AUeH3IDzRMYq3pVjxjpJt6ThMpwtqv1DIN7FC9itSQTpId48nnB51ZXpA9vLHt-_nS-Pb5XwaPt8mJ5P94_FBnnoo5E4wPPr0aJRROWB85NIxiEiitJxFyaIaWSNVlIUrsC-YiEbUZRAgNV7zAKmEV-wO2WhmTbhHqInRRvAA0keHDTpk4WFOXYnSK1vXVUbyFS-1SwDj2Odiqnto5JFG3uuB9xl5OtDPe2iNv1LuoWgGKoTE7j7M2jOdLEzX3rHATVVEWJ4JDrb2xipvvAGnZSPLyPZKsDrZ6UJfalVGHg_DYGF4bWKaMFsCTVHDnhaCeJGRu70eDCtBdEIuVZkRuaYha0tdH2k-fuhQvPERMz6cBrZ1yvQfHmhIU95L2PPf__d_PCDXcE5fBrdNNi7aZXgIedOFfZSM4ycRQBiO
  priority: 102
  providerName: ProQuest
Title Overcoming Cancer Persister Cells by Stabilizing the ATF4 Promoter G‐quadruplex
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401748
https://www.ncbi.nlm.nih.gov/pubmed/38994891
https://www.proquest.com/docview/3109648189
https://www.proquest.com/docview/3079174710
https://pubmed.ncbi.nlm.nih.gov/PMC11425212
https://doaj.org/article/7dc3e4a60ffc4aec888ab9dada832bf3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5Be-GCKL-BsjISEnCImsROYh-3S5cK0bLQVuotsmO7IK2yJdtFwIlH4Bl5EmaSbNoIEOIUKZmNnBmP57N35huApy42SirtwziTNhRlIkKt0yg0mXcRV87nhuqdDw6z_RPx-jQ9vVLF3_JD9Adu5BnNek0Ors1y55I0VNvPRLeNEQlBtbwOm1RfS-z5iZhdnrKknOhZqMMc7q5DLoVYMzdGyc7wFYPI1BD4_wl1_p48eRXUNlFpegtudnCSjVv7b8E1V92Grc5hl-x5xyr94g68e4uTFr8RQxWbkKlrRtnvZOWaTdx8vmTmK0PsSdmy30gKoSEbH08FmzUpeyj26uf3H59W2tar87n7chdOpnvHk_2w66cQlimnY1BLDupViUbwQpYco1MaG8G95F4lRkvlZVRG1CMs9TrNY5eiBUUuHMIKq_g92KgWlXsATHtvPK4G0vqSmnXIyOJv8iyNrTJ5ngUQrnVZlB3ZOPW8mBctTXJSkO6LXvcBPOvlz1uajb9K7pJpeimix25uLOqzovO2Ircld0JnkcfhaVfiNl8bZbXVuIAZzwPYXhu26Hx2WRBHaiYQwKgAnvSP0dvoLxRducUKZaIc97cY0KMA7rfzoB8JMRUKqeIA5GCGDIY6fFJ9_NAwelNBMxVRo9qayfQPHRQIWY4k7v8f_qf8I7hBN9scuW3YuKhX7jGCqgszavxmBJvjlwdvjvC6u3c4ez9qjih-AVf4H9Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QEuiPJcKGAkEHBYdR_eXfuAUBsaUtqGAqnU29Ze24AUJWnSAOXET-CX9Ef1lzCzj5SI16nX3VnJO_7mYXv8DcAjG2oppHJ-mArj8yLivlJJ4OvU2SCW1mWa7jvv9tLuPn99kBwswWlzF4bKKhufWDpqMypoj3yNGCxTjuFFvhgf-dQ1ik5XmxYaFSy27ckXXLJNn2-9xPl9HEWdzX6769ddBfwiiWkz0BBMnSxwKI6LIkYfnYSax07ETkZaCelEUATUKStxKslCm-B_8IxbDK6GyJfQ5S_zGJcyLVje2OztvTvf1UliooNp2CGDaE2Zz8QKjoETc3-xEP3KJgF_ymx_L9D8NXEuI1_nKlypU1a2XmFsBZbs8Bqs1E5hyp7WzNXPrsPbN2gYqE4Mh6xNcJowqrAnJE1Y2w4GU6ZPGOa3VJH7jaQw_WTr_Q5ne2VZIIq9Ovv-42imzGQ2HtivN2D_QrR7E1rD0dDeBqac0w49jjCuoIYgIjD4TZYmoZE6y1IP_EaXeVETmlNfjUFeUTFHOek-n-vegydz-XFF5fFXyQ2amrkUUXCXD0aTD3lt0XlmithylQYOh6dsIYRQWhplFDpJ7WIPVpuJzWu_MM3PUezBw_lrtGg6plFDO5qhTJDhGhqThsCDWxUO5iMhNkQuZOiBWEDIwlAX3ww_fSxZw-nSNF3URrWVYPqPDnJMi94LmYk7__6PB3Cp29_dyXe2ett34TJ9X5XgrULreDKz9zBnO9b3a0NhcHjRtvkTXEFTwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwlxQZRnoICRQMAh2jycxD4g1G67tBSWBVqpt2DHNiCtstvdLlBO_AR-Dz-HX8JMHltWvE69JhPJGX_zsD3-BuCeDbUUUjk_TIXxeRFxX6kk8HXqbBBL6zJN951fDNKdA_7sMDlcge_tXRgqq2x9YuWozbigPfIuMVimHMOL7LqmLGK41X8yOfKpgxSdtLbtNGqI7NmTT7h8mz3e3cK5vh9F_e393o7fdBjwiySmjUFDkHWywGE5LooY_XUSah47ETsZaSWkE0ERUNesxKkkC22C_8QzbjHQGiJiQve_muGqKOjA6ub2YPj6dIcniYkapmWKDKKuMh-JIRyDKK4DxFIkrBoG_CnL_b1Y89ckuoqC_YtwoUlf2UaNtzVYseUlWGscxIw9bFisH12GVy_RSFC1GBpZj6A1ZVRtT6iasp4djWZMnzDMdak69wtJYSrKNvb7nA2rEkEUe_rj67ejuTLT-WRkP1-BgzPR7lXolOPSXgemnNMOvY8wrqDmICIw-E2WJqGROstSD_xWl3nRkJtTj41RXtMyRznpPl_o3oMHC_lJTevxV8lNmpqFFNFxVw_G03d5Y915ZorYcpUGDoenbCGEUFoaZRQ6TO1iD9bbic0bHzHLTxHtwd3Fa7RuOrJRpR3PUSbIcD2NCUTgwbUaB4uREDMiFzL0QCwhZGmoy2_KD-8rBnG6QE2XtlFtFZj-o4McU6Q3Qmbixr__4w6cQ5vMn-8O9m7Cefq8rsZbh87xdG5vYfp2rG83dsLg7Vmb5k8511f2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Cancer+Persister+Cells+by+Stabilizing+the+ATF4+Promoter+G%E2%80%90quadruplex&rft.jtitle=Advanced+science&rft.au=Xiao%2C+Chengmei&rft.au=Li%2C+Yipu&rft.au=Liu%2C+Yushuang&rft.au=Dong%2C+Ruifang&rft.date=2024-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=35&rft_id=info:doi/10.1002%2Fadvs.202401748&rft_id=info%3Apmid%2F38994891&rft.externalDocID=PMC11425212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon