How About Vanadium‐Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?
Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materia...
Saved in:
Published in | Advanced science Vol. 10; no. 12; pp. e2206907 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.04.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
The research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. |
---|---|
AbstractList | Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn
2+
intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn 2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. The research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. The research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. Abstract Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. |
Author | Yang, Zilin Lv, Tingting Pang, Huan Yang, Shengyang Peng, Yi Jiang, Shu Zhang, Guangxun |
AuthorAffiliation | 2 School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China 1 Interdisciplinary Materials Research Center, Institute for Advanced Study Chengdu University Chengdu Sichuan 610106 P. R. China |
AuthorAffiliation_xml | – name: 2 School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China – name: 1 Interdisciplinary Materials Research Center, Institute for Advanced Study Chengdu University Chengdu Sichuan 610106 P. R. China |
Author_xml | – sequence: 1 givenname: Tingting surname: Lv fullname: Lv, Tingting email: tingtinglv0311@163.com organization: Yangzhou University – sequence: 2 givenname: Yi surname: Peng fullname: Peng, Yi organization: Yangzhou University – sequence: 3 givenname: Guangxun surname: Zhang fullname: Zhang, Guangxun organization: Yangzhou University – sequence: 4 givenname: Shu surname: Jiang fullname: Jiang, Shu organization: Yangzhou University – sequence: 5 givenname: Zilin surname: Yang fullname: Yang, Zilin organization: Yangzhou University – sequence: 6 givenname: Shengyang surname: Yang fullname: Yang, Shengyang organization: Yangzhou University – sequence: 7 givenname: Huan orcidid: 0000-0002-5319-0480 surname: Pang fullname: Pang, Huan email: panghuan@yzu.edu.cn organization: Yangzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36683227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9vFCEUwImpsbX26tGQePGyK_8GmFOzXf90kxoPahO9EAaYls0MrDDTpjc_gp_RTyLj1k3bS08Q3u_9eDzec7AXYnAAvMRojhEib7W9ynOCCEG8RuIJOCC4ljMqGdu7s98HRzmvEUK4ooJh-QzsU84lJUQcgO-n8RoumjgO8FwHbf3Y__n1-0RnZ-Ey9ps4BpuhznCph8toHfykB5e87jJsY4KLn6OLY4Y_fDBwFQM80cMUd_n4BXjaFswd3a6H4NuH91-Xp7Ozzx9Xy8XZzFQUiRmuCKHSGKabVjdWtpI6K3kpsHGOYlsjKShqmtoh7GyLsXSsYtxYSypMpaaHYLX12qjXapN8r9ONitqrfwcxXSidBm86pwwl1nEjsbCcCcm0RS1v20oWq7TYFNfx1rUZm95Z48KQdHdPej8S_KW6iFcKI0yLQxbDm1tDiqU3eVC9z8Z1nQ5ToxQRXEpcCSYK-voBuo5jCqVXikhUSVELjgr16m5Ju1r-f2EB5lvApJhzcu0OwUhNY6KmMVG7MSkJ7EGC8YMefJye5LtH0659524euUQt3p1_qVAt6F-v-tFA |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_149624 crossref_primary_10_1021_acsanm_4c06378 crossref_primary_10_1016_j_actamat_2024_120468 crossref_primary_10_1002_smll_202306561 crossref_primary_10_1016_j_est_2024_113925 crossref_primary_10_1016_j_jpowsour_2024_235751 crossref_primary_10_1016_j_mtchem_2024_102063 crossref_primary_10_1016_j_cej_2023_147727 crossref_primary_10_1016_j_jallcom_2023_171418 crossref_primary_10_1021_acs_energyfuels_4c02588 crossref_primary_10_1002_adma_202416714 crossref_primary_10_1039_D4RA03730H crossref_primary_10_1016_j_est_2024_112437 crossref_primary_10_1039_D4TA02718C crossref_primary_10_1021_acssuschemeng_3c07411 crossref_primary_10_1007_s12274_024_6668_4 crossref_primary_10_1016_j_jallcom_2024_175869 crossref_primary_10_1021_acs_analchem_3c04899 crossref_primary_10_26599_NR_2025_94907229 crossref_primary_10_1039_D3RA01816D crossref_primary_10_1002_cey2_639 crossref_primary_10_1002_chem_202500219 crossref_primary_10_1002_smll_202306790 crossref_primary_10_1021_acsami_4c16336 crossref_primary_10_1002_smll_202409552 crossref_primary_10_1007_s11663_024_02999_2 crossref_primary_10_1007_s11581_024_05441_4 crossref_primary_10_1002_smll_202406458 crossref_primary_10_1016_j_est_2024_112284 crossref_primary_10_1016_j_cej_2024_152994 crossref_primary_10_1021_acs_energyfuels_4c03696 crossref_primary_10_1021_acsami_4c02177 crossref_primary_10_1021_acssuschemeng_4c04349 crossref_primary_10_1016_j_jcis_2024_03_161 crossref_primary_10_1007_s11581_025_06187_3 crossref_primary_10_1002_cey2_647 crossref_primary_10_1002_smll_202309029 crossref_primary_10_3390_coatings14080955 crossref_primary_10_1016_j_apsusc_2023_159005 crossref_primary_10_1016_j_ensm_2024_103799 crossref_primary_10_1016_j_jcis_2025_02_099 crossref_primary_10_1016_j_cej_2024_152064 crossref_primary_10_1016_j_cscee_2023_100591 crossref_primary_10_1016_j_est_2024_114754 crossref_primary_10_1016_j_jcis_2023_09_045 crossref_primary_10_1016_j_jcis_2023_10_044 crossref_primary_10_1016_j_est_2024_111640 crossref_primary_10_1002_smll_202405251 crossref_primary_10_1016_j_est_2023_109045 crossref_primary_10_1016_j_nanoen_2023_108736 crossref_primary_10_3390_catal13091241 crossref_primary_10_1007_s11581_025_06179_3 crossref_primary_10_1016_j_ensm_2024_103944 crossref_primary_10_1039_D3CC04440H crossref_primary_10_1002_cssc_202402289 crossref_primary_10_1039_D3CC04436J crossref_primary_10_1051_matecconf_202338201015 crossref_primary_10_1039_D4RA06871H crossref_primary_10_1016_j_cej_2023_143971 crossref_primary_10_1016_j_ensm_2024_103300 crossref_primary_10_20517_microstructures_2024_47 crossref_primary_10_1007_s12598_024_02671_3 crossref_primary_10_1016_j_ensm_2024_103544 crossref_primary_10_1016_j_nanoen_2024_109691 crossref_primary_10_1016_j_jpowsour_2025_236830 crossref_primary_10_1016_j_ccr_2023_215497 crossref_primary_10_1016_j_nxener_2024_100180 crossref_primary_10_1016_j_jcis_2025_01_173 crossref_primary_10_1016_j_cej_2024_157587 crossref_primary_10_3389_fmats_2024_1376865 crossref_primary_10_1016_j_cis_2025_103427 crossref_primary_10_1016_j_jcis_2025_01_176 crossref_primary_10_3390_molecules29122834 crossref_primary_10_1039_D4TA05711B crossref_primary_10_1002_batt_202400064 crossref_primary_10_1039_D4GC01557F crossref_primary_10_1002_smll_202406801 crossref_primary_10_1016_j_est_2025_115873 crossref_primary_10_1016_j_est_2025_115995 crossref_primary_10_1021_acsami_4c19917 crossref_primary_10_1039_D4TB01743A crossref_primary_10_1016_j_ensm_2025_104064 crossref_primary_10_1016_j_est_2024_111264 crossref_primary_10_1016_j_est_2023_109340 crossref_primary_10_1002_adfm_202303102 crossref_primary_10_1002_smll_202410758 crossref_primary_10_1016_j_apmt_2024_102568 crossref_primary_10_1016_j_ijoes_2024_100804 crossref_primary_10_1016_j_jpowsour_2024_234618 crossref_primary_10_1360_SSC_2024_0011 crossref_primary_10_1016_j_jelechem_2023_117636 crossref_primary_10_1039_D4TA01136H crossref_primary_10_1016_j_electacta_2025_145877 crossref_primary_10_1016_j_cej_2024_151114 crossref_primary_10_1016_j_jcis_2024_01_214 crossref_primary_10_23919_CHAIN_2024_000010 crossref_primary_10_1016_j_matchemphys_2024_129406 crossref_primary_10_1016_j_jallcom_2023_171750 crossref_primary_10_1002_smtd_202301398 crossref_primary_10_1016_j_jpowsour_2024_235895 crossref_primary_10_1016_j_cej_2024_149674 crossref_primary_10_1016_j_jcis_2023_11_129 crossref_primary_10_1002_aenm_202500171 crossref_primary_10_3390_ma17194703 crossref_primary_10_1016_j_jpowsour_2025_236649 crossref_primary_10_1021_acsami_4c03309 crossref_primary_10_1039_D4CC06362G crossref_primary_10_1002_aenm_202406171 crossref_primary_10_1016_j_cej_2024_158241 crossref_primary_10_12677_ms_2024_146094 crossref_primary_10_1039_D3QM00003F crossref_primary_10_1007_s10008_024_06139_3 crossref_primary_10_1016_j_nanoen_2024_109822 crossref_primary_10_1016_j_scib_2024_01_029 crossref_primary_10_1021_acsanm_4c04848 crossref_primary_10_1016_j_est_2024_110808 crossref_primary_10_1016_j_ensm_2023_103162 crossref_primary_10_1021_acs_iecr_4c03505 crossref_primary_10_1016_j_cej_2023_146883 crossref_primary_10_1016_j_carbon_2024_119917 crossref_primary_10_1007_s11581_024_05481_w crossref_primary_10_1016_j_jallcom_2023_172934 crossref_primary_10_1016_j_est_2024_111852 crossref_primary_10_1002_smll_202400692 crossref_primary_10_1016_j_est_2024_114448 crossref_primary_10_1002_aenm_202400977 crossref_primary_10_1039_D4QI01732C crossref_primary_10_1016_j_est_2025_115826 crossref_primary_10_1016_j_colsurfa_2024_134013 crossref_primary_10_1016_j_cej_2024_155765 crossref_primary_10_1016_j_est_2024_113196 crossref_primary_10_1021_acsami_4c10376 crossref_primary_10_1016_j_est_2024_113230 crossref_primary_10_1007_s10854_024_13386_7 crossref_primary_10_1002_smll_202306697 crossref_primary_10_1088_1361_6528_ad0245 crossref_primary_10_1002_smll_202306615 crossref_primary_10_1016_j_susmat_2024_e00968 crossref_primary_10_20517_energymater_2023_82 crossref_primary_10_1093_nsr_nwae336 |
Cites_doi | 10.1039/C8TA09338E 10.1021/acsami.9b13729 10.1002/adfm.201906142 10.1021/acs.nanolett.0c00732 10.1002/smll.202100558 10.1007/s40820-020-0401-y 10.1021/acsnano.0c08432 10.1016/j.nanoen.2021.106477 10.1016/j.pmatsci.2019.100616 10.1021/acsaem.1c03066 10.1039/C9TA04274A 10.1007/s11426-020-9830-8 10.1039/D2CC00915C 10.1002/advs.201600051 10.1039/D2EE02267B 10.1039/D0TA07872G 10.1021/acs.chemmater.8b01381 10.1016/j.nanoen.2021.105876 10.1016/j.ensm.2020.03.024 10.1002/adfm.201904398 10.1021/acs.chemmater.8b02679 10.1016/j.cej.2020.124118 10.1016/j.jallcom.2021.159403 10.1021/cr020730k 10.1021/acs.chemmater.0c00004 10.1002/1521-3749(200212)628:12<2778::AID-ZAAC2778>3.0.CO;2-H 10.1039/D2NR00983H 10.1002/anie.201903941 10.1016/j.jpowsour.2018.06.021 10.1016/j.ensm.2019.02.012 10.1016/j.matlet.2013.05.112 10.1002/anie.201106307 10.1021/acsaem.0c00318 10.1039/C9TA04264D 10.1002/celc.201901851 10.1007/s40820-021-00641-3 10.1002/adfm.202101027 10.1007/s40820-021-00715-2 10.1039/D1NR02158C 10.1039/c2jm33862a 10.1021/ja207176c 10.1016/j.mtener.2019.100361 10.1021/acs.iecr.1c04683 10.1021/am507089x 10.1007/s00339-011-6325-0 10.1016/j.nanoen.2020.105276 10.1039/C8CC07243D 10.1016/j.chempr.2020.02.001 10.1016/j.cej.2022.136349 10.1016/j.cej.2021.130459 10.1071/CH9812035 10.1039/C9TA05767F 10.1002/smll.202101944 10.1002/anie.202209350 10.1002/aenm.202102707 10.1002/adma.201204576 10.1021/ja034565h 10.1002/admi.201801506 10.1039/C8TA02090F 10.1002/aenm.201901968 10.1021/acsaem.1c02064 10.1016/j.jpowsour.2011.02.046 10.1002/adfm.202003511 10.1039/c1jm11523e 10.1039/D0TA05065B 10.1021/acsami.6b04444 10.1021/acs.nanolett.5b04610 10.1016/j.cej.2020.126737 10.1002/smll.200700032 10.1016/j.ccr.2022.214602 10.1002/ente.202000789 10.1016/j.mseb.2010.07.023 10.1038/s41467-018-04949-4 10.1021/acs.chemmater.6b05084 10.1002/adfm.201802564 10.1002/adma.202201779 10.1021/acsnano.9b09963 10.1039/D0TA01033B 10.1039/C9DT04226A 10.1039/D0TA07436E 10.1016/j.nanoen.2020.104573 10.1016/j.cclet.2020.02.052 10.1039/c3ce40787j 10.1021/acsnano.1c04423 10.1016/j.ensm.2021.05.003 10.1016/j.cclet.2021.12.049 10.1038/s41560-020-0674-x 10.1039/D2NR02122F 10.1002/cssc.202000699 10.1016/j.electacta.2019.135506 10.1007/s41918-020-00075-2 10.1016/j.electacta.2015.03.087 10.1002/smll.201800567 10.1002/adma.201904369 10.1016/j.ensm.2021.07.045 10.1039/D0QM00051E 10.1016/j.nanoen.2016.04.051 10.1002/adfm.202105717 10.1021/acsami.1c09951 10.1016/j.jpowsour.2021.229528 10.1021/acsaem.8b02054 10.1002/adfm.201807331 10.1021/acsenergylett.1c02514 10.1016/j.cej.2020.125259 10.1016/j.jallcom.2021.160324 10.1039/D1EE01158H 10.1016/j.electacta.2019.134689 10.1016/j.electacta.2022.140120 10.1016/j.electacta.2019.135347 10.1016/j.cis.2022.102732 10.1021/acs.nanolett.7b05403 10.1016/j.enchem.2021.100052 10.1021/ja406016j 10.1039/D0TA10336E 10.1201/9781420007282 10.1016/j.cej.2022.137090 10.1016/j.cej.2021.133815 10.1021/acs.chemmater.7b00428 10.1038/srep19621 10.1007/s11426-018-9394-1 10.1016/S0020-1693(00)82175-1 10.1016/j.jcis.2022.01.155 10.1039/C9TA11031C 10.1002/anie.201806748 10.1016/j.ensm.2018.03.003 10.1021/acsnano.0c02658 10.1016/j.nanoen.2019.03.034 10.1021/cm000345g 10.1021/jacs.5b03395 10.1016/j.cej.2021.133795 10.1016/j.chempr.2019.02.014 10.1016/j.jpowsour.2016.08.039 10.1016/j.cej.2021.131211 10.1021/acsaem.9b01299 10.1016/j.ensm.2017.10.014 10.1021/acsnano.1c01389 10.1002/aenm.202000058 10.1002/aenm.201602720 10.1039/C9TA01164A 10.1016/j.electacta.2021.139785 10.1016/j.cej.2022.136502 10.1039/C9CS00131J 10.1007/s40820-020-00554-7 10.1039/D0TA03165H 10.1002/aenm.201700127 10.1002/inf2.12223 10.1039/C9TA00125E 10.1016/j.ensm.2019.03.007 10.1016/j.ensm.2019.11.004 10.1039/C9EE02356A 10.1002/aenm.201400930 10.1002/adfm.201909486 10.1039/b819629j 10.1149/2.114306jes 10.1016/j.jallcom.2018.09.076 10.1002/inf2.12042 10.1039/C5NR02064F 10.1039/C9TA07822C 10.1039/C7CS00614D 10.1016/j.apsusc.2020.147077 10.1002/aenm.201801819 10.1038/nenergy.2016.39 10.1021/ic402897d 10.1021/acsnano.9b06484 10.1016/j.ensm.2018.01.009 10.1021/acs.inorgchem.6b01662 10.1016/j.jpowsour.2016.01.058 10.1002/anie.201509800 10.1021/acssuschemeng.9b06613 10.1002/anie.202010287 10.1039/C9EE02526J 10.1016/j.joule.2018.07.017 10.1021/acs.nanolett.5b00321 10.1021/acs.iecr.1c01052 10.1039/D1CC00584G 10.1002/advs.201400018 10.1002/anie.201902679 10.1016/j.apsusc.2019.144816 10.1016/j.ensm.2020.12.001 10.1021/cm071728i 10.1021/acsami.9b12128 10.1021/acssuschemeng.1c03101 10.1002/adfm.202100005 10.1021/acsnano.9b08039 10.1016/j.ensm.2022.07.017 10.1016/j.jcis.2021.04.010 10.1039/C8EE01651H 10.1021/cm501644g 10.1039/C9NR03129D 10.1021/acsami.0c10183 10.1016/j.jechem.2022.07.034 10.1002/cssc.202200313 10.1002/ente.201900022 10.1021/acsanm.9b00703 10.1038/s41560-020-0655-0 10.1039/C5DT03239C 10.1021/acs.chemrev.7b00689 10.1126/science.264.5162.1115 10.1002/smll.201700067 10.1039/C2TA00351A 10.1021/acsami.9b05362 10.1016/j.ensm.2020.04.039 10.1039/C6EE03173K 10.1016/j.jechem.2021.02.014 10.1016/j.jpowsour.2022.231358 10.1002/smll.202100746 10.1007/s10853-011-5302-5 10.1016/j.ensm.2018.08.008 10.1039/C8TA12014E 10.1016/j.nanoen.2018.05.056 10.1016/j.cej.2022.137069 10.1021/acsnano.1c11169 10.1016/j.jechem.2018.05.001 10.1016/j.nanoen.2020.104851 10.1016/j.jelechem.2021.115685 10.1039/C8TA08133F 10.1016/j.jcis.2022.07.034 10.1021/acs.nanolett.0c04539 10.1002/aenm.201800144 10.1021/acsami.7b13110 10.1007/s40843-020-1550-2 10.1016/j.jallcom.2019.06.084 10.1021/acs.iecr.1c01915 10.1021/acsami.1c12447 10.1002/aenm.202100973 10.1021/acsami.8b10849 10.1016/j.jpowsour.2014.01.126 10.1039/C8CS00426A 10.1002/aenm.202000477 10.1021/nn101187z 10.1016/j.cej.2019.122844 10.1016/j.nanoen.2019.01.068 10.1016/j.hydromet.2012.02.013 10.1016/j.cej.2022.134642 10.1021/nl504705z 10.1039/C8TA02018C 10.1016/j.nanoen.2019.104211 10.1021/acsami.5b03210 10.1002/anie.201912203 10.1007/s40820-022-00960-z 10.1021/acs.chemmater.8b03409 10.1002/aenm.201702463 10.1016/j.jpowsour.2012.03.113 10.1016/j.rser.2018.03.047 10.1103/PhysRevLett.72.3389 10.1002/adma.201806133 10.1021/acs.accounts.0c00362 10.1016/j.jechem.2018.12.023 10.1007/s10800-016-0973-x 10.1039/C8TA11860D 10.1007/s41918-018-0007-y 10.1021/acsenergylett.8b01426 10.1016/j.ccr.2018.08.010 10.1016/j.ensm.2021.07.004 10.1016/j.materresbull.2017.08.047 10.1016/j.ensm.2022.04.040 10.1002/cssc.202100223 10.1016/j.mtener.2020.100593 10.1016/j.cej.2022.137681 10.1039/D1TA00803J 10.1039/D0CC08115A 10.1016/j.cej.2021.128408 10.1021/jp410969u 10.1002/adma.201800762 10.1016/j.joule.2018.11.007 10.1021/acsaem.0c00505 10.1016/j.nanoen.2019.05.059 10.1039/D1EE00030F 10.1039/C9TA09116E 10.1016/j.nanoen.2021.106386 10.1016/j.joule.2018.07.006 10.1016/j.jechem.2020.08.016 10.1021/acsnano.9b10214 10.1016/j.cej.2022.137266 10.1039/C9EE00956F 10.1016/j.jallcom.2019.02.078 10.1016/j.nanoen.2019.05.005 10.1002/smtd.201900637 10.1002/anie.201814653 10.1016/j.jpowsour.2014.11.052 10.1002/smll.202202151 10.1126/science.aag0410 10.1002/adma.201705580 10.1002/aenm.202003639 10.1016/j.jechem.2020.06.013 10.1002/aenm.202201434 10.1002/anie.202116282 10.1021/acsaem.9b01632 10.1021/cm020348o 10.1039/C5EE00036J 10.1038/nchem.141 10.1021/acs.nanolett.5b00284 10.1016/j.nanoen.2021.105969 10.1002/aenm.201601920 10.1016/0022-3697(84)90050-7 10.1021/acsenergylett.7b01278 10.1039/C9CS00906J 10.1002/adma.201204530 10.1016/j.mtener.2020.100431 10.1039/D1TA05526G 10.1016/j.enchem.2020.100027 10.1021/ja501866r 10.1002/cssc.201403143 10.1002/adma.201502864 10.1016/j.jece.2020.104765 10.1016/j.ccr.2020.213341 10.1038/nmat4830 10.1016/j.electacta.2014.09.068 10.1016/j.jallcom.2020.158560 10.1021/am5070393 10.1002/sstr.202100212 10.1002/aenm.201903977 10.1002/adma.202004129 10.1002/adma.201703725 10.1039/C6EE00794E 10.1002/cssc.201702031 10.1039/C8CC02250J 10.1016/j.cej.2022.136789 10.1021/jp065478p 10.1021/acsami.1c06160 10.26599/NRE.2022.9120009 10.1016/j.nanoen.2020.104548 10.1038/srep25809 10.1021/acsenergylett.9b00788 10.1016/j.apsusc.2021.152053 10.1002/adfm.202003890 10.1126/science.1212741 10.1002/aenm.202002354 10.1016/j.jcis.2021.07.138 10.1016/j.enchem.2022.100074 10.1002/aenm.201900237 10.1038/s41467-018-04060-8 10.1021/acsami.7b15407 10.1016/j.jechem.2019.03.036 10.1021/am503136h 10.1016/j.apsusc.2019.145137 10.1039/C9TA05554A 10.1002/adsu.202000178 10.1002/aenm.201200558 10.1016/j.nanoen.2021.106596 10.1021/nl402969r 10.1002/adfm.202102827 10.1021/acsami.1c00749 10.1002/aenm.201901480 10.1002/eem2.12166 10.1016/j.colsurfa.2020.124621 10.1039/C9TA02990G 10.1016/j.jpowsour.2012.11.022 10.1016/j.cej.2021.132538 10.1038/nmat3001 10.1002/anie.201206554 10.1016/j.jpowsour.2020.229284 10.1016/j.matlet.2020.128559 10.1002/anie.201908853 10.1039/D2RA00298A 10.1016/j.ensm.2021.06.006 10.1002/aenm.201600868 10.1149/2.015209jes 10.1016/j.electacta.2019.134565 10.1016/j.jallcom.2015.01.115 10.1039/C5CC05425G 10.1002/cssc.202201118 10.1016/j.ccr.2021.214260 10.1039/C9TA05922A 10.1016/j.jpowsour.2021.230286 10.1016/j.jechem.2021.03.051 10.1021/jacs.6b05958 10.1016/j.nanoen.2019.04.009 10.1002/adfm.202103070 10.1039/c3tc31508h 10.1021/acs.chemrev.9b00628 10.1039/C9TA04798K 10.1002/adfm.202106816 10.1002/ente.202000829 10.1016/j.nanoen.2018.07.014 10.1039/C7TA11237H 10.1016/j.jallcom.2019.152971 10.1016/j.mtener.2021.100824 10.1016/j.jpowsour.2017.03.121 10.1016/j.nanoen.2021.105835 10.1007/s40820-019-0256-2 10.1021/acsenergylett.8b01423 10.1039/C8TA06626D 10.1021/acsenergylett.8b02053 10.1021/acs.chemmater.6b05092 10.1002/aenm.201900083 10.1002/adma.201104681 10.1016/0379-6779(87)90893-9 10.1016/j.ccr.2021.214124 10.1016/j.nanoen.2018.06.076 10.1002/smll.202201011 10.1002/aenm.201803436 10.1021/am402352q 10.1016/j.enchem.2022.100092 10.1016/j.jpowsour.2019.227192 10.1021/acsami.6b16000 10.1002/ente.201901105 10.1039/C6TA02917E 10.1016/j.electacta.2018.08.040 10.1002/celc.202100280 10.1016/j.jcis.2021.08.194 10.1021/ja403232d 10.1016/j.jcis.2019.10.092 10.31635/ccschem.020.202000182 10.1002/anie.201606508 10.1016/j.nanoen.2017.02.014 10.1039/C9TA08086D 10.1016/j.jpowsour.2022.231489 10.1039/D2QI01083F 10.1039/D0TA01468K 10.1002/anie.202112381 10.1039/C9TA00716D 10.1021/acsami.7b09924 10.1002/crat.201100110 10.1038/nenergy.2016.119 10.1016/j.jcis.2021.06.141 10.1002/cssc.201702270 10.1016/j.electacta.2021.138624 10.1021/acsenergylett.8b00565 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202206907 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c32de6c817d64784ad0f6ff581188d1c PMC10131888 36683227 10_1002_advs_202206907 ADVS5097 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20200044 – fundername: Program for Young Changjiang Scholars of the Ministry of Education, China funderid: Q2018270 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: National Natural Science Foundation of China funderid: NSFC‐U1904215 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20200044 – fundername: National Natural Science Foundation of China grantid: NSFC-U1904215 – fundername: Program for Young Changjiang Scholars of the Ministry of Education, China grantid: Q2018270 – fundername: ; – fundername: ; grantid: BK20200044 – fundername: ; grantid: NSFC‐U1904215 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5307-152238cc4abfabd8f83ed86668bee31d908730bb9e01edf118e4546cdd25138a3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:30:11 EDT 2025 Thu Aug 21 18:38:03 EDT 2025 Fri Jul 11 16:34:09 EDT 2025 Sat Jul 26 02:32:37 EDT 2025 Mon Jul 21 06:01:31 EDT 2025 Tue Jul 01 03:59:49 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Wed Jan 22 16:21:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cathode materials aqueous zinc-ion batteries vanadium-based compounds |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5307-152238cc4abfabd8f83ed86668bee31d908730bb9e01edf118e4546cdd25138a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5319-0480 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206907 |
PMID | 36683227 |
PQID | 2805879760 |
PQPubID | 4365299 |
PageCount | 49 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c32de6c817d64784ad0f6ff581188d1c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10131888 proquest_miscellaneous_2768815747 proquest_journals_2805879760 pubmed_primary_36683227 crossref_primary_10_1002_advs_202206907 crossref_citationtrail_10_1002_advs_202206907 wiley_primary_10_1002_advs_202206907_ADVS5097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 64 2020; 20 2016; 308 2019; 11 2020; 280 2019; 13 2019; 12 2021; 446 2019; 14 2020; 17 2020; 14 2019; 18 2020; 13 2020; 12 2020; 10 2022; 615 1994; 264 2015; 137 2000; 12 2019; 22 2019; 23 2013; 117 2019; 29 2022; 607 2022; 605 2021; 83 2012; 24 2021; 85 2012; 22 2010; 4 2021; 84 2016; 46 2007; 19 2021; 42 2019; 31 2016; 329 2020; 382 2021; 425 2013; 107 1984; 45 2013; 227 2019; 38 2006; 110 2020; 32 2016; 16 2011; 133 2016; 4 2021; 57 2021; 417 2016; 6 2021; 54 2016; 1 2021; 56 2016; 3 2022; 3 2020; 31 2022; 4 2020; 30 2020; 396 2022; 5 2018; 118 2022; 7 2020; 390 2022; 9 2018; 91 2020; 26 2010; 175 2022; 1 2021; 61 2022; 626 2021; 60 2021; 63 2018; 97 2016; 25 2016; 8 2016; 9 2020; 29 2013; 25 2020; 63 2020; 120 2019; 55 2019; 58 2020; 59 2021; 484 2017; 353 2017; 355 2022; 536 2022; 533 2022; 412 2020; 8 2020; 7 2020; 6 2020; 5 2019; 60 2020; 4 2013; 15 2020; 3 2020; 2 2019; 62 2019; 61 2020; 53 2021; 597 2013; 13 2017; 34 2020; 49 2012; 214 2020; 819 2014; 6 2022; 404 1981; 34 2014; 53 2021; 9 2015; 2 2021; 8 2011; 334 2021; 4 2015; 5 2021; 3 2021; 89 2015; 166 2021; 900 2019; 787 2007 2017; 29 2020; 77 2015; 8 2015; 7 2022; 434 2020; 108 2021; 90 2022; 433 2011; 104 2012; 117–118 2022 2020; 74 2017; 16 2020; 593 2020; 70 2017; 10 2015; 275 2017; 13 2016; 138 2018; 51 2020; 67 2018; 50 2022; 307 2022; 428 2009; 1 2018; 54 2019; 772 2018; 57 2002; 14 2018; 287 2022; 451 2019; 2019 2013; 3 2013; 1 2020; 560 2021; 603 2014; 26 2011; 196 2013; 5 2014; 136 2019; 320 2019; 441 2014; 258 2019; 321 2022; 578 2018; 6 2022; 442 2018; 9 2018; 8 2018; 3 2018; 2 2018; 1 2020; 330 2022; 34 2018; 30 2020; 332 2007; 3 2022; 33 2009; 19 1994; 72 2022; 448 2022; 445 2022; 446 2022; 443 1986; 117 2019; 7 2019; 9 2018; 28 2019; 4 2019; 3 2019; 6 2019; 5 2021; 388 2019; 2 2015; 51 2018; 27 2018; 18 2015; 631 2022; 12 2021; 490 2022; 14 2022; 15 2018; 11 2018; 10 2022; 16 2018; 15 2022; 18 2018; 14 2022; 466 2014; 146 2018; 13 2017; 7 2021; 21 2021; 405 2011; 10 2019; 801 2013; 160 2017; 9 2020; 529 2012; 51 2021; 35 2021; 31 2021; 33 2018; 376 2021; 878 2015; 44 2011; 21 2022; 75 2002; 628 2021; 870 2003; 125 2021; 41 2021; 40 2020; 416 2015; 15 2021; 507 2004; 104 2021; 861 2022; 50 2022; 51 1987; 18 2020; 507 2016; 55 2020; 506 2021; 14 2021; 13 2021; 15 2018; 396 2015; 27 2021; 11 2022; 61 2021; 17 2021; 19 2022; 58 2013; 135 2011; 46 2012; 159 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_400_1 e_1_2_9_292_1 e_1_2_9_107_1 e_1_2_9_337_1 e_1_2_9_314_1 e_1_2_9_390_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_412_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_280_1 e_1_2_9_325_1 e_1_2_9_348_1 e_1_2_9_195_1 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_217_1 e_1_2_9_401_1 e_1_2_9_270_1 e_1_2_9_293_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_338_1 e_1_2_9_315_1 e_1_2_9_391_1 e_1_2_9_182_1 e_1_2_9_46_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_413_1 e_1_2_9_5_1 e_1_2_9_281_1 e_1_2_9_118_1 e_1_2_9_326_1 e_1_2_9_349_1 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_339_1 e_1_2_9_402_1 e_1_2_9_294_1 e_1_2_9_109_1 e_1_2_9_271_1 e_1_2_9_316_1 e_1_2_9_392_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_414_1 e_1_2_9_282_1 e_1_2_9_327_1 e_1_2_9_380_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_108_1 e_1_2_9_403_1 e_1_2_9_219_1 e_1_2_9_370_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_393_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_260_1 e_1_2_9_283_1 e_1_2_9_328_1 e_1_2_9_7_1 e_1_2_9_415_1 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_381_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_150_1 e_1_2_9_318_1 e_1_2_9_90_1 e_1_2_9_273_1 e_1_2_9_404_1 e_1_2_9_296_1 e_1_2_9_250_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_371_1 e_1_2_9_394_1 e_1_2_9_306_1 e_1_2_9_284_1 e_1_2_9_329_1 e_1_2_9_261_1 e_1_2_9_416_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_382_1 e_1_2_9_319_1 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 e_1_2_9_251_1 e_1_2_9_405_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_395_1 e_1_2_9_372_1 e_1_2_9_307_1 e_1_2_9_80_1 e_1_2_9_285_1 e_1_2_9_262_1 e_1_2_9_417_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_360_1 e_1_2_9_383_1 e_1_2_9_35_1 e_1_2_9_298_1 e_1_2_9_12_1 e_1_2_9_275_1 e_1_2_9_252_1 Luo Y. (e_1_2_9_295_1) 2007 e_1_2_9_406_1 e_1_2_9_166_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_350_1 e_1_2_9_373_1 e_1_2_9_396_1 e_1_2_9_308_1 e_1_2_9_24_1 e_1_2_9_286_1 e_1_2_9_263_1 e_1_2_9_240_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_418_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_384_1 e_1_2_9_361_1 e_1_2_9_276_1 e_1_2_9_299_1 e_1_2_9_13_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_397_1 e_1_2_9_188_1 e_1_2_9_407_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_374_1 e_1_2_9_351_1 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_264_1 e_1_2_9_241_1 e_1_2_9_177_1 e_1_2_9_419_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_362_1 e_1_2_9_385_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_277_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_375_1 e_1_2_9_398_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_408_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_352_1 e_1_2_9_265_1 e_1_2_9_83_1 e_1_2_9_288_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_111_1 e_1_2_9_386_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_363_1 e_1_2_9_340_1 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_95_1 e_1_2_9_278_1 e_1_2_9_353_1 e_1_2_9_399_1 e_1_2_9_409_1 e_1_2_9_376_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_330_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_84_1 e_1_2_9_266_1 e_1_2_9_289_1 e_1_2_9_220_1 e_1_2_9_364_1 e_1_2_9_387_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_110_1 e_1_2_9_341_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_279_1 e_1_2_9_92_1 e_1_2_9_331_1 e_1_2_9_354_1 e_1_2_9_377_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_267_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_342_1 e_1_2_9_388_1 e_1_2_9_365_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_257_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_332_1 e_1_2_9_378_1 e_1_2_9_100_1 e_1_2_9_355_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 Lv T. (e_1_2_9_65_1) 2022 e_1_2_9_17_1 e_1_2_9_245_1 e_1_2_9_222_1 e_1_2_9_268_1 e_1_2_9_82_1 e_1_2_9_320_1 e_1_2_9_343_1 e_1_2_9_366_1 e_1_2_9_389_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_29_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_258_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_333_1 e_1_2_9_356_1 e_1_2_9_379_1 e_1_2_9_310_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_269_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_321_1 e_1_2_9_367_1 e_1_2_9_344_1 e_1_2_9_115_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_259_1 e_1_2_9_76_1 e_1_2_9_420_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_334_1 e_1_2_9_357_1 e_1_2_9_125_1 e_1_2_9_311_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_247_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_322_1 e_1_2_9_345_1 e_1_2_9_368_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_237_1 e_1_2_9_421_1 e_1_2_9_290_1 e_1_2_9_128_1 e_1_2_9_335_1 e_1_2_9_358_1 e_1_2_9_105_1 e_1_2_9_312_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_4_1 e_1_2_9_410_1 e_1_2_9_323_1 e_1_2_9_117_1 e_1_2_9_346_1 e_1_2_9_369_1 e_1_2_9_193_1 e_1_2_9_300_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_97_1 Huang J. (e_1_2_9_191_1) 2019; 2019 e_1_2_9_291_1 e_1_2_9_127_1 e_1_2_9_336_1 e_1_2_9_104_1 e_1_2_9_359_1 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_411_1 e_1_2_9_139_1 e_1_2_9_324_1 e_1_2_9_347_1 e_1_2_9_116_1 e_1_2_9_301_1 e_1_2_9_192_1 |
References_xml | – volume: 329 start-page: 148 year: 2016 publication-title: J. Power Sources – volume: 70 year: 2020 publication-title: Nano Energy – volume: 7 start-page: 4230 year: 2019 publication-title: J. Mater. Chem. A – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 135 start-page: 8720 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 18 year: 2022 publication-title: Small – volume: 1 start-page: 82 year: 2013 publication-title: J. Mater. Chem. A – volume: 13 start-page: 3696 year: 2020 publication-title: ChemSusChem – volume: 15 start-page: 9244 year: 2021 publication-title: ACS Nano – volume: 61 start-page: 2955 year: 2022 publication-title: Ind. Eng. Chem. Res. – volume: 9 year: 2021 publication-title: J. Environ. Chem. Eng. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 2180 year: 2015 publication-title: Nano Lett. – volume: 104 start-page: 707 year: 2011 publication-title: Appl. Phys. A – volume: 108 year: 2020 publication-title: Prog. Mater. Sci. – volume: 14 start-page: 7328 year: 2020 publication-title: ACS Nano – volume: 6 start-page: 8006 year: 2018 publication-title: J. Mater. Chem. A – volume: 117–118 start-page: 108 year: 2012 publication-title: Hydrometallurgy – volume: 30 start-page: 130 year: 2020 publication-title: Energy Storage Mater. – volume: 27 start-page: 6670 year: 2015 publication-title: Adv. Mater. – volume: 63 start-page: 1767 year: 2020 publication-title: Sci. China: Chem. – volume: 448 year: 2022 publication-title: Chem. Eng. J. – volume: 34 start-page: 2035 year: 1981 publication-title: Aust. J. Chem. – volume: 7 start-page: 5612 year: 2019 publication-title: J. Mater. Chem. A – volume: 50 start-page: 21 year: 2022 publication-title: Energy Storage Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 2019 year: 2019 publication-title: Research – volume: 446 year: 2021 publication-title: Coord. Chem. Rev. – volume: 22 start-page: 410 year: 2019 publication-title: Energy Storage Mater. – volume: 46 start-page: 2821 year: 2011 publication-title: J. Mater. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 3 start-page: 686 year: 2021 publication-title: CCS Chem. – volume: 49 start-page: 180 year: 2020 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 30 start-page: 6777 year: 2018 publication-title: Chem. Mater. – volume: 7 start-page: 730 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 45 start-page: 581 year: 1984 publication-title: J. Phys. Chem. Solids – volume: 12 start-page: 3203 year: 2019 publication-title: Energy Environ. Sci. – volume: 388 year: 2021 publication-title: Electrochim. Acta – volume: 8 start-page: 3681 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 175 start-page: 164 year: 2010 publication-title: Mater. Sci. Eng. B – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 17 year: 2020 publication-title: Mater. Today Energy – volume: 819 year: 2020 publication-title: J. Alloys Compd. – volume: 355 start-page: 371 year: 2017 publication-title: Science – volume: 46 start-page: 507 year: 2011 publication-title: Cryst. Res. Technol. – volume: 14 start-page: 2076 year: 2021 publication-title: ChemSusChem – volume: 42 start-page: 286 year: 2021 publication-title: Energy Storage Mater. – volume: 4 start-page: 7754 year: 2016 publication-title: J. Mater. Chem. A – volume: 870 year: 2021 publication-title: J. Alloys Compd. – volume: 18 start-page: 10 year: 2019 publication-title: Energy Storage Mater. – volume: 15 start-page: 3189 year: 2015 publication-title: Nano Lett. – volume: 49 start-page: 1688 year: 2020 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 7795 year: 2020 publication-title: Chem. Rev. – volume: 3 start-page: 562 year: 2018 publication-title: ACS Energy Lett. – volume: 490 year: 2021 publication-title: J. Power Sources – volume: 35 start-page: 679 year: 2021 publication-title: Energy Storage Mater. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 125 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 275 start-page: 694 year: 2015 publication-title: J. Power Sources – volume: 2 year: 2020 publication-title: EnergyChem – volume: 14 start-page: 7607 year: 2022 publication-title: Nanoscale – volume: 72 start-page: 3389 year: 1994 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 9261 year: 2015 publication-title: Nanoscale – volume: 55 start-page: 698 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 177 year: 2019 publication-title: ACS Energy Lett. – volume: 607 start-page: 68 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 1950 year: 2018 publication-title: Joule – volume: 14 start-page: 218 year: 2022 publication-title: Nano‐Micro Lett. – volume: 332 year: 2020 publication-title: Electrochim. Acta – volume: 110 year: 2006 publication-title: J. Phys. Chem. B – volume: 56 start-page: 223 year: 2021 publication-title: J. Energy Chem. – volume: 2 start-page: 2519 year: 2018 publication-title: Joule – volume: 484 year: 2021 publication-title: J. Power Sources – volume: 11 start-page: 709 year: 2018 publication-title: ChemSusChem – volume: 11 start-page: 3157 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 53 start-page: 1764 year: 2014 publication-title: Inorg. Chem. – volume: 9 start-page: 7177 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 4247 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 597 start-page: 422 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 84 year: 2021 publication-title: Nano Energy – volume: 166 start-page: 277 year: 2015 publication-title: Electrochim. Acta – volume: 12 start-page: 2273 year: 2019 publication-title: Energy Environ. Sci. – volume: 27 start-page: 1597 year: 2018 publication-title: J. Energy Chem. – volume: 33 start-page: 4628 year: 2022 publication-title: Chin. Chem. Lett. – volume: 605 start-page: 828 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 57 start-page: 6253 year: 2021 publication-title: Chem. Commun. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 60 start-page: 171 year: 2019 publication-title: Nano Energy – volume: 428 year: 2022 publication-title: Chem. Eng. J. – volume: 32 start-page: 3028 year: 2020 publication-title: Chem. Mater. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 9 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 1 start-page: 7 year: 2009 publication-title: Nat. Chem. – volume: 15 start-page: 1388 year: 2015 publication-title: Nano Lett. – volume: 60 start-page: 752 year: 2019 publication-title: Nano Energy – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 63 start-page: 239 year: 2021 publication-title: J. Energy Chem. – volume: 196 start-page: 5645 year: 2011 publication-title: J. Power Sources – volume: 49 start-page: 301 year: 2020 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 9838 year: 2016 publication-title: Inorg. Chem. – volume: 7 start-page: 283 year: 2020 publication-title: ChemElectroChem – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 631 start-page: 90 year: 2015 publication-title: J. Alloys Compd. – volume: 7 start-page: 940 year: 2019 publication-title: J. Mater. Chem. A – volume: 62 start-page: 550 year: 2019 publication-title: Nano Energy – volume: 396 start-page: 230 year: 2018 publication-title: J. Power Sources – volume: 50 start-page: 462 year: 2018 publication-title: Nano Energy – volume: 18 start-page: 285 year: 1987 publication-title: Synth. Met. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 533 year: 2022 publication-title: ACS Energy Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 451 year: 2022 publication-title: Coord. Chem. Rev. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 64 start-page: 1386 year: 2021 publication-title: Sci. China Mater. – volume: 4 year: 2020 publication-title: Adv. Sustainable Syst. – volume: 3 start-page: 156 year: 2013 publication-title: Adv. Energy Mater. – volume: 9 start-page: 6811 year: 2021 publication-title: J. Mater. Chem. A – volume: 21 start-page: 2738 year: 2021 publication-title: Nano Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 168 year: 2018 publication-title: Energy Storage Mater. – volume: 772 start-page: 852 year: 2019 publication-title: J. Alloys Compd. – volume: 628 start-page: 2778 year: 2002 publication-title: Z. Anorg. Allg. Chem. – volume: 29 start-page: 5513 year: 2017 publication-title: Chem. Mater. – volume: 13 start-page: 34 year: 2021 publication-title: Nano‐Micro Lett. – volume: 11 start-page: 735 year: 2018 publication-title: ChemSusChem – start-page: 1688 year: 2007 – volume: 3 start-page: 5015 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 3919 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 53 start-page: 1660 year: 2020 publication-title: Acc. Chem. Res. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 26 start-page: 4238 year: 2014 publication-title: Chem. Mater. – volume: 353 start-page: 40 year: 2017 publication-title: J. Power Sources – volume: 801 start-page: 82 year: 2019 publication-title: J. Alloys Compd. – volume: 2 start-page: 7861 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 75 start-page: 135 year: 2022 publication-title: J. Energy Chem. – volume: 3 start-page: 1028 year: 2021 publication-title: InfoMat – volume: 58 start-page: 4313 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 7380 year: 2013 publication-title: J. Mater. Chem. C – volume: 7 start-page: 7355 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 start-page: 8397 year: 2020 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1194 year: 2019 publication-title: Chem – volume: 321 year: 2019 publication-title: Electrochim. Acta – volume: 83 year: 2021 publication-title: Nano Energy – volume: 8 start-page: 1267 year: 2015 publication-title: Energy Environ. Sci. – volume: 25 start-page: 2219 year: 2013 publication-title: Adv. Mater. – volume: 15 start-page: 4911 year: 2022 publication-title: Energy Environ. Sci. – volume: 51 start-page: 733 year: 2022 publication-title: Energy Storage Mater. – volume: 404 year: 2022 publication-title: Electrochim. Acta – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 29 start-page: 9 year: 2020 publication-title: Energy Storage Mater. – volume: 5 start-page: 743 year: 2020 publication-title: Nat. Energy – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1174 year: 2007 publication-title: Small – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 60 start-page: 8649 year: 2021 publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 1434 year: 2020 publication-title: Mater. Chem. Front. – volume: 58 start-page: 492 year: 2019 publication-title: Nano Energy – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 159 year: 2012 publication-title: J. Electrochem. Soc. – volume: 390 year: 2020 publication-title: Chem. Eng. J. – volume: 536 year: 2022 publication-title: J. Power Sources – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 6131 year: 2013 publication-title: CrystEngComm – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 13 start-page: 116 year: 2021 publication-title: Nano‐Micro Lett. – volume: 31 start-page: 2268 year: 2020 publication-title: Chin. Chem. Lett. – volume: 626 start-page: 1062 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 91 start-page: 109 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 8667 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 560 start-page: 659 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 58 start-page: 7062 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 968 year: 2020 publication-title: Chem – volume: 67 year: 2020 publication-title: Nano Energy – volume: 62 start-page: 609 year: 2019 publication-title: Sci. China: Chem. – volume: 9 start-page: 3986 year: 2022 publication-title: Inorg. Chem. Front. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 481 year: 2015 publication-title: ChemSusChem – volume: 89 year: 2021 publication-title: Nano Energy – volume: 578 year: 2022 publication-title: Appl. Surf. Sci. – volume: 14 year: 2018 publication-title: Small – volume: 9 year: 2021 publication-title: Energy Technol. – volume: 214 start-page: 171 year: 2012 publication-title: J. Power Sources – volume: 3 year: 2022 publication-title: Small Struct. – volume: 5 start-page: 8704 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 44 year: 2015 publication-title: Dalton Trans. – volume: 227 start-page: 111 year: 2013 publication-title: J. Power Sources – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 320 year: 2019 publication-title: Electrochim. Acta – volume: 16 start-page: 742 year: 2016 publication-title: Nano Lett. – volume: 20 start-page: 2899 year: 2020 publication-title: Nano Lett. – volume: 55 start-page: 2265 year: 2019 publication-title: Chem. Commun. – volume: 308 start-page: 52 year: 2016 publication-title: J. Power Sources – volume: 14 start-page: 3796 year: 2021 publication-title: Energy Environ. Sci. – volume: 38 start-page: 20 year: 2019 publication-title: J. Energy Chem. – volume: 405 year: 2021 publication-title: Chem. Eng. J. – volume: 280 year: 2020 publication-title: Mater. Lett. – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 325 year: 2020 publication-title: Energy Storage Mater. – volume: 258 start-page: 19 year: 2014 publication-title: J. Power Sources – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 2602 year: 2018 publication-title: ACS Energy Lett. – volume: 49 start-page: 1414 year: 2020 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 237 year: 2020 publication-title: InfoMat – volume: 15 start-page: 14 year: 2018 publication-title: Energy Storage Mater. – volume: 13 start-page: 187 year: 2021 publication-title: Nano‐Micro Lett. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 30 start-page: 7464 year: 2018 publication-title: Chem. Mater. – volume: 60 year: 2021 publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 642 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 878 year: 2021 publication-title: J. Alloys Compd. – volume: 4 start-page: 178 year: 2021 publication-title: Energy Environ. Mater. – volume: 7 start-page: 1595 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 2526 year: 2009 publication-title: J. Mater. Chem. – volume: 19 year: 2021 publication-title: Mater. Today Energy – volume: 14 start-page: 8776 year: 2022 publication-title: Nanoscale – volume: 17 year: 2021 publication-title: Small – volume: 466 year: 2022 publication-title: Coord. Chem. Rev. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 391 year: 2018 publication-title: Nano Energy – volume: 16 start-page: 10 year: 2017 publication-title: Nat. Mater. – volume: 14 start-page: 4684 year: 2002 publication-title: Chem. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 617 year: 2019 publication-title: Nano Energy – volume: 57 start-page: 4319 year: 2021 publication-title: Chem. Commun. – volume: 787 start-page: 9 year: 2019 publication-title: J. Alloys Compd. – volume: 11 start-page: 205 year: 2018 publication-title: Energy Storage Mater. – volume: 97 start-page: 24 year: 2018 publication-title: Mater. Res. Bull. – volume: 41 start-page: 297 year: 2021 publication-title: Energy Storage Mater. – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 14 start-page: 5581 year: 2020 publication-title: ACS Nano – volume: 137 start-page: 8499 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 185 year: 2019 publication-title: J. Energy Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 287 start-page: 60 year: 2018 publication-title: Electrochim. Acta – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 8 start-page: 1731 year: 2020 publication-title: J. Mater. Chem. A – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 2554 year: 2013 publication-title: Adv. Mater. – volume: 603 start-page: 641 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 307 year: 2022 publication-title: Adv. Colloid Interface Sci. – volume: 1 year: 2022 publication-title: Nano Res. Energy – volume: 900 year: 2021 publication-title: J. Electroanal. Chem. – volume: 12 start-page: 3288 year: 2019 publication-title: Energy Environ. Sci. – year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 118 start-page: 6337 year: 2018 publication-title: Chem. Rev. – volume: 443 year: 2022 publication-title: Chem. Eng. J. – volume: 146 start-page: 142 year: 2014 publication-title: Electrochim. Acta – volume: 46 start-page: 879 year: 2016 publication-title: J. Appl. Electrochem. – volume: 416 year: 2020 publication-title: Coord. Chem. Rev. – volume: 34 start-page: 26 year: 2017 publication-title: Nano Energy – volume: 59 start-page: 2273 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 85 year: 2021 publication-title: Nano Energy – volume: 14 start-page: 4095 year: 2021 publication-title: Energy Environ. Sci. – volume: 507 year: 2021 publication-title: J. Power Sources – volume: 434 year: 2022 publication-title: Chem. Eng. J. – volume: 533 year: 2022 publication-title: J. Power Sources – volume: 51 start-page: 579 year: 2018 publication-title: Nano Energy – volume: 507 year: 2020 publication-title: Appl. Surf. Sci. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 646 year: 2020 publication-title: Nat. Energy – volume: 29 start-page: 1684 year: 2017 publication-title: Chem. Mater. – volume: 12 start-page: 67 year: 2020 publication-title: Nano‐Micro Lett. – volume: 7 start-page: 7159 year: 2019 publication-title: J. Mater. Chem. A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 41 start-page: 715 year: 2021 publication-title: Energy Storage Mater. – volume: 6 start-page: 3850 year: 2018 publication-title: J. Mater. Chem. A – volume: 861 year: 2021 publication-title: J. Alloys Compd. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 40 start-page: 209 year: 2021 publication-title: Energy Storage Mater. – volume: 10 start-page: 107 year: 2017 publication-title: Energy Environ. Sci. – volume: 160 start-page: A915 year: 2013 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 3399 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 7 year: 2017 publication-title: Adv.Energy Mater. – volume: 4 year: 2022 publication-title: EnergyChem – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 18 start-page: 2402 year: 2018 publication-title: Nano Lett. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 19 start-page: 5965 year: 2007 publication-title: Chem. Mater. – volume: 264 start-page: 1115 year: 1994 publication-title: Science – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 54 start-page: 655 year: 2021 publication-title: J. Energy Chem. – volume: 5 start-page: 1656 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 4324 year: 2010 publication-title: ACS Nano – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 441 year: 2019 publication-title: J. Power Sources – volume: 54 start-page: 4457 year: 2018 publication-title: Chem. Commun. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 1 start-page: 169 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 3 year: 2021 publication-title: EnergyChem – volume: 442 year: 2022 publication-title: Chem. Eng. J. – volume: 8 start-page: 1784 year: 2021 publication-title: ChemElectroChem – volume: 25 start-page: 211 year: 2016 publication-title: Nano Energy – volume: 58 start-page: 5241 year: 2022 publication-title: Chem. Commun. – volume: 61 start-page: 594 year: 2021 publication-title: J. Energy Chem. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 16 start-page: 4588 year: 2022 publication-title: ACS Nano – volume: 529 year: 2020 publication-title: Appl. Surf. Sci. – volume: 31 start-page: 699 year: 2019 publication-title: Chem. Mater. – volume: 615 start-page: 184 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 23 start-page: 636 year: 2019 publication-title: Energy Storage Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 136 start-page: 6826 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1648 year: 2018 publication-title: Joule – volume: 15 start-page: 1273 year: 2021 publication-title: ACS Nano – volume: 104 start-page: 4245 year: 2004 publication-title: Chem. Rev. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 445 year: 2022 publication-title: Chem. Eng. J. – volume: 24 start-page: 1969 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 2864 year: 2017 publication-title: Chem. Mater. – volume: 3 start-page: 1366 year: 2018 publication-title: ACS Energy Lett. – volume: 49 start-page: 1048 year: 2020 publication-title: Dalton Trans. – volume: 13 start-page: 5408 year: 2013 publication-title: Nano Lett. – volume: 4 start-page: 1 year: 2021 publication-title: Electrochem. Energy Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 12 start-page: 8394 year: 2022 publication-title: RSC Adv. – volume: 14 start-page: 6752 year: 2020 publication-title: ACS Nano – volume: 376 start-page: 292 year: 2018 publication-title: Coord. Chem. Rev. – volume: 14 year: 2019 publication-title: Mater. Today Energy – volume: 107 start-page: 35 year: 2013 publication-title: Mater. Lett. – volume: 412 year: 2022 publication-title: Electrochim. Acta – volume: 117 start-page: L27 year: 1986 publication-title: Inorg. Chim. Acta – volume: 9 start-page: 5258 year: 2021 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1528 year: 2019 publication-title: ACS Energy Lett. – volume: 2 start-page: 1988 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 7 year: 2019 publication-title: Energy Technol. – volume: 506 year: 2020 publication-title: Appl. Surf. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3240 year: 2000 publication-title: Chem. Mater. – volume: 593 year: 2020 publication-title: Colloids Surf., A – volume: 15 year: 2022 publication-title: ChemSusChem – volume: 11 start-page: 25 year: 2019 publication-title: Nano‐Micro Lett. – volume: 8 start-page: 7713 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_9_332_1 doi: 10.1039/C8TA09338E – ident: e_1_2_9_156_1 doi: 10.1021/acsami.9b13729 – ident: e_1_2_9_385_1 doi: 10.1002/adfm.201906142 – ident: e_1_2_9_76_1 doi: 10.1021/acs.nanolett.0c00732 – ident: e_1_2_9_202_1 doi: 10.1002/smll.202100558 – ident: e_1_2_9_328_1 doi: 10.1007/s40820-020-0401-y – ident: e_1_2_9_237_1 doi: 10.1021/acsnano.0c08432 – ident: e_1_2_9_375_1 doi: 10.1016/j.nanoen.2021.106477 – ident: e_1_2_9_359_1 doi: 10.1016/j.pmatsci.2019.100616 – ident: e_1_2_9_268_1 doi: 10.1021/acsaem.1c03066 – ident: e_1_2_9_120_1 doi: 10.1039/C9TA04274A – ident: e_1_2_9_294_1 doi: 10.1007/s11426-020-9830-8 – ident: e_1_2_9_323_1 doi: 10.1039/D2CC00915C – ident: e_1_2_9_162_1 doi: 10.1002/advs.201600051 – ident: e_1_2_9_12_1 doi: 10.1039/D2EE02267B – ident: e_1_2_9_122_1 doi: 10.1039/D0TA07872G – ident: e_1_2_9_198_1 doi: 10.1021/acs.chemmater.8b01381 – ident: e_1_2_9_367_1 doi: 10.1016/j.nanoen.2021.105876 – ident: e_1_2_9_274_1 doi: 10.1016/j.ensm.2020.03.024 – ident: e_1_2_9_140_1 doi: 10.1002/adfm.201904398 – ident: e_1_2_9_144_1 doi: 10.1021/acs.chemmater.8b02679 – ident: e_1_2_9_219_1 doi: 10.1016/j.cej.2020.124118 – ident: e_1_2_9_223_1 doi: 10.1016/j.jallcom.2021.159403 – ident: e_1_2_9_42_1 doi: 10.1021/cr020730k – ident: e_1_2_9_135_1 doi: 10.1021/acs.chemmater.0c00004 – ident: e_1_2_9_361_1 doi: 10.1002/1521-3749(200212)628:12<2778::AID-ZAAC2778>3.0.CO;2-H – ident: e_1_2_9_421_1 doi: 10.1039/D2NR00983H – ident: e_1_2_9_21_1 doi: 10.1002/anie.201903941 – ident: e_1_2_9_280_1 doi: 10.1016/j.jpowsour.2018.06.021 – ident: e_1_2_9_374_1 doi: 10.1016/j.ensm.2019.02.012 – ident: e_1_2_9_309_1 doi: 10.1016/j.matlet.2013.05.112 – ident: e_1_2_9_45_1 doi: 10.1002/anie.201106307 – ident: e_1_2_9_91_1 doi: 10.1021/acsaem.0c00318 – ident: e_1_2_9_352_1 doi: 10.1039/C9TA04264D – ident: e_1_2_9_376_1 doi: 10.1002/celc.201901851 – ident: e_1_2_9_340_1 doi: 10.1007/s40820-021-00641-3 – ident: e_1_2_9_29_1 doi: 10.1002/adfm.202101027 – ident: e_1_2_9_55_1 doi: 10.1007/s40820-021-00715-2 – ident: e_1_2_9_408_1 doi: 10.1039/D1NR02158C – ident: e_1_2_9_121_1 doi: 10.1039/c2jm33862a – ident: e_1_2_9_399_1 doi: 10.1021/ja207176c – ident: e_1_2_9_229_1 doi: 10.1016/j.mtener.2019.100361 – ident: e_1_2_9_419_1 doi: 10.1021/acs.iecr.1c04683 – ident: e_1_2_9_354_1 doi: 10.1021/am507089x – ident: e_1_2_9_257_1 doi: 10.1007/s00339-011-6325-0 – ident: e_1_2_9_163_1 doi: 10.1016/j.nanoen.2020.105276 – ident: e_1_2_9_296_1 doi: 10.1039/C8CC07243D – ident: e_1_2_9_391_1 doi: 10.1016/j.chempr.2020.02.001 – ident: e_1_2_9_321_1 doi: 10.1016/j.cej.2022.136349 – ident: e_1_2_9_133_1 doi: 10.1016/j.cej.2021.130459 – ident: e_1_2_9_84_1 doi: 10.1071/CH9812035 – ident: e_1_2_9_380_1 doi: 10.1039/C9TA05767F – ident: e_1_2_9_416_1 doi: 10.1002/smll.202101944 – ident: e_1_2_9_50_1 doi: 10.1002/anie.202209350 – ident: e_1_2_9_75_1 doi: 10.1002/aenm.202102707 – ident: e_1_2_9_215_1 doi: 10.1002/adma.201204576 – ident: e_1_2_9_105_1 doi: 10.1021/ja034565h – ident: e_1_2_9_316_1 doi: 10.1002/admi.201801506 – ident: e_1_2_9_147_1 doi: 10.1039/C8TA02090F – ident: e_1_2_9_394_1 doi: 10.1002/aenm.201901968 – ident: e_1_2_9_49_1 doi: 10.1021/acsaem.1c02064 – ident: e_1_2_9_327_1 doi: 10.1016/j.jpowsour.2011.02.046 – ident: e_1_2_9_128_1 doi: 10.1002/adfm.202003511 – ident: e_1_2_9_176_1 doi: 10.1039/c1jm11523e – ident: e_1_2_9_329_1 doi: 10.1039/D0TA05065B – ident: e_1_2_9_403_1 doi: 10.1021/acsami.6b04444 – ident: e_1_2_9_80_1 doi: 10.1021/acs.nanolett.5b04610 – ident: e_1_2_9_230_1 doi: 10.1016/j.cej.2020.126737 – ident: e_1_2_9_297_1 doi: 10.1002/smll.200700032 – ident: e_1_2_9_6_1 doi: 10.1016/j.ccr.2022.214602 – ident: e_1_2_9_190_1 doi: 10.1002/ente.202000789 – ident: e_1_2_9_199_1 doi: 10.1016/j.mseb.2010.07.023 – ident: e_1_2_9_88_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_9_397_1 doi: 10.1021/acs.chemmater.6b05084 – ident: e_1_2_9_171_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_9_25_1 doi: 10.1002/adma.202201779 – ident: e_1_2_9_146_1 doi: 10.1021/acsnano.9b09963 – ident: e_1_2_9_284_1 doi: 10.1039/D0TA01033B – ident: e_1_2_9_388_1 doi: 10.1039/C9DT04226A – ident: e_1_2_9_395_1 doi: 10.1039/D0TA07436E – volume: 2019 year: 2019 ident: e_1_2_9_191_1 publication-title: Research – ident: e_1_2_9_169_1 doi: 10.1016/j.nanoen.2020.104573 – ident: e_1_2_9_377_1 doi: 10.1016/j.cclet.2020.02.052 – ident: e_1_2_9_301_1 doi: 10.1039/c3ce40787j – ident: e_1_2_9_286_1 doi: 10.1021/acsnano.1c04423 – ident: e_1_2_9_248_1 doi: 10.1016/j.ensm.2021.05.003 – ident: e_1_2_9_320_1 doi: 10.1016/j.cclet.2021.12.049 – ident: e_1_2_9_34_1 doi: 10.1038/s41560-020-0674-x – ident: e_1_2_9_290_1 doi: 10.1039/D2NR02122F – ident: e_1_2_9_181_1 doi: 10.1002/cssc.202000699 – ident: e_1_2_9_364_1 doi: 10.1016/j.electacta.2019.135506 – ident: e_1_2_9_35_1 doi: 10.1007/s41918-020-00075-2 – ident: e_1_2_9_344_1 doi: 10.1016/j.electacta.2015.03.087 – ident: e_1_2_9_97_1 doi: 10.1002/smll.201800567 – ident: e_1_2_9_415_1 doi: 10.1002/adma.201904369 – ident: e_1_2_9_330_1 doi: 10.1016/j.ensm.2021.07.045 – ident: e_1_2_9_348_1 doi: 10.1039/D0QM00051E – ident: e_1_2_9_102_1 doi: 10.1016/j.nanoen.2016.04.051 – ident: e_1_2_9_115_1 doi: 10.1002/adfm.202105717 – ident: e_1_2_9_225_1 doi: 10.1021/acsami.1c09951 – ident: e_1_2_9_341_1 doi: 10.1016/j.jpowsour.2021.229528 – ident: e_1_2_9_205_1 doi: 10.1021/acsaem.8b02054 – ident: e_1_2_9_203_1 doi: 10.1002/adfm.201807331 – ident: e_1_2_9_109_1 doi: 10.1021/acsenergylett.1c02514 – ident: e_1_2_9_235_1 doi: 10.1016/j.cej.2020.125259 – ident: e_1_2_9_226_1 doi: 10.1016/j.jallcom.2021.160324 – ident: e_1_2_9_92_1 doi: 10.1039/D1EE01158H – ident: e_1_2_9_256_1 doi: 10.1016/j.electacta.2019.134689 – ident: e_1_2_9_242_1 doi: 10.1016/j.electacta.2022.140120 – ident: e_1_2_9_390_1 doi: 10.1016/j.electacta.2019.135347 – ident: e_1_2_9_26_1 doi: 10.1016/j.cis.2022.102732 – ident: e_1_2_9_333_1 doi: 10.1021/acs.nanolett.7b05403 – ident: e_1_2_9_5_1 doi: 10.1016/j.enchem.2021.100052 – ident: e_1_2_9_127_1 doi: 10.1021/ja406016j – ident: e_1_2_9_28_1 doi: 10.1039/D0TA10336E – start-page: 1688 volume-title: Comprehensive Handbook of Chemical Bond Energies year: 2007 ident: e_1_2_9_295_1 doi: 10.1201/9781420007282 – ident: e_1_2_9_373_1 doi: 10.1016/j.cej.2022.137090 – ident: e_1_2_9_322_1 doi: 10.1016/j.cej.2021.133815 – ident: e_1_2_9_177_1 doi: 10.1021/acs.chemmater.7b00428 – ident: e_1_2_9_143_1 doi: 10.1038/srep19621 – ident: e_1_2_9_259_1 doi: 10.1007/s11426-018-9394-1 – ident: e_1_2_9_43_1 doi: 10.1016/S0020-1693(00)82175-1 – ident: e_1_2_9_174_1 doi: 10.1016/j.jcis.2022.01.155 – ident: e_1_2_9_153_1 doi: 10.1039/C9TA11031C – ident: e_1_2_9_85_1 doi: 10.1002/anie.201806748 – ident: e_1_2_9_124_1 doi: 10.1016/j.ensm.2018.03.003 – ident: e_1_2_9_157_1 doi: 10.1021/acsnano.0c02658 – ident: e_1_2_9_164_1 doi: 10.1016/j.nanoen.2019.03.034 – ident: e_1_2_9_103_1 doi: 10.1021/cm000345g – ident: e_1_2_9_402_1 doi: 10.1021/jacs.5b03395 – ident: e_1_2_9_372_1 doi: 10.1016/j.cej.2021.133795 – ident: e_1_2_9_278_1 doi: 10.1016/j.chempr.2019.02.014 – ident: e_1_2_9_137_1 doi: 10.1016/j.jpowsour.2016.08.039 – ident: e_1_2_9_69_1 doi: 10.1016/j.cej.2021.131211 – ident: e_1_2_9_392_1 doi: 10.1021/acsaem.9b01299 – ident: e_1_2_9_292_1 doi: 10.1016/j.ensm.2017.10.014 – ident: e_1_2_9_72_1 doi: 10.1021/acsnano.1c01389 – ident: e_1_2_9_386_1 doi: 10.1002/aenm.202000058 – ident: e_1_2_9_188_1 doi: 10.1002/aenm.201602720 – ident: e_1_2_9_315_1 doi: 10.1039/C9TA01164A – ident: e_1_2_9_365_1 doi: 10.1016/j.electacta.2021.139785 – ident: e_1_2_9_289_1 doi: 10.1016/j.cej.2022.136502 – ident: e_1_2_9_24_1 doi: 10.1039/C9CS00131J – ident: e_1_2_9_267_1 doi: 10.1007/s40820-020-00554-7 – ident: e_1_2_9_233_1 doi: 10.1039/D0TA03165H – ident: e_1_2_9_324_1 doi: 10.1002/aenm.201700127 – ident: e_1_2_9_381_1 doi: 10.1002/inf2.12223 – ident: e_1_2_9_389_1 doi: 10.1039/C9TA00125E – ident: e_1_2_9_282_1 doi: 10.1016/j.ensm.2019.03.007 – ident: e_1_2_9_132_1 doi: 10.1016/j.ensm.2019.11.004 – ident: e_1_2_9_18_1 doi: 10.1039/C9EE02356A – ident: e_1_2_9_148_1 doi: 10.1002/aenm.201400930 – ident: e_1_2_9_118_1 doi: 10.1002/adfm.201909486 – ident: e_1_2_9_178_1 doi: 10.1039/b819629j – ident: e_1_2_9_311_1 doi: 10.1149/2.114306jes – ident: e_1_2_9_261_1 doi: 10.1016/j.jallcom.2018.09.076 – ident: e_1_2_9_52_1 doi: 10.1002/inf2.12042 – ident: e_1_2_9_252_1 doi: 10.1039/C5NR02064F – ident: e_1_2_9_363_1 doi: 10.1039/C9TA07822C – ident: e_1_2_9_4_1 doi: 10.1039/C7CS00614D – ident: e_1_2_9_70_1 doi: 10.1016/j.apsusc.2020.147077 – ident: e_1_2_9_254_1 doi: 10.1002/aenm.201801819 – ident: e_1_2_9_46_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_9_265_1 doi: 10.1021/ic402897d – ident: e_1_2_9_387_1 doi: 10.1021/acsnano.9b06484 – ident: e_1_2_9_246_1 doi: 10.1016/j.ensm.2018.01.009 – ident: e_1_2_9_345_1 doi: 10.1021/acs.inorgchem.6b01662 – ident: e_1_2_9_112_1 doi: 10.1016/j.jpowsour.2016.01.058 – ident: e_1_2_9_185_1 doi: 10.1002/anie.201509800 – ident: e_1_2_9_382_1 doi: 10.1021/acssuschemeng.9b06613 – ident: e_1_2_9_158_1 doi: 10.1002/anie.202010287 – ident: e_1_2_9_37_1 doi: 10.1039/C9EE02526J – ident: e_1_2_9_54_1 doi: 10.1016/j.joule.2018.07.017 – ident: e_1_2_9_409_1 doi: 10.1021/acs.nanolett.5b00321 – ident: e_1_2_9_417_1 doi: 10.1021/acs.iecr.1c01052 – ident: e_1_2_9_78_1 doi: 10.1039/D1CC00584G – ident: e_1_2_9_245_1 doi: 10.1002/advs.201400018 – ident: e_1_2_9_82_1 doi: 10.1002/anie.201902679 – ident: e_1_2_9_353_1 doi: 10.1016/j.apsusc.2019.144816 – ident: e_1_2_9_77_1 doi: 10.1016/j.ensm.2020.12.001 – ident: e_1_2_9_298_1 doi: 10.1021/cm071728i – ident: e_1_2_9_411_1 doi: 10.1021/acsami.9b12128 – ident: e_1_2_9_342_1 doi: 10.1021/acssuschemeng.1c03101 – ident: e_1_2_9_360_1 doi: 10.1002/adfm.202100005 – ident: e_1_2_9_383_1 doi: 10.1021/acsnano.9b08039 – ident: e_1_2_9_31_1 doi: 10.1016/j.ensm.2022.07.017 – ident: e_1_2_9_318_1 doi: 10.1016/j.jcis.2021.04.010 – ident: e_1_2_9_279_1 doi: 10.1039/C8EE01651H – ident: e_1_2_9_123_1 doi: 10.1021/cm501644g – ident: e_1_2_9_150_1 doi: 10.1039/C9NR03129D – ident: e_1_2_9_195_1 doi: 10.1021/acsami.0c10183 – ident: e_1_2_9_41_1 doi: 10.1016/j.jechem.2022.07.034 – ident: e_1_2_9_136_1 doi: 10.1002/cssc.202200313 – ident: e_1_2_9_180_1 doi: 10.1002/ente.201900022 – ident: e_1_2_9_305_1 doi: 10.1021/acsanm.9b00703 – ident: e_1_2_9_33_1 doi: 10.1038/s41560-020-0655-0 – ident: e_1_2_9_337_1 doi: 10.1039/C5DT03239C – ident: e_1_2_9_9_1 doi: 10.1021/acs.chemrev.7b00689 – ident: e_1_2_9_32_1 doi: 10.1126/science.264.5162.1115 – ident: e_1_2_9_366_1 doi: 10.1002/smll.201700067 – ident: e_1_2_9_207_1 doi: 10.1039/C2TA00351A – ident: e_1_2_9_208_1 doi: 10.1021/acsami.9b05362 – ident: e_1_2_9_47_1 doi: 10.1016/j.ensm.2020.04.039 – ident: e_1_2_9_410_1 doi: 10.1039/C6EE03173K – ident: e_1_2_9_161_1 doi: 10.1016/j.jechem.2021.02.014 – ident: e_1_2_9_175_1 doi: 10.1016/j.jpowsour.2022.231358 – ident: e_1_2_9_326_1 doi: 10.1002/smll.202100746 – ident: e_1_2_9_110_1 doi: 10.1007/s10853-011-5302-5 – ident: e_1_2_9_384_1 doi: 10.1016/j.ensm.2018.08.008 – ident: e_1_2_9_187_1 doi: 10.1039/C8TA12014E – ident: e_1_2_9_155_1 doi: 10.1016/j.nanoen.2018.05.056 – ident: e_1_2_9_247_1 doi: 10.1016/j.cej.2022.137069 – ident: e_1_2_9_370_1 doi: 10.1021/acsnano.1c11169 – ident: e_1_2_9_96_1 doi: 10.1016/j.jechem.2018.05.001 – ident: e_1_2_9_270_1 doi: 10.1016/j.nanoen.2020.104851 – ident: e_1_2_9_81_1 doi: 10.1016/j.jelechem.2021.115685 – ident: e_1_2_9_407_1 doi: 10.1039/C8TA08133F – ident: e_1_2_9_7_1 doi: 10.1016/j.jcis.2022.07.034 – ident: e_1_2_9_272_1 doi: 10.1021/acs.nanolett.0c04539 – ident: e_1_2_9_200_1 doi: 10.1002/aenm.201800144 – ident: e_1_2_9_222_1 doi: 10.1021/acsami.7b13110 – ident: e_1_2_9_113_1 doi: 10.1007/s40843-020-1550-2 – ident: e_1_2_9_379_1 doi: 10.1016/j.jallcom.2019.06.084 – ident: e_1_2_9_418_1 doi: 10.1021/acs.iecr.1c01915 – ident: e_1_2_9_101_1 doi: 10.1021/acsami.1c12447 – ident: e_1_2_9_159_1 doi: 10.1002/aenm.202100973 – ident: e_1_2_9_362_1 doi: 10.1021/acsami.8b10849 – ident: e_1_2_9_106_1 doi: 10.1016/j.jpowsour.2014.01.126 – ident: e_1_2_9_17_1 doi: 10.1039/C8CS00426A – ident: e_1_2_9_67_1 doi: 10.1002/aenm.202000477 – ident: e_1_2_9_210_1 doi: 10.1021/nn101187z – ident: e_1_2_9_339_1 doi: 10.1016/j.cej.2019.122844 – ident: e_1_2_9_114_1 doi: 10.1016/j.nanoen.2019.01.068 – ident: e_1_2_9_258_1 doi: 10.1016/j.hydromet.2012.02.013 – ident: e_1_2_9_293_1 doi: 10.1016/j.cej.2022.134642 – ident: e_1_2_9_141_1 doi: 10.1021/nl504705z – ident: e_1_2_9_275_1 doi: 10.1039/C8TA02018C – ident: e_1_2_9_306_1 doi: 10.1016/j.nanoen.2019.104211 – ident: e_1_2_9_312_1 doi: 10.1021/acsami.5b03210 – ident: e_1_2_9_234_1 doi: 10.1002/anie.201912203 – ident: e_1_2_9_36_1 doi: 10.1007/s40820-022-00960-z – ident: e_1_2_9_145_1 doi: 10.1021/acs.chemmater.8b03409 – ident: e_1_2_9_262_1 doi: 10.1002/aenm.201702463 – ident: e_1_2_9_116_1 doi: 10.1016/j.jpowsour.2012.03.113 – ident: e_1_2_9_14_1 doi: 10.1016/j.rser.2018.03.047 – ident: e_1_2_9_151_1 doi: 10.1103/PhysRevLett.72.3389 – ident: e_1_2_9_358_1 doi: 10.1002/adma.201806133 – ident: e_1_2_9_71_1 doi: 10.1021/acs.accounts.0c00362 – ident: e_1_2_9_168_1 doi: 10.1016/j.jechem.2018.12.023 – ident: e_1_2_9_338_1 doi: 10.1007/s10800-016-0973-x – ident: e_1_2_9_325_1 doi: 10.1039/C8TA11860D – ident: e_1_2_9_66_1 doi: 10.1007/s41918-018-0007-y – ident: e_1_2_9_38_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_9_13_1 doi: 10.1016/j.ccr.2018.08.010 – ident: e_1_2_9_57_1 doi: 10.1016/j.ensm.2021.07.004 – ident: e_1_2_9_253_1 doi: 10.1016/j.materresbull.2017.08.047 – ident: e_1_2_9_63_1 doi: 10.1016/j.ensm.2022.04.040 – ident: e_1_2_9_173_1 doi: 10.1002/cssc.202100223 – ident: e_1_2_9_182_1 doi: 10.1016/j.mtener.2020.100593 – ident: e_1_2_9_355_1 doi: 10.1016/j.cej.2022.137681 – ident: e_1_2_9_236_1 doi: 10.1039/D1TA00803J – ident: e_1_2_9_108_1 doi: 10.1039/D0CC08115A – ident: e_1_2_9_217_1 doi: 10.1016/j.cej.2021.128408 – ident: e_1_2_9_396_1 doi: 10.1021/jp410969u – ident: e_1_2_9_60_1 doi: 10.1002/adma.201800762 – ident: e_1_2_9_44_1 doi: 10.1016/j.joule.2018.11.007 – ident: e_1_2_9_125_1 doi: 10.1021/acsaem.0c00505 – ident: e_1_2_9_39_1 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_9_73_1 doi: 10.1039/D1EE00030F – ident: e_1_2_9_228_1 doi: 10.1039/C9TA09116E – ident: e_1_2_9_413_1 doi: 10.1016/j.nanoen.2021.106386 – ident: e_1_2_9_20_1 doi: 10.1016/j.joule.2018.07.006 – ident: e_1_2_9_139_1 doi: 10.1016/j.jechem.2020.08.016 – ident: e_1_2_9_271_1 doi: 10.1021/acsnano.9b10214 – ident: e_1_2_9_414_1 doi: 10.1016/j.cej.2022.137266 – ident: e_1_2_9_273_1 doi: 10.1039/C9EE00956F – ident: e_1_2_9_302_1 doi: 10.1016/j.jallcom.2019.02.078 – ident: e_1_2_9_240_1 doi: 10.1016/j.nanoen.2019.05.005 – ident: e_1_2_9_303_1 doi: 10.1002/smtd.201900637 – ident: e_1_2_9_281_1 doi: 10.1002/anie.201814653 – ident: e_1_2_9_264_1 doi: 10.1016/j.jpowsour.2014.11.052 – ident: e_1_2_9_99_1 doi: 10.1002/smll.202202151 – ident: e_1_2_9_142_1 doi: 10.1126/science.aag0410 – ident: e_1_2_9_331_1 doi: 10.1002/adma.201705580 – ident: e_1_2_9_48_1 doi: 10.1002/aenm.202003639 – ident: e_1_2_9_68_1 doi: 10.1016/j.jechem.2020.06.013 – ident: e_1_2_9_204_1 doi: 10.1002/aenm.202201434 – ident: e_1_2_9_288_1 doi: 10.1002/anie.202116282 – ident: e_1_2_9_93_1 doi: 10.1021/acsaem.9b01632 – ident: e_1_2_9_104_1 doi: 10.1021/cm020348o – ident: e_1_2_9_244_1 doi: 10.1039/C5EE00036J – ident: e_1_2_9_8_1 doi: 10.1038/nchem.141 – ident: e_1_2_9_263_1 doi: 10.1021/acs.nanolett.5b00284 – ident: e_1_2_9_53_1 doi: 10.1016/j.nanoen.2021.105969 – ident: e_1_2_9_149_1 doi: 10.1002/aenm.201601920 – ident: e_1_2_9_336_1 doi: 10.1016/0022-3697(84)90050-7 – ident: e_1_2_9_239_1 doi: 10.1021/acsenergylett.7b01278 – ident: e_1_2_9_3_1 doi: 10.1039/C9CS00906J – ident: e_1_2_9_213_1 doi: 10.1002/adma.201204530 – ident: e_1_2_9_218_1 doi: 10.1016/j.mtener.2020.100431 – ident: e_1_2_9_317_1 doi: 10.1039/D1TA05526G – ident: e_1_2_9_15_1 doi: 10.1016/j.enchem.2020.100027 – ident: e_1_2_9_184_1 doi: 10.1021/ja501866r – ident: e_1_2_9_335_1 doi: 10.1002/cssc.201403143 – ident: e_1_2_9_117_1 doi: 10.1002/adma.201502864 – ident: e_1_2_9_249_1 doi: 10.1016/j.jece.2020.104765 – ident: e_1_2_9_19_1 doi: 10.1016/j.ccr.2020.213341 – ident: e_1_2_9_1_1 doi: 10.1038/nmat4830 – ident: e_1_2_9_119_1 doi: 10.1016/j.electacta.2014.09.068 – ident: e_1_2_9_221_1 doi: 10.1016/j.jallcom.2020.158560 – ident: e_1_2_9_154_1 doi: 10.1021/am5070393 – ident: e_1_2_9_291_1 doi: 10.1002/sstr.202100212 – ident: e_1_2_9_27_1 doi: 10.1002/aenm.201903977 – ident: e_1_2_9_285_1 doi: 10.1002/adma.202004129 – ident: e_1_2_9_61_1 doi: 10.1002/adma.201703725 – ident: e_1_2_9_83_1 doi: 10.1039/C6EE00794E – ident: e_1_2_9_406_1 doi: 10.1002/cssc.201702031 – ident: e_1_2_9_166_1 doi: 10.1039/C8CC02250J – ident: e_1_2_9_250_1 doi: 10.1016/j.cej.2022.136789 – ident: e_1_2_9_300_1 doi: 10.1021/jp065478p – ident: e_1_2_9_100_1 doi: 10.1021/acsami.1c06160 – ident: e_1_2_9_16_1 doi: 10.26599/NRE.2022.9120009 – ident: e_1_2_9_131_1 doi: 10.1016/j.nanoen.2020.104548 – ident: e_1_2_9_107_1 doi: 10.1038/srep25809 – ident: e_1_2_9_277_1 doi: 10.1021/acsenergylett.9b00788 – ident: e_1_2_9_319_1 doi: 10.1016/j.apsusc.2021.152053 – ident: e_1_2_9_350_1 doi: 10.1002/adfm.202003890 – ident: e_1_2_9_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_9_56_1 doi: 10.1002/aenm.202002354 – ident: e_1_2_9_58_1 doi: 10.1016/j.jcis.2021.07.138 – ident: e_1_2_9_10_1 doi: 10.1016/j.enchem.2022.100074 – ident: e_1_2_9_216_1 doi: 10.1002/aenm.201900237 – ident: e_1_2_9_62_1 doi: 10.1038/s41467-018-04060-8 – year: 2022 ident: e_1_2_9_65_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_186_1 doi: 10.1021/acsami.7b15407 – ident: e_1_2_9_378_1 doi: 10.1016/j.jechem.2019.03.036 – ident: e_1_2_9_304_1 doi: 10.1021/am503136h – ident: e_1_2_9_412_1 doi: 10.1016/j.apsusc.2019.145137 – ident: e_1_2_9_138_1 doi: 10.1039/C9TA05554A – ident: e_1_2_9_172_1 doi: 10.1002/adsu.202000178 – ident: e_1_2_9_94_1 doi: 10.1002/aenm.201200558 – ident: e_1_2_9_368_1 doi: 10.1016/j.nanoen.2021.106596 – ident: e_1_2_9_214_1 doi: 10.1021/nl402969r – ident: e_1_2_9_126_1 doi: 10.1002/adfm.202102827 – ident: e_1_2_9_209_1 doi: 10.1021/acsami.1c00749 – ident: e_1_2_9_231_1 doi: 10.1002/aenm.201901480 – ident: e_1_2_9_98_1 doi: 10.1002/eem2.12166 – ident: e_1_2_9_393_1 doi: 10.1016/j.colsurfa.2020.124621 – ident: e_1_2_9_283_1 doi: 10.1039/C9TA02990G – ident: e_1_2_9_251_1 doi: 10.1016/j.jpowsour.2012.11.022 – ident: e_1_2_9_183_1 doi: 10.1016/j.cej.2021.132538 – ident: e_1_2_9_211_1 doi: 10.1038/nmat3001 – ident: e_1_2_9_212_1 doi: 10.1002/anie.201206554 – ident: e_1_2_9_347_1 doi: 10.1016/j.jpowsour.2020.229284 – ident: e_1_2_9_308_1 doi: 10.1016/j.matlet.2020.128559 – ident: e_1_2_9_87_1 doi: 10.1002/anie.201908853 – ident: e_1_2_9_134_1 doi: 10.1039/D2RA00298A – ident: e_1_2_9_314_1 doi: 10.1016/j.ensm.2021.06.006 – ident: e_1_2_9_189_1 doi: 10.1002/aenm.201600868 – ident: e_1_2_9_111_1 doi: 10.1149/2.015209jes – ident: e_1_2_9_238_1 doi: 10.1016/j.electacta.2019.134565 – ident: e_1_2_9_307_1 doi: 10.1016/j.jallcom.2015.01.115 – ident: e_1_2_9_260_1 doi: 10.1039/C5CC05425G – ident: e_1_2_9_51_1 doi: 10.1002/cssc.202201118 – ident: e_1_2_9_11_1 doi: 10.1016/j.ccr.2021.214260 – ident: e_1_2_9_356_1 doi: 10.1039/C9TA05922A – ident: e_1_2_9_420_1 doi: 10.1016/j.jpowsour.2021.230286 – ident: e_1_2_9_90_1 doi: 10.1016/j.jechem.2021.03.051 – ident: e_1_2_9_160_1 doi: 10.1021/jacs.6b05958 – ident: e_1_2_9_167_1 doi: 10.1016/j.nanoen.2019.04.009 – ident: e_1_2_9_220_1 doi: 10.1002/adfm.202103070 – ident: e_1_2_9_343_1 doi: 10.1039/c3tc31508h – ident: e_1_2_9_40_1 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_9_401_1 doi: 10.1039/C9TA04798K – ident: e_1_2_9_86_1 doi: 10.1002/adfm.202106816 – ident: e_1_2_9_369_1 doi: 10.1002/ente.202000829 – ident: e_1_2_9_269_1 doi: 10.1016/j.nanoen.2018.07.014 – ident: e_1_2_9_310_1 doi: 10.1039/C7TA11237H – ident: e_1_2_9_266_1 doi: 10.1016/j.jallcom.2019.152971 – ident: e_1_2_9_224_1 doi: 10.1016/j.mtener.2021.100824 – ident: e_1_2_9_346_1 doi: 10.1016/j.jpowsour.2017.03.121 – ident: e_1_2_9_201_1 doi: 10.1016/j.nanoen.2021.105835 – ident: e_1_2_9_170_1 doi: 10.1007/s40820-019-0256-2 – ident: e_1_2_9_276_1 doi: 10.1021/acsenergylett.8b01423 – ident: e_1_2_9_334_1 doi: 10.1039/C8TA06626D – ident: e_1_2_9_23_1 doi: 10.1021/acsenergylett.8b02053 – ident: e_1_2_9_241_1 doi: 10.1021/acs.chemmater.6b05092 – ident: e_1_2_9_179_1 doi: 10.1002/aenm.201900083 – ident: e_1_2_9_400_1 doi: 10.1002/adma.201104681 – ident: e_1_2_9_349_1 doi: 10.1016/0379-6779(87)90893-9 – ident: e_1_2_9_64_1 doi: 10.1016/j.ccr.2021.214124 – ident: e_1_2_9_404_1 doi: 10.1016/j.nanoen.2018.06.076 – ident: e_1_2_9_74_1 doi: 10.1002/smll.202201011 – ident: e_1_2_9_130_1 doi: 10.1002/aenm.201803436 – ident: e_1_2_9_243_1 doi: 10.1021/am402352q – ident: e_1_2_9_30_1 doi: 10.1016/j.enchem.2022.100092 – ident: e_1_2_9_357_1 doi: 10.1016/j.jpowsour.2019.227192 – ident: e_1_2_9_95_1 doi: 10.1021/acsami.6b16000 – ident: e_1_2_9_232_1 doi: 10.1002/ente.201901105 – ident: e_1_2_9_255_1 doi: 10.1039/C6TA02917E – ident: e_1_2_9_206_1 doi: 10.1016/j.electacta.2018.08.040 – ident: e_1_2_9_227_1 doi: 10.1002/celc.202100280 – ident: e_1_2_9_192_1 doi: 10.1016/j.jcis.2021.08.194 – ident: e_1_2_9_398_1 doi: 10.1021/ja403232d – ident: e_1_2_9_299_1 doi: 10.1016/j.jcis.2019.10.092 – ident: e_1_2_9_22_1 doi: 10.31635/ccschem.020.202000182 – ident: e_1_2_9_129_1 doi: 10.1002/anie.201606508 – ident: e_1_2_9_313_1 doi: 10.1016/j.nanoen.2017.02.014 – ident: e_1_2_9_194_1 doi: 10.1039/C9TA08086D – ident: e_1_2_9_196_1 doi: 10.1016/j.jpowsour.2022.231489 – ident: e_1_2_9_79_1 doi: 10.1039/D2QI01083F – ident: e_1_2_9_371_1 doi: 10.1039/D0TA01468K – ident: e_1_2_9_287_1 doi: 10.1002/anie.202112381 – ident: e_1_2_9_89_1 doi: 10.1039/C9TA00716D – ident: e_1_2_9_197_1 doi: 10.1021/acsami.7b09924 – ident: e_1_2_9_152_1 doi: 10.1002/crat.201100110 – ident: e_1_2_9_59_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_9_193_1 doi: 10.1016/j.jcis.2021.06.141 – ident: e_1_2_9_405_1 doi: 10.1002/cssc.201702270 – ident: e_1_2_9_351_1 doi: 10.1016/j.electacta.2021.138624 – ident: e_1_2_9_165_1 doi: 10.1021/acsenergylett.8b00565 |
SSID | ssj0001537418 |
Score | 2.61388 |
SecondaryResourceType | review_article |
Snippet | Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their... Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their... Abstract Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206907 |
SubjectTerms | aqueous zinc‐ion batteries Batteries cathode materials Crystal structure Electrolytes Energy storage Oxidation Polyethylene glycol Review Reviews vanadium‐based compounds Zinc |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQLa9AQUZCAg5R40eS2RNqEdWCVC5QVLhYfopKJUHsbrnyE_iN_BJm4my0K0C9cI2txPpmxv5GmfnM2JNEpYOpbakbx5XaaijBNXXpbbSpkTaKipqTT94281P95qw-27jqi2rCsjxwBu7AKxli40G0gdoitQ1ValKqAZkxBOFp98UzbyOZyv3BimRZ1iqNlTyw4ZLUuaUkad526xQaxPr_xjD_LJTcJLDDCXR8k90YqSM_zEveZddit8d2x-Bc8GejgvTzW-zjvP_O6YfOkn8YirpWX379-HmEB1bgtAHQVUoLbhec-v_6EPmJXWZP5Mhh-SGur18t-KfzzvPXfcezCCfm1C9us9PjV-9fzsvxDoXS14P-I_IrBd5r65J1ARKoGABzFnAxKhFmFWCMOzeLlYghIahR17rxISDxUWDVHbbT9V28x7gVro5SofkSpjmAiZpzrXY6zEAkqXzByjWmxo8C43TPxYXJ0sjSkA3MZIOCPZ3mf83SGv-ceUQmmmaRJPbwAB3FjI5irnKUgu2vDWzGOMVPQFVDi5SsKtjjaRgjjH6b2I7ANhIzMhA15l0Fu5v9YVqJQiBxS8QR2PKUraVuj3TnnwcVb0FKRwgjwjY41RUYGKQp75Ddtff_BxgP2HV8s8olSPtsZ_ltFR8iu1q6R0Mg_QYBcyGb priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCKM-FgoyEBByixnYes6eqi1otSK0QUKi4WH6WSpCUZhf-PjOJN7DidY0dxZmXZ-yZbxh7Eil1MNY1VePYrDAFZGCrMnMmmFhJE0ROxclHx9XipHh1Wp6mA7cupVWubWJvqH3r6Ix8V0JeQo2bZ7538TWjrlF0u5paaFxlW2iCASZsa35w_PrNz1OWUhE8yxqtMZe7xn8jlG4pCaK33tiNetD-P3mavydM_urI9jvR4Q12PbmQfH_g-Ta7EpqbbDspacefJSTp57fYh0X7ndPFzpK_75O7Vl-yOW5bnpMZoIZKHTcdpyrA1gd-ZJaDPHL0ZPk-rq5ddfzjeeP4y7bhAxQnRtZ7t9nJ4cG7F4ssdVLIXNmjQKKXpcC5wthorIcIKnjAyAVsCEr4WQ6o6dbOQi6Cjxh0hKIsKuc9uj8KjLrDJk3bhHuMG2HLIBUyMWKwAxiuWVsXtvAzEFEqN2XZmqLaJZhx6nbxWQ8AyVITB_TIgSl7Os6_GAA2_jpzTgwaZxEwdv-gvTzTSc-0U9KHyoGoPVXRFsbnsYqxBPwn8AKXt7Nmr07aip8YZWvKHo_DqGd0eWIaIraWGJeBKDH6mrK7gzSMK1FISDSMOAIbcrKx1M2R5vxTj-UtCO8IyYhk60XqPzTQ6Ky8RR-vvv_v_3jAruE7akgx2mGT5eUqPETvaWkfJRX5AQwPGJw priority: 102 providerName: ProQuest |
Title | How About Vanadium‐Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206907 https://www.ncbi.nlm.nih.gov/pubmed/36683227 https://www.proquest.com/docview/2805879760 https://www.proquest.com/docview/2768815747 https://pubmed.ncbi.nlm.nih.gov/PMC10131888 https://doaj.org/article/c32de6c817d64784ad0f6ff581188d1c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBlOfSsjISEnCImviReE9oF1otiK0qSlHhEvkJlSCpml248hP4jfwSZpxs2ggQ4hTJthJnxmN_Y898JuRRwNDBUBSYjWMSoYVKlMllYrXXIWfaZykmJy8O8vmxeHUiTy5l8bf8EP2GG1pGnK_RwLVpdi9IQ7X7inTbjCHXbnGVbGJ-LQb1MXF4scsiOdKz4A1z4F0nXAmxZm5M2e7wFYOVKRL4_wl1_h48eRnUxlVp_wa53sFJOm31v0Wu-Oom2eoMtqFPOlbpp7fI-3n9jeIhz5K-i4Feqy8_v_-YwSLmKE4KeL1SQ3VDMSewdp4u9LIdnRRwLZ1C_-pVQz-cVpa-rCvaEnOCn_3sNjne33v7fJ509yokVkZOSMBcXFkrtAnaOBUU906BH6OM9zxzk1SB3Rsz8WnmXQAXxAspcuscgCGuNL9DNqq68vcI1ZmRnnFQaQDXR4HzZkwhjHATlQXG7Ygka5mWtiMdx7svPpctXTIrUQdlr4MRedy3P2vpNv7acoYq6lshTXYsqM8_lp3VlZYz53OrssJhTq3QLg15CFLBPymXQfd21gouO9uFT6hUqgJgWjoiD_tqsDo8StEVCrtk4KWpTIIvNiJ32_HQ94SDIGGahBo1GCmDrg5rqtNPkdk7Q_YjECOILQ6qf8igBOhyBIivuP-f7bfJNSjkbQTSDtlYnq_8AwBXSzOO9jMmm9MXi9dH8JztHRy-Gcetil-CwCGY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALojwDBYwEAg6r7treXeeAqgZaJbSJELS04mL8hEqwW5qEij_Fb2RmXxDxOvUaO4l3Zjz-Zj3zDSEPA6YOhjzHahwTCS1kJE2WRlZ7HTKmfRJjcfJkmo0OxMuj9GiFfG9rYTCtsvWJlaN2pcV35BtMxqnM4fCMN0--RNg1Cm9X2xYatVns-m9nELLNno1fgH4fMbazvf98FDVdBSKbVoyIgDi4tFZoE7RxMkjunQQUL433PHGDWILVGzPwceJdAADuRSoy6xxAAS41h9-9QFYFz2LWI6vD7emr1z_f6qQc6WBadsiYbWj3FVnBGUNK4Hzp9KuaBPwJ2f6eoPkrcK5Ovp0r5HIDWelWbWNrZMUXV8la4xRm9EnDXP30GjkclWcUL5Lm9G2VTLb4HA3hmHQU3Q42cJpRPaNYdVg6Tyd6Xts_BeRMt2B15WJG3x0Xlo7LgtbUnxDJb14nB-ci4xukV5SFv0WoTkzqGQejCRBcSQgPjcmFEW4gk8C47ZOolaiyDa05dtf4pGpCZqZQA6rTQJ887uaf1IQef505RAV1s5CIu_qgPP2gmn2tLGfOZ1YmucOqXaFdHLIQUgnPJF0Cy1tv1asa7wB_0dlynzzohmFf42WNLlDYikEcKJMUor0-uVlbQ7cSDoIERwwjcslOlpa6PFIcf6y4wxPkVwIxgtgqk_qPDBSAozeAKfPb_36O--TiaH-yp_bG09075BJ8n9fpTeukNz9d-LuA3ObmXrNdKHl_3jv0B06sVX0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuiPJMKWAkEHBYZdfeh3NAVUMbJZRGFVBacTF-lkqwW7oJFX-NX8fMviDideo1dhLveGb8zXrmG0IeeUwd9FmG1Tg6iFUsAqHTJDDKKZ8y5aIQi5P3ZunkIH55lBytkO9tLQymVbY-sXLUtjD4jnzARJiIDA7PcOCbtIj97fHm6ZcAO0jhTWvbTqNWkV337RzCt_L5dBv2-jFj4523LyZB02EgMEnFjgjogwtjYqW90lZ4wZ0VgOiFdo5HdhgKsACthy6MnPUAxl2cxKmxFmABF4rD714iqxlGRT2yOtqZ7b_--YYn4UgN0zJFhmyg7FdkCGcM6YGzpZOwahjwJ5T7e7LmryC6OgXH18jVBr7SrVrf1siKy6-TtcZBlPRpw2L97AY5nBTnFC-V5vRdlVi2-ByM4Mi0FF0QNnMqqSopViAW1tE9Na9tgQKKpluwumJR0vcnuaHTIqc1DShE9Zs3ycGFyPgW6eVF7u4QqiKdOMZBgTwEWgJCRa2zWMd2KCLPuOmToJWoNA3FOXba-CRrcmYmcQdktwN98qSbf1qTe_x15gg3qJuFpNzVB8XZsWxsXBrOrEuNiDKLFbyxsqFPvU8EPJOwESxvo91e2XgK-ItOr_vkYTcMNo4XNypHYUsGMaGIEoj8-uR2rQ3dSjgIEpwyjIglPVla6vJIfvKx4hGPkGsJxAhiq1TqPzKQAJTeAL7M1v_9HA_IZbBM-Wo6271LrsDXeZ3ptEF687OFuwcgbq7vN9ZCyYeLNtAfQa1Zsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+About+Vanadium%E2%80%90Based+Compounds+as+Cathode+Materials+for+Aqueous+Zinc+Ion+Batteries%3F&rft.jtitle=Advanced+science&rft.au=Lv%2C+Tingting&rft.au=Peng%2C+Yi&rft.au=Zhang%2C+Guangxun&rft.au=Jiang%2C+Shu&rft.date=2023-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202206907&rft.externalDBID=10.1002%252Fadvs.202206907&rft.externalDocID=ADVS5097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |