Bis(pinacolato)diboron‐Enabled Ni‐Catalyzed Reductive Arylation/Vinylation of Alkyl Electrophiles
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for hetero...
Saved in:
Published in | Advanced science Vol. 11; no. 31; pp. e2404301 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.08.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant.
The use of economic bis(pinacolato)diboron as the non‐metal reductant to direct the Ni‐catalyzed reductive arylation and vinylation of alkyl halides/ Katritzky salts with the C(sp2)–halides are achieved, which is characteristic of easy removal of boron residue and homogeneous nature of the reaction that are critical concerns for large‐scale and eco‐friendly process chemistry. |
---|---|
AbstractList | Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp3)-C(sp2) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant.Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp3)-C(sp2) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant. Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. The use of economic bis(pinacolato)diboron as the non‐metal reductant to direct the Ni‐catalyzed reductive arylation and vinylation of alkyl halides/ Katritzky salts with the C(sp2)–halides are achieved, which is characteristic of easy removal of boron residue and homogeneous nature of the reaction that are critical concerns for large‐scale and eco‐friendly process chemistry. Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B 2 Pin 2 ) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp 3 )–C(sp 2 ) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B 2 Pin 2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B 2 Pin 2 can sever as a reductant to reduce Ni II to Ni 0 . This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B Pin ) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp )-C(sp ) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B Pin shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B Pin can sever as a reductant to reduce Ni to Ni . This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant. Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B 2 Pin 2 ) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp 3 )–C(sp 2 ) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B 2 Pin 2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B 2 Pin 2 can sever as a reductant to reduce Ni II to Ni 0 . This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. The use of economic bis(pinacolato)diboron as the non‐metal reductant to direct the Ni‐catalyzed reductive arylation and vinylation of alkyl halides/ Katritzky salts with the C(sp 2 )–halides are achieved, which is characteristic of easy removal of boron residue and homogeneous nature of the reaction that are critical concerns for large‐scale and eco‐friendly process chemistry. Abstract Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. |
Author | Gong, Hegui Sun, Deli Chen, Yunrong Wu, Yu Gong, Yuxin |
AuthorAffiliation | 2 Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China 1 School of Resources and Environmental Engineering Shanghai Polytechnic University No. 2360 Jinhai Road Shanghai 201209 China |
AuthorAffiliation_xml | – name: 2 Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China – name: 1 School of Resources and Environmental Engineering Shanghai Polytechnic University No. 2360 Jinhai Road Shanghai 201209 China |
Author_xml | – sequence: 1 givenname: Deli orcidid: 0000-0003-3098-3717 surname: Sun fullname: Sun, Deli organization: Shanghai Polytechnic University – sequence: 2 givenname: Yuxin surname: Gong fullname: Gong, Yuxin organization: Shanghai University – sequence: 3 givenname: Yu surname: Wu fullname: Wu, Yu organization: Shanghai University – sequence: 4 givenname: Yunrong orcidid: 0000-0001-6872-4943 surname: Chen fullname: Chen, Yunrong email: yr_chen@shu.edu.cn organization: Shanghai University – sequence: 5 givenname: Hegui orcidid: 0000-0001-6534-5569 surname: Gong fullname: Gong, Hegui email: hegui_gong@shu.edu.cn organization: Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38887210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQtVARLaVXjigSl3JI6q_dtU8ohACVKpCg6tXy-qN1cOxg7wYtJ34Cv5FfgtOEqO2lF3tm_N6bGc88BwchBgPASwQnCEJ8JvU6TzDEFFIC0RNwhBFnY8IoPbhjH4KTnBcQQlSRhiL2DBwSxliDETwC5p3LpysXpIpedvGNdm1MMfz9_WceZOuNHn12xZnJTvrhV3G_Gt2rzq3NaJqGQnExnF25sDNH0Y6m_vvgR3NvVJfi6sZ5k1-Ap1b6bE529zG4_DC_nH0aX3z5eD6bXoxVRSAbI8ktRqqcLYaIS0sabDVGlEtiuKUK2trUvKkrKIlCNeOypdYqiVTpSJFjcL6V1VEuxCq5pUyDiNKJ20BM10KmzilvBMOtbmvLdGFSZikjsoKsUVSpqtGKFa23W61V3y6NViZ0Sfp7ovdfgrsR13EtECKk5nVTFE53Cin-6E3uxNJlZbyXwcQ-CwIb2HCK602y1w-gi9inUL6qoHgFUc1pVVCv7pa0r-X_NAtgsgWoFHNOxu4hCIrNxojNxoj9xhQCfUBQrrsdZGnJ-UdpP8twh0eSiOn7q2-Mckb-AfZL1-0 |
CitedBy_id | crossref_primary_10_1126_sciadv_ads5410 crossref_primary_10_1021_acs_chemrev_4c00524 |
Cites_doi | 10.1021/ol200617f 10.1021/jacs.1c10932 10.1002/adsc.201200136 10.1002/chem.201402509 10.1021/acs.orglett.8b02005 10.1021/acs.chemrev.1c00383 10.1021/acs.chemrev.1c00263 10.1039/c3sc51098k 10.1002/anie.201607959 10.1126/science.aaf7230 10.1016/j.chempr.2023.08.011 10.1007/s41061-016-0067-6 10.1038/s41570-021-00288-z 10.1021/ja0389366 10.1021/acs.organomet.1c00325 10.1007/s11426-019-9501-4 10.1002/anie.199527231 10.1021/ja9093956 10.1021/acs.accounts.5b00057 10.1002/chem.201402302 10.1002/chem.201602668 10.1021/cr100327p 10.1055/s-0033-1338520 10.1021/acscatal.1c04239 10.1016/j.cclet.2022.03.070 10.1021/acscatal.0c01842 10.1126/science.abn9124 10.1021/ja510653n 10.1021/jacs.6b01533 10.1021/ja5064586 10.2174/1573412916999200711151147 10.1021/acs.joc.2c00462 10.1021/acs.orglett.8b03567 10.1021/acs.accounts.3c00505 10.1016/j.cclet.2023.108490 10.1038/nature13274 10.1021/acs.accounts.0c00291 10.1002/anie.202102481 10.1021/acsmedchemlett.2c00286 10.1021/ja3089422 10.1016/j.chempr.2023.02.010 10.1016/j.jtemb.2019.02.011 10.1038/nature14676 10.1021/ol502682q 10.1002/anie.202306679 10.1002/anie.202112876 10.1021/acs.orglett.6b03158 10.1002/anie.202200215 10.1021/ja407589e 10.1021/acs.orglett.8b03367 10.1021/acs.accounts.2c00381 10.1021/acscatal.1c04142 10.1039/D0SC05452F 10.1021/acs.orglett.9b01016 10.1021/ja068950t 10.1021/jacs.3c02649 10.1002/ijch.202300089 10.1021/ja304068t 10.1021/jacs.7b03195 10.1021/acscatal.2c03033 10.1021/jacs.8b12801 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202404301 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_82bdb6f8dc3848f483a5087c4cc57dc8 PMC11336967 38887210 10_1002_advs_202404301 ADVS8498 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSFC funderid: 22271182 – fundername: NSFC grantid: 22271182 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5308-1a9f21ca9fb2019af372fd2149a3e9f4c0f6e697650a3c1689ab4ffca1c388c3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:01:16 EDT 2025 Thu Aug 21 18:34:29 EDT 2025 Thu Jul 10 18:01:27 EDT 2025 Sat Jul 26 02:32:54 EDT 2025 Mon Jul 21 05:46:14 EDT 2025 Tue Jul 01 04:00:09 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Wed Jan 22 17:14:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | electrophile nickel diboron cross‐coupling reductant |
Language | English |
License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5308-1a9f21ca9fb2019af372fd2149a3e9f4c0f6e697650a3c1689ab4ffca1c388c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6872-4943 0000-0001-6534-5569 0000-0003-3098-3717 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202404301 |
PMID | 38887210 |
PQID | 3095016945 |
PQPubID | 4365299 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_82bdb6f8dc3848f483a5087c4cc57dc8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11336967 proquest_miscellaneous_3070794268 proquest_journals_3095016945 pubmed_primary_38887210 crossref_primary_10_1002_advs_202404301 crossref_citationtrail_10_1002_advs_202404301 wiley_primary_10_1002_advs_202404301_ADVS8498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 5 2013; 4 2014 2016 2014; 136 18 136 2013; 45 2011 2010; 13 132 2023; 145 2023; 9 2022 2022 2023 2021; 61 33 34 60 2016 2022 2017; 22 87 139 2012 2012; 134 354 2015 2016; 524 55 2014 2018 2021 2023; 16 20 60 9 2020; 10 2021; 143 2017 2014 2016 2011; 356 509 374 111 2022 2022 2024 2023; 122 122 64 62 2023 2023 2022; 62 56 376 2021; 11 2014 2014 2015 2020 2022; 20 20 48 53 55 2021 2019 2022; 8 53 12 1995 2003 2007; 34 125 129 2019 2018 2021 2022; 62 20 12 13 2018 2019; 20 141 2013 2019; 135 21 2013; 135 2016; 138 2021; 40 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_16_4 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_10_4 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_18_4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 Kong W. (e_1_2_8_20_1) 2023; 62 |
References_xml | – volume: 134 354 start-page: 1685 year: 2012 2012 publication-title: J. Am. Chem. Soc. Adv. Synth. Catal. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 524 55 start-page: 454 year: 2015 2016 publication-title: Nature Angew. Chem. Int. Ed. – volume: 34 125 129 start-page: 2723 1908 year: 1995 2003 2007 publication-title: Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 136 18 136 start-page: 6152 year: 2014 2016 2014 publication-title: J. Am. Chem. Soc. Org. Lett. J. Am. Chem. Soc. – volume: 16 20 60 9 start-page: 5620 4677 year: 2014 2018 2021 2023 publication-title: Org. Lett. Org. Lett. Angew. Chem., Int. Ed. Chem – volume: 45 start-page: 3099 year: 2013 publication-title: Synthesis – volume: 20 20 48 53 55 start-page: 6828 8242 1767 1833 2491 year: 2014 2014 2015 2020 2022 publication-title: Chem. ‒Eur. J. Chem. ‒Eur. J Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. – volume: 20 141 start-page: 7846 820 year: 2018 2019 publication-title: Org. Lett. J. Am. Chem. Soc. – volume: 138 start-page: 5016 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 8237 year: 2020 publication-title: ACS Catal. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 2691 year: 2021 publication-title: Organometal – volume: 356 509 374 111 start-page: 299 66 1417 year: 2017 2014 2016 2011 publication-title: Science Nature Top. Curr. Chem. Chem. Rev. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 135 21 start-page: 280 2947 year: 2013 2019 publication-title: J. Am. Chem. Soc. Org. Lett. – volume: 4 start-page: 4022 year: 2013 publication-title: Chem. Sci. – volume: 8 53 12 start-page: 960 109 year: 2021 2019 2022 publication-title: Curr. Pharm. Anal. J. Trace Elem. Med. Bio. ACS Catal. – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 13 132 start-page: 2138 920 year: 2011 2010 publication-title: Org. Lett. J. Am. Chem. Soc. – volume: 62 56 376 start-page: 3246 749 year: 2023 2023 2022 publication-title: Angew. Chem. Int. Ed. Acc. Chem. Res. Science – volume: 61 33 34 60 start-page: 5061 year: 2022 2022 2023 2021 publication-title: Angew. Chem. Int. Ed. Chin. Chem. Lett. Chin. Chem. Lett. Angew. Chem. Int. Ed. – volume: 62 20 12 13 start-page: 1492 7991 220 1413 year: 2019 2018 2021 2022 publication-title: Sci. Chin. Chem. Org. Lett. Chem. Sci. ACS Med. Chem. Lett. – volume: 9 start-page: 1295 year: 2023 publication-title: Chem – volume: 22 87 139 start-page: 7589 6835 year: 2016 2022 2017 publication-title: Chem. Eur. J. J. Org. Chem. J. Am. Chem. Soc. – volume: 5 start-page: 546 year: 2021 publication-title: Nat. Rev. Chem. – volume: 122 122 64 62 start-page: 1485 1875 year: 2022 2022 2024 2023 publication-title: Chem. Rev. Chem. Rev. Isr. J. Chem. Angew. Chem., Int. Ed. – ident: e_1_2_8_5_1 doi: 10.1021/ol200617f – ident: e_1_2_8_15_1 doi: 10.1021/jacs.1c10932 – ident: e_1_2_8_19_2 doi: 10.1002/adsc.201200136 – ident: e_1_2_8_3_2 doi: 10.1002/chem.201402509 – ident: e_1_2_8_18_2 doi: 10.1021/acs.orglett.8b02005 – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemrev.1c00383 – ident: e_1_2_8_16_2 doi: 10.1021/acs.chemrev.1c00263 – ident: e_1_2_8_17_1 doi: 10.1039/c3sc51098k – ident: e_1_2_8_11_2 doi: 10.1002/anie.201607959 – ident: e_1_2_8_1_1 doi: 10.1126/science.aaf7230 – ident: e_1_2_8_18_4 doi: 10.1016/j.chempr.2023.08.011 – ident: e_1_2_8_1_3 doi: 10.1007/s41061-016-0067-6 – ident: e_1_2_8_22_1 doi: 10.1038/s41570-021-00288-z – ident: e_1_2_8_2_2 doi: 10.1021/ja0389366 – ident: e_1_2_8_21_1 doi: 10.1021/acs.organomet.1c00325 – ident: e_1_2_8_4_1 doi: 10.1007/s11426-019-9501-4 – ident: e_1_2_8_28_1 – ident: e_1_2_8_2_1 doi: 10.1002/anie.199527231 – ident: e_1_2_8_5_2 doi: 10.1021/ja9093956 – ident: e_1_2_8_3_3 doi: 10.1021/acs.accounts.5b00057 – ident: e_1_2_8_3_1 doi: 10.1002/chem.201402302 – ident: e_1_2_8_14_1 doi: 10.1002/chem.201602668 – ident: e_1_2_8_1_4 doi: 10.1021/cr100327p – ident: e_1_2_8_25_1 doi: 10.1055/s-0033-1338520 – ident: e_1_2_8_26_1 doi: 10.1021/acscatal.1c04239 – ident: e_1_2_8_10_2 doi: 10.1016/j.cclet.2022.03.070 – ident: e_1_2_8_12_1 doi: 10.1021/acscatal.0c01842 – ident: e_1_2_8_20_3 doi: 10.1126/science.abn9124 – ident: e_1_2_8_9_3 doi: 10.1021/ja510653n – ident: e_1_2_8_7_1 doi: 10.1021/jacs.6b01533 – ident: e_1_2_8_9_1 doi: 10.1021/ja5064586 – ident: e_1_2_8_13_1 doi: 10.2174/1573412916999200711151147 – ident: e_1_2_8_23_1 – ident: e_1_2_8_14_2 doi: 10.1021/acs.joc.2c00462 – ident: e_1_2_8_4_2 doi: 10.1021/acs.orglett.8b03567 – ident: e_1_2_8_20_2 doi: 10.1021/acs.accounts.3c00505 – ident: e_1_2_8_10_3 doi: 10.1016/j.cclet.2023.108490 – ident: e_1_2_8_1_2 doi: 10.1038/nature13274 – ident: e_1_2_8_3_4 doi: 10.1021/acs.accounts.0c00291 – ident: e_1_2_8_18_3 doi: 10.1002/anie.202102481 – ident: e_1_2_8_4_4 doi: 10.1021/acsmedchemlett.2c00286 – ident: e_1_2_8_6_1 doi: 10.1021/ja3089422 – ident: e_1_2_8_31_1 doi: 10.1016/j.chempr.2023.02.010 – ident: e_1_2_8_13_2 doi: 10.1016/j.jtemb.2019.02.011 – ident: e_1_2_8_11_1 doi: 10.1038/nature14676 – ident: e_1_2_8_18_1 doi: 10.1021/ol502682q – volume: 62 year: 2023 ident: e_1_2_8_20_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_16_4 doi: 10.1002/anie.202306679 – ident: e_1_2_8_10_4 doi: 10.1002/anie.202112876 – ident: e_1_2_8_9_2 doi: 10.1021/acs.orglett.6b03158 – ident: e_1_2_8_10_1 doi: 10.1002/anie.202200215 – ident: e_1_2_8_27_1 doi: 10.1021/ja407589e – ident: e_1_2_8_8_1 doi: 10.1021/acs.orglett.8b03367 – ident: e_1_2_8_3_5 doi: 10.1021/acs.accounts.2c00381 – ident: e_1_2_8_29_1 doi: 10.1021/acscatal.1c04142 – ident: e_1_2_8_4_3 doi: 10.1039/D0SC05452F – ident: e_1_2_8_6_2 doi: 10.1021/acs.orglett.9b01016 – ident: e_1_2_8_24_1 – ident: e_1_2_8_2_3 doi: 10.1021/ja068950t – ident: e_1_2_8_30_1 doi: 10.1021/jacs.3c02649 – ident: e_1_2_8_16_3 doi: 10.1002/ijch.202300089 – ident: e_1_2_8_19_1 doi: 10.1021/ja304068t – ident: e_1_2_8_14_3 doi: 10.1021/jacs.7b03195 – ident: e_1_2_8_13_3 doi: 10.1021/acscatal.2c03033 – ident: e_1_2_8_8_2 doi: 10.1021/jacs.8b12801 |
SSID | ssj0001537418 |
Score | 2.3323278 |
Snippet | Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed... Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B 2 Pin 2 ) is described as a non‐metallic reductant in mediating... Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B Pin ) is described as a non-metallic reductant in mediating Ni-catalyzed... Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed... Abstract Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2404301 |
SubjectTerms | Alcohol cross‐coupling diboron electrophile Hydrocarbons Ligands nickel reductant Solvents |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NahsxEMdFySmX0jT9cJuULRSaHBbv6mNXe0yCQyg0hzYtuQlJK5GlZm3ipOCe8gh5xjxJZyR5sWlLLr0Yr1cIeTTj-Wst_YaQD1rSVoja58JRkXMGoSgrw3NuTAXpjGsWHuh_Pq_OvvFPl-JyrdQX7gmLeOBouLGkBk-KydYyyaXnkmnQFLXl1oq6teGYL-S8tcVUPB_MEMuyojQWdKzbn0jnpkiTSRVgVlkowPr_pjD_3Ci5LmBDBjp9Rp4m6ZgdxSHvkCeuf052UnAusoNEkD7cJe64WxzMux6R1LCoPmw7g6CCh7v7STgq1WbnHVyc4KOb5S-4_IIAV_zhg96XcXfc-HvXp7fZzGdH0x_LaTaJRXPmVzC-xQtycTq5ODnLUz2F3AqGFFfdeFpaeDWQ9hvtWU19S2GNpJlrPLeFr1wF-kQUmtmyko023HurS7C9tOwl2epnvXtNMqS-NwwMGcocGdoYCO3G1a5gwlZVMSL5yrzKJtY4lryYqkhJpgqnQw3TMSIfh_bzSNn4Z8tjnK2hFdKxwwfgMyr5jHrMZ0ZkbzXXKoXsQjEQm4im4WJE3g-3IdjwHxTdu9kttkGgIIga6OJVdI1hJGAiCctp-O5yw2k2hrp5p--uAtC7LBmWVazBbMG_HrGBAsXyVfJGvvkfxnhLtrHnuKlxj2zdXN-6fRBaN-ZdiKnfQzwmbQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1Lb9QwEIAtaC9cEOW5UFCQkGgP0SZ-JM4JdautKiRWqBTUW2Q7No1YJUvTIi0nfgK_kV_CjOOkrHhdojycyJnx2OOJ8w0hL5SklRC5i4WlIuYMTFFmmsdc6wyGM66YD-i_WWTH7_nrM3EWAm5dWFY59Im-o65agzHyKQNfAMkhXLxafY4xaxR-XQ0pNG6SbeiCJUy-tmfzxduT6yiLYIhnGWiNCZ2q6gtSuilSZUImmGE08tD-P3mavy-Y_NWR9SPR0R1yO7iQ0UGv8x1ywzZ3yU4w0i7aCyTp_XvEzupub1U3iKaGyfV-VWsEFvz49n3uf5mqokUNB4cYwll_hcMTBLliBwhPX_er5KYf6ibsRq2LDpaf1sto3ifPWZ1D_br75PRofnp4HIe8CrERDGmuqnA0NbDVMPwXyrGcuorCXEkxWzhuEpfZDPwUkShm0kwWSnPnjEoNk9KwB2SraRv7iERIfy8YCNKnO9K00GDihc1twoTJsmRC4kG8pQnMcUx9sSx7WjItUR3lqI4JeTmWX_W0jb-WnKG2xlJIyfYn2ouPZTC6UlKNfxnKCurNpeOSKfBHc8ONEXll5ITsDroug-l25XVDm5Dn42UwOvySohrbXmEZBAuCcwOPeNg3jbEmICIJ02p4d7nRaDaqunmlqc892DtNGaZXzEFsvn39RwYleC7vJC_k43-_xxNyC-_ply3ukq3Liyv7FFypS_0s2MtP-GIesg priority: 102 providerName: ProQuest |
Title | Bis(pinacolato)diboron‐Enabled Ni‐Catalyzed Reductive Arylation/Vinylation of Alkyl Electrophiles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202404301 https://www.ncbi.nlm.nih.gov/pubmed/38887210 https://www.proquest.com/docview/3095016945 https://www.proquest.com/docview/3070794268 https://pubmed.ncbi.nlm.nih.gov/PMC11336967 https://doaj.org/article/82bdb6f8dc3848f483a5087c4cc57dc8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1La9wwEIBFSS69lCZ9bZsuDhSaHMzaetjycTfdEEKzhCQtuRlJlhrTxbvESWF76k_Ib-wv6YzsdWLaUnrx-iGEdkZjjWTNN4S8U5IWQqQuFJaKkDMwRZloHnKtExjOuGJ-Qf9klhx94seX4vJBFH_Dh-gW3NAy_PsaDVzpenQPDVXFN8RtU8TDYADXJsbXIj2f8tP7VRbBEM-CGeZgdh0yyfma3BjRUb-K3sjkAf5_8jp_3zz50Kn1o9LhU_KkdSeDcaP_LfLIVttkqzXYOthrqdL7z4idlPXesqwQUw0T7f2i1Agv-PnjburDp4pgVsLFAS7nrL7D5RlCXfFlCLWvmh1zo89l1Z4GCxeM519X82DaJNJZXkH76ufk4nB6cXAUtjkWQiMYkl1V5mhs4KjBFciUYyl1BYV5k2I2c9xELrEJ-CwiUszEicyU5s4ZFRsmpWEvyEa1qOwrEiAJPmMgSJ_6SNNMg7lnNrUREyZJogEJ1-LNTcsfxzQY87whJ9Mc1ZF36hiQ9135ZUPe-GvJCWqrK4XEbH9jcf0lbw0wl1RjxKEsoN1cOi6ZAt80NdwYkRZGDsjOWtd5a8Z1zsABRVwNFwOy2z0GA8SvKqqyi1ssg5BBcHSgipdN1-haAiKSMMWG_y57nabX1P6TqrzykO84ZphqMQWx-f71Dxnk4MWcS57J1_9Z_g15jDebPY07ZOPm-ta-BT_rRg-9KQ3J5vjDycdz-J1MZ6dnQ79q8Qv2VyXr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtQwGLZKe4ALomwdKDRIINpDNImXxDkg1ClTTWk7QmVAvVmO49CIUTI0LWg48Qi8CC_Fk_T_s5UR26mXKItj2f_u7fsJeaolTYQIU1dYKlzOQBVlEHOXx3EA7oxrVk3oH46D0Tv--lgcL5Ef7VkY3FbZ2sTKUCeFwTnyPoNYAJFDuHg5--Ri1ihcXW1TaNRisW_nX2DIVr7YewX8fUbp7nCyM3KbrAKuEQyxTHWUUt_ANQbnF-mUhTRNKIwUNLNRyo2XBjYALy08zYwfyEjHPE2N9g2T0jCo9hpZgV55YAdWBsPxm6PLSR3BEA2mBYf0aF8nnxEUnCKITZN4pnV-VY6APwW2v-_P_DVurhzf7i1ys4lYne1axFbJks1vk9XGJpTOZgNcvXWH2EFWbs6yHJGwYSy_lWQx4iP8_PZ9WJ3QSpxxBg87OGM0_wqPR4gbi_YWap_Xm_L677O8uXWK1NmefpxPnWGdq2d2Au0r75LJVRD8HlnOi9yuEQfB5iMGhKyyK8U0isGiRDa0HhMmCLwecVvyKtNAnGOmjamqwZmpQnaojh098rwrP6vBPf5acoDc6kohKHf1ojj9oBodV5LGeKhRJtBuLlMumYbwNzTcGBEmRvbIestr1ViKUl3KdY886T6DjuPCjc5tcY5lEMcQYimo4n4tGl1LgEQSRvHQd7kgNAtNXfySZycVjrjvM8zmGALZKvn6Dw0UBEpvJY_kg3_3Y4NcH00OD9TB3nj_IbmB_9c7JtfJ8tnpuX0EUdxZ_LjRHYeoK9bWC66lWy8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEOO2wmBBArE9RE19SZwHhNat1cagmsZAe7Mcx2YRVVrWDVSe-An8Hf4Ov2TnJE5Hxe1pL1XTuJZz7sc5_g4hT7WkuRCJC4WlIuQMVFHGGQ95lsXgzrhm1Yb-m2G8-46_OhbHS-RHcxYGyyobm1gZ6nxscI-8wyAWQOQQLjrOl0Uc7AxeTj6F2EEK37Q27TRqEdm3sy-Qvk1f7O0Ar59ROugfbe-GvsNAaARDXFOdOto18JmBI0y1Ywl1OYWsQTObOm4iF9sYPLaINDPdWKY6484Z3TVMSsNg2mtkOYGkKGqR5V5_eHB4ucEjGCLDNECREe3o_DMChFMEtPFNaBpHWPUL-FOQ-3ut5q8xdOUEB7fITR-9Blu1uK2QJVveJivePkyDDQ9ivXmH2F4x3ZgUJaJiQ16_mRcZYiX8_Pa9X53WyoNhARfbuHs0-wqXh4ghi7YXZp_VBXqd90XpvwZjF2yNPs5GQb_u2zM5gfVN75KjqyD4PdIqx6VdJQECz6cMCFl1WspomoF1SW1iIyZMHEdtEjbkVcbDnWPXjZGqgZqpQnaoOTva5Pl8_KQG-vjryB5yaz4KAbqrH8anH5TXdyVphgccZQ7r5tJxyTSEwonhxogkN7JN1hpeK281pupSxtvkyfw26Du-xNGlHZ_jGMQ0hLgKprhfi8Z8JUAiCRk9PLtcEJqFpS7eKYuTClO822XY2TEBslXy9R8aKAia3kqeygf_fo51ch20VL3eG-4_JDfw73Xx5BppnZ2e20cQ0J1lj73qBERdsbJeAMMKX2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bis%28pinacolato%29diboron-Enabled+Ni-Catalyzed+Reductive+Arylation%2FVinylation+of+Alkyl+Electrophiles&rft.jtitle=Advanced+science&rft.au=Sun%2C+Deli&rft.au=Gong%2C+Yuxin&rft.au=Wu%2C+Yu&rft.au=Chen%2C+Yunrong&rft.date=2024-08-01&rft.eissn=2198-3844&rft.volume=11&rft.issue=31&rft.spage=e2404301&rft_id=info:doi/10.1002%2Fadvs.202404301&rft_id=info%3Apmid%2F38887210&rft.externalDocID=38887210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |