MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation
OBJECTIVE—Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers i...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 36; no. 1; pp. 122 - 133 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVE—Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation.
APPROACH AND RESULTS—We produced Mfap4-deficient (Mfap4) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4 mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4 carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVβ3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3–dependent manner.
CONCLUSIONS—MFAP4 regulates integrin αVβ3–induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury. |
---|---|
AbstractList | Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation.
We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVβ3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner.
MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury. OBJECTIVEArterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation.APPROACH AND RESULTSWe produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVβ3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner.CONCLUSIONSMFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury. OBJECTIVE—Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS—We produced Mfap4-deficient (Mfap4) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4 mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4 carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVβ3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3–dependent manner. CONCLUSIONS—MFAP4 regulates integrin αVβ3–induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury. |
Author | Kristmannsdottir, Gudlaug B Bekeredjian, Raffi Nielsen, Ole Hansen, Pernille B.L Füchtbauer, Ernst-Martin Stubbe, Jane Schlosser, Anders Pilecki, Bartosz Moeller, Jesper B Kejling, Karin Wulf-Johansson, Helle Holmskov, Uffe Sorensen, Grith L Hemstra, Line E Dubey, Lalit K Rathkolb, Birgit Wrede, Christoph Kirketerp-Møller, Katrine Hrabě de Angelis, Martin Lindholt, Jes S Schrewe, Anja Fuchs, Helmut Ochs, Matthias Wolf, Eckhard Gailus-Durner, Valérie Hegermann, Jan |
AuthorAffiliation | From the Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (A.S., B.P., L.E.H., K.K., G.B.K., H.W.-J., J.B.M., K.K.-M., L.K.D., P.B.L.H., J.S., U.H, G.L.S.); Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (E.-M.F.); Department of Pathology, Odense University Hospital, Odense, Denmark (O.N.); Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany (C.W., J.H., M.O.); Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany (C.W., J.H., M.O.); REBIRTH Cluster of Excellence, Hannover, Germany (C.W., J.H., M.O.); German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (B.R., A.S., V.G.-D., H.F., M.H.d.A.); Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Münch |
AuthorAffiliation_xml | – name: From the Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (A.S., B.P., L.E.H., K.K., G.B.K., H.W.-J., J.B.M., K.K.-M., L.K.D., P.B.L.H., J.S., U.H, G.L.S.); Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (E.-M.F.); Department of Pathology, Odense University Hospital, Odense, Denmark (O.N.); Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany (C.W., J.H., M.O.); Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany (C.W., J.H., M.O.); REBIRTH Cluster of Excellence, Hannover, Germany (C.W., J.H., M.O.); German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (B.R., A.S., V.G.-D., H.F., M.H.d.A.); Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany (B.R, E.W.); Division of Cardiology, Department of Medicine III, University of Heidelberg, Heidelberg, Germany (A.S., R.B.); Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Munich, Germany (M.H.d.A.); Cardiovascular Research Unit, Viborg Hospital, Viborg, Denmark (J.S.L.); and Department of Cardiothoracic and Vascular Surgery, Center of Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark (J.S.L.) |
Author_xml | – sequence: 1 givenname: Anders surname: Schlosser fullname: Schlosser, Anders organization: From the Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark (A.S., B.P., L.E.H., K.K., G.B.K., H.W.-J., J.B.M., K.K.-M., L.K.D., P.B.L.H., J.S., U.H, G.L.S.); Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (E.-M.F.); Department of Pathology, Odense University Hospital, Odense, Denmark (O.N.); Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany (C.W., J.H., M.O.); Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany (C.W., J.H., M.O.); REBIRTH Cluster of Excellence, Hannover, Germany (C.W., J.H., M.O.); German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany (B.R., A.S., V.G.-D., H.F., M.H.d.A.); Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany (B.R, E.W.); Division of Cardiology, Department of Medicine III, University of Heidelberg, Heidelberg, Germany (A.S., R.B.); Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Munich, Germany (M.H.d.A.); Cardiovascular Research Unit, Viborg Hospital, Viborg, Denmark (J.S.L.); and Department of Cardiothoracic and Vascular Surgery, Center of Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark (J.S.L.) – sequence: 2 givenname: Bartosz surname: Pilecki fullname: Pilecki, Bartosz – sequence: 3 givenname: Line surname: Hemstra middlename: E fullname: Hemstra, Line E – sequence: 4 givenname: Karin surname: Kejling fullname: Kejling, Karin – sequence: 5 givenname: Gudlaug surname: Kristmannsdottir middlename: B fullname: Kristmannsdottir, Gudlaug B – sequence: 6 givenname: Helle surname: Wulf-Johansson fullname: Wulf-Johansson, Helle – sequence: 7 givenname: Jesper surname: Moeller middlename: B fullname: Moeller, Jesper B – sequence: 8 givenname: Ernst-Martin surname: Füchtbauer fullname: Füchtbauer, Ernst-Martin – sequence: 9 givenname: Ole surname: Nielsen fullname: Nielsen, Ole – sequence: 10 givenname: Katrine surname: Kirketerp-Møller fullname: Kirketerp-Møller, Katrine – sequence: 11 givenname: Lalit surname: Dubey middlename: K fullname: Dubey, Lalit K – sequence: 12 givenname: Pernille surname: Hansen middlename: B.L fullname: Hansen, Pernille B.L – sequence: 13 givenname: Jane surname: Stubbe fullname: Stubbe, Jane – sequence: 14 givenname: Christoph surname: Wrede fullname: Wrede, Christoph – sequence: 15 givenname: Jan surname: Hegermann fullname: Hegermann, Jan – sequence: 16 givenname: Matthias surname: Ochs fullname: Ochs, Matthias – sequence: 17 givenname: Birgit surname: Rathkolb fullname: Rathkolb, Birgit – sequence: 18 givenname: Anja surname: Schrewe fullname: Schrewe, Anja – sequence: 19 givenname: Raffi surname: Bekeredjian fullname: Bekeredjian, Raffi – sequence: 20 givenname: Eckhard surname: Wolf fullname: Wolf, Eckhard – sequence: 21 givenname: Valérie surname: Gailus-Durner fullname: Gailus-Durner, Valérie – sequence: 22 givenname: Helmut surname: Fuchs fullname: Fuchs, Helmut – sequence: 23 givenname: Martin surname: Hrabě de Angelis fullname: Hrabě de Angelis, Martin – sequence: 24 givenname: Jes surname: Lindholt middlename: S fullname: Lindholt, Jes S – sequence: 25 givenname: Uffe surname: Holmskov fullname: Holmskov, Uffe – sequence: 26 givenname: Grith surname: Sorensen middlename: L fullname: Sorensen, Grith L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26564819$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtPwzAQhC1UBOXxBzigHDmQYju2kxxDRQGJQiUeV8txtjTgxGAnqvj3uKRw5LQ7q29GqzlAo9a2gNAJwRNCBLkonl4ui5siCD5JsBAp3UFjwimLmUjEKOw4zWMuGN1HB96_YYwZpXgP7VMRrhnJx6icz4oFixbONrYDH70or3ujXPTYWNutonnvtYFoXr861dW2Pd-gpl7CICPVVlGhNZjNIfjvwdZtVzcqmlnX_DBHaHepjIfj7TxEz7Orp-lNfPdwfTst7mLNE0zjagkUZ5qVFQXNmEqYroBkPMeMZIRywkSWVKLMk7zUJE1ZqStKOdY4rwTGOjlEZ0Puh7OfPfhONrUPnxnVgu29JCknec5SmgaUDqh21nsHS_nhws_uSxIsN93KbbdBcDl0G0yn2_y-bKD6s_yWGQAxAGtrOnD-3fRrcHIFynSr_5K_ASSZh8Y |
CitedBy_id | crossref_primary_10_1016_j_jvs_2019_08_253 crossref_primary_10_1016_j_bbrc_2017_07_020 crossref_primary_10_1371_journal_pone_0166901 crossref_primary_10_1007_s13258_016_0492_5 crossref_primary_10_1161_ATVBAHA_118_311717 crossref_primary_10_3389_fcvm_2021_764337 crossref_primary_10_1096_fj_202001026R crossref_primary_10_1161_JAHA_119_015307 crossref_primary_10_1186_s12967_018_1523_6 crossref_primary_10_1186_s40001_023_01002_z crossref_primary_10_1038_s41467_024_48377_z crossref_primary_10_1002_iid3_254 crossref_primary_10_1038_aps_2015_145 crossref_primary_10_1093_carcin_bgac048 crossref_primary_10_1371_journal_pone_0225173 crossref_primary_10_1161_ATVBAHA_118_312175 crossref_primary_10_1007_s00592_016_0953_y crossref_primary_10_1016_j_bbagen_2020_129637 crossref_primary_10_18632_oncotarget_18515 crossref_primary_10_1002_jcp_28810 crossref_primary_10_1161_ATVBAHA_120_315146 crossref_primary_10_2217_epi_2018_0080 crossref_primary_10_1111_apm_13358 crossref_primary_10_1038_s41598_020_68792_8 crossref_primary_10_1161_CIRCRESAHA_120_317146 crossref_primary_10_1186_s12903_021_01962_w crossref_primary_10_1161_CIRCRESAHA_120_316770 crossref_primary_10_1016_j_ccell_2018_03_003 crossref_primary_10_1177_13524585231200720 crossref_primary_10_1089_ars_2015_6475 crossref_primary_10_1177_11772719211016359 crossref_primary_10_1093_europace_euab124 crossref_primary_10_1007_s00441_016_2374_1 crossref_primary_10_1002_ctm2_458 crossref_primary_10_1002_iub_2181 crossref_primary_10_1055_s_0044_1787957 crossref_primary_10_1111_apm_12974 crossref_primary_10_3389_flupu_2024_1386256 crossref_primary_10_1183_23120541_00021_2019 crossref_primary_10_1002_jcp_29893 crossref_primary_10_18632_aging_204838 crossref_primary_10_3892_ijmm_2019_4291 crossref_primary_10_1007_s11596_022_2663_8 crossref_primary_10_1016_j_jep_2022_115096 crossref_primary_10_1016_j_gene_2018_06_031 crossref_primary_10_1002_jgh3_12873 crossref_primary_10_1111_liv_14491 crossref_primary_10_1161_JAHA_116_003693 crossref_primary_10_1016_j_jneuroim_2022_577847 crossref_primary_10_1016_j_jprot_2020_104004 crossref_primary_10_1161_ATVBAHA_119_312399 crossref_primary_10_1161_JAHA_117_005754 crossref_primary_10_1016_j_isci_2023_108121 crossref_primary_10_3350_cmh_2018_0029 crossref_primary_10_3390_ijerph17217825 crossref_primary_10_1002_prca_202100128 crossref_primary_10_1021_acsptsci_3c00288 crossref_primary_10_1016_j_yjmcc_2020_01_006 crossref_primary_10_1016_j_preteyeres_2020_100859 crossref_primary_10_1161_HYPERTENSIONAHA_123_22283 crossref_primary_10_1152_ajprenal_00418_2017 crossref_primary_10_1186_s12967_016_0952_3 crossref_primary_10_1002_2211_5463_12942 crossref_primary_10_1159_000521390 crossref_primary_10_1007_s43032_021_00708_x crossref_primary_10_3390_cells11132115 crossref_primary_10_1016_j_matbio_2022_05_008 |
Cites_doi | 10.1136/thoraxjnl-2014-205091 10.1093/cvr/cvt333 10.1161/01.CIR.0000086463.15540.3C 10.1016/j.carpath.2007.04.002 10.1016/S0021-9258(18)47413-3 10.1161/01.ATV.18.3.333 10.1161/01.ATV.12.11.1267 10.1136/thoraxjnl-2014-206609 10.1161/01.ATV.17.10.2238 10.1016/j.yexcr.2005.03.005 10.1161/01.RES.70.2.314 10.1172/JCI10522 10.1177/002215549904700809 10.1016/S0021-9258(18)71514-7 10.1172/JCI117501 10.1111/j.1365-3083.2006.01778.x 10.1371/journal.pone.0082243 10.1161/01.RES.79.4.821 10.1038/srep00164 10.1016/S0923-1811(01)00148-7 10.1161/01.RES.0000149518.86865.3e 10.1016/j.bbrc.2005.03.175 10.1161/01.CIR.97.9.907 10.1161/01.CIR.0000121733.68724.FF 10.1161/01.res.0000041036.86977.14 10.1161/hc4601.099405 10.1016/j.freeradbiomed.2010.12.008 10.1016/S0008-6363(00)00201-7 10.1093/cvr/cvs115 10.1002/hep.22764 10.1161/01.atv.0000019360.14554.53 10.1152/ajplung.00351.2014 10.1055/s-0031-1276590 10.1055/s-0037-1612971 10.1016/j.molimm.2010.09.019 10.1161/01.ATV.0000073312.34450.16 10.1016/j.jvs.2007.02.069 10.1146/annurev.cellbio.19.031103.133334 10.1007/s00441-008-0587-7 10.1152/physrev.00008.2011 10.1161/01.ATV.0000235694.69719.e2 10.1161/01.ATV.0000066132.32063.F2 10.1093/emboj/16.18.5600 10.1080/15216540211470 10.1161/01.res.0000020561.03244.7e 10.1161/01.ATV.0000095161.06906.ED 10.1093/eurheartj/eht496 10.1006/bbrc.1994.1178 |
ContentType | Journal Article |
Copyright | 2016 American Heart Association, Inc. 2015 American Heart Association, Inc. |
Copyright_xml | – notice: 2016 American Heart Association, Inc. – notice: 2015 American Heart Association, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1161/ATVBAHA.115.306672 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 133 |
ExternalDocumentID | 10_1161_ATVBAHA_115_306672 26564819 10.1161/ATVBAHA.115.306672 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P1183DK00 |
GroupedDBID | - .Z2 01R 08R 0R 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 55 5GY 5RE 5VS 71W 77Y 7O 7O~ AAAXR AAMOA AAMTA AAPBV AARTV AAXQO ABBUW ABXVJ ABZAD ACDDN ACEWG ACGFS ACGOD ACPRK ACWDW ACWRI ACXNZ ADACO ADBBV ADFPA ADNKB AE3 AENEX AFFNX AFUWQ AHMBA AHULI AHVBC AIJEX AJIOK AJNYG AJYGW ALMA_UNASSIGNED_HOLDINGS AMJPA ASCII AWKKM BAWUL BOYCO C1A C45 CS3 DIK DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FL- FRP FW0 GJ GX1 H0 H0~ H13 HZ IKYAY IN IN~ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B LI0 N9A N~7 N~B N~M O0- O9- OAG OAH OB2 OCUKA ODA OHASI OK1 OL1 OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P-K P2P PQEST PQQKQ PZZ RAH RHF RIG RLZ RSW S4R S4S V2I WOQ WOW X3V X3W X7M Z2 ZA5 ZGI --- .3C .55 .GJ 0R~ AAAAV AAGIX AAHPQ AAIQE AAQKA AASCR AASOK ABASU ABDIG ABJNI ABQRW ABVCZ ACCJW ACILI ACLDA ACXJB ADGGA ADHPY AE6 AEETU AFDTB AGINI AHJKT AHOMT AHQNM AHRYX AINUH AJNWD AJZMW AKULP ALMTX AMKUR AMNEI AOHHW AYCSE BQLVK BS7 CGR CUY CVF DIWNM ECM EEVPB EIF ERAAH FCALG GNXGY GQDEL HLJTE HZ~ IKREB IPNFZ NPM OWU OWV OWX OWZ T8P TEORI TR2 TSPGW VVN W3M W8F XXN XYM YFH ZZMQN AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c5302-dfe208c4bd2ec44a34cde1859041812514683d6b939bc1774bcd2250c09d600c3 |
ISSN | 1079-5642 |
IngestDate | Fri Oct 25 06:54:18 EDT 2024 Thu Nov 21 21:47:24 EST 2024 Tue Oct 15 23:54:32 EDT 2024 Thu Aug 13 19:47:05 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | mouse extracellular matrix proteins integrin alphaVbeta3 muscle hyperplasia carotid stenosis vascular MFAP4 protein smooth |
Language | English |
License | 2015 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5302-dfe208c4bd2ec44a34cde1859041812514683d6b939bc1774bcd2250c09d600c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.115.306672 |
PMID | 26564819 |
PQID | 1751994727 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1751994727 crossref_primary_10_1161_ATVBAHA_115_306672 pubmed_primary_26564819 wolterskluwer_health_10_1161_ATVBAHA_115_306672 |
ProviderPackageCode | L-C C45 7O~ AARTV ADFPA OLH ASCII OLG AAMOA ODA ABZAD ABBUW JK3 ADNKB JK8 H0~ 1J1 OLV OLU JG8 OLW OLZ OLY F2K F2M F2L F2N OHASI AHVBC AJNYG FL- KMI K8S OVLEI AJIOK OPUJH V2I S4R S4S 4Q1 DUNZO OAG 4Q2 OVDNE 4Q3 AMJPA OAH OVD 71W AHULI OB2 ACEWG .Z2 N~7 IKYAY OVIDH AWKKM 40H N~B OUVQU ORVUJ X3V X3W ACDDN ACWRI BOYCO AIJEX AAXQO AAMTA AAAXR E.X OWW OCUKA OWY 01R ACXNZ OL1 ABXVJ IN~ KD2 OXXIT 77Y ACWDW JF9 FW0 |
PublicationCentury | 2000 |
PublicationDate | 2016-January |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-January |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2016 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_46_2 e_1_3_5_48_2 e_1_3_5_29_2 e_1_3_5_40_2 e_1_3_5_42_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_18_2 e_1_3_5_50_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 Hancock WW (e_1_3_5_30_2) 1994; 145 e_1_3_5_43_2 e_1_3_5_45_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 e_1_3_5_41_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_51_2 D’Angelo G (e_1_3_5_22_2) 1997; 272 |
References_xml | – ident: e_1_3_5_19_2 doi: 10.1136/thoraxjnl-2014-205091 – ident: e_1_3_5_35_2 doi: 10.1093/cvr/cvt333 – ident: e_1_3_5_26_2 doi: 10.1161/01.CIR.0000086463.15540.3C – ident: e_1_3_5_39_2 doi: 10.1016/j.carpath.2007.04.002 – ident: e_1_3_5_50_2 doi: 10.1016/S0021-9258(18)47413-3 – ident: e_1_3_5_47_2 doi: 10.1161/01.ATV.18.3.333 – volume: 145 start-page: 1008 year: 1994 ident: e_1_3_5_30_2 article-title: CD4+ mononuclear cells induce cytokine expression, vascular smooth muscle cell proliferation, and arterial occlusion after endothelial injury. publication-title: Am J Pathol contributor: fullname: Hancock WW – ident: e_1_3_5_31_2 doi: 10.1161/01.ATV.12.11.1267 – ident: e_1_3_5_18_2 doi: 10.1136/thoraxjnl-2014-206609 – ident: e_1_3_5_20_2 doi: 10.1161/01.ATV.17.10.2238 – ident: e_1_3_5_8_2 doi: 10.1016/j.yexcr.2005.03.005 – ident: e_1_3_5_28_2 doi: 10.1161/01.RES.70.2.314 – ident: e_1_3_5_48_2 doi: 10.1172/JCI10522 – ident: e_1_3_5_9_2 doi: 10.1177/002215549904700809 – ident: e_1_3_5_6_2 doi: 10.1016/S0021-9258(18)71514-7 – ident: e_1_3_5_32_2 doi: 10.1172/JCI117501 – ident: e_1_3_5_10_2 doi: 10.1111/j.1365-3083.2006.01778.x – ident: e_1_3_5_17_2 doi: 10.1371/journal.pone.0082243 – ident: e_1_3_5_23_2 doi: 10.1161/01.RES.79.4.821 – ident: e_1_3_5_21_2 doi: 10.1038/srep00164 – ident: e_1_3_5_12_2 doi: 10.1016/S0923-1811(01)00148-7 – ident: e_1_3_5_29_2 doi: 10.1161/01.RES.0000149518.86865.3e – ident: e_1_3_5_43_2 doi: 10.1016/j.bbrc.2005.03.175 – ident: e_1_3_5_40_2 doi: 10.1161/01.CIR.97.9.907 – ident: e_1_3_5_37_2 doi: 10.1161/01.CIR.0000121733.68724.FF – ident: e_1_3_5_25_2 doi: 10.1161/01.res.0000041036.86977.14 – ident: e_1_3_5_24_2 doi: 10.1161/hc4601.099405 – ident: e_1_3_5_34_2 doi: 10.1016/j.freeradbiomed.2010.12.008 – ident: e_1_3_5_42_2 doi: 10.1016/S0008-6363(00)00201-7 – ident: e_1_3_5_2_2 doi: 10.1093/cvr/cvs115 – ident: e_1_3_5_15_2 doi: 10.1002/hep.22764 – ident: e_1_3_5_38_2 doi: 10.1161/01.atv.0000019360.14554.53 – ident: e_1_3_5_16_2 doi: 10.1152/ajplung.00351.2014 – ident: e_1_3_5_13_2 doi: 10.1055/s-0031-1276590 – ident: e_1_3_5_3_2 doi: 10.1055/s-0037-1612971 – ident: e_1_3_5_5_2 doi: 10.1016/j.molimm.2010.09.019 – ident: e_1_3_5_33_2 doi: 10.1161/01.ATV.0000073312.34450.16 – volume: 272 start-page: H2065 issue: 4 year: 1997 ident: e_1_3_5_22_2 article-title: Integrin-mediated reduction in vascular smooth muscle [Ca2+]i induced by RGD-containing peptide. publication-title: Am J Physiol contributor: fullname: D’Angelo G – ident: e_1_3_5_4_2 doi: 10.1016/j.jvs.2007.02.069 – ident: e_1_3_5_51_2 doi: 10.1146/annurev.cellbio.19.031103.133334 – ident: e_1_3_5_7_2 doi: 10.1007/s00441-008-0587-7 – ident: e_1_3_5_14_2 doi: 10.1152/physrev.00008.2011 – ident: e_1_3_5_36_2 doi: 10.1161/01.ATV.0000235694.69719.e2 – ident: e_1_3_5_44_2 doi: 10.1161/01.ATV.0000066132.32063.F2 – ident: e_1_3_5_49_2 doi: 10.1093/emboj/16.18.5600 – ident: e_1_3_5_41_2 doi: 10.1080/15216540211470 – ident: e_1_3_5_27_2 doi: 10.1161/01.res.0000020561.03244.7e – ident: e_1_3_5_45_2 doi: 10.1161/01.ATV.0000095161.06906.ED – ident: e_1_3_5_46_2 doi: 10.1093/eurheartj/eht496 – ident: e_1_3_5_11_2 doi: 10.1006/bbrc.1994.1178 |
SSID | ssj0004220 |
Score | 2.5118823 |
Snippet | OBJECTIVE—Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in... Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth... OBJECTIVEArterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in... |
SourceID | proquest crossref pubmed wolterskluwer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 122 |
SubjectTerms | Animals Apoptosis Carotid Arteries - metabolism Carotid Arteries - pathology Carotid Artery Diseases - genetics Carotid Artery Diseases - metabolism Carotid Artery Diseases - pathology Carrier Proteins - genetics Carrier Proteins - metabolism Cell Movement - drug effects Cell Proliferation - drug effects Cells, Cultured Chemotaxis, Leukocyte Disease Models, Animal Extracellular Matrix Proteins - deficiency Extracellular Matrix Proteins - genetics Extracellular Matrix Proteins - metabolism Focal Adhesion Kinase 1 - antagonists & inhibitors Focal Adhesion Kinase 1 - metabolism Genotype Glycoproteins - deficiency Glycoproteins - genetics Glycoproteins - metabolism Humans Hyperplasia Integrin alphaVbeta3 - metabolism Ligands Male Mice, Inbred BALB C Mice, Inbred C57BL Mice, Knockout Monocytes - metabolism Muscle, Smooth, Vascular - drug effects Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology Neointima Phenotype Phosphorylation Protein Kinase Inhibitors - pharmacology Signal Transduction Time Factors Vascular Remodeling |
Title | MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26564819 https://search.proquest.com/docview/1751994727 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCqKIeLfeGMG3mt1MMkmbx6xYiiWyYnfZt5C5ZLe6SRbbKuy_8B97TmZyKVVRX0InbU_InI8z35k5F0JeK8xT5pPcycMgcHjguw6QI-ZEEzZWucojXZ_gJx_C2TF_fxqcDgY_elFLm7XYl1e_zCv5H63CPdArZsn-g2ZboXADPoN-4Qoahutf6TiZxkccY_1hvvVqdNJElX4qKlDAKNms4A-jZHlm1FwzRuzSk2urd9w1j6WEpQcrRqDJq5blellko2mT1NhnrzHGfy4rlAqLq6lOgH0WCtGMUGAb3GoLPHVnPecXFZ7-20BK3R0kHYFtkqaB9iG8Z7W66vZoC9yMsdsHukucmOvPF7Yfyxz8_bK_fcH62xfamlyPO1i2rG-T7aiPPWNgmcli3jX8IRr-bP1NZOcZDIN9H8N3t34Myrssaih4wGL5xNrq7XLbzVfXyHWsrYjtGOYfewXoPc9tcq9CdrD7QKwubUVsU50d_-UWuf29wpCI1Zc6I6LHaxZ3yR3rkNDYoOseGejyPrmR2JCLB0TUIKMNyGgDMmpARg3IaAuyN3QLYhQQQXsQoy3EaAuxh-R4-m7xdubYxhyOxCZTjsq1504kF8rTkvPM51JpIH6Ry5EwBpjO56tQRH4kJAMHQ0gF64Yr3UgBwZb-I7JXVqV-Qqgb8UwGkk3EGHxVNha-Ag8cOLIKNNfMHZJRM4fppam_ktZ-a8jSeHFyGM9iGASpmfwhedVMcwpmEs--slJXm1UKLBmrYANbH5LHZv5beY2-huRgSyGpSUX-w_Oe_lbWM3KzQ_tzsrf-utEvgL6uxcsaUD8BLS6aZw |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFAP4+Promotes+Vascular+Smooth+Muscle+Migration%2C+Proliferation+and+Accelerates+Neointima+Formation&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Schlosser%2C+Anders&rft.au=Pilecki%2C+Bartosz&rft.au=Hemstra%2C+Line+E&rft.au=Kejling%2C+Karin&rft.date=2016-01-01&rft.eissn=1524-4636&rft.volume=36&rft.issue=1&rft.spage=122&rft_id=info:doi/10.1161%2Fatvbaha.115.306672&rft_id=info%3Apmid%2F26564819&rft.externalDocID=26564819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |