How About Vanadium‐Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?

Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materia...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 10; no. 12; pp. e2206907 - n/a
Main Authors Lv, Tingting, Peng, Yi, Zhang, Guangxun, Jiang, Shu, Yang, Zilin, Yang, Shengyang, Pang, Huan
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. The research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out.
AbstractList Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn 2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn 2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. The research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out.
Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention. The research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out.
Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Abstract Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new‐type cathode materials that are suitable for Zn2+ intercalation. Vanadium‐based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium‐based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium‐based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium‐based compounds are pointed out. Vanadium‐based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Author Yang, Zilin
Lv, Tingting
Pang, Huan
Yang, Shengyang
Peng, Yi
Jiang, Shu
Zhang, Guangxun
AuthorAffiliation 2 School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
1 Interdisciplinary Materials Research Center, Institute for Advanced Study Chengdu University Chengdu Sichuan 610106 P. R. China
AuthorAffiliation_xml – name: 2 School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
– name: 1 Interdisciplinary Materials Research Center, Institute for Advanced Study Chengdu University Chengdu Sichuan 610106 P. R. China
Author_xml – sequence: 1
  givenname: Tingting
  surname: Lv
  fullname: Lv, Tingting
  email: tingtinglv0311@163.com
  organization: Yangzhou University
– sequence: 2
  givenname: Yi
  surname: Peng
  fullname: Peng, Yi
  organization: Yangzhou University
– sequence: 3
  givenname: Guangxun
  surname: Zhang
  fullname: Zhang, Guangxun
  organization: Yangzhou University
– sequence: 4
  givenname: Shu
  surname: Jiang
  fullname: Jiang, Shu
  organization: Yangzhou University
– sequence: 5
  givenname: Zilin
  surname: Yang
  fullname: Yang, Zilin
  organization: Yangzhou University
– sequence: 6
  givenname: Shengyang
  surname: Yang
  fullname: Yang, Shengyang
  organization: Yangzhou University
– sequence: 7
  givenname: Huan
  orcidid: 0000-0002-5319-0480
  surname: Pang
  fullname: Pang, Huan
  email: panghuan@yzu.edu.cn
  organization: Yangzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36683227$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vFCEUwImpsbX26tGQePGyK_8GmFOzXf90kxoPahO9EAaYls0MrDDTpjc_gp_RTyLj1k3bS08Q3u_9eDzec7AXYnAAvMRojhEib7W9ynOCCEG8RuIJOCC4ljMqGdu7s98HRzmvEUK4ooJh-QzsU84lJUQcgO-n8RoumjgO8FwHbf3Y__n1-0RnZ-Ey9ps4BpuhznCph8toHfykB5e87jJsY4KLn6OLY4Y_fDBwFQM80cMUd_n4BXjaFswd3a6H4NuH91-Xp7Ozzx9Xy8XZzFQUiRmuCKHSGKabVjdWtpI6K3kpsHGOYlsjKShqmtoh7GyLsXSsYtxYSypMpaaHYLX12qjXapN8r9ONitqrfwcxXSidBm86pwwl1nEjsbCcCcm0RS1v20oWq7TYFNfx1rUZm95Z48KQdHdPej8S_KW6iFcKI0yLQxbDm1tDiqU3eVC9z8Z1nQ5ToxQRXEpcCSYK-voBuo5jCqVXikhUSVELjgr16m5Ju1r-f2EB5lvApJhzcu0OwUhNY6KmMVG7MSkJ7EGC8YMefJye5LtH0659524euUQt3p1_qVAt6F-v-tFA
CitedBy_id crossref_primary_10_1016_j_cej_2024_149624
crossref_primary_10_1021_acsanm_4c06378
crossref_primary_10_1016_j_actamat_2024_120468
crossref_primary_10_1002_smll_202306561
crossref_primary_10_1016_j_est_2024_113925
crossref_primary_10_1016_j_jpowsour_2024_235751
crossref_primary_10_1016_j_mtchem_2024_102063
crossref_primary_10_1016_j_cej_2023_147727
crossref_primary_10_1016_j_jallcom_2023_171418
crossref_primary_10_1021_acs_energyfuels_4c02588
crossref_primary_10_1002_adma_202416714
crossref_primary_10_1039_D4RA03730H
crossref_primary_10_1016_j_est_2024_112437
crossref_primary_10_1039_D4TA02718C
crossref_primary_10_1021_acssuschemeng_3c07411
crossref_primary_10_1007_s12274_024_6668_4
crossref_primary_10_1016_j_jallcom_2024_175869
crossref_primary_10_1021_acs_analchem_3c04899
crossref_primary_10_26599_NR_2025_94907229
crossref_primary_10_1039_D3RA01816D
crossref_primary_10_1002_cey2_639
crossref_primary_10_1002_chem_202500219
crossref_primary_10_1002_smll_202306790
crossref_primary_10_1021_acsami_4c16336
crossref_primary_10_1002_smll_202409552
crossref_primary_10_1007_s11663_024_02999_2
crossref_primary_10_1007_s11581_024_05441_4
crossref_primary_10_1002_smll_202406458
crossref_primary_10_1016_j_est_2024_112284
crossref_primary_10_1016_j_cej_2024_152994
crossref_primary_10_1021_acs_energyfuels_4c03696
crossref_primary_10_1021_acsami_4c02177
crossref_primary_10_1021_acssuschemeng_4c04349
crossref_primary_10_1016_j_jcis_2024_03_161
crossref_primary_10_1007_s11581_025_06187_3
crossref_primary_10_1002_cey2_647
crossref_primary_10_1002_smll_202309029
crossref_primary_10_3390_coatings14080955
crossref_primary_10_1016_j_apsusc_2023_159005
crossref_primary_10_1016_j_ensm_2024_103799
crossref_primary_10_1016_j_jcis_2025_02_099
crossref_primary_10_1016_j_cej_2024_152064
crossref_primary_10_1016_j_cscee_2023_100591
crossref_primary_10_1016_j_est_2024_114754
crossref_primary_10_1016_j_jcis_2023_09_045
crossref_primary_10_1016_j_jcis_2023_10_044
crossref_primary_10_1016_j_est_2024_111640
crossref_primary_10_1002_smll_202405251
crossref_primary_10_1016_j_est_2023_109045
crossref_primary_10_1016_j_nanoen_2023_108736
crossref_primary_10_3390_catal13091241
crossref_primary_10_1007_s11581_025_06179_3
crossref_primary_10_1016_j_ensm_2024_103944
crossref_primary_10_1039_D3CC04440H
crossref_primary_10_1002_cssc_202402289
crossref_primary_10_1039_D3CC04436J
crossref_primary_10_1051_matecconf_202338201015
crossref_primary_10_1039_D4RA06871H
crossref_primary_10_1016_j_cej_2023_143971
crossref_primary_10_1016_j_ensm_2024_103300
crossref_primary_10_20517_microstructures_2024_47
crossref_primary_10_1007_s12598_024_02671_3
crossref_primary_10_1016_j_ensm_2024_103544
crossref_primary_10_1016_j_nanoen_2024_109691
crossref_primary_10_1016_j_jpowsour_2025_236830
crossref_primary_10_1016_j_ccr_2023_215497
crossref_primary_10_1016_j_nxener_2024_100180
crossref_primary_10_1016_j_jcis_2025_01_173
crossref_primary_10_1016_j_cej_2024_157587
crossref_primary_10_3389_fmats_2024_1376865
crossref_primary_10_1016_j_cis_2025_103427
crossref_primary_10_1016_j_jcis_2025_01_176
crossref_primary_10_3390_molecules29122834
crossref_primary_10_1039_D4TA05711B
crossref_primary_10_1002_batt_202400064
crossref_primary_10_1039_D4GC01557F
crossref_primary_10_1002_smll_202406801
crossref_primary_10_1016_j_est_2025_115873
crossref_primary_10_1016_j_est_2025_115995
crossref_primary_10_1021_acsami_4c19917
crossref_primary_10_1039_D4TB01743A
crossref_primary_10_1016_j_ensm_2025_104064
crossref_primary_10_1016_j_est_2024_111264
crossref_primary_10_1016_j_est_2023_109340
crossref_primary_10_1002_adfm_202303102
crossref_primary_10_1002_smll_202410758
crossref_primary_10_1016_j_apmt_2024_102568
crossref_primary_10_1016_j_ijoes_2024_100804
crossref_primary_10_1016_j_jpowsour_2024_234618
crossref_primary_10_1360_SSC_2024_0011
crossref_primary_10_1016_j_jelechem_2023_117636
crossref_primary_10_1039_D4TA01136H
crossref_primary_10_1016_j_electacta_2025_145877
crossref_primary_10_1016_j_cej_2024_151114
crossref_primary_10_1016_j_jcis_2024_01_214
crossref_primary_10_23919_CHAIN_2024_000010
crossref_primary_10_1016_j_matchemphys_2024_129406
crossref_primary_10_1016_j_jallcom_2023_171750
crossref_primary_10_1002_smtd_202301398
crossref_primary_10_1016_j_jpowsour_2024_235895
crossref_primary_10_1016_j_cej_2024_149674
crossref_primary_10_1016_j_jcis_2023_11_129
crossref_primary_10_1002_aenm_202500171
crossref_primary_10_3390_ma17194703
crossref_primary_10_1016_j_jpowsour_2025_236649
crossref_primary_10_1021_acsami_4c03309
crossref_primary_10_1039_D4CC06362G
crossref_primary_10_1002_aenm_202406171
crossref_primary_10_1016_j_cej_2024_158241
crossref_primary_10_12677_ms_2024_146094
crossref_primary_10_1039_D3QM00003F
crossref_primary_10_1007_s10008_024_06139_3
crossref_primary_10_1016_j_nanoen_2024_109822
crossref_primary_10_1016_j_scib_2024_01_029
crossref_primary_10_1021_acsanm_4c04848
crossref_primary_10_1016_j_est_2024_110808
crossref_primary_10_1016_j_ensm_2023_103162
crossref_primary_10_1021_acs_iecr_4c03505
crossref_primary_10_1016_j_cej_2023_146883
crossref_primary_10_1016_j_carbon_2024_119917
crossref_primary_10_1007_s11581_024_05481_w
crossref_primary_10_1016_j_jallcom_2023_172934
crossref_primary_10_1016_j_est_2024_111852
crossref_primary_10_1002_smll_202400692
crossref_primary_10_1016_j_est_2024_114448
crossref_primary_10_1002_aenm_202400977
crossref_primary_10_1039_D4QI01732C
crossref_primary_10_1016_j_est_2025_115826
crossref_primary_10_1016_j_colsurfa_2024_134013
crossref_primary_10_1016_j_cej_2024_155765
crossref_primary_10_1016_j_est_2024_113196
crossref_primary_10_1021_acsami_4c10376
crossref_primary_10_1016_j_est_2024_113230
crossref_primary_10_1007_s10854_024_13386_7
crossref_primary_10_1002_smll_202306697
crossref_primary_10_1088_1361_6528_ad0245
crossref_primary_10_1002_smll_202306615
crossref_primary_10_1016_j_susmat_2024_e00968
crossref_primary_10_20517_energymater_2023_82
crossref_primary_10_1093_nsr_nwae336
Cites_doi 10.1039/C8TA09338E
10.1021/acsami.9b13729
10.1002/adfm.201906142
10.1021/acs.nanolett.0c00732
10.1002/smll.202100558
10.1007/s40820-020-0401-y
10.1021/acsnano.0c08432
10.1016/j.nanoen.2021.106477
10.1016/j.pmatsci.2019.100616
10.1021/acsaem.1c03066
10.1039/C9TA04274A
10.1007/s11426-020-9830-8
10.1039/D2CC00915C
10.1002/advs.201600051
10.1039/D2EE02267B
10.1039/D0TA07872G
10.1021/acs.chemmater.8b01381
10.1016/j.nanoen.2021.105876
10.1016/j.ensm.2020.03.024
10.1002/adfm.201904398
10.1021/acs.chemmater.8b02679
10.1016/j.cej.2020.124118
10.1016/j.jallcom.2021.159403
10.1021/cr020730k
10.1021/acs.chemmater.0c00004
10.1002/1521-3749(200212)628:12<2778::AID-ZAAC2778>3.0.CO;2-H
10.1039/D2NR00983H
10.1002/anie.201903941
10.1016/j.jpowsour.2018.06.021
10.1016/j.ensm.2019.02.012
10.1016/j.matlet.2013.05.112
10.1002/anie.201106307
10.1021/acsaem.0c00318
10.1039/C9TA04264D
10.1002/celc.201901851
10.1007/s40820-021-00641-3
10.1002/adfm.202101027
10.1007/s40820-021-00715-2
10.1039/D1NR02158C
10.1039/c2jm33862a
10.1021/ja207176c
10.1016/j.mtener.2019.100361
10.1021/acs.iecr.1c04683
10.1021/am507089x
10.1007/s00339-011-6325-0
10.1016/j.nanoen.2020.105276
10.1039/C8CC07243D
10.1016/j.chempr.2020.02.001
10.1016/j.cej.2022.136349
10.1016/j.cej.2021.130459
10.1071/CH9812035
10.1039/C9TA05767F
10.1002/smll.202101944
10.1002/anie.202209350
10.1002/aenm.202102707
10.1002/adma.201204576
10.1021/ja034565h
10.1002/admi.201801506
10.1039/C8TA02090F
10.1002/aenm.201901968
10.1021/acsaem.1c02064
10.1016/j.jpowsour.2011.02.046
10.1002/adfm.202003511
10.1039/c1jm11523e
10.1039/D0TA05065B
10.1021/acsami.6b04444
10.1021/acs.nanolett.5b04610
10.1016/j.cej.2020.126737
10.1002/smll.200700032
10.1016/j.ccr.2022.214602
10.1002/ente.202000789
10.1016/j.mseb.2010.07.023
10.1038/s41467-018-04949-4
10.1021/acs.chemmater.6b05084
10.1002/adfm.201802564
10.1002/adma.202201779
10.1021/acsnano.9b09963
10.1039/D0TA01033B
10.1039/C9DT04226A
10.1039/D0TA07436E
10.1016/j.nanoen.2020.104573
10.1016/j.cclet.2020.02.052
10.1039/c3ce40787j
10.1021/acsnano.1c04423
10.1016/j.ensm.2021.05.003
10.1016/j.cclet.2021.12.049
10.1038/s41560-020-0674-x
10.1039/D2NR02122F
10.1002/cssc.202000699
10.1016/j.electacta.2019.135506
10.1007/s41918-020-00075-2
10.1016/j.electacta.2015.03.087
10.1002/smll.201800567
10.1002/adma.201904369
10.1016/j.ensm.2021.07.045
10.1039/D0QM00051E
10.1016/j.nanoen.2016.04.051
10.1002/adfm.202105717
10.1021/acsami.1c09951
10.1016/j.jpowsour.2021.229528
10.1021/acsaem.8b02054
10.1002/adfm.201807331
10.1021/acsenergylett.1c02514
10.1016/j.cej.2020.125259
10.1016/j.jallcom.2021.160324
10.1039/D1EE01158H
10.1016/j.electacta.2019.134689
10.1016/j.electacta.2022.140120
10.1016/j.electacta.2019.135347
10.1016/j.cis.2022.102732
10.1021/acs.nanolett.7b05403
10.1016/j.enchem.2021.100052
10.1021/ja406016j
10.1039/D0TA10336E
10.1201/9781420007282
10.1016/j.cej.2022.137090
10.1016/j.cej.2021.133815
10.1021/acs.chemmater.7b00428
10.1038/srep19621
10.1007/s11426-018-9394-1
10.1016/S0020-1693(00)82175-1
10.1016/j.jcis.2022.01.155
10.1039/C9TA11031C
10.1002/anie.201806748
10.1016/j.ensm.2018.03.003
10.1021/acsnano.0c02658
10.1016/j.nanoen.2019.03.034
10.1021/cm000345g
10.1021/jacs.5b03395
10.1016/j.cej.2021.133795
10.1016/j.chempr.2019.02.014
10.1016/j.jpowsour.2016.08.039
10.1016/j.cej.2021.131211
10.1021/acsaem.9b01299
10.1016/j.ensm.2017.10.014
10.1021/acsnano.1c01389
10.1002/aenm.202000058
10.1002/aenm.201602720
10.1039/C9TA01164A
10.1016/j.electacta.2021.139785
10.1016/j.cej.2022.136502
10.1039/C9CS00131J
10.1007/s40820-020-00554-7
10.1039/D0TA03165H
10.1002/aenm.201700127
10.1002/inf2.12223
10.1039/C9TA00125E
10.1016/j.ensm.2019.03.007
10.1016/j.ensm.2019.11.004
10.1039/C9EE02356A
10.1002/aenm.201400930
10.1002/adfm.201909486
10.1039/b819629j
10.1149/2.114306jes
10.1016/j.jallcom.2018.09.076
10.1002/inf2.12042
10.1039/C5NR02064F
10.1039/C9TA07822C
10.1039/C7CS00614D
10.1016/j.apsusc.2020.147077
10.1002/aenm.201801819
10.1038/nenergy.2016.39
10.1021/ic402897d
10.1021/acsnano.9b06484
10.1016/j.ensm.2018.01.009
10.1021/acs.inorgchem.6b01662
10.1016/j.jpowsour.2016.01.058
10.1002/anie.201509800
10.1021/acssuschemeng.9b06613
10.1002/anie.202010287
10.1039/C9EE02526J
10.1016/j.joule.2018.07.017
10.1021/acs.nanolett.5b00321
10.1021/acs.iecr.1c01052
10.1039/D1CC00584G
10.1002/advs.201400018
10.1002/anie.201902679
10.1016/j.apsusc.2019.144816
10.1016/j.ensm.2020.12.001
10.1021/cm071728i
10.1021/acsami.9b12128
10.1021/acssuschemeng.1c03101
10.1002/adfm.202100005
10.1021/acsnano.9b08039
10.1016/j.ensm.2022.07.017
10.1016/j.jcis.2021.04.010
10.1039/C8EE01651H
10.1021/cm501644g
10.1039/C9NR03129D
10.1021/acsami.0c10183
10.1016/j.jechem.2022.07.034
10.1002/cssc.202200313
10.1002/ente.201900022
10.1021/acsanm.9b00703
10.1038/s41560-020-0655-0
10.1039/C5DT03239C
10.1021/acs.chemrev.7b00689
10.1126/science.264.5162.1115
10.1002/smll.201700067
10.1039/C2TA00351A
10.1021/acsami.9b05362
10.1016/j.ensm.2020.04.039
10.1039/C6EE03173K
10.1016/j.jechem.2021.02.014
10.1016/j.jpowsour.2022.231358
10.1002/smll.202100746
10.1007/s10853-011-5302-5
10.1016/j.ensm.2018.08.008
10.1039/C8TA12014E
10.1016/j.nanoen.2018.05.056
10.1016/j.cej.2022.137069
10.1021/acsnano.1c11169
10.1016/j.jechem.2018.05.001
10.1016/j.nanoen.2020.104851
10.1016/j.jelechem.2021.115685
10.1039/C8TA08133F
10.1016/j.jcis.2022.07.034
10.1021/acs.nanolett.0c04539
10.1002/aenm.201800144
10.1021/acsami.7b13110
10.1007/s40843-020-1550-2
10.1016/j.jallcom.2019.06.084
10.1021/acs.iecr.1c01915
10.1021/acsami.1c12447
10.1002/aenm.202100973
10.1021/acsami.8b10849
10.1016/j.jpowsour.2014.01.126
10.1039/C8CS00426A
10.1002/aenm.202000477
10.1021/nn101187z
10.1016/j.cej.2019.122844
10.1016/j.nanoen.2019.01.068
10.1016/j.hydromet.2012.02.013
10.1016/j.cej.2022.134642
10.1021/nl504705z
10.1039/C8TA02018C
10.1016/j.nanoen.2019.104211
10.1021/acsami.5b03210
10.1002/anie.201912203
10.1007/s40820-022-00960-z
10.1021/acs.chemmater.8b03409
10.1002/aenm.201702463
10.1016/j.jpowsour.2012.03.113
10.1016/j.rser.2018.03.047
10.1103/PhysRevLett.72.3389
10.1002/adma.201806133
10.1021/acs.accounts.0c00362
10.1016/j.jechem.2018.12.023
10.1007/s10800-016-0973-x
10.1039/C8TA11860D
10.1007/s41918-018-0007-y
10.1021/acsenergylett.8b01426
10.1016/j.ccr.2018.08.010
10.1016/j.ensm.2021.07.004
10.1016/j.materresbull.2017.08.047
10.1016/j.ensm.2022.04.040
10.1002/cssc.202100223
10.1016/j.mtener.2020.100593
10.1016/j.cej.2022.137681
10.1039/D1TA00803J
10.1039/D0CC08115A
10.1016/j.cej.2021.128408
10.1021/jp410969u
10.1002/adma.201800762
10.1016/j.joule.2018.11.007
10.1021/acsaem.0c00505
10.1016/j.nanoen.2019.05.059
10.1039/D1EE00030F
10.1039/C9TA09116E
10.1016/j.nanoen.2021.106386
10.1016/j.joule.2018.07.006
10.1016/j.jechem.2020.08.016
10.1021/acsnano.9b10214
10.1016/j.cej.2022.137266
10.1039/C9EE00956F
10.1016/j.jallcom.2019.02.078
10.1016/j.nanoen.2019.05.005
10.1002/smtd.201900637
10.1002/anie.201814653
10.1016/j.jpowsour.2014.11.052
10.1002/smll.202202151
10.1126/science.aag0410
10.1002/adma.201705580
10.1002/aenm.202003639
10.1016/j.jechem.2020.06.013
10.1002/aenm.202201434
10.1002/anie.202116282
10.1021/acsaem.9b01632
10.1021/cm020348o
10.1039/C5EE00036J
10.1038/nchem.141
10.1021/acs.nanolett.5b00284
10.1016/j.nanoen.2021.105969
10.1002/aenm.201601920
10.1016/0022-3697(84)90050-7
10.1021/acsenergylett.7b01278
10.1039/C9CS00906J
10.1002/adma.201204530
10.1016/j.mtener.2020.100431
10.1039/D1TA05526G
10.1016/j.enchem.2020.100027
10.1021/ja501866r
10.1002/cssc.201403143
10.1002/adma.201502864
10.1016/j.jece.2020.104765
10.1016/j.ccr.2020.213341
10.1038/nmat4830
10.1016/j.electacta.2014.09.068
10.1016/j.jallcom.2020.158560
10.1021/am5070393
10.1002/sstr.202100212
10.1002/aenm.201903977
10.1002/adma.202004129
10.1002/adma.201703725
10.1039/C6EE00794E
10.1002/cssc.201702031
10.1039/C8CC02250J
10.1016/j.cej.2022.136789
10.1021/jp065478p
10.1021/acsami.1c06160
10.26599/NRE.2022.9120009
10.1016/j.nanoen.2020.104548
10.1038/srep25809
10.1021/acsenergylett.9b00788
10.1016/j.apsusc.2021.152053
10.1002/adfm.202003890
10.1126/science.1212741
10.1002/aenm.202002354
10.1016/j.jcis.2021.07.138
10.1016/j.enchem.2022.100074
10.1002/aenm.201900237
10.1038/s41467-018-04060-8
10.1021/acsami.7b15407
10.1016/j.jechem.2019.03.036
10.1021/am503136h
10.1016/j.apsusc.2019.145137
10.1039/C9TA05554A
10.1002/adsu.202000178
10.1002/aenm.201200558
10.1016/j.nanoen.2021.106596
10.1021/nl402969r
10.1002/adfm.202102827
10.1021/acsami.1c00749
10.1002/aenm.201901480
10.1002/eem2.12166
10.1016/j.colsurfa.2020.124621
10.1039/C9TA02990G
10.1016/j.jpowsour.2012.11.022
10.1016/j.cej.2021.132538
10.1038/nmat3001
10.1002/anie.201206554
10.1016/j.jpowsour.2020.229284
10.1016/j.matlet.2020.128559
10.1002/anie.201908853
10.1039/D2RA00298A
10.1016/j.ensm.2021.06.006
10.1002/aenm.201600868
10.1149/2.015209jes
10.1016/j.electacta.2019.134565
10.1016/j.jallcom.2015.01.115
10.1039/C5CC05425G
10.1002/cssc.202201118
10.1016/j.ccr.2021.214260
10.1039/C9TA05922A
10.1016/j.jpowsour.2021.230286
10.1016/j.jechem.2021.03.051
10.1021/jacs.6b05958
10.1016/j.nanoen.2019.04.009
10.1002/adfm.202103070
10.1039/c3tc31508h
10.1021/acs.chemrev.9b00628
10.1039/C9TA04798K
10.1002/adfm.202106816
10.1002/ente.202000829
10.1016/j.nanoen.2018.07.014
10.1039/C7TA11237H
10.1016/j.jallcom.2019.152971
10.1016/j.mtener.2021.100824
10.1016/j.jpowsour.2017.03.121
10.1016/j.nanoen.2021.105835
10.1007/s40820-019-0256-2
10.1021/acsenergylett.8b01423
10.1039/C8TA06626D
10.1021/acsenergylett.8b02053
10.1021/acs.chemmater.6b05092
10.1002/aenm.201900083
10.1002/adma.201104681
10.1016/0379-6779(87)90893-9
10.1016/j.ccr.2021.214124
10.1016/j.nanoen.2018.06.076
10.1002/smll.202201011
10.1002/aenm.201803436
10.1021/am402352q
10.1016/j.enchem.2022.100092
10.1016/j.jpowsour.2019.227192
10.1021/acsami.6b16000
10.1002/ente.201901105
10.1039/C6TA02917E
10.1016/j.electacta.2018.08.040
10.1002/celc.202100280
10.1016/j.jcis.2021.08.194
10.1021/ja403232d
10.1016/j.jcis.2019.10.092
10.31635/ccschem.020.202000182
10.1002/anie.201606508
10.1016/j.nanoen.2017.02.014
10.1039/C9TA08086D
10.1016/j.jpowsour.2022.231489
10.1039/D2QI01083F
10.1039/D0TA01468K
10.1002/anie.202112381
10.1039/C9TA00716D
10.1021/acsami.7b09924
10.1002/crat.201100110
10.1038/nenergy.2016.119
10.1016/j.jcis.2021.06.141
10.1002/cssc.201702270
10.1016/j.electacta.2021.138624
10.1021/acsenergylett.8b00565
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202206907
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c32de6c817d64784ad0f6ff581188d1c
PMC10131888
36683227
10_1002_advs_202206907
ADVS5097
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20200044
– fundername: Program for Young Changjiang Scholars of the Ministry of Education, China
  funderid: Q2018270
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: National Natural Science Foundation of China
  funderid: NSFC‐U1904215
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20200044
– fundername: National Natural Science Foundation of China
  grantid: NSFC-U1904215
– fundername: Program for Young Changjiang Scholars of the Ministry of Education, China
  grantid: Q2018270
– fundername: ;
– fundername: ;
  grantid: BK20200044
– fundername: ;
  grantid: NSFC‐U1904215
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5307-152238cc4abfabd8f83ed86668bee31d908730bb9e01edf118e4546cdd25138a3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:30:11 EDT 2025
Thu Aug 21 18:38:03 EDT 2025
Fri Jul 11 16:34:09 EDT 2025
Sat Jul 26 02:32:37 EDT 2025
Mon Jul 21 06:01:31 EDT 2025
Tue Jul 01 03:59:49 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Wed Jan 22 16:21:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cathode materials
aqueous zinc-ion batteries
vanadium-based compounds
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5307-152238cc4abfabd8f83ed86668bee31d908730bb9e01edf118e4546cdd25138a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5319-0480
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206907
PMID 36683227
PQID 2805879760
PQPubID 4365299
PageCount 49
ParticipantIDs doaj_primary_oai_doaj_org_article_c32de6c817d64784ad0f6ff581188d1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10131888
proquest_miscellaneous_2768815747
proquest_journals_2805879760
pubmed_primary_36683227
crossref_primary_10_1002_advs_202206907
crossref_citationtrail_10_1002_advs_202206907
wiley_primary_10_1002_advs_202206907_ADVS5097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 64
2020; 20
2016; 308
2019; 11
2020; 280
2019; 13
2019; 12
2021; 446
2019; 14
2020; 17
2020; 14
2019; 18
2020; 13
2020; 12
2020; 10
2022; 615
1994; 264
2015; 137
2000; 12
2019; 22
2019; 23
2013; 117
2019; 29
2022; 607
2022; 605
2021; 83
2012; 24
2021; 85
2012; 22
2010; 4
2021; 84
2016; 46
2007; 19
2021; 42
2019; 31
2016; 329
2020; 382
2021; 425
2013; 107
1984; 45
2013; 227
2019; 38
2006; 110
2020; 32
2016; 16
2011; 133
2016; 4
2021; 57
2021; 417
2016; 6
2021; 54
2016; 1
2021; 56
2016; 3
2022; 3
2020; 31
2022; 4
2020; 30
2020; 396
2022; 5
2018; 118
2022; 7
2020; 390
2022; 9
2018; 91
2020; 26
2010; 175
2022; 1
2021; 61
2022; 626
2021; 60
2021; 63
2018; 97
2016; 25
2016; 8
2016; 9
2020; 29
2013; 25
2020; 63
2020; 120
2019; 55
2019; 58
2020; 59
2021; 484
2017; 353
2017; 355
2022; 536
2022; 533
2022; 412
2020; 8
2020; 7
2020; 6
2020; 5
2019; 60
2020; 4
2013; 15
2020; 3
2020; 2
2019; 62
2019; 61
2020; 53
2021; 597
2013; 13
2017; 34
2020; 49
2012; 214
2020; 819
2014; 6
2022; 404
1981; 34
2014; 53
2021; 9
2015; 2
2021; 8
2011; 334
2021; 4
2015; 5
2021; 3
2021; 89
2015; 166
2021; 900
2019; 787
2007
2017; 29
2020; 77
2015; 8
2015; 7
2022; 434
2020; 108
2021; 90
2022; 433
2011; 104
2012; 117–118
2022
2020; 74
2017; 16
2020; 593
2020; 70
2017; 10
2015; 275
2017; 13
2016; 138
2018; 51
2020; 67
2018; 50
2022; 307
2022; 428
2009; 1
2018; 54
2019; 772
2018; 57
2002; 14
2018; 287
2022; 451
2019; 2019
2013; 3
2013; 1
2020; 560
2021; 603
2014; 26
2011; 196
2013; 5
2014; 136
2019; 320
2019; 441
2014; 258
2019; 321
2022; 578
2018; 6
2022; 442
2018; 9
2018; 8
2018; 3
2018; 2
2018; 1
2020; 330
2022; 34
2018; 30
2020; 332
2007; 3
2022; 33
2009; 19
1994; 72
2022; 448
2022; 445
2022; 446
2022; 443
1986; 117
2019; 7
2019; 9
2018; 28
2019; 4
2019; 3
2019; 6
2019; 5
2021; 388
2019; 2
2015; 51
2018; 27
2018; 18
2015; 631
2022; 12
2021; 490
2022; 14
2022; 15
2018; 11
2018; 10
2022; 16
2018; 15
2022; 18
2018; 14
2022; 466
2014; 146
2018; 13
2017; 7
2021; 21
2021; 405
2011; 10
2019; 801
2013; 160
2017; 9
2020; 529
2012; 51
2021; 35
2021; 31
2021; 33
2018; 376
2021; 878
2015; 44
2011; 21
2022; 75
2002; 628
2021; 870
2003; 125
2021; 41
2021; 40
2020; 416
2015; 15
2021; 507
2004; 104
2021; 861
2022; 50
2022; 51
1987; 18
2020; 507
2016; 55
2020; 506
2021; 14
2021; 13
2021; 15
2018; 396
2015; 27
2021; 11
2022; 61
2021; 17
2021; 19
2022; 58
2013; 135
2011; 46
2012; 159
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_400_1
e_1_2_9_292_1
e_1_2_9_107_1
e_1_2_9_337_1
e_1_2_9_314_1
e_1_2_9_390_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_412_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_280_1
e_1_2_9_325_1
e_1_2_9_348_1
e_1_2_9_195_1
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_217_1
e_1_2_9_401_1
e_1_2_9_270_1
e_1_2_9_293_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_338_1
e_1_2_9_315_1
e_1_2_9_391_1
e_1_2_9_182_1
e_1_2_9_46_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_413_1
e_1_2_9_5_1
e_1_2_9_281_1
e_1_2_9_118_1
e_1_2_9_326_1
e_1_2_9_349_1
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_339_1
e_1_2_9_402_1
e_1_2_9_294_1
e_1_2_9_109_1
e_1_2_9_271_1
e_1_2_9_316_1
e_1_2_9_392_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_414_1
e_1_2_9_282_1
e_1_2_9_327_1
e_1_2_9_380_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_108_1
e_1_2_9_403_1
e_1_2_9_219_1
e_1_2_9_370_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_393_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_260_1
e_1_2_9_283_1
e_1_2_9_328_1
e_1_2_9_7_1
e_1_2_9_415_1
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_381_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_150_1
e_1_2_9_318_1
e_1_2_9_90_1
e_1_2_9_273_1
e_1_2_9_404_1
e_1_2_9_296_1
e_1_2_9_250_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_371_1
e_1_2_9_394_1
e_1_2_9_306_1
e_1_2_9_284_1
e_1_2_9_329_1
e_1_2_9_261_1
e_1_2_9_416_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_382_1
e_1_2_9_319_1
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
e_1_2_9_251_1
e_1_2_9_405_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_395_1
e_1_2_9_372_1
e_1_2_9_307_1
e_1_2_9_80_1
e_1_2_9_285_1
e_1_2_9_262_1
e_1_2_9_417_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_360_1
e_1_2_9_383_1
e_1_2_9_35_1
e_1_2_9_298_1
e_1_2_9_12_1
e_1_2_9_275_1
e_1_2_9_252_1
Luo Y. (e_1_2_9_295_1) 2007
e_1_2_9_406_1
e_1_2_9_166_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_350_1
e_1_2_9_373_1
e_1_2_9_396_1
e_1_2_9_308_1
e_1_2_9_24_1
e_1_2_9_286_1
e_1_2_9_263_1
e_1_2_9_240_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_418_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_384_1
e_1_2_9_361_1
e_1_2_9_276_1
e_1_2_9_299_1
e_1_2_9_13_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_397_1
e_1_2_9_188_1
e_1_2_9_407_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_374_1
e_1_2_9_351_1
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_264_1
e_1_2_9_241_1
e_1_2_9_177_1
e_1_2_9_419_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_362_1
e_1_2_9_385_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_277_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_375_1
e_1_2_9_398_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_408_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_352_1
e_1_2_9_265_1
e_1_2_9_83_1
e_1_2_9_288_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_111_1
e_1_2_9_386_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_363_1
e_1_2_9_340_1
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_95_1
e_1_2_9_278_1
e_1_2_9_353_1
e_1_2_9_399_1
e_1_2_9_409_1
e_1_2_9_376_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_330_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_84_1
e_1_2_9_266_1
e_1_2_9_289_1
e_1_2_9_220_1
e_1_2_9_364_1
e_1_2_9_387_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_110_1
e_1_2_9_341_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_279_1
e_1_2_9_92_1
e_1_2_9_331_1
e_1_2_9_354_1
e_1_2_9_377_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_267_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_342_1
e_1_2_9_388_1
e_1_2_9_365_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_257_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_332_1
e_1_2_9_378_1
e_1_2_9_100_1
e_1_2_9_355_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
Lv T. (e_1_2_9_65_1) 2022
e_1_2_9_17_1
e_1_2_9_245_1
e_1_2_9_222_1
e_1_2_9_268_1
e_1_2_9_82_1
e_1_2_9_320_1
e_1_2_9_343_1
e_1_2_9_366_1
e_1_2_9_389_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_29_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_258_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_333_1
e_1_2_9_356_1
e_1_2_9_379_1
e_1_2_9_310_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_269_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_321_1
e_1_2_9_367_1
e_1_2_9_344_1
e_1_2_9_115_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_259_1
e_1_2_9_76_1
e_1_2_9_420_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_334_1
e_1_2_9_357_1
e_1_2_9_125_1
e_1_2_9_311_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_247_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_322_1
e_1_2_9_345_1
e_1_2_9_368_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_237_1
e_1_2_9_421_1
e_1_2_9_290_1
e_1_2_9_128_1
e_1_2_9_335_1
e_1_2_9_358_1
e_1_2_9_105_1
e_1_2_9_312_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_4_1
e_1_2_9_410_1
e_1_2_9_323_1
e_1_2_9_117_1
e_1_2_9_346_1
e_1_2_9_369_1
e_1_2_9_193_1
e_1_2_9_300_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_97_1
Huang J. (e_1_2_9_191_1) 2019; 2019
e_1_2_9_291_1
e_1_2_9_127_1
e_1_2_9_336_1
e_1_2_9_104_1
e_1_2_9_359_1
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_411_1
e_1_2_9_139_1
e_1_2_9_324_1
e_1_2_9_347_1
e_1_2_9_116_1
e_1_2_9_301_1
e_1_2_9_192_1
References_xml – volume: 329
  start-page: 148
  year: 2016
  publication-title: J. Power Sources
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 7
  start-page: 4230
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 8720
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 1
  start-page: 82
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 3696
  year: 2020
  publication-title: ChemSusChem
– volume: 15
  start-page: 9244
  year: 2021
  publication-title: ACS Nano
– volume: 61
  start-page: 2955
  year: 2022
  publication-title: Ind. Eng. Chem. Res.
– volume: 9
  year: 2021
  publication-title: J. Environ. Chem. Eng.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 2180
  year: 2015
  publication-title: Nano Lett.
– volume: 104
  start-page: 707
  year: 2011
  publication-title: Appl. Phys. A
– volume: 108
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 14
  start-page: 7328
  year: 2020
  publication-title: ACS Nano
– volume: 6
  start-page: 8006
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 117–118
  start-page: 108
  year: 2012
  publication-title: Hydrometallurgy
– volume: 30
  start-page: 130
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 27
  start-page: 6670
  year: 2015
  publication-title: Adv. Mater.
– volume: 63
  start-page: 1767
  year: 2020
  publication-title: Sci. China: Chem.
– volume: 448
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 2035
  year: 1981
  publication-title: Aust. J. Chem.
– volume: 7
  start-page: 5612
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 21
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 446
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 22
  start-page: 410
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 46
  start-page: 2821
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 686
  year: 2021
  publication-title: CCS Chem.
– volume: 49
  start-page: 180
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 30
  start-page: 6777
  year: 2018
  publication-title: Chem. Mater.
– volume: 7
  start-page: 730
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 581
  year: 1984
  publication-title: J. Phys. Chem. Solids
– volume: 12
  start-page: 3203
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 388
  year: 2021
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 3681
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 175
  start-page: 164
  year: 2010
  publication-title: Mater. Sci. Eng. B
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 17
  year: 2020
  publication-title: Mater. Today Energy
– volume: 819
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 355
  start-page: 371
  year: 2017
  publication-title: Science
– volume: 46
  start-page: 507
  year: 2011
  publication-title: Cryst. Res. Technol.
– volume: 14
  start-page: 2076
  year: 2021
  publication-title: ChemSusChem
– volume: 42
  start-page: 286
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 7754
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 870
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 10
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 15
  start-page: 3189
  year: 2015
  publication-title: Nano Lett.
– volume: 49
  start-page: 1688
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 7795
  year: 2020
  publication-title: Chem. Rev.
– volume: 3
  start-page: 562
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 490
  year: 2021
  publication-title: J. Power Sources
– volume: 35
  start-page: 679
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 125
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 275
  start-page: 694
  year: 2015
  publication-title: J. Power Sources
– volume: 2
  year: 2020
  publication-title: EnergyChem
– volume: 14
  start-page: 7607
  year: 2022
  publication-title: Nanoscale
– volume: 72
  start-page: 3389
  year: 1994
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 9261
  year: 2015
  publication-title: Nanoscale
– volume: 55
  start-page: 698
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 177
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 607
  start-page: 68
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 1950
  year: 2018
  publication-title: Joule
– volume: 14
  start-page: 218
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 332
  year: 2020
  publication-title: Electrochim. Acta
– volume: 110
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 56
  start-page: 223
  year: 2021
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 2519
  year: 2018
  publication-title: Joule
– volume: 484
  year: 2021
  publication-title: J. Power Sources
– volume: 11
  start-page: 709
  year: 2018
  publication-title: ChemSusChem
– volume: 11
  start-page: 3157
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 1764
  year: 2014
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 7177
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 4247
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 597
  start-page: 422
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 84
  year: 2021
  publication-title: Nano Energy
– volume: 166
  start-page: 277
  year: 2015
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 2273
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1597
  year: 2018
  publication-title: J. Energy Chem.
– volume: 33
  start-page: 4628
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 605
  start-page: 828
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 57
  start-page: 6253
  year: 2021
  publication-title: Chem. Commun.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 60
  start-page: 171
  year: 2019
  publication-title: Nano Energy
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 3028
  year: 2020
  publication-title: Chem. Mater.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 7
  year: 2009
  publication-title: Nat. Chem.
– volume: 15
  start-page: 1388
  year: 2015
  publication-title: Nano Lett.
– volume: 60
  start-page: 752
  year: 2019
  publication-title: Nano Energy
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 239
  year: 2021
  publication-title: J. Energy Chem.
– volume: 196
  start-page: 5645
  year: 2011
  publication-title: J. Power Sources
– volume: 49
  start-page: 301
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 9838
  year: 2016
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 283
  year: 2020
  publication-title: ChemElectroChem
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 631
  start-page: 90
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 940
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 62
  start-page: 550
  year: 2019
  publication-title: Nano Energy
– volume: 396
  start-page: 230
  year: 2018
  publication-title: J. Power Sources
– volume: 50
  start-page: 462
  year: 2018
  publication-title: Nano Energy
– volume: 18
  start-page: 285
  year: 1987
  publication-title: Synth. Met.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 533
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 451
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 64
  start-page: 1386
  year: 2021
  publication-title: Sci. China Mater.
– volume: 4
  year: 2020
  publication-title: Adv. Sustainable Syst.
– volume: 3
  start-page: 156
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 6811
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 2738
  year: 2021
  publication-title: Nano Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 168
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 772
  start-page: 852
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 628
  start-page: 2778
  year: 2002
  publication-title: Z. Anorg. Allg. Chem.
– volume: 29
  start-page: 5513
  year: 2017
  publication-title: Chem. Mater.
– volume: 13
  start-page: 34
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 11
  start-page: 735
  year: 2018
  publication-title: ChemSusChem
– start-page: 1688
  year: 2007
– volume: 3
  start-page: 5015
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 3919
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 53
  start-page: 1660
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4238
  year: 2014
  publication-title: Chem. Mater.
– volume: 353
  start-page: 40
  year: 2017
  publication-title: J. Power Sources
– volume: 801
  start-page: 82
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 2
  start-page: 7861
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 75
  start-page: 135
  year: 2022
  publication-title: J. Energy Chem.
– volume: 3
  start-page: 1028
  year: 2021
  publication-title: InfoMat
– volume: 58
  start-page: 4313
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 7380
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 7355
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 8397
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1194
  year: 2019
  publication-title: Chem
– volume: 321
  year: 2019
  publication-title: Electrochim. Acta
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 8
  start-page: 1267
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 2219
  year: 2013
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4911
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 733
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 404
  year: 2022
  publication-title: Electrochim. Acta
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 29
  start-page: 9
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 743
  year: 2020
  publication-title: Nat. Energy
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1174
  year: 2007
  publication-title: Small
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 60
  start-page: 8649
  year: 2021
  publication-title: Ind. Eng. Chem. Res.
– volume: 4
  start-page: 1434
  year: 2020
  publication-title: Mater. Chem. Front.
– volume: 58
  start-page: 492
  year: 2019
  publication-title: Nano Energy
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 159
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 390
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 536
  year: 2022
  publication-title: J. Power Sources
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 6131
  year: 2013
  publication-title: CrystEngComm
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 116
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 31
  start-page: 2268
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 626
  start-page: 1062
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 91
  start-page: 109
  year: 2018
  publication-title: Renewable Sustainable Energy Rev.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 8667
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 560
  start-page: 659
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 58
  start-page: 7062
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 968
  year: 2020
  publication-title: Chem
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 62
  start-page: 609
  year: 2019
  publication-title: Sci. China: Chem.
– volume: 9
  start-page: 3986
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 481
  year: 2015
  publication-title: ChemSusChem
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 578
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 9
  year: 2021
  publication-title: Energy Technol.
– volume: 214
  start-page: 171
  year: 2012
  publication-title: J. Power Sources
– volume: 3
  year: 2022
  publication-title: Small Struct.
– volume: 5
  start-page: 8704
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  year: 2015
  publication-title: Dalton Trans.
– volume: 227
  start-page: 111
  year: 2013
  publication-title: J. Power Sources
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 320
  year: 2019
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 742
  year: 2016
  publication-title: Nano Lett.
– volume: 20
  start-page: 2899
  year: 2020
  publication-title: Nano Lett.
– volume: 55
  start-page: 2265
  year: 2019
  publication-title: Chem. Commun.
– volume: 308
  start-page: 52
  year: 2016
  publication-title: J. Power Sources
– volume: 14
  start-page: 3796
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 20
  year: 2019
  publication-title: J. Energy Chem.
– volume: 405
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 280
  year: 2020
  publication-title: Mater. Lett.
– volume: 9
  start-page: 2906
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 325
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 258
  start-page: 19
  year: 2014
  publication-title: J. Power Sources
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 2602
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 49
  start-page: 1414
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 237
  year: 2020
  publication-title: InfoMat
– volume: 15
  start-page: 14
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 187
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 30
  start-page: 7464
  year: 2018
  publication-title: Chem. Mater.
– volume: 60
  year: 2021
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 642
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 878
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 178
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 7
  start-page: 1595
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 2526
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 19
  year: 2021
  publication-title: Mater. Today Energy
– volume: 14
  start-page: 8776
  year: 2022
  publication-title: Nanoscale
– volume: 17
  year: 2021
  publication-title: Small
– volume: 466
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 391
  year: 2018
  publication-title: Nano Energy
– volume: 16
  start-page: 10
  year: 2017
  publication-title: Nat. Mater.
– volume: 14
  start-page: 4684
  year: 2002
  publication-title: Chem. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 617
  year: 2019
  publication-title: Nano Energy
– volume: 57
  start-page: 4319
  year: 2021
  publication-title: Chem. Commun.
– volume: 787
  start-page: 9
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 205
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 97
  start-page: 24
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 41
  start-page: 297
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 14
  start-page: 5581
  year: 2020
  publication-title: ACS Nano
– volume: 137
  start-page: 8499
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 185
  year: 2019
  publication-title: J. Energy Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 287
  start-page: 60
  year: 2018
  publication-title: Electrochim. Acta
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1731
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 2554
  year: 2013
  publication-title: Adv. Mater.
– volume: 603
  start-page: 641
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 307
  year: 2022
  publication-title: Adv. Colloid Interface Sci.
– volume: 1
  year: 2022
  publication-title: Nano Res. Energy
– volume: 900
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 12
  start-page: 3288
  year: 2019
  publication-title: Energy Environ. Sci.
– year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  start-page: 6337
  year: 2018
  publication-title: Chem. Rev.
– volume: 443
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 146
  start-page: 142
  year: 2014
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 879
  year: 2016
  publication-title: J. Appl. Electrochem.
– volume: 416
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 34
  start-page: 26
  year: 2017
  publication-title: Nano Energy
– volume: 59
  start-page: 2273
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 14
  start-page: 4095
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 507
  year: 2021
  publication-title: J. Power Sources
– volume: 434
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 533
  year: 2022
  publication-title: J. Power Sources
– volume: 51
  start-page: 579
  year: 2018
  publication-title: Nano Energy
– volume: 507
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 646
  year: 2020
  publication-title: Nat. Energy
– volume: 29
  start-page: 1684
  year: 2017
  publication-title: Chem. Mater.
– volume: 12
  start-page: 67
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 7
  start-page: 7159
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 41
  start-page: 715
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 3850
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 861
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 209
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 107
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 160
  start-page: A915
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 3399
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 7
  year: 2017
  publication-title: Adv.Energy Mater.
– volume: 4
  year: 2022
  publication-title: EnergyChem
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 2402
  year: 2018
  publication-title: Nano Lett.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 19
  start-page: 5965
  year: 2007
  publication-title: Chem. Mater.
– volume: 264
  start-page: 1115
  year: 1994
  publication-title: Science
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 54
  start-page: 655
  year: 2021
  publication-title: J. Energy Chem.
– volume: 5
  start-page: 1656
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 4324
  year: 2010
  publication-title: ACS Nano
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 441
  year: 2019
  publication-title: J. Power Sources
– volume: 54
  start-page: 4457
  year: 2018
  publication-title: Chem. Commun.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 169
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 3
  year: 2021
  publication-title: EnergyChem
– volume: 442
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 1784
  year: 2021
  publication-title: ChemElectroChem
– volume: 25
  start-page: 211
  year: 2016
  publication-title: Nano Energy
– volume: 58
  start-page: 5241
  year: 2022
  publication-title: Chem. Commun.
– volume: 61
  start-page: 594
  year: 2021
  publication-title: J. Energy Chem.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 16
  start-page: 4588
  year: 2022
  publication-title: ACS Nano
– volume: 529
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 699
  year: 2019
  publication-title: Chem. Mater.
– volume: 615
  start-page: 184
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 23
  start-page: 636
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 136
  start-page: 6826
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1648
  year: 2018
  publication-title: Joule
– volume: 15
  start-page: 1273
  year: 2021
  publication-title: ACS Nano
– volume: 104
  start-page: 4245
  year: 2004
  publication-title: Chem. Rev.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 445
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 1969
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 2864
  year: 2017
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1366
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 49
  start-page: 1048
  year: 2020
  publication-title: Dalton Trans.
– volume: 13
  start-page: 5408
  year: 2013
  publication-title: Nano Lett.
– volume: 4
  start-page: 1
  year: 2021
  publication-title: Electrochem. Energy Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 8394
  year: 2022
  publication-title: RSC Adv.
– volume: 14
  start-page: 6752
  year: 2020
  publication-title: ACS Nano
– volume: 376
  start-page: 292
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 14
  year: 2019
  publication-title: Mater. Today Energy
– volume: 107
  start-page: 35
  year: 2013
  publication-title: Mater. Lett.
– volume: 412
  year: 2022
  publication-title: Electrochim. Acta
– volume: 117
  start-page: L27
  year: 1986
  publication-title: Inorg. Chim. Acta
– volume: 9
  start-page: 5258
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1528
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 1988
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– volume: 506
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3240
  year: 2000
  publication-title: Chem. Mater.
– volume: 593
  year: 2020
  publication-title: Colloids Surf., A
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– volume: 11
  start-page: 25
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 8
  start-page: 7713
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_9_332_1
  doi: 10.1039/C8TA09338E
– ident: e_1_2_9_156_1
  doi: 10.1021/acsami.9b13729
– ident: e_1_2_9_385_1
  doi: 10.1002/adfm.201906142
– ident: e_1_2_9_76_1
  doi: 10.1021/acs.nanolett.0c00732
– ident: e_1_2_9_202_1
  doi: 10.1002/smll.202100558
– ident: e_1_2_9_328_1
  doi: 10.1007/s40820-020-0401-y
– ident: e_1_2_9_237_1
  doi: 10.1021/acsnano.0c08432
– ident: e_1_2_9_375_1
  doi: 10.1016/j.nanoen.2021.106477
– ident: e_1_2_9_359_1
  doi: 10.1016/j.pmatsci.2019.100616
– ident: e_1_2_9_268_1
  doi: 10.1021/acsaem.1c03066
– ident: e_1_2_9_120_1
  doi: 10.1039/C9TA04274A
– ident: e_1_2_9_294_1
  doi: 10.1007/s11426-020-9830-8
– ident: e_1_2_9_323_1
  doi: 10.1039/D2CC00915C
– ident: e_1_2_9_162_1
  doi: 10.1002/advs.201600051
– ident: e_1_2_9_12_1
  doi: 10.1039/D2EE02267B
– ident: e_1_2_9_122_1
  doi: 10.1039/D0TA07872G
– ident: e_1_2_9_198_1
  doi: 10.1021/acs.chemmater.8b01381
– ident: e_1_2_9_367_1
  doi: 10.1016/j.nanoen.2021.105876
– ident: e_1_2_9_274_1
  doi: 10.1016/j.ensm.2020.03.024
– ident: e_1_2_9_140_1
  doi: 10.1002/adfm.201904398
– ident: e_1_2_9_144_1
  doi: 10.1021/acs.chemmater.8b02679
– ident: e_1_2_9_219_1
  doi: 10.1016/j.cej.2020.124118
– ident: e_1_2_9_223_1
  doi: 10.1016/j.jallcom.2021.159403
– ident: e_1_2_9_42_1
  doi: 10.1021/cr020730k
– ident: e_1_2_9_135_1
  doi: 10.1021/acs.chemmater.0c00004
– ident: e_1_2_9_361_1
  doi: 10.1002/1521-3749(200212)628:12<2778::AID-ZAAC2778>3.0.CO;2-H
– ident: e_1_2_9_421_1
  doi: 10.1039/D2NR00983H
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.201903941
– ident: e_1_2_9_280_1
  doi: 10.1016/j.jpowsour.2018.06.021
– ident: e_1_2_9_374_1
  doi: 10.1016/j.ensm.2019.02.012
– ident: e_1_2_9_309_1
  doi: 10.1016/j.matlet.2013.05.112
– ident: e_1_2_9_45_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_9_91_1
  doi: 10.1021/acsaem.0c00318
– ident: e_1_2_9_352_1
  doi: 10.1039/C9TA04264D
– ident: e_1_2_9_376_1
  doi: 10.1002/celc.201901851
– ident: e_1_2_9_340_1
  doi: 10.1007/s40820-021-00641-3
– ident: e_1_2_9_29_1
  doi: 10.1002/adfm.202101027
– ident: e_1_2_9_55_1
  doi: 10.1007/s40820-021-00715-2
– ident: e_1_2_9_408_1
  doi: 10.1039/D1NR02158C
– ident: e_1_2_9_121_1
  doi: 10.1039/c2jm33862a
– ident: e_1_2_9_399_1
  doi: 10.1021/ja207176c
– ident: e_1_2_9_229_1
  doi: 10.1016/j.mtener.2019.100361
– ident: e_1_2_9_419_1
  doi: 10.1021/acs.iecr.1c04683
– ident: e_1_2_9_354_1
  doi: 10.1021/am507089x
– ident: e_1_2_9_257_1
  doi: 10.1007/s00339-011-6325-0
– ident: e_1_2_9_163_1
  doi: 10.1016/j.nanoen.2020.105276
– ident: e_1_2_9_296_1
  doi: 10.1039/C8CC07243D
– ident: e_1_2_9_391_1
  doi: 10.1016/j.chempr.2020.02.001
– ident: e_1_2_9_321_1
  doi: 10.1016/j.cej.2022.136349
– ident: e_1_2_9_133_1
  doi: 10.1016/j.cej.2021.130459
– ident: e_1_2_9_84_1
  doi: 10.1071/CH9812035
– ident: e_1_2_9_380_1
  doi: 10.1039/C9TA05767F
– ident: e_1_2_9_416_1
  doi: 10.1002/smll.202101944
– ident: e_1_2_9_50_1
  doi: 10.1002/anie.202209350
– ident: e_1_2_9_75_1
  doi: 10.1002/aenm.202102707
– ident: e_1_2_9_215_1
  doi: 10.1002/adma.201204576
– ident: e_1_2_9_105_1
  doi: 10.1021/ja034565h
– ident: e_1_2_9_316_1
  doi: 10.1002/admi.201801506
– ident: e_1_2_9_147_1
  doi: 10.1039/C8TA02090F
– ident: e_1_2_9_394_1
  doi: 10.1002/aenm.201901968
– ident: e_1_2_9_49_1
  doi: 10.1021/acsaem.1c02064
– ident: e_1_2_9_327_1
  doi: 10.1016/j.jpowsour.2011.02.046
– ident: e_1_2_9_128_1
  doi: 10.1002/adfm.202003511
– ident: e_1_2_9_176_1
  doi: 10.1039/c1jm11523e
– ident: e_1_2_9_329_1
  doi: 10.1039/D0TA05065B
– ident: e_1_2_9_403_1
  doi: 10.1021/acsami.6b04444
– ident: e_1_2_9_80_1
  doi: 10.1021/acs.nanolett.5b04610
– ident: e_1_2_9_230_1
  doi: 10.1016/j.cej.2020.126737
– ident: e_1_2_9_297_1
  doi: 10.1002/smll.200700032
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ccr.2022.214602
– ident: e_1_2_9_190_1
  doi: 10.1002/ente.202000789
– ident: e_1_2_9_199_1
  doi: 10.1016/j.mseb.2010.07.023
– ident: e_1_2_9_88_1
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_9_397_1
  doi: 10.1021/acs.chemmater.6b05084
– ident: e_1_2_9_171_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.202201779
– ident: e_1_2_9_146_1
  doi: 10.1021/acsnano.9b09963
– ident: e_1_2_9_284_1
  doi: 10.1039/D0TA01033B
– ident: e_1_2_9_388_1
  doi: 10.1039/C9DT04226A
– ident: e_1_2_9_395_1
  doi: 10.1039/D0TA07436E
– volume: 2019
  year: 2019
  ident: e_1_2_9_191_1
  publication-title: Research
– ident: e_1_2_9_169_1
  doi: 10.1016/j.nanoen.2020.104573
– ident: e_1_2_9_377_1
  doi: 10.1016/j.cclet.2020.02.052
– ident: e_1_2_9_301_1
  doi: 10.1039/c3ce40787j
– ident: e_1_2_9_286_1
  doi: 10.1021/acsnano.1c04423
– ident: e_1_2_9_248_1
  doi: 10.1016/j.ensm.2021.05.003
– ident: e_1_2_9_320_1
  doi: 10.1016/j.cclet.2021.12.049
– ident: e_1_2_9_34_1
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_9_290_1
  doi: 10.1039/D2NR02122F
– ident: e_1_2_9_181_1
  doi: 10.1002/cssc.202000699
– ident: e_1_2_9_364_1
  doi: 10.1016/j.electacta.2019.135506
– ident: e_1_2_9_35_1
  doi: 10.1007/s41918-020-00075-2
– ident: e_1_2_9_344_1
  doi: 10.1016/j.electacta.2015.03.087
– ident: e_1_2_9_97_1
  doi: 10.1002/smll.201800567
– ident: e_1_2_9_415_1
  doi: 10.1002/adma.201904369
– ident: e_1_2_9_330_1
  doi: 10.1016/j.ensm.2021.07.045
– ident: e_1_2_9_348_1
  doi: 10.1039/D0QM00051E
– ident: e_1_2_9_102_1
  doi: 10.1016/j.nanoen.2016.04.051
– ident: e_1_2_9_115_1
  doi: 10.1002/adfm.202105717
– ident: e_1_2_9_225_1
  doi: 10.1021/acsami.1c09951
– ident: e_1_2_9_341_1
  doi: 10.1016/j.jpowsour.2021.229528
– ident: e_1_2_9_205_1
  doi: 10.1021/acsaem.8b02054
– ident: e_1_2_9_203_1
  doi: 10.1002/adfm.201807331
– ident: e_1_2_9_109_1
  doi: 10.1021/acsenergylett.1c02514
– ident: e_1_2_9_235_1
  doi: 10.1016/j.cej.2020.125259
– ident: e_1_2_9_226_1
  doi: 10.1016/j.jallcom.2021.160324
– ident: e_1_2_9_92_1
  doi: 10.1039/D1EE01158H
– ident: e_1_2_9_256_1
  doi: 10.1016/j.electacta.2019.134689
– ident: e_1_2_9_242_1
  doi: 10.1016/j.electacta.2022.140120
– ident: e_1_2_9_390_1
  doi: 10.1016/j.electacta.2019.135347
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cis.2022.102732
– ident: e_1_2_9_333_1
  doi: 10.1021/acs.nanolett.7b05403
– ident: e_1_2_9_5_1
  doi: 10.1016/j.enchem.2021.100052
– ident: e_1_2_9_127_1
  doi: 10.1021/ja406016j
– ident: e_1_2_9_28_1
  doi: 10.1039/D0TA10336E
– start-page: 1688
  volume-title: Comprehensive Handbook of Chemical Bond Energies
  year: 2007
  ident: e_1_2_9_295_1
  doi: 10.1201/9781420007282
– ident: e_1_2_9_373_1
  doi: 10.1016/j.cej.2022.137090
– ident: e_1_2_9_322_1
  doi: 10.1016/j.cej.2021.133815
– ident: e_1_2_9_177_1
  doi: 10.1021/acs.chemmater.7b00428
– ident: e_1_2_9_143_1
  doi: 10.1038/srep19621
– ident: e_1_2_9_259_1
  doi: 10.1007/s11426-018-9394-1
– ident: e_1_2_9_43_1
  doi: 10.1016/S0020-1693(00)82175-1
– ident: e_1_2_9_174_1
  doi: 10.1016/j.jcis.2022.01.155
– ident: e_1_2_9_153_1
  doi: 10.1039/C9TA11031C
– ident: e_1_2_9_85_1
  doi: 10.1002/anie.201806748
– ident: e_1_2_9_124_1
  doi: 10.1016/j.ensm.2018.03.003
– ident: e_1_2_9_157_1
  doi: 10.1021/acsnano.0c02658
– ident: e_1_2_9_164_1
  doi: 10.1016/j.nanoen.2019.03.034
– ident: e_1_2_9_103_1
  doi: 10.1021/cm000345g
– ident: e_1_2_9_402_1
  doi: 10.1021/jacs.5b03395
– ident: e_1_2_9_372_1
  doi: 10.1016/j.cej.2021.133795
– ident: e_1_2_9_278_1
  doi: 10.1016/j.chempr.2019.02.014
– ident: e_1_2_9_137_1
  doi: 10.1016/j.jpowsour.2016.08.039
– ident: e_1_2_9_69_1
  doi: 10.1016/j.cej.2021.131211
– ident: e_1_2_9_392_1
  doi: 10.1021/acsaem.9b01299
– ident: e_1_2_9_292_1
  doi: 10.1016/j.ensm.2017.10.014
– ident: e_1_2_9_72_1
  doi: 10.1021/acsnano.1c01389
– ident: e_1_2_9_386_1
  doi: 10.1002/aenm.202000058
– ident: e_1_2_9_188_1
  doi: 10.1002/aenm.201602720
– ident: e_1_2_9_315_1
  doi: 10.1039/C9TA01164A
– ident: e_1_2_9_365_1
  doi: 10.1016/j.electacta.2021.139785
– ident: e_1_2_9_289_1
  doi: 10.1016/j.cej.2022.136502
– ident: e_1_2_9_24_1
  doi: 10.1039/C9CS00131J
– ident: e_1_2_9_267_1
  doi: 10.1007/s40820-020-00554-7
– ident: e_1_2_9_233_1
  doi: 10.1039/D0TA03165H
– ident: e_1_2_9_324_1
  doi: 10.1002/aenm.201700127
– ident: e_1_2_9_381_1
  doi: 10.1002/inf2.12223
– ident: e_1_2_9_389_1
  doi: 10.1039/C9TA00125E
– ident: e_1_2_9_282_1
  doi: 10.1016/j.ensm.2019.03.007
– ident: e_1_2_9_132_1
  doi: 10.1016/j.ensm.2019.11.004
– ident: e_1_2_9_18_1
  doi: 10.1039/C9EE02356A
– ident: e_1_2_9_148_1
  doi: 10.1002/aenm.201400930
– ident: e_1_2_9_118_1
  doi: 10.1002/adfm.201909486
– ident: e_1_2_9_178_1
  doi: 10.1039/b819629j
– ident: e_1_2_9_311_1
  doi: 10.1149/2.114306jes
– ident: e_1_2_9_261_1
  doi: 10.1016/j.jallcom.2018.09.076
– ident: e_1_2_9_52_1
  doi: 10.1002/inf2.12042
– ident: e_1_2_9_252_1
  doi: 10.1039/C5NR02064F
– ident: e_1_2_9_363_1
  doi: 10.1039/C9TA07822C
– ident: e_1_2_9_4_1
  doi: 10.1039/C7CS00614D
– ident: e_1_2_9_70_1
  doi: 10.1016/j.apsusc.2020.147077
– ident: e_1_2_9_254_1
  doi: 10.1002/aenm.201801819
– ident: e_1_2_9_46_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_9_265_1
  doi: 10.1021/ic402897d
– ident: e_1_2_9_387_1
  doi: 10.1021/acsnano.9b06484
– ident: e_1_2_9_246_1
  doi: 10.1016/j.ensm.2018.01.009
– ident: e_1_2_9_345_1
  doi: 10.1021/acs.inorgchem.6b01662
– ident: e_1_2_9_112_1
  doi: 10.1016/j.jpowsour.2016.01.058
– ident: e_1_2_9_185_1
  doi: 10.1002/anie.201509800
– ident: e_1_2_9_382_1
  doi: 10.1021/acssuschemeng.9b06613
– ident: e_1_2_9_158_1
  doi: 10.1002/anie.202010287
– ident: e_1_2_9_37_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_9_54_1
  doi: 10.1016/j.joule.2018.07.017
– ident: e_1_2_9_409_1
  doi: 10.1021/acs.nanolett.5b00321
– ident: e_1_2_9_417_1
  doi: 10.1021/acs.iecr.1c01052
– ident: e_1_2_9_78_1
  doi: 10.1039/D1CC00584G
– ident: e_1_2_9_245_1
  doi: 10.1002/advs.201400018
– ident: e_1_2_9_82_1
  doi: 10.1002/anie.201902679
– ident: e_1_2_9_353_1
  doi: 10.1016/j.apsusc.2019.144816
– ident: e_1_2_9_77_1
  doi: 10.1016/j.ensm.2020.12.001
– ident: e_1_2_9_298_1
  doi: 10.1021/cm071728i
– ident: e_1_2_9_411_1
  doi: 10.1021/acsami.9b12128
– ident: e_1_2_9_342_1
  doi: 10.1021/acssuschemeng.1c03101
– ident: e_1_2_9_360_1
  doi: 10.1002/adfm.202100005
– ident: e_1_2_9_383_1
  doi: 10.1021/acsnano.9b08039
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ensm.2022.07.017
– ident: e_1_2_9_318_1
  doi: 10.1016/j.jcis.2021.04.010
– ident: e_1_2_9_279_1
  doi: 10.1039/C8EE01651H
– ident: e_1_2_9_123_1
  doi: 10.1021/cm501644g
– ident: e_1_2_9_150_1
  doi: 10.1039/C9NR03129D
– ident: e_1_2_9_195_1
  doi: 10.1021/acsami.0c10183
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jechem.2022.07.034
– ident: e_1_2_9_136_1
  doi: 10.1002/cssc.202200313
– ident: e_1_2_9_180_1
  doi: 10.1002/ente.201900022
– ident: e_1_2_9_305_1
  doi: 10.1021/acsanm.9b00703
– ident: e_1_2_9_33_1
  doi: 10.1038/s41560-020-0655-0
– ident: e_1_2_9_337_1
  doi: 10.1039/C5DT03239C
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.chemrev.7b00689
– ident: e_1_2_9_32_1
  doi: 10.1126/science.264.5162.1115
– ident: e_1_2_9_366_1
  doi: 10.1002/smll.201700067
– ident: e_1_2_9_207_1
  doi: 10.1039/C2TA00351A
– ident: e_1_2_9_208_1
  doi: 10.1021/acsami.9b05362
– ident: e_1_2_9_47_1
  doi: 10.1016/j.ensm.2020.04.039
– ident: e_1_2_9_410_1
  doi: 10.1039/C6EE03173K
– ident: e_1_2_9_161_1
  doi: 10.1016/j.jechem.2021.02.014
– ident: e_1_2_9_175_1
  doi: 10.1016/j.jpowsour.2022.231358
– ident: e_1_2_9_326_1
  doi: 10.1002/smll.202100746
– ident: e_1_2_9_110_1
  doi: 10.1007/s10853-011-5302-5
– ident: e_1_2_9_384_1
  doi: 10.1016/j.ensm.2018.08.008
– ident: e_1_2_9_187_1
  doi: 10.1039/C8TA12014E
– ident: e_1_2_9_155_1
  doi: 10.1016/j.nanoen.2018.05.056
– ident: e_1_2_9_247_1
  doi: 10.1016/j.cej.2022.137069
– ident: e_1_2_9_370_1
  doi: 10.1021/acsnano.1c11169
– ident: e_1_2_9_96_1
  doi: 10.1016/j.jechem.2018.05.001
– ident: e_1_2_9_270_1
  doi: 10.1016/j.nanoen.2020.104851
– ident: e_1_2_9_81_1
  doi: 10.1016/j.jelechem.2021.115685
– ident: e_1_2_9_407_1
  doi: 10.1039/C8TA08133F
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jcis.2022.07.034
– ident: e_1_2_9_272_1
  doi: 10.1021/acs.nanolett.0c04539
– ident: e_1_2_9_200_1
  doi: 10.1002/aenm.201800144
– ident: e_1_2_9_222_1
  doi: 10.1021/acsami.7b13110
– ident: e_1_2_9_113_1
  doi: 10.1007/s40843-020-1550-2
– ident: e_1_2_9_379_1
  doi: 10.1016/j.jallcom.2019.06.084
– ident: e_1_2_9_418_1
  doi: 10.1021/acs.iecr.1c01915
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.1c12447
– ident: e_1_2_9_159_1
  doi: 10.1002/aenm.202100973
– ident: e_1_2_9_362_1
  doi: 10.1021/acsami.8b10849
– ident: e_1_2_9_106_1
  doi: 10.1016/j.jpowsour.2014.01.126
– ident: e_1_2_9_17_1
  doi: 10.1039/C8CS00426A
– ident: e_1_2_9_67_1
  doi: 10.1002/aenm.202000477
– ident: e_1_2_9_210_1
  doi: 10.1021/nn101187z
– ident: e_1_2_9_339_1
  doi: 10.1016/j.cej.2019.122844
– ident: e_1_2_9_114_1
  doi: 10.1016/j.nanoen.2019.01.068
– ident: e_1_2_9_258_1
  doi: 10.1016/j.hydromet.2012.02.013
– ident: e_1_2_9_293_1
  doi: 10.1016/j.cej.2022.134642
– ident: e_1_2_9_141_1
  doi: 10.1021/nl504705z
– ident: e_1_2_9_275_1
  doi: 10.1039/C8TA02018C
– ident: e_1_2_9_306_1
  doi: 10.1016/j.nanoen.2019.104211
– ident: e_1_2_9_312_1
  doi: 10.1021/acsami.5b03210
– ident: e_1_2_9_234_1
  doi: 10.1002/anie.201912203
– ident: e_1_2_9_36_1
  doi: 10.1007/s40820-022-00960-z
– ident: e_1_2_9_145_1
  doi: 10.1021/acs.chemmater.8b03409
– ident: e_1_2_9_262_1
  doi: 10.1002/aenm.201702463
– ident: e_1_2_9_116_1
  doi: 10.1016/j.jpowsour.2012.03.113
– ident: e_1_2_9_14_1
  doi: 10.1016/j.rser.2018.03.047
– ident: e_1_2_9_151_1
  doi: 10.1103/PhysRevLett.72.3389
– ident: e_1_2_9_358_1
  doi: 10.1002/adma.201806133
– ident: e_1_2_9_71_1
  doi: 10.1021/acs.accounts.0c00362
– ident: e_1_2_9_168_1
  doi: 10.1016/j.jechem.2018.12.023
– ident: e_1_2_9_338_1
  doi: 10.1007/s10800-016-0973-x
– ident: e_1_2_9_325_1
  doi: 10.1039/C8TA11860D
– ident: e_1_2_9_66_1
  doi: 10.1007/s41918-018-0007-y
– ident: e_1_2_9_38_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ccr.2018.08.010
– ident: e_1_2_9_57_1
  doi: 10.1016/j.ensm.2021.07.004
– ident: e_1_2_9_253_1
  doi: 10.1016/j.materresbull.2017.08.047
– ident: e_1_2_9_63_1
  doi: 10.1016/j.ensm.2022.04.040
– ident: e_1_2_9_173_1
  doi: 10.1002/cssc.202100223
– ident: e_1_2_9_182_1
  doi: 10.1016/j.mtener.2020.100593
– ident: e_1_2_9_355_1
  doi: 10.1016/j.cej.2022.137681
– ident: e_1_2_9_236_1
  doi: 10.1039/D1TA00803J
– ident: e_1_2_9_108_1
  doi: 10.1039/D0CC08115A
– ident: e_1_2_9_217_1
  doi: 10.1016/j.cej.2021.128408
– ident: e_1_2_9_396_1
  doi: 10.1021/jp410969u
– ident: e_1_2_9_60_1
  doi: 10.1002/adma.201800762
– ident: e_1_2_9_44_1
  doi: 10.1016/j.joule.2018.11.007
– ident: e_1_2_9_125_1
  doi: 10.1021/acsaem.0c00505
– ident: e_1_2_9_39_1
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_9_73_1
  doi: 10.1039/D1EE00030F
– ident: e_1_2_9_228_1
  doi: 10.1039/C9TA09116E
– ident: e_1_2_9_413_1
  doi: 10.1016/j.nanoen.2021.106386
– ident: e_1_2_9_20_1
  doi: 10.1016/j.joule.2018.07.006
– ident: e_1_2_9_139_1
  doi: 10.1016/j.jechem.2020.08.016
– ident: e_1_2_9_271_1
  doi: 10.1021/acsnano.9b10214
– ident: e_1_2_9_414_1
  doi: 10.1016/j.cej.2022.137266
– ident: e_1_2_9_273_1
  doi: 10.1039/C9EE00956F
– ident: e_1_2_9_302_1
  doi: 10.1016/j.jallcom.2019.02.078
– ident: e_1_2_9_240_1
  doi: 10.1016/j.nanoen.2019.05.005
– ident: e_1_2_9_303_1
  doi: 10.1002/smtd.201900637
– ident: e_1_2_9_281_1
  doi: 10.1002/anie.201814653
– ident: e_1_2_9_264_1
  doi: 10.1016/j.jpowsour.2014.11.052
– ident: e_1_2_9_99_1
  doi: 10.1002/smll.202202151
– ident: e_1_2_9_142_1
  doi: 10.1126/science.aag0410
– ident: e_1_2_9_331_1
  doi: 10.1002/adma.201705580
– ident: e_1_2_9_48_1
  doi: 10.1002/aenm.202003639
– ident: e_1_2_9_68_1
  doi: 10.1016/j.jechem.2020.06.013
– ident: e_1_2_9_204_1
  doi: 10.1002/aenm.202201434
– ident: e_1_2_9_288_1
  doi: 10.1002/anie.202116282
– ident: e_1_2_9_93_1
  doi: 10.1021/acsaem.9b01632
– ident: e_1_2_9_104_1
  doi: 10.1021/cm020348o
– ident: e_1_2_9_244_1
  doi: 10.1039/C5EE00036J
– ident: e_1_2_9_8_1
  doi: 10.1038/nchem.141
– ident: e_1_2_9_263_1
  doi: 10.1021/acs.nanolett.5b00284
– ident: e_1_2_9_53_1
  doi: 10.1016/j.nanoen.2021.105969
– ident: e_1_2_9_149_1
  doi: 10.1002/aenm.201601920
– ident: e_1_2_9_336_1
  doi: 10.1016/0022-3697(84)90050-7
– ident: e_1_2_9_239_1
  doi: 10.1021/acsenergylett.7b01278
– ident: e_1_2_9_3_1
  doi: 10.1039/C9CS00906J
– ident: e_1_2_9_213_1
  doi: 10.1002/adma.201204530
– ident: e_1_2_9_218_1
  doi: 10.1016/j.mtener.2020.100431
– ident: e_1_2_9_317_1
  doi: 10.1039/D1TA05526G
– ident: e_1_2_9_15_1
  doi: 10.1016/j.enchem.2020.100027
– ident: e_1_2_9_184_1
  doi: 10.1021/ja501866r
– ident: e_1_2_9_335_1
  doi: 10.1002/cssc.201403143
– ident: e_1_2_9_117_1
  doi: 10.1002/adma.201502864
– ident: e_1_2_9_249_1
  doi: 10.1016/j.jece.2020.104765
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ccr.2020.213341
– ident: e_1_2_9_1_1
  doi: 10.1038/nmat4830
– ident: e_1_2_9_119_1
  doi: 10.1016/j.electacta.2014.09.068
– ident: e_1_2_9_221_1
  doi: 10.1016/j.jallcom.2020.158560
– ident: e_1_2_9_154_1
  doi: 10.1021/am5070393
– ident: e_1_2_9_291_1
  doi: 10.1002/sstr.202100212
– ident: e_1_2_9_27_1
  doi: 10.1002/aenm.201903977
– ident: e_1_2_9_285_1
  doi: 10.1002/adma.202004129
– ident: e_1_2_9_61_1
  doi: 10.1002/adma.201703725
– ident: e_1_2_9_83_1
  doi: 10.1039/C6EE00794E
– ident: e_1_2_9_406_1
  doi: 10.1002/cssc.201702031
– ident: e_1_2_9_166_1
  doi: 10.1039/C8CC02250J
– ident: e_1_2_9_250_1
  doi: 10.1016/j.cej.2022.136789
– ident: e_1_2_9_300_1
  doi: 10.1021/jp065478p
– ident: e_1_2_9_100_1
  doi: 10.1021/acsami.1c06160
– ident: e_1_2_9_16_1
  doi: 10.26599/NRE.2022.9120009
– ident: e_1_2_9_131_1
  doi: 10.1016/j.nanoen.2020.104548
– ident: e_1_2_9_107_1
  doi: 10.1038/srep25809
– ident: e_1_2_9_277_1
  doi: 10.1021/acsenergylett.9b00788
– ident: e_1_2_9_319_1
  doi: 10.1016/j.apsusc.2021.152053
– ident: e_1_2_9_350_1
  doi: 10.1002/adfm.202003890
– ident: e_1_2_9_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_9_56_1
  doi: 10.1002/aenm.202002354
– ident: e_1_2_9_58_1
  doi: 10.1016/j.jcis.2021.07.138
– ident: e_1_2_9_10_1
  doi: 10.1016/j.enchem.2022.100074
– ident: e_1_2_9_216_1
  doi: 10.1002/aenm.201900237
– ident: e_1_2_9_62_1
  doi: 10.1038/s41467-018-04060-8
– year: 2022
  ident: e_1_2_9_65_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_186_1
  doi: 10.1021/acsami.7b15407
– ident: e_1_2_9_378_1
  doi: 10.1016/j.jechem.2019.03.036
– ident: e_1_2_9_304_1
  doi: 10.1021/am503136h
– ident: e_1_2_9_412_1
  doi: 10.1016/j.apsusc.2019.145137
– ident: e_1_2_9_138_1
  doi: 10.1039/C9TA05554A
– ident: e_1_2_9_172_1
  doi: 10.1002/adsu.202000178
– ident: e_1_2_9_94_1
  doi: 10.1002/aenm.201200558
– ident: e_1_2_9_368_1
  doi: 10.1016/j.nanoen.2021.106596
– ident: e_1_2_9_214_1
  doi: 10.1021/nl402969r
– ident: e_1_2_9_126_1
  doi: 10.1002/adfm.202102827
– ident: e_1_2_9_209_1
  doi: 10.1021/acsami.1c00749
– ident: e_1_2_9_231_1
  doi: 10.1002/aenm.201901480
– ident: e_1_2_9_98_1
  doi: 10.1002/eem2.12166
– ident: e_1_2_9_393_1
  doi: 10.1016/j.colsurfa.2020.124621
– ident: e_1_2_9_283_1
  doi: 10.1039/C9TA02990G
– ident: e_1_2_9_251_1
  doi: 10.1016/j.jpowsour.2012.11.022
– ident: e_1_2_9_183_1
  doi: 10.1016/j.cej.2021.132538
– ident: e_1_2_9_211_1
  doi: 10.1038/nmat3001
– ident: e_1_2_9_212_1
  doi: 10.1002/anie.201206554
– ident: e_1_2_9_347_1
  doi: 10.1016/j.jpowsour.2020.229284
– ident: e_1_2_9_308_1
  doi: 10.1016/j.matlet.2020.128559
– ident: e_1_2_9_87_1
  doi: 10.1002/anie.201908853
– ident: e_1_2_9_134_1
  doi: 10.1039/D2RA00298A
– ident: e_1_2_9_314_1
  doi: 10.1016/j.ensm.2021.06.006
– ident: e_1_2_9_189_1
  doi: 10.1002/aenm.201600868
– ident: e_1_2_9_111_1
  doi: 10.1149/2.015209jes
– ident: e_1_2_9_238_1
  doi: 10.1016/j.electacta.2019.134565
– ident: e_1_2_9_307_1
  doi: 10.1016/j.jallcom.2015.01.115
– ident: e_1_2_9_260_1
  doi: 10.1039/C5CC05425G
– ident: e_1_2_9_51_1
  doi: 10.1002/cssc.202201118
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ccr.2021.214260
– ident: e_1_2_9_356_1
  doi: 10.1039/C9TA05922A
– ident: e_1_2_9_420_1
  doi: 10.1016/j.jpowsour.2021.230286
– ident: e_1_2_9_90_1
  doi: 10.1016/j.jechem.2021.03.051
– ident: e_1_2_9_160_1
  doi: 10.1021/jacs.6b05958
– ident: e_1_2_9_167_1
  doi: 10.1016/j.nanoen.2019.04.009
– ident: e_1_2_9_220_1
  doi: 10.1002/adfm.202103070
– ident: e_1_2_9_343_1
  doi: 10.1039/c3tc31508h
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_9_401_1
  doi: 10.1039/C9TA04798K
– ident: e_1_2_9_86_1
  doi: 10.1002/adfm.202106816
– ident: e_1_2_9_369_1
  doi: 10.1002/ente.202000829
– ident: e_1_2_9_269_1
  doi: 10.1016/j.nanoen.2018.07.014
– ident: e_1_2_9_310_1
  doi: 10.1039/C7TA11237H
– ident: e_1_2_9_266_1
  doi: 10.1016/j.jallcom.2019.152971
– ident: e_1_2_9_224_1
  doi: 10.1016/j.mtener.2021.100824
– ident: e_1_2_9_346_1
  doi: 10.1016/j.jpowsour.2017.03.121
– ident: e_1_2_9_201_1
  doi: 10.1016/j.nanoen.2021.105835
– ident: e_1_2_9_170_1
  doi: 10.1007/s40820-019-0256-2
– ident: e_1_2_9_276_1
  doi: 10.1021/acsenergylett.8b01423
– ident: e_1_2_9_334_1
  doi: 10.1039/C8TA06626D
– ident: e_1_2_9_23_1
  doi: 10.1021/acsenergylett.8b02053
– ident: e_1_2_9_241_1
  doi: 10.1021/acs.chemmater.6b05092
– ident: e_1_2_9_179_1
  doi: 10.1002/aenm.201900083
– ident: e_1_2_9_400_1
  doi: 10.1002/adma.201104681
– ident: e_1_2_9_349_1
  doi: 10.1016/0379-6779(87)90893-9
– ident: e_1_2_9_64_1
  doi: 10.1016/j.ccr.2021.214124
– ident: e_1_2_9_404_1
  doi: 10.1016/j.nanoen.2018.06.076
– ident: e_1_2_9_74_1
  doi: 10.1002/smll.202201011
– ident: e_1_2_9_130_1
  doi: 10.1002/aenm.201803436
– ident: e_1_2_9_243_1
  doi: 10.1021/am402352q
– ident: e_1_2_9_30_1
  doi: 10.1016/j.enchem.2022.100092
– ident: e_1_2_9_357_1
  doi: 10.1016/j.jpowsour.2019.227192
– ident: e_1_2_9_95_1
  doi: 10.1021/acsami.6b16000
– ident: e_1_2_9_232_1
  doi: 10.1002/ente.201901105
– ident: e_1_2_9_255_1
  doi: 10.1039/C6TA02917E
– ident: e_1_2_9_206_1
  doi: 10.1016/j.electacta.2018.08.040
– ident: e_1_2_9_227_1
  doi: 10.1002/celc.202100280
– ident: e_1_2_9_192_1
  doi: 10.1016/j.jcis.2021.08.194
– ident: e_1_2_9_398_1
  doi: 10.1021/ja403232d
– ident: e_1_2_9_299_1
  doi: 10.1016/j.jcis.2019.10.092
– ident: e_1_2_9_22_1
  doi: 10.31635/ccschem.020.202000182
– ident: e_1_2_9_129_1
  doi: 10.1002/anie.201606508
– ident: e_1_2_9_313_1
  doi: 10.1016/j.nanoen.2017.02.014
– ident: e_1_2_9_194_1
  doi: 10.1039/C9TA08086D
– ident: e_1_2_9_196_1
  doi: 10.1016/j.jpowsour.2022.231489
– ident: e_1_2_9_79_1
  doi: 10.1039/D2QI01083F
– ident: e_1_2_9_371_1
  doi: 10.1039/D0TA01468K
– ident: e_1_2_9_287_1
  doi: 10.1002/anie.202112381
– ident: e_1_2_9_89_1
  doi: 10.1039/C9TA00716D
– ident: e_1_2_9_197_1
  doi: 10.1021/acsami.7b09924
– ident: e_1_2_9_152_1
  doi: 10.1002/crat.201100110
– ident: e_1_2_9_59_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_9_193_1
  doi: 10.1016/j.jcis.2021.06.141
– ident: e_1_2_9_405_1
  doi: 10.1002/cssc.201702270
– ident: e_1_2_9_351_1
  doi: 10.1016/j.electacta.2021.138624
– ident: e_1_2_9_165_1
  doi: 10.1021/acsenergylett.8b00565
SSID ssj0001537418
Score 2.61388
SecondaryResourceType review_article
Snippet Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of their...
Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their...
Abstract Aqueous zinc‐ion batteries (AZIBs) stand out among many monovalent/multivalent metal‐ion batteries as promising new energy storage devices because of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206907
SubjectTerms aqueous zinc‐ion batteries
Batteries
cathode materials
Crystal structure
Electrolytes
Energy storage
Oxidation
Polyethylene glycol
Review
Reviews
vanadium‐based compounds
Zinc
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQLa9AQUZCAg5R40eS2RNqEdWCVC5QVLhYfopKJUHsbrnyE_iN_BJm4my0K0C9cI2txPpmxv5GmfnM2JNEpYOpbakbx5XaaijBNXXpbbSpkTaKipqTT94281P95qw-27jqi2rCsjxwBu7AKxli40G0gdoitQ1ValKqAZkxBOFp98UzbyOZyv3BimRZ1iqNlTyw4ZLUuaUkad526xQaxPr_xjD_LJTcJLDDCXR8k90YqSM_zEveZddit8d2x-Bc8GejgvTzW-zjvP_O6YfOkn8YirpWX379-HmEB1bgtAHQVUoLbhec-v_6EPmJXWZP5Mhh-SGur18t-KfzzvPXfcezCCfm1C9us9PjV-9fzsvxDoXS14P-I_IrBd5r65J1ARKoGABzFnAxKhFmFWCMOzeLlYghIahR17rxISDxUWDVHbbT9V28x7gVro5SofkSpjmAiZpzrXY6zEAkqXzByjWmxo8C43TPxYXJ0sjSkA3MZIOCPZ3mf83SGv-ceUQmmmaRJPbwAB3FjI5irnKUgu2vDWzGOMVPQFVDi5SsKtjjaRgjjH6b2I7ANhIzMhA15l0Fu5v9YVqJQiBxS8QR2PKUraVuj3TnnwcVb0FKRwgjwjY41RUYGKQp75Ddtff_BxgP2HV8s8olSPtsZ_ltFR8iu1q6R0Mg_QYBcyGb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCKM-FgoyEBByixnYes6eqi1otSK0QUKi4WH6WSpCUZhf-PjOJN7DidY0dxZmXZ-yZbxh7Eil1MNY1VePYrDAFZGCrMnMmmFhJE0ROxclHx9XipHh1Wp6mA7cupVWubWJvqH3r6Ix8V0JeQo2bZ7538TWjrlF0u5paaFxlW2iCASZsa35w_PrNz1OWUhE8yxqtMZe7xn8jlG4pCaK33tiNetD-P3mavydM_urI9jvR4Q12PbmQfH_g-Ta7EpqbbDspacefJSTp57fYh0X7ndPFzpK_75O7Vl-yOW5bnpMZoIZKHTcdpyrA1gd-ZJaDPHL0ZPk-rq5ddfzjeeP4y7bhAxQnRtZ7t9nJ4cG7F4ssdVLIXNmjQKKXpcC5wthorIcIKnjAyAVsCEr4WQ6o6dbOQi6Cjxh0hKIsKuc9uj8KjLrDJk3bhHuMG2HLIBUyMWKwAxiuWVsXtvAzEFEqN2XZmqLaJZhx6nbxWQ8AyVITB_TIgSl7Os6_GAA2_jpzTgwaZxEwdv-gvTzTSc-0U9KHyoGoPVXRFsbnsYqxBPwn8AKXt7Nmr07aip8YZWvKHo_DqGd0eWIaIraWGJeBKDH6mrK7gzSMK1FISDSMOAIbcrKx1M2R5vxTj-UtCO8IyYhk60XqPzTQ6Ky8RR-vvv_v_3jAruE7akgx2mGT5eUqPETvaWkfJRX5AQwPGJw
  priority: 102
  providerName: ProQuest
Title How About Vanadium‐Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206907
https://www.ncbi.nlm.nih.gov/pubmed/36683227
https://www.proquest.com/docview/2805879760
https://www.proquest.com/docview/2768815747
https://pubmed.ncbi.nlm.nih.gov/PMC10131888
https://doaj.org/article/c32de6c817d64784ad0f6ff581188d1c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBlOfSsjISEnCImviReE9oF1otiK0qSlHhEvkJlSCpml248hP4jfwSZpxs2ggQ4hTJthJnxmN_Y898JuRRwNDBUBSYjWMSoYVKlMllYrXXIWfaZykmJy8O8vmxeHUiTy5l8bf8EP2GG1pGnK_RwLVpdi9IQ7X7inTbjCHXbnGVbGJ-LQb1MXF4scsiOdKz4A1z4F0nXAmxZm5M2e7wFYOVKRL4_wl1_h48eRnUxlVp_wa53sFJOm31v0Wu-Oom2eoMtqFPOlbpp7fI-3n9jeIhz5K-i4Feqy8_v_-YwSLmKE4KeL1SQ3VDMSewdp4u9LIdnRRwLZ1C_-pVQz-cVpa-rCvaEnOCn_3sNjne33v7fJ509yokVkZOSMBcXFkrtAnaOBUU906BH6OM9zxzk1SB3Rsz8WnmXQAXxAspcuscgCGuNL9DNqq68vcI1ZmRnnFQaQDXR4HzZkwhjHATlQXG7Ygka5mWtiMdx7svPpctXTIrUQdlr4MRedy3P2vpNv7acoYq6lshTXYsqM8_lp3VlZYz53OrssJhTq3QLg15CFLBPymXQfd21gouO9uFT6hUqgJgWjoiD_tqsDo8StEVCrtk4KWpTIIvNiJ32_HQ94SDIGGahBo1GCmDrg5rqtNPkdk7Q_YjECOILQ6qf8igBOhyBIivuP-f7bfJNSjkbQTSDtlYnq_8AwBXSzOO9jMmm9MXi9dH8JztHRy-Gcetil-CwCGY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALojwDBYwEAg6r7treXeeAqgZaJbSJELS04mL8hEqwW5qEij_Fb2RmXxDxOvUaO4l3Zjz-Zj3zDSEPA6YOhjzHahwTCS1kJE2WRlZ7HTKmfRJjcfJkmo0OxMuj9GiFfG9rYTCtsvWJlaN2pcV35BtMxqnM4fCMN0--RNg1Cm9X2xYatVns-m9nELLNno1fgH4fMbazvf98FDVdBSKbVoyIgDi4tFZoE7RxMkjunQQUL433PHGDWILVGzPwceJdAADuRSoy6xxAAS41h9-9QFYFz2LWI6vD7emr1z_f6qQc6WBadsiYbWj3FVnBGUNK4Hzp9KuaBPwJ2f6eoPkrcK5Ovp0r5HIDWelWbWNrZMUXV8la4xRm9EnDXP30GjkclWcUL5Lm9G2VTLb4HA3hmHQU3Q42cJpRPaNYdVg6Tyd6Xts_BeRMt2B15WJG3x0Xlo7LgtbUnxDJb14nB-ci4xukV5SFv0WoTkzqGQejCRBcSQgPjcmFEW4gk8C47ZOolaiyDa05dtf4pGpCZqZQA6rTQJ887uaf1IQef505RAV1s5CIu_qgPP2gmn2tLGfOZ1YmucOqXaFdHLIQUgnPJF0Cy1tv1asa7wB_0dlynzzohmFf42WNLlDYikEcKJMUor0-uVlbQ7cSDoIERwwjcslOlpa6PFIcf6y4wxPkVwIxgtgqk_qPDBSAozeAKfPb_36O--TiaH-yp_bG09075BJ8n9fpTeukNz9d-LuA3ObmXrNdKHl_3jv0B06sVX0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuiPJMKWAkEHBYZdfeh3NAVUMbJZRGFVBacTF-lkqwW7oJFX-NX8fMviDideo1dhLveGb8zXrmG0IeeUwd9FmG1Tg6iFUsAqHTJDDKKZ8y5aIQi5P3ZunkIH55lBytkO9tLQymVbY-sXLUtjD4jnzARJiIDA7PcOCbtIj97fHm6ZcAO0jhTWvbTqNWkV337RzCt_L5dBv2-jFj4523LyZB02EgMEnFjgjogwtjYqW90lZ4wZ0VgOiFdo5HdhgKsACthy6MnPUAxl2cxKmxFmABF4rD714iqxlGRT2yOtqZ7b_--YYn4UgN0zJFhmyg7FdkCGcM6YGzpZOwahjwJ5T7e7LmryC6OgXH18jVBr7SrVrf1siKy6-TtcZBlPRpw2L97AY5nBTnFC-V5vRdlVi2-ByM4Mi0FF0QNnMqqSopViAW1tE9Na9tgQKKpluwumJR0vcnuaHTIqc1DShE9Zs3ycGFyPgW6eVF7u4QqiKdOMZBgTwEWgJCRa2zWMd2KCLPuOmToJWoNA3FOXba-CRrcmYmcQdktwN98qSbf1qTe_x15gg3qJuFpNzVB8XZsWxsXBrOrEuNiDKLFbyxsqFPvU8EPJOwESxvo91e2XgK-ItOr_vkYTcMNo4XNypHYUsGMaGIEoj8-uR2rQ3dSjgIEpwyjIglPVla6vJIfvKx4hGPkGsJxAhiq1TqPzKQAJTeAL7M1v_9HA_IZbBM-Wo6271LrsDXeZ3ptEF687OFuwcgbq7vN9ZCyYeLNtAfQa1Zsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+About+Vanadium%E2%80%90Based+Compounds+as+Cathode+Materials+for+Aqueous+Zinc+Ion+Batteries%3F&rft.jtitle=Advanced+science&rft.au=Lv%2C+Tingting&rft.au=Peng%2C+Yi&rft.au=Zhang%2C+Guangxun&rft.au=Jiang%2C+Shu&rft.date=2023-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202206907&rft.externalDBID=10.1002%252Fadvs.202206907&rft.externalDocID=ADVS5097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon