Bis(pinacolato)diboron‐Enabled Ni‐Catalyzed Reductive Arylation/Vinylation of Alkyl Electrophiles

Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for hetero...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 31; pp. e2404301 - n/a
Main Authors Sun, Deli, Gong, Yuxin, Wu, Yu, Chen, Yunrong, Gong, Hegui
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.08.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. The use of economic bis(pinacolato)diboron as the non‐metal reductant to direct the Ni‐catalyzed reductive arylation and vinylation of alkyl halides/ Katritzky salts with the C(sp2)–halides are achieved, which is characteristic of easy removal of boron residue and homogeneous nature of the reaction that are critical concerns for large‐scale and eco‐friendly process chemistry.
AbstractList Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp3)-C(sp2) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant.Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp3)-C(sp2) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant.
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. The use of economic bis(pinacolato)diboron as the non‐metal reductant to direct the Ni‐catalyzed reductive arylation and vinylation of alkyl halides/ Katritzky salts with the C(sp2)–halides are achieved, which is characteristic of easy removal of boron residue and homogeneous nature of the reaction that are critical concerns for large‐scale and eco‐friendly process chemistry.
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B 2 Pin 2 ) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp 3 )–C(sp 2 ) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B 2 Pin 2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B 2 Pin 2 can sever as a reductant to reduce Ni II to Ni 0 . This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant.
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant.
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B Pin ) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp )-C(sp ) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B Pin shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B Pin can sever as a reductant to reduce Ni to Ni . This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant.
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B 2 Pin 2 ) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp 3 )–C(sp 2 ) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B 2 Pin 2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B 2 Pin 2 can sever as a reductant to reduce Ni II to Ni 0 . This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant. The use of economic bis(pinacolato)diboron as the non‐metal reductant to direct the Ni‐catalyzed reductive arylation and vinylation of alkyl halides/ Katritzky salts with the C(sp 2 )–halides are achieved, which is characteristic of easy removal of boron residue and homogeneous nature of the reaction that are critical concerns for large‐scale and eco‐friendly process chemistry.
Abstract Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed C(sp3)–C(sp2) reductive cross‐coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono‐functionalization of diols and bio‐relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross‐electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond‐forming methodologies that can otherwise be difficult to achieve with a metal reductant.
Author Gong, Hegui
Sun, Deli
Chen, Yunrong
Wu, Yu
Gong, Yuxin
AuthorAffiliation 2 Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
1 School of Resources and Environmental Engineering Shanghai Polytechnic University No. 2360 Jinhai Road Shanghai 201209 China
AuthorAffiliation_xml – name: 2 Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
– name: 1 School of Resources and Environmental Engineering Shanghai Polytechnic University No. 2360 Jinhai Road Shanghai 201209 China
Author_xml – sequence: 1
  givenname: Deli
  orcidid: 0000-0003-3098-3717
  surname: Sun
  fullname: Sun, Deli
  organization: Shanghai Polytechnic University
– sequence: 2
  givenname: Yuxin
  surname: Gong
  fullname: Gong, Yuxin
  organization: Shanghai University
– sequence: 3
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
  organization: Shanghai University
– sequence: 4
  givenname: Yunrong
  orcidid: 0000-0001-6872-4943
  surname: Chen
  fullname: Chen, Yunrong
  email: yr_chen@shu.edu.cn
  organization: Shanghai University
– sequence: 5
  givenname: Hegui
  orcidid: 0000-0001-6534-5569
  surname: Gong
  fullname: Gong, Hegui
  email: hegui_gong@shu.edu.cn
  organization: Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38887210$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQtVARLaVXjigSl3JI6q_dtU8ohACVKpCg6tXy-qN1cOxg7wYtJ34Cv5FfgtOEqO2lF3tm_N6bGc88BwchBgPASwQnCEJ8JvU6TzDEFFIC0RNwhBFnY8IoPbhjH4KTnBcQQlSRhiL2DBwSxliDETwC5p3LpysXpIpedvGNdm1MMfz9_WceZOuNHn12xZnJTvrhV3G_Gt2rzq3NaJqGQnExnF25sDNH0Y6m_vvgR3NvVJfi6sZ5k1-Ap1b6bE529zG4_DC_nH0aX3z5eD6bXoxVRSAbI8ktRqqcLYaIS0sabDVGlEtiuKUK2trUvKkrKIlCNeOypdYqiVTpSJFjcL6V1VEuxCq5pUyDiNKJ20BM10KmzilvBMOtbmvLdGFSZikjsoKsUVSpqtGKFa23W61V3y6NViZ0Sfp7ovdfgrsR13EtECKk5nVTFE53Cin-6E3uxNJlZbyXwcQ-CwIb2HCK602y1w-gi9inUL6qoHgFUc1pVVCv7pa0r-X_NAtgsgWoFHNOxu4hCIrNxojNxoj9xhQCfUBQrrsdZGnJ-UdpP8twh0eSiOn7q2-Mckb-AfZL1-0
CitedBy_id crossref_primary_10_1126_sciadv_ads5410
crossref_primary_10_1021_acs_chemrev_4c00524
Cites_doi 10.1021/ol200617f
10.1021/jacs.1c10932
10.1002/adsc.201200136
10.1002/chem.201402509
10.1021/acs.orglett.8b02005
10.1021/acs.chemrev.1c00383
10.1021/acs.chemrev.1c00263
10.1039/c3sc51098k
10.1002/anie.201607959
10.1126/science.aaf7230
10.1016/j.chempr.2023.08.011
10.1007/s41061-016-0067-6
10.1038/s41570-021-00288-z
10.1021/ja0389366
10.1021/acs.organomet.1c00325
10.1007/s11426-019-9501-4
10.1002/anie.199527231
10.1021/ja9093956
10.1021/acs.accounts.5b00057
10.1002/chem.201402302
10.1002/chem.201602668
10.1021/cr100327p
10.1055/s-0033-1338520
10.1021/acscatal.1c04239
10.1016/j.cclet.2022.03.070
10.1021/acscatal.0c01842
10.1126/science.abn9124
10.1021/ja510653n
10.1021/jacs.6b01533
10.1021/ja5064586
10.2174/1573412916999200711151147
10.1021/acs.joc.2c00462
10.1021/acs.orglett.8b03567
10.1021/acs.accounts.3c00505
10.1016/j.cclet.2023.108490
10.1038/nature13274
10.1021/acs.accounts.0c00291
10.1002/anie.202102481
10.1021/acsmedchemlett.2c00286
10.1021/ja3089422
10.1016/j.chempr.2023.02.010
10.1016/j.jtemb.2019.02.011
10.1038/nature14676
10.1021/ol502682q
10.1002/anie.202306679
10.1002/anie.202112876
10.1021/acs.orglett.6b03158
10.1002/anie.202200215
10.1021/ja407589e
10.1021/acs.orglett.8b03367
10.1021/acs.accounts.2c00381
10.1021/acscatal.1c04142
10.1039/D0SC05452F
10.1021/acs.orglett.9b01016
10.1021/ja068950t
10.1021/jacs.3c02649
10.1002/ijch.202300089
10.1021/ja304068t
10.1021/jacs.7b03195
10.1021/acscatal.2c03033
10.1021/jacs.8b12801
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202404301
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_82bdb6f8dc3848f483a5087c4cc57dc8
PMC11336967
38887210
10_1002_advs_202404301
ADVS8498
Genre article
Journal Article
GrantInformation_xml – fundername: NSFC
  funderid: 22271182
– fundername: NSFC
  grantid: 22271182
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5308-1a9f21ca9fb2019af372fd2149a3e9f4c0f6e697650a3c1689ab4ffca1c388c3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:01:16 EDT 2025
Thu Aug 21 18:34:29 EDT 2025
Thu Jul 10 18:01:27 EDT 2025
Sat Jul 26 02:32:54 EDT 2025
Mon Jul 21 05:46:14 EDT 2025
Tue Jul 01 04:00:09 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Jan 22 17:14:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords electrophile
nickel
diboron
cross‐coupling
reductant
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5308-1a9f21ca9fb2019af372fd2149a3e9f4c0f6e697650a3c1689ab4ffca1c388c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6872-4943
0000-0001-6534-5569
0000-0003-3098-3717
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202404301
PMID 38887210
PQID 3095016945
PQPubID 4365299
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_82bdb6f8dc3848f483a5087c4cc57dc8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11336967
proquest_miscellaneous_3070794268
proquest_journals_3095016945
pubmed_primary_38887210
crossref_primary_10_1002_advs_202404301
crossref_citationtrail_10_1002_advs_202404301
wiley_primary_10_1002_advs_202404301_ADVS8498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 5
2013; 4
2014 2016 2014; 136 18 136
2013; 45
2011 2010; 13 132
2023; 145
2023; 9
2022 2022 2023 2021; 61 33 34 60
2016 2022 2017; 22 87 139
2012 2012; 134 354
2015 2016; 524 55
2014 2018 2021 2023; 16 20 60 9
2020; 10
2021; 143
2017 2014 2016 2011; 356 509 374 111
2022 2022 2024 2023; 122 122 64 62
2023 2023 2022; 62 56 376
2021; 11
2014 2014 2015 2020 2022; 20 20 48 53 55
2021 2019 2022; 8 53 12
1995 2003 2007; 34 125 129
2019 2018 2021 2022; 62 20 12 13
2018 2019; 20 141
2013 2019; 135 21
2013; 135
2016; 138
2021; 40
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_2
e_1_2_8_20_3
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_16_4
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_10_4
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_18_4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
Kong W. (e_1_2_8_20_1) 2023; 62
References_xml – volume: 134 354
  start-page: 1685
  year: 2012 2012
  publication-title: J. Am. Chem. Soc. Adv. Synth. Catal.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 524 55
  start-page: 454
  year: 2015 2016
  publication-title: Nature Angew. Chem. Int. Ed.
– volume: 34 125 129
  start-page: 2723 1908
  year: 1995 2003 2007
  publication-title: Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 136 18 136
  start-page: 6152
  year: 2014 2016 2014
  publication-title: J. Am. Chem. Soc. Org. Lett. J. Am. Chem. Soc.
– volume: 16 20 60 9
  start-page: 5620 4677
  year: 2014 2018 2021 2023
  publication-title: Org. Lett. Org. Lett. Angew. Chem., Int. Ed. Chem
– volume: 45
  start-page: 3099
  year: 2013
  publication-title: Synthesis
– volume: 20 20 48 53 55
  start-page: 6828 8242 1767 1833 2491
  year: 2014 2014 2015 2020 2022
  publication-title: Chem. ‒Eur. J. Chem. ‒Eur. J Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res.
– volume: 20 141
  start-page: 7846 820
  year: 2018 2019
  publication-title: Org. Lett. J. Am. Chem. Soc.
– volume: 138
  start-page: 5016
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8237
  year: 2020
  publication-title: ACS Catal.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 2691
  year: 2021
  publication-title: Organometal
– volume: 356 509 374 111
  start-page: 299 66 1417
  year: 2017 2014 2016 2011
  publication-title: Science Nature Top. Curr. Chem. Chem. Rev.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 135 21
  start-page: 280 2947
  year: 2013 2019
  publication-title: J. Am. Chem. Soc. Org. Lett.
– volume: 4
  start-page: 4022
  year: 2013
  publication-title: Chem. Sci.
– volume: 8 53 12
  start-page: 960 109
  year: 2021 2019 2022
  publication-title: Curr. Pharm. Anal. J. Trace Elem. Med. Bio. ACS Catal.
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 13 132
  start-page: 2138 920
  year: 2011 2010
  publication-title: Org. Lett. J. Am. Chem. Soc.
– volume: 62 56 376
  start-page: 3246 749
  year: 2023 2023 2022
  publication-title: Angew. Chem. Int. Ed. Acc. Chem. Res. Science
– volume: 61 33 34 60
  start-page: 5061
  year: 2022 2022 2023 2021
  publication-title: Angew. Chem. Int. Ed. Chin. Chem. Lett. Chin. Chem. Lett. Angew. Chem. Int. Ed.
– volume: 62 20 12 13
  start-page: 1492 7991 220 1413
  year: 2019 2018 2021 2022
  publication-title: Sci. Chin. Chem. Org. Lett. Chem. Sci. ACS Med. Chem. Lett.
– volume: 9
  start-page: 1295
  year: 2023
  publication-title: Chem
– volume: 22 87 139
  start-page: 7589 6835
  year: 2016 2022 2017
  publication-title: Chem. Eur. J. J. Org. Chem. J. Am. Chem. Soc.
– volume: 5
  start-page: 546
  year: 2021
  publication-title: Nat. Rev. Chem.
– volume: 122 122 64 62
  start-page: 1485 1875
  year: 2022 2022 2024 2023
  publication-title: Chem. Rev. Chem. Rev. Isr. J. Chem. Angew. Chem., Int. Ed.
– ident: e_1_2_8_5_1
  doi: 10.1021/ol200617f
– ident: e_1_2_8_15_1
  doi: 10.1021/jacs.1c10932
– ident: e_1_2_8_19_2
  doi: 10.1002/adsc.201200136
– ident: e_1_2_8_3_2
  doi: 10.1002/chem.201402509
– ident: e_1_2_8_18_2
  doi: 10.1021/acs.orglett.8b02005
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemrev.1c00383
– ident: e_1_2_8_16_2
  doi: 10.1021/acs.chemrev.1c00263
– ident: e_1_2_8_17_1
  doi: 10.1039/c3sc51098k
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.201607959
– ident: e_1_2_8_1_1
  doi: 10.1126/science.aaf7230
– ident: e_1_2_8_18_4
  doi: 10.1016/j.chempr.2023.08.011
– ident: e_1_2_8_1_3
  doi: 10.1007/s41061-016-0067-6
– ident: e_1_2_8_22_1
  doi: 10.1038/s41570-021-00288-z
– ident: e_1_2_8_2_2
  doi: 10.1021/ja0389366
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.organomet.1c00325
– ident: e_1_2_8_4_1
  doi: 10.1007/s11426-019-9501-4
– ident: e_1_2_8_28_1
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.199527231
– ident: e_1_2_8_5_2
  doi: 10.1021/ja9093956
– ident: e_1_2_8_3_3
  doi: 10.1021/acs.accounts.5b00057
– ident: e_1_2_8_3_1
  doi: 10.1002/chem.201402302
– ident: e_1_2_8_14_1
  doi: 10.1002/chem.201602668
– ident: e_1_2_8_1_4
  doi: 10.1021/cr100327p
– ident: e_1_2_8_25_1
  doi: 10.1055/s-0033-1338520
– ident: e_1_2_8_26_1
  doi: 10.1021/acscatal.1c04239
– ident: e_1_2_8_10_2
  doi: 10.1016/j.cclet.2022.03.070
– ident: e_1_2_8_12_1
  doi: 10.1021/acscatal.0c01842
– ident: e_1_2_8_20_3
  doi: 10.1126/science.abn9124
– ident: e_1_2_8_9_3
  doi: 10.1021/ja510653n
– ident: e_1_2_8_7_1
  doi: 10.1021/jacs.6b01533
– ident: e_1_2_8_9_1
  doi: 10.1021/ja5064586
– ident: e_1_2_8_13_1
  doi: 10.2174/1573412916999200711151147
– ident: e_1_2_8_23_1
– ident: e_1_2_8_14_2
  doi: 10.1021/acs.joc.2c00462
– ident: e_1_2_8_4_2
  doi: 10.1021/acs.orglett.8b03567
– ident: e_1_2_8_20_2
  doi: 10.1021/acs.accounts.3c00505
– ident: e_1_2_8_10_3
  doi: 10.1016/j.cclet.2023.108490
– ident: e_1_2_8_1_2
  doi: 10.1038/nature13274
– ident: e_1_2_8_3_4
  doi: 10.1021/acs.accounts.0c00291
– ident: e_1_2_8_18_3
  doi: 10.1002/anie.202102481
– ident: e_1_2_8_4_4
  doi: 10.1021/acsmedchemlett.2c00286
– ident: e_1_2_8_6_1
  doi: 10.1021/ja3089422
– ident: e_1_2_8_31_1
  doi: 10.1016/j.chempr.2023.02.010
– ident: e_1_2_8_13_2
  doi: 10.1016/j.jtemb.2019.02.011
– ident: e_1_2_8_11_1
  doi: 10.1038/nature14676
– ident: e_1_2_8_18_1
  doi: 10.1021/ol502682q
– volume: 62
  year: 2023
  ident: e_1_2_8_20_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_16_4
  doi: 10.1002/anie.202306679
– ident: e_1_2_8_10_4
  doi: 10.1002/anie.202112876
– ident: e_1_2_8_9_2
  doi: 10.1021/acs.orglett.6b03158
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202200215
– ident: e_1_2_8_27_1
  doi: 10.1021/ja407589e
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.orglett.8b03367
– ident: e_1_2_8_3_5
  doi: 10.1021/acs.accounts.2c00381
– ident: e_1_2_8_29_1
  doi: 10.1021/acscatal.1c04142
– ident: e_1_2_8_4_3
  doi: 10.1039/D0SC05452F
– ident: e_1_2_8_6_2
  doi: 10.1021/acs.orglett.9b01016
– ident: e_1_2_8_24_1
– ident: e_1_2_8_2_3
  doi: 10.1021/ja068950t
– ident: e_1_2_8_30_1
  doi: 10.1021/jacs.3c02649
– ident: e_1_2_8_16_3
  doi: 10.1002/ijch.202300089
– ident: e_1_2_8_19_1
  doi: 10.1021/ja304068t
– ident: e_1_2_8_14_3
  doi: 10.1021/jacs.7b03195
– ident: e_1_2_8_13_3
  doi: 10.1021/acscatal.2c03033
– ident: e_1_2_8_8_2
  doi: 10.1021/jacs.8b12801
SSID ssj0001537418
Score 2.3323278
Snippet Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating Ni‐catalyzed...
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B 2 Pin 2 ) is described as a non‐metallic reductant in mediating...
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B Pin ) is described as a non-metallic reductant in mediating Ni-catalyzed...
Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed...
Abstract Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non‐metallic reductant in mediating...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2404301
SubjectTerms Alcohol
cross‐coupling
diboron
electrophile
Hydrocarbons
Ligands
nickel
reductant
Solvents
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NahsxEMdFySmX0jT9cJuULRSaHBbv6mNXe0yCQyg0hzYtuQlJK5GlZm3ipOCe8gh5xjxJZyR5sWlLLr0Yr1cIeTTj-Wst_YaQD1rSVoja58JRkXMGoSgrw3NuTAXpjGsWHuh_Pq_OvvFPl-JyrdQX7gmLeOBouLGkBk-KydYyyaXnkmnQFLXl1oq6teGYL-S8tcVUPB_MEMuyojQWdKzbn0jnpkiTSRVgVlkowPr_pjD_3Ci5LmBDBjp9Rp4m6ZgdxSHvkCeuf052UnAusoNEkD7cJe64WxzMux6R1LCoPmw7g6CCh7v7STgq1WbnHVyc4KOb5S-4_IIAV_zhg96XcXfc-HvXp7fZzGdH0x_LaTaJRXPmVzC-xQtycTq5ODnLUz2F3AqGFFfdeFpaeDWQ9hvtWU19S2GNpJlrPLeFr1wF-kQUmtmyko023HurS7C9tOwl2epnvXtNMqS-NwwMGcocGdoYCO3G1a5gwlZVMSL5yrzKJtY4lryYqkhJpgqnQw3TMSIfh_bzSNn4Z8tjnK2hFdKxwwfgMyr5jHrMZ0ZkbzXXKoXsQjEQm4im4WJE3g-3IdjwHxTdu9kttkGgIIga6OJVdI1hJGAiCctp-O5yw2k2hrp5p--uAtC7LBmWVazBbMG_HrGBAsXyVfJGvvkfxnhLtrHnuKlxj2zdXN-6fRBaN-ZdiKnfQzwmbQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1Lb9QwEIAtaC9cEOW5UFCQkGgP0SZ-JM4JdautKiRWqBTUW2Q7No1YJUvTIi0nfgK_kV_CjOOkrHhdojycyJnx2OOJ8w0hL5SklRC5i4WlIuYMTFFmmsdc6wyGM66YD-i_WWTH7_nrM3EWAm5dWFY59Im-o65agzHyKQNfAMkhXLxafY4xaxR-XQ0pNG6SbeiCJUy-tmfzxduT6yiLYIhnGWiNCZ2q6gtSuilSZUImmGE08tD-P3mavy-Y_NWR9SPR0R1yO7iQ0UGv8x1ywzZ3yU4w0i7aCyTp_XvEzupub1U3iKaGyfV-VWsEFvz49n3uf5mqokUNB4cYwll_hcMTBLliBwhPX_er5KYf6ibsRq2LDpaf1sto3ifPWZ1D_br75PRofnp4HIe8CrERDGmuqnA0NbDVMPwXyrGcuorCXEkxWzhuEpfZDPwUkShm0kwWSnPnjEoNk9KwB2SraRv7iERIfy8YCNKnO9K00GDihc1twoTJsmRC4kG8pQnMcUx9sSx7WjItUR3lqI4JeTmWX_W0jb-WnKG2xlJIyfYn2ouPZTC6UlKNfxnKCurNpeOSKfBHc8ONEXll5ITsDroug-l25XVDm5Dn42UwOvySohrbXmEZBAuCcwOPeNg3jbEmICIJ02p4d7nRaDaqunmlqc892DtNGaZXzEFsvn39RwYleC7vJC_k43-_xxNyC-_ply3ukq3Liyv7FFypS_0s2MtP-GIesg
  priority: 102
  providerName: ProQuest
Title Bis(pinacolato)diboron‐Enabled Ni‐Catalyzed Reductive Arylation/Vinylation of Alkyl Electrophiles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202404301
https://www.ncbi.nlm.nih.gov/pubmed/38887210
https://www.proquest.com/docview/3095016945
https://www.proquest.com/docview/3070794268
https://pubmed.ncbi.nlm.nih.gov/PMC11336967
https://doaj.org/article/82bdb6f8dc3848f483a5087c4cc57dc8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1La9wwEIBFSS69lCZ9bZsuDhSaHMzaetjycTfdEEKzhCQtuRlJlhrTxbvESWF76k_Ib-wv6YzsdWLaUnrx-iGEdkZjjWTNN4S8U5IWQqQuFJaKkDMwRZloHnKtExjOuGJ-Qf9klhx94seX4vJBFH_Dh-gW3NAy_PsaDVzpenQPDVXFN8RtU8TDYADXJsbXIj2f8tP7VRbBEM-CGeZgdh0yyfma3BjRUb-K3sjkAf5_8jp_3zz50Kn1o9LhU_KkdSeDcaP_LfLIVttkqzXYOthrqdL7z4idlPXesqwQUw0T7f2i1Agv-PnjburDp4pgVsLFAS7nrL7D5RlCXfFlCLWvmh1zo89l1Z4GCxeM519X82DaJNJZXkH76ufk4nB6cXAUtjkWQiMYkl1V5mhs4KjBFciUYyl1BYV5k2I2c9xELrEJ-CwiUszEicyU5s4ZFRsmpWEvyEa1qOwrEiAJPmMgSJ_6SNNMg7lnNrUREyZJogEJ1-LNTcsfxzQY87whJ9Mc1ZF36hiQ9135ZUPe-GvJCWqrK4XEbH9jcf0lbw0wl1RjxKEsoN1cOi6ZAt80NdwYkRZGDsjOWtd5a8Z1zsABRVwNFwOy2z0GA8SvKqqyi1ssg5BBcHSgipdN1-haAiKSMMWG_y57nabX1P6TqrzykO84ZphqMQWx-f71Dxnk4MWcS57J1_9Z_g15jDebPY07ZOPm-ta-BT_rRg-9KQ3J5vjDycdz-J1MZ6dnQ79q8Qv2VyXr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtQwGLZKe4ALomwdKDRIINpDNImXxDkg1ClTTWk7QmVAvVmO49CIUTI0LWg48Qi8CC_Fk_T_s5UR26mXKItj2f_u7fsJeaolTYQIU1dYKlzOQBVlEHOXx3EA7oxrVk3oH46D0Tv--lgcL5Ef7VkY3FbZ2sTKUCeFwTnyPoNYAJFDuHg5--Ri1ihcXW1TaNRisW_nX2DIVr7YewX8fUbp7nCyM3KbrAKuEQyxTHWUUt_ANQbnF-mUhTRNKIwUNLNRyo2XBjYALy08zYwfyEjHPE2N9g2T0jCo9hpZgV55YAdWBsPxm6PLSR3BEA2mBYf0aF8nnxEUnCKITZN4pnV-VY6APwW2v-_P_DVurhzf7i1ys4lYne1axFbJks1vk9XGJpTOZgNcvXWH2EFWbs6yHJGwYSy_lWQx4iP8_PZ9WJ3QSpxxBg87OGM0_wqPR4gbi_YWap_Xm_L677O8uXWK1NmefpxPnWGdq2d2Au0r75LJVRD8HlnOi9yuEQfB5iMGhKyyK8U0isGiRDa0HhMmCLwecVvyKtNAnGOmjamqwZmpQnaojh098rwrP6vBPf5acoDc6kohKHf1ojj9oBodV5LGeKhRJtBuLlMumYbwNzTcGBEmRvbIestr1ViKUl3KdY886T6DjuPCjc5tcY5lEMcQYimo4n4tGl1LgEQSRvHQd7kgNAtNXfySZycVjrjvM8zmGALZKvn6Dw0UBEpvJY_kg3_3Y4NcH00OD9TB3nj_IbmB_9c7JtfJ8tnpuX0EUdxZ_LjRHYeoK9bWC66lWy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEOO2wmBBArE9RE19SZwHhNat1cagmsZAe7Mcx2YRVVrWDVSe-An8Hf4Ov2TnJE5Hxe1pL1XTuJZz7sc5_g4hT7WkuRCJC4WlIuQMVFHGGQ95lsXgzrhm1Yb-m2G8-46_OhbHS-RHcxYGyyobm1gZ6nxscI-8wyAWQOQQLjrOl0Uc7AxeTj6F2EEK37Q27TRqEdm3sy-Qvk1f7O0Ar59ROugfbe-GvsNAaARDXFOdOto18JmBI0y1Ywl1OYWsQTObOm4iF9sYPLaINDPdWKY6484Z3TVMSsNg2mtkOYGkKGqR5V5_eHB4ucEjGCLDNECREe3o_DMChFMEtPFNaBpHWPUL-FOQ-3ut5q8xdOUEB7fITR-9Blu1uK2QJVveJivePkyDDQ9ivXmH2F4x3ZgUJaJiQ16_mRcZYiX8_Pa9X53WyoNhARfbuHs0-wqXh4ghi7YXZp_VBXqd90XpvwZjF2yNPs5GQb_u2zM5gfVN75KjqyD4PdIqx6VdJQECz6cMCFl1WspomoF1SW1iIyZMHEdtEjbkVcbDnWPXjZGqgZqpQnaoOTva5Pl8_KQG-vjryB5yaz4KAbqrH8anH5TXdyVphgccZQ7r5tJxyTSEwonhxogkN7JN1hpeK281pupSxtvkyfw26Du-xNGlHZ_jGMQ0hLgKprhfi8Z8JUAiCRk9PLtcEJqFpS7eKYuTClO822XY2TEBslXy9R8aKAia3kqeygf_fo51ch20VL3eG-4_JDfw73Xx5BppnZ2e20cQ0J1lj73qBERdsbJeAMMKX2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bis%28pinacolato%29diboron-Enabled+Ni-Catalyzed+Reductive+Arylation%2FVinylation+of+Alkyl+Electrophiles&rft.jtitle=Advanced+science&rft.au=Sun%2C+Deli&rft.au=Gong%2C+Yuxin&rft.au=Wu%2C+Yu&rft.au=Chen%2C+Yunrong&rft.date=2024-08-01&rft.eissn=2198-3844&rft.volume=11&rft.issue=31&rft.spage=e2404301&rft_id=info:doi/10.1002%2Fadvs.202404301&rft_id=info%3Apmid%2F38887210&rft.externalDocID=38887210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon