Oncogenic KRAS, Mucin 4, and Activin A‐Mediated Fibroblast Activation Cooperate for PanIN Initiation
Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN format...
Saved in:
Published in | Advanced science Vol. 10; no. 36; pp. e2301240 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.12.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic‐clear 3D histology is used to analyze entire pancreases of 2‐week‐old Pdx1‐Cre; LSL‐KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN‐associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+‐driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.
This study found that early PanIN cells express elevated levels of Muc4, specifically the oncogenic Muc4/X variant, and are closely associated with αSMA+ fibroblasts. This is observed in KrasG12D/+ transgenic mice and human pancreatic specimens with early PanINs. Importantly, upregulated Muc4 expression and Activin A secretion are identified as critical factors driving PanIN initiation in pancreatic cells with KrasG12D/+ mutation. |
---|---|
AbstractList | Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic‐clear 3D histology is used to analyze entire pancreases of 2‐week‐old Pdx1‐Cre; LSL‐KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN‐associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+‐driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.
This study found that early PanIN cells express elevated levels of Muc4, specifically the oncogenic Muc4/X variant, and are closely associated with αSMA+ fibroblasts. This is observed in KrasG12D/+ transgenic mice and human pancreatic specimens with early PanINs. Importantly, upregulated Muc4 expression and Activin A secretion are identified as critical factors driving PanIN initiation in pancreatic cells with KrasG12D/+ mutation. Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic‐clear 3D histology is used to analyze entire pancreases of 2‐week‐old Pdx1 ‐ Cre ; LSL ‐ Kras G12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA + fibroblasts in both transgenic mice and human specimens. Mechanistically, Kras G12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN‐associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic Kras G12D/+ ‐driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches. This study found that early PanIN cells express elevated levels of Muc4, specifically the oncogenic Muc4/X variant, and are closely associated with αSMA+ fibroblasts. This is observed in Kras G12D/+ transgenic mice and human pancreatic specimens with early PanINs. Importantly, upregulated Muc4 expression and Activin A secretion are identified as critical factors driving PanIN initiation in pancreatic cells with Kras G12D/+ mutation. Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-Kras (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA fibroblasts in both transgenic mice and human specimens. Mechanistically, Kras pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic Kras -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches. Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+-driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches. Abstract Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic‐clear 3D histology is used to analyze entire pancreases of 2‐week‐old Pdx1‐Cre; LSL‐KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN‐associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+‐driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches. Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic‐clear 3D histology is used to analyze entire pancreases of 2‐week‐old Pdx1 ‐ Cre ; LSL ‐ Kras G12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA + fibroblasts in both transgenic mice and human specimens. Mechanistically, Kras G12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN‐associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic Kras G12D/+ ‐driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches. Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+ -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+ -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches. |
Author | Chang, Yu‐Ting Jeng, Yung‐Ming Huang, Chien‐Chang Chien, Hung‐Jen Tien, Yu‐Wen Hsu, Min‐Fen Hu, Chun‐Mei Chang, Ming‐Chu Lee, Wen‐Hwa Chung, Mei‐Hsin Wu, Pei‐Jung Chen, Yi‐Ing Shen, Chia‐Ning Tang, Shiue‐Cheng |
AuthorAffiliation | 6 Department of Pathology National Taiwan University Hospital−Hsinchu Branch Hsinchu 30331 Taiwan 3 Department of Pathology National Taiwan University Hospital Taipei 10041 Taiwan 1 Genomics Research Center Academia Sinica Taipei 11529 Taiwan 5 Department of Medical Science National Tsing Hua University Hsinchu 30013 Taiwan 7 Department of Internal Medicine National Taiwan University Hospital Taipei 10041 Taiwan 2 Biomedical Translation Research Center Academia Sinica Taipei 11529 Taiwan 8 Department of Surgery National Taiwan University Hospital Taipei 10041 Taiwan 10 Department of Biological Chemistry University of California Irvine CA 92697 USA 4 Graduate Institute of Pathology, College of Medicine National Taiwan University Taipei 10041 Taiwan 9 Drug Development Center China Medical University Taichung 40402 Taiwan |
AuthorAffiliation_xml | – name: 3 Department of Pathology National Taiwan University Hospital Taipei 10041 Taiwan – name: 1 Genomics Research Center Academia Sinica Taipei 11529 Taiwan – name: 8 Department of Surgery National Taiwan University Hospital Taipei 10041 Taiwan – name: 9 Drug Development Center China Medical University Taichung 40402 Taiwan – name: 10 Department of Biological Chemistry University of California Irvine CA 92697 USA – name: 5 Department of Medical Science National Tsing Hua University Hsinchu 30013 Taiwan – name: 7 Department of Internal Medicine National Taiwan University Hospital Taipei 10041 Taiwan – name: 2 Biomedical Translation Research Center Academia Sinica Taipei 11529 Taiwan – name: 6 Department of Pathology National Taiwan University Hospital−Hsinchu Branch Hsinchu 30331 Taiwan – name: 4 Graduate Institute of Pathology, College of Medicine National Taiwan University Taipei 10041 Taiwan |
Author_xml | – sequence: 1 givenname: Chun‐Mei orcidid: 0000-0002-4248-0896 surname: Hu fullname: Hu, Chun‐Mei email: cmhu1220@gate.sinica.edu.tw organization: Academia Sinica – sequence: 2 givenname: Chien‐Chang surname: Huang fullname: Huang, Chien‐Chang organization: Academia Sinica – sequence: 3 givenname: Min‐Fen surname: Hsu fullname: Hsu, Min‐Fen organization: Academia Sinica – sequence: 4 givenname: Hung‐Jen surname: Chien fullname: Chien, Hung‐Jen organization: Academia Sinica – sequence: 5 givenname: Pei‐Jung surname: Wu fullname: Wu, Pei‐Jung organization: Academia Sinica – sequence: 6 givenname: Yi‐Ing surname: Chen fullname: Chen, Yi‐Ing organization: Academia Sinica – sequence: 7 givenname: Yung‐Ming surname: Jeng fullname: Jeng, Yung‐Ming organization: National Taiwan University – sequence: 8 givenname: Shiue‐Cheng surname: Tang fullname: Tang, Shiue‐Cheng organization: National Tsing Hua University – sequence: 9 givenname: Mei‐Hsin surname: Chung fullname: Chung, Mei‐Hsin organization: National Taiwan University Hospital−Hsinchu Branch – sequence: 10 givenname: Chia‐Ning surname: Shen fullname: Shen, Chia‐Ning organization: Academia Sinica – sequence: 11 givenname: Ming‐Chu surname: Chang fullname: Chang, Ming‐Chu organization: National Taiwan University Hospital – sequence: 12 givenname: Yu‐Ting surname: Chang fullname: Chang, Yu‐Ting organization: National Taiwan University Hospital – sequence: 13 givenname: Yu‐Wen surname: Tien fullname: Tien, Yu‐Wen organization: National Taiwan University Hospital – sequence: 14 givenname: Wen‐Hwa orcidid: 0000-0002-3117-931X surname: Lee fullname: Lee, Wen‐Hwa email: whlee@uci.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37964407$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEQx1eoiJbSK0e0EhcOTRh_rdcntAoUIlqKKHC1vP4IjjZ2sDdBvfEIPCNPwiYpUdtLT7ZnfvOf8cw8LQ5CDLYoniMYIwD8Wpl1HmPABBCm8Kg4wkjUI1JTenDrflic5DwHAMQIp6h-UhwSLipKgR8V7jLoOLPB6_Ljl-bqtLxYaR9KelqqYMpG9349PJu_v_9cWONVb0155tsU207lfudXvY-hnMS4tGkAShdT-VmF6adyGnzvt-5nxWOnumxPbs7j4tvZu6-TD6Pzy_fTSXM-0owAHhnEqLbC4FZTomvDVGu4gcqy1oADrAnHtjYCC6SoYBQjJ9qKO-5Ag1CGHBfTna6Jai6XyS9UupZRebk1xDSTKvVed1ZSBbbmuuKb5jFuW661tkwpgYhzphq03uy0lqt2YY22oU-quyN61xP8DzmLa4mAM4ooGxRe3Sik-HNlcy8XPmvbdSrYuMoS1wJIhVm9SfbyHjqPqxSGXkksoOLVwJCBenG7pH0t_-c5AOMdoFPMOVm3RxDIzc7Izc7I_c4MAfRegPb9dmTDl3z3YNgv39nrB5LI5u33q4rXmPwDCRzVRg |
CitedBy_id | crossref_primary_10_1080_13880209_2024_2421759 |
Cites_doi | 10.1038/s41586-019-0891-2 10.18632/oncotarget.13122 10.1016/j.canlet.2023.216150 10.1158/1541-7786.MCR-06-0353 10.1046/j.1432-1033.2002.03032.x 10.1007/978-1-0716-0623-0_18 10.1038/s41598-021-02860-5 10.1245/s10434-018-07109-6 10.1158/1078-0432.CCR-21-1591 10.1007/s00534-009-0174-7 10.1093/bioinformatics/bth456 10.1101/gad.275776.115 10.1002/path.2440 10.1097/PAS.0000000000000533 10.1038/ng.806 10.1096/fj.07-9673rev 10.3748/wjg.v20.i32.11160 10.1158/0008-5472.CAN-04-3208 10.1016/j.ccell.2021.02.007 10.1016/j.smim.2020.101391 10.1053/j.gastro.2013.11.052 10.1101/gad.1158703 10.1038/nrc1695 10.1007/s00125-021-05504-5 10.1002/advs.202207010 10.1002/0471250953.bi1110s43 10.1038/s41586-020-03147-x 10.1172/JCI59227 10.1016/j.cell.2012.01.058 10.1038/nrc1097 10.1073/pnas.79.9.2845 10.1158/0008-5472.CAN-07-0175 10.2353/ajpath.2007.061176 10.1038/s41388-022-02587-1 10.1016/j.devcel.2005.09.008 10.1053/j.gastro.2010.02.011 10.1242/dev.129.10.2447 10.1038/nrgastro.2013.120 10.1101/gr.107524.110 10.1186/1471-2121-12-21 10.1016/j.humpath.2003.08.026 10.1016/S0002-9440(10)64800-6 10.1080/14728222.2017.1323880 10.1053/j.gastro.2011.12.042 10.1016/j.bbadis.2018.05.008 10.1038/nrc2761 10.1038/s41571-020-0363-5 10.1016/j.bbagrm.2015.10.014 10.1073/pnas.0705971104 10.1101/gad.1415606 10.15252/emmm.202012102 10.21769/BioProtoc.1840 10.1053/gast.2002.36018 10.1158/0008-5472.CAN-12-4384 10.1016/j.ccr.2012.03.002 10.1093/bioinformatics/btp324 10.1159/000260900 10.1093/carcin/bgs225 10.1038/300149a0 10.1016/j.ccr.2012.10.025 10.1016/S1535-6108(03)00309-X 10.15252/emmm.201606914 10.1016/j.jaut.2019.102314 10.1038/297479a0 10.1016/j.cell.2016.03.029 10.1053/j.gastro.2013.01.071 10.1152/ajpgi.00071.2016 10.1186/s13046-016-0369-0 10.1007/s10911-004-1402-z 10.1038/s41467-022-30638-4 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202301240 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_4a0e87c67012457eb7ccce5aa913ffd6 PMC10754145 37964407 10_1002_advs_202301240 ADVS6782 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Academia Sinica funderid: AS‐KPQ‐111‐KNT; AS‐GC‐110‐MD03; AS‐SUMMIT‐109 – fundername: Ministry of Science and Technology, Taiwan funderid: 110‐2326‐B‐001‐012 – fundername: Academia Sinica grantid: AS-KPQ-111-KNT – fundername: Academia Sinica grantid: AS-GC-110-MD03 – fundername: Ministry of Science and Technology, Taiwan grantid: 110-2326-B-001-012 – fundername: Academia Sinica grantid: AS-SUMMIT-109 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5302-d154ce9d2bc43c8d5abd7d06e5bd0f02c372e8d9291a495421f9b67f7f0c09ad3 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:27:35 EDT 2025 Thu Aug 21 18:37:11 EDT 2025 Tue Aug 05 11:27:05 EDT 2025 Fri Jul 25 07:37:22 EDT 2025 Mon Jul 21 06:04:35 EDT 2025 Tue Jul 01 04:00:00 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:15:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | αSMA+ fibroblast Kras Muc4 PanIN activin A |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5302-d154ce9d2bc43c8d5abd7d06e5bd0f02c372e8d9291a495421f9b67f7f0c09ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4248-0896 0000-0002-3117-931X |
OpenAccessLink | https://www.proquest.com/docview/2906768633?pq-origsite=%requestingapplication% |
PMID | 37964407 |
PQID | 2906768633 |
PQPubID | 4365299 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a0e87c67012457eb7ccce5aa913ffd6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10754145 proquest_miscellaneous_2890362586 proquest_journals_2906768633 pubmed_primary_37964407 crossref_primary_10_1002_advs_202301240 crossref_citationtrail_10_1002_advs_202301240 wiley_primary_10_1002_advs_202301240_ADVS6782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 10 2017; 8 2004; 20 2021; 64 2004; 9 2019; 566 2020; 17 2005; 65 2003; 17 2020; 12 2011; 12 2012 2007; 122 67 2017; 9 2016; 35 2014; 20 2020; 2148 2018; 1864 2007; 171 2021; 39 2019; 26 2004; 35 2016; 311 2003; 3 2003; 4 2002; 269 2021; 590 2007; 5 2017 2020 2023; 21 47 10 2012; 22 2012; 21 2007 2019; 104 104 2009; 25 2012; 142 2017 2021 2023; 38 27 561 2000; 157 2016 2013 2016; 165 144 30 2012; 149 2012; 33 2006 2015; 20 39 2008 2013; 22 10 2011 2010 2013; 43 20 43 2023; 42 2016; 6 2010 2020; 17 9 2021; 11 2010; 138 2015; 1849 2013; 78 2013; 73 2005; 9 2002; 123 2005; 5 2022; 13 2002; 129 2009; 9 2008; 216 1982 1982 1982; 297 79 300 2014; 146 e_1_2_9_50_3 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_50_2 e_1_2_9_10_2 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_2 e_1_2_9_33_1 e_1_2_9_54_1 Kumar S. (e_1_2_9_12_1) 2017; 38 e_1_2_9_12_3 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_35_2 e_1_2_9_16_1 e_1_2_9_35_3 e_1_2_9_37_1 Gout J. (e_1_2_9_52_1) 2013; 78 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_43_2 e_1_2_9_8_1 e_1_2_9_4_3 e_1_2_9_6_1 e_1_2_9_4_2 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_26_2 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_17_3 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 Mallya K. (e_1_2_9_13_2) 2020; 9 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 22 start-page: 737 year: 2012 publication-title: Cancer Cell – volume: 17 start-page: 3112 year: 2003 publication-title: Genes Dev. – volume: 269 start-page: 3637 year: 2002 publication-title: Eur. J. Biochem. – volume: 20 year: 2014 publication-title: World J. Gastroenterol. – volume: 17 9 start-page: 108 year: 2010 2020 publication-title: J. Hepatobiliary Pancreat. Sci. Biol. Open – volume: 1849 start-page: 1375 year: 2015 publication-title: Biochim. Biophys. Acta – volume: 25 start-page: 1754 year: 2009 publication-title: Bioinformatics – volume: 171 start-page: 263 year: 2007 publication-title: Am J Pathol – volume: 64 start-page: 2266 year: 2021 publication-title: Diabetologia – volume: 311 start-page: G412 year: 2016 publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 35 start-page: 122 year: 2004 publication-title: Hum. Pathol. – volume: 17 start-page: 527 year: 2020 publication-title: Nat. Rev. Clin. Oncol. – volume: 10 start-page: 434 year: 2010 publication-title: Pancreatology – volume: 21 start-page: 327 year: 2012 publication-title: Cancer Cell – volume: 38 27 561 start-page: 6787 year: 2017 2021 2023 publication-title: Carcinogenesis Clin. Cancer Res. Cancer Lett. – volume: 21 47 10 start-page: 657 year: 2017 2020 2023 publication-title: Expert Opin. Ther. Targets Semin. Immunol. Adv. Sci. (Weinh) – volume: 9 start-page: 874 year: 2009 publication-title: Nat. Rev. Cancer – volume: 20 39 start-page: 1218 1730 year: 2006 2015 publication-title: Genes Dev. Am. J. Surg. Pathol. – volume: 590 start-page: 642 year: 2021 publication-title: Nature – volume: 9 start-page: 1660 year: 2017 publication-title: EMBO Mol. Med. – volume: 129 start-page: 2447 year: 2002 publication-title: Development – volume: 157 start-page: 1623 year: 2000 publication-title: Am. J. Pathol. – volume: 20 start-page: 3710 year: 2004 publication-title: Bioinformatics – volume: 78 year: 2013 publication-title: J. Vis. Exp. – volume: 1864 start-page: 2538 year: 2018 publication-title: Biochim. Biophys. Acta Mol. Basis Dis. – volume: 42 start-page: 759 year: 2023 publication-title: Oncogene – volume: 149 start-page: 656 year: 2012 publication-title: Cell – volume: 9 start-page: 535 year: 2005 publication-title: Dev. Cell – volume: 26 start-page: 807 year: 2019 publication-title: Ann Surg Oncol – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 142 start-page: 730 year: 2012 publication-title: Gastroenterology – volume: 5 start-page: 309 year: 2007 publication-title: Mol. Cancer Res. – volume: 122 67 start-page: 639 9518 year: 2012 2007 publication-title: J. Clin. Invest. Cancer Res. – volume: 12 year: 2020 publication-title: EMBO Mol. Med. – volume: 566 start-page: 126 year: 2019 publication-title: Nature – volume: 138 start-page: 2519 year: 2010 publication-title: Gastroenterology – volume: 43 20 43 start-page: 491 1297 11.10.1 year: 2011 2010 2013 publication-title: Nat. Genet. Genome Res. Curr. Protoc. Bioinformatics – volume: 3 start-page: 459 year: 2003 publication-title: Nat. Rev. Cancer – volume: 33 start-page: 1953 year: 2012 publication-title: Carcinogenesis – volume: 104 104 year: 2007 2019 publication-title: Proc. Natl. Acad. Sci. U S A J. Autoimmun. – volume: 165 144 30 start-page: 910 1220 355 year: 2016 2013 2016 publication-title: Cell Gastroenterology Genes Dev. – volume: 297 79 300 start-page: 479 2845 149 year: 1982 1982 1982 publication-title: Nature Proc. Natl. Acad. Sci. U S A Nature – volume: 22 10 start-page: 966 607 year: 2008 2013 publication-title: FASEB J. Nat. Rev. Gastroenterol. Hepatol. – volume: 9 start-page: 297 year: 2004 publication-title: J. Mammary Gland Biol. Neoplasia – volume: 35 start-page: 91 year: 2016 publication-title: J. Exp. Clin. Cancer Res. – volume: 2148 start-page: 277 year: 2020 publication-title: Methods Mol. Biol. – volume: 5 start-page: 675 year: 2005 publication-title: Nat. Rev. Cancer – volume: 123 start-page: 1052 year: 2002 publication-title: Gastroenterology – volume: 13 start-page: 2945 year: 2022 publication-title: Nat. Commun. – volume: 146 start-page: 822 year: 2014 publication-title: Gastroenterology – volume: 12 start-page: 21 year: 2011 publication-title: BMC Cell Biol. – volume: 73 start-page: 4909 year: 2013 publication-title: Cancer Res. – volume: 4 start-page: 437 year: 2003 publication-title: Cancer Cell – volume: 65 start-page: 5045 year: 2005 publication-title: Cancer Res. – volume: 6 year: 2016 publication-title: Bio‐Protocol – volume: 216 start-page: 387 year: 2008 publication-title: J. Pathol. – volume: 39 start-page: 548 year: 2021 publication-title: Cancer Cell – volume: 8 year: 2017 publication-title: Oncotarget – ident: e_1_2_9_19_1 doi: 10.1038/s41586-019-0891-2 – ident: e_1_2_9_22_1 doi: 10.18632/oncotarget.13122 – ident: e_1_2_9_12_3 doi: 10.1016/j.canlet.2023.216150 – ident: e_1_2_9_40_1 doi: 10.1158/1541-7786.MCR-06-0353 – ident: e_1_2_9_39_1 doi: 10.1046/j.1432-1033.2002.03032.x – ident: e_1_2_9_57_1 doi: 10.1007/978-1-0716-0623-0_18 – ident: e_1_2_9_41_1 doi: 10.1038/s41598-021-02860-5 – ident: e_1_2_9_46_1 doi: 10.1245/s10434-018-07109-6 – ident: e_1_2_9_12_2 doi: 10.1158/1078-0432.CCR-21-1591 – ident: e_1_2_9_13_1 doi: 10.1007/s00534-009-0174-7 – ident: e_1_2_9_51_1 doi: 10.1093/bioinformatics/bth456 – ident: e_1_2_9_17_3 doi: 10.1101/gad.275776.115 – ident: e_1_2_9_59_1 doi: 10.1002/path.2440 – volume: 9 year: 2020 ident: e_1_2_9_13_2 publication-title: Biol. Open – ident: e_1_2_9_1_2 doi: 10.1097/PAS.0000000000000533 – ident: e_1_2_9_50_1 doi: 10.1038/ng.806 – ident: e_1_2_9_10_1 doi: 10.1096/fj.07-9673rev – ident: e_1_2_9_44_1 doi: 10.3748/wjg.v20.i32.11160 – ident: e_1_2_9_42_1 doi: 10.1158/0008-5472.CAN-04-3208 – ident: e_1_2_9_29_1 doi: 10.1016/j.ccell.2021.02.007 – ident: e_1_2_9_35_2 doi: 10.1016/j.smim.2020.101391 – ident: e_1_2_9_7_1 doi: 10.1053/j.gastro.2013.11.052 – ident: e_1_2_9_21_1 doi: 10.1101/gad.1158703 – volume: 78 year: 2013 ident: e_1_2_9_52_1 publication-title: J. Vis. Exp. – ident: e_1_2_9_31_1 doi: 10.1038/nrc1695 – ident: e_1_2_9_45_1 doi: 10.1007/s00125-021-05504-5 – ident: e_1_2_9_35_3 doi: 10.1002/advs.202207010 – ident: e_1_2_9_50_3 doi: 10.1002/0471250953.bi1110s43 – ident: e_1_2_9_18_1 doi: 10.1038/s41586-020-03147-x – volume: 38 year: 2017 ident: e_1_2_9_12_1 publication-title: Carcinogenesis – ident: e_1_2_9_26_1 doi: 10.1172/JCI59227 – ident: e_1_2_9_5_1 doi: 10.1016/j.cell.2012.01.058 – ident: e_1_2_9_3_1 doi: 10.1038/nrc1097 – ident: e_1_2_9_4_2 doi: 10.1073/pnas.79.9.2845 – ident: e_1_2_9_26_2 doi: 10.1158/0008-5472.CAN-07-0175 – ident: e_1_2_9_30_1 doi: 10.2353/ajpath.2007.061176 – ident: e_1_2_9_16_1 doi: 10.1038/s41388-022-02587-1 – ident: e_1_2_9_34_1 doi: 10.1016/j.devcel.2005.09.008 – ident: e_1_2_9_47_1 doi: 10.1053/j.gastro.2010.02.011 – ident: e_1_2_9_36_1 doi: 10.1038/s41388-022-02587-1 – ident: e_1_2_9_48_1 doi: 10.1242/dev.129.10.2447 – ident: e_1_2_9_10_2 doi: 10.1038/nrgastro.2013.120 – ident: e_1_2_9_50_2 doi: 10.1101/gr.107524.110 – ident: e_1_2_9_56_1 doi: 10.1186/1471-2121-12-21 – ident: e_1_2_9_24_1 doi: 10.1016/j.humpath.2003.08.026 – ident: e_1_2_9_55_1 doi: 10.1016/S0002-9440(10)64800-6 – ident: e_1_2_9_35_1 doi: 10.1080/14728222.2017.1323880 – ident: e_1_2_9_2_1 doi: 10.1053/j.gastro.2011.12.042 – ident: e_1_2_9_14_1 doi: 10.1016/j.bbadis.2018.05.008 – ident: e_1_2_9_11_1 doi: 10.1038/nrc2761 – ident: e_1_2_9_27_1 doi: 10.1038/s41571-020-0363-5 – ident: e_1_2_9_37_1 doi: 10.1016/j.bbagrm.2015.10.014 – ident: e_1_2_9_43_1 doi: 10.1073/pnas.0705971104 – ident: e_1_2_9_1_1 doi: 10.1101/gad.1415606 – ident: e_1_2_9_32_1 doi: 10.15252/emmm.202012102 – ident: e_1_2_9_54_1 doi: 10.21769/BioProtoc.1840 – ident: e_1_2_9_23_1 doi: 10.1053/gast.2002.36018 – ident: e_1_2_9_8_1 doi: 10.1158/0008-5472.CAN-12-4384 – ident: e_1_2_9_28_1 doi: 10.1016/j.ccr.2012.03.002 – ident: e_1_2_9_49_1 doi: 10.1093/bioinformatics/btp324 – ident: e_1_2_9_53_1 doi: 10.1159/000260900 – ident: e_1_2_9_38_1 doi: 10.1093/carcin/bgs225 – ident: e_1_2_9_4_3 doi: 10.1038/300149a0 – ident: e_1_2_9_9_1 doi: 10.1016/j.ccr.2012.10.025 – ident: e_1_2_9_6_1 doi: 10.1016/S1535-6108(03)00309-X – ident: e_1_2_9_58_1 doi: 10.15252/emmm.201606914 – ident: e_1_2_9_43_2 doi: 10.1016/j.jaut.2019.102314 – ident: e_1_2_9_4_1 doi: 10.1038/297479a0 – ident: e_1_2_9_17_1 doi: 10.1016/j.cell.2016.03.029 – ident: e_1_2_9_17_2 doi: 10.1053/j.gastro.2013.01.071 – ident: e_1_2_9_20_1 doi: 10.1152/ajpgi.00071.2016 – ident: e_1_2_9_15_1 doi: 10.1186/s13046-016-0369-0 – ident: e_1_2_9_25_1 doi: 10.1007/s10911-004-1402-z – ident: e_1_2_9_33_1 doi: 10.1038/s41467-022-30638-4 |
SSID | ssj0001537418 |
Score | 2.2844899 |
Snippet | Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate... Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate... Abstract Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2301240 |
SubjectTerms | activin A Animals Carcinoma in Situ - genetics Carcinoma in Situ - pathology Carcinoma, Pancreatic Ductal - genetics Fibroblasts Genes Genomes Humans Kras Metastasis Mice Mice, Transgenic Muc4 Mucin-4 Mutation Pancreatic cancer Pancreatic Neoplasms - genetics PanIN Proto-Oncogene Proteins p21(ras) - genetics Transgenic animals αSMA+ fibroblast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQ5TdQkJGQAKlRncSJneNSsWpBWxClUm-RPXbESsipYJczj8Az8iTM2NloV4B64Zh44lgz48w3sf0NY89p5UZKZ3MMBiqXthG5Nd7mTjvwlfCyd_S_Y3HWnFzIt5f15VapL9oTluiBk-KOpBFeK2gUfkllrbxVAOBrY9qi6nsXybYx5m0lU-l8cEW0LBuWRlEeGfed2LkRcWM_YicKRbL-vyHMPzdKbgPYGIHmt9mtETryWRryPrvhwx22P07Ob_zlyCD96i7r3wcY0DOWwN99nJ0f8sUaloHLQ26C4zP6xOHl7NePn4tYqcM7Pse0ebAIpVepPRqMHw_DFbEue47Yln8w4fSMn9J2o9h8j13M33w6PsnHggo5UHGg3CFeAt-60oKsQLvaWKecaHxtnehFCZUqvXaImAqDiZMsi761jepVL0C0xlX32V4Ygn_IuFIFLVm6Ah-QAI0GiakdIAAAaYx0Gcs3Cu5gZBunohdfusSTXHZkkG4ySMZeTPJXiWfjn5KvyV6TFPFjxxvoNd3oNd11XpOxg421u3HS4itaDN2NbqoqY8-mZpxutIZigh_WKKNbivm1xi4eJOeYRlLRsV5MkDOmd9xmZ6i7LWH5OVJ6YxJO9dhrVFv0sGt00CFmOUeYUT76H8p4zG5Sz2mTzgHbW31d-ycItVb2aZxVvwFG0yYP priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQuXBBlN9AQUZCAqRGTWIndo5LxaoFbakolXqL7LEDKyGnanc58wg8I0_CjJNNGwFCHBNPHMvj8Xzjn28Ye0E7N1I6m6IzUKm0VZZa423qtAMvMi9bR-sdi6Pq4FS-OyvPrt3i7_khxgU3sow4X5OBG3u5d0Uaatw3ottGCI0uCoP2m3S_lg71FfL4apWlFETPQhnmMLpOhZZyw9yYFXvTKiaeKRL4_wl1_n548jqojV5pfofdHuAkn_X632Y3fLjLtgeDveSvBlbp1_dY-yFAh6NlCfz9x9nJLl-sYRm43OUmOD6jaQ8fZz-__1jE7B3e8Tn2T2cRXq_68qhEvt9158TE7DniXX5swuERP6QjSLH4Pjudv_20f5AOSRZSoIRBqUMMBb52hQUpQLvSWKdcVvnSuqzNChCq8NohisoNBlOyyNvaVqpVbQZZbZx4wLZCF_wjxpXKaRvT5fiBBKg0SAz3AEEBSGOkS1i66eAGBgZySoTxtem5k4uGFNKMCknYy1H-vOfe-KvkG9LXKEWc2fFFd_G5GUywkSbzWkGl6JNSeasAwJfG1LloW1clbGej7WYwZPxFje680pUQCXs-FqMJ0r6KCb5bo4yuCQeUGqt42A-OsSWCrvpi0JwwPRk2k6ZOS8LyS6T5xsCccrSX2G1xhP2jDxrEMScIPYrH_yn_hN2il_0ZnR22tbpY-6eItFb2WTSmX7Y0ISk priority: 102 providerName: Wiley-Blackwell |
Title | Oncogenic KRAS, Mucin 4, and Activin A‐Mediated Fibroblast Activation Cooperate for PanIN Initiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202301240 https://www.ncbi.nlm.nih.gov/pubmed/37964407 https://www.proquest.com/docview/2906768633 https://www.proquest.com/docview/2890362586 https://pubmed.ncbi.nlm.nih.gov/PMC10754145 https://doaj.org/article/4a0e87c67012457eb7ccce5aa913ffd6 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdY-8ILYnwGRmUkJEBaNCdx4uQJdWPVBrRUK5P2FtlnByqhpGwtfz93iRuo-HpMbTeu7873u7P7O8Ze0MmNlNaE6AxUKE0mQqOdCW1uwSXCycpSvmM6y84u5bur9Mon3G78tcrtnthu1LYBypEfES05QuMsSd6svoVUNYpOV30JjT02xC04zwdseHw6m1_8zLKkCdGzbNkaRXyk7Xdi6UbkjZ5N7HijlrT_T0jz9wuTvwLZ1hNN7rI7HkLycSfzfXbL1ffYvjfSG_7KM0m_vs_sxxoa1JAl8PcX48Uhn25gWXN5yHVt-Zi2Onwch9O2XoezfILBc2MQUK-71lZs_KRpVsS97DgiXD7X9fmMn9Olo7b5AbucnH46OQt9WYUQqERQaBE1gStsbEAmkNtUG6usyFxqrKhEDImKXW4RN0UawycZR1VhMlWpSoAotE0eskHd1O4x40pFdHBpIxwgAbIcJAZ4gDAApNbSBizcLm8JnnOcSl98LTu25LgkcZS9OAL2su-_6tg2_trzmKTV9yKW7PaD5vpz6Y2ulFq4XEGmaEiqnFEA4FKtiyipKpsF7GAr69KbLr6iV7SAPe-b0ejoJEXXrtlgn7wgz5_m-BWPOtXoZ5LQn3sxTA5YvqM0O1PdbamXX1pibwzFqSp7isvW6td_1qBE5LJAsBE_-ffveMpu05juEs4BG6yvN-4ZQqm1GbG9WM5HbDh-O_2wGHnrGbWJiR89uh_G |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6V9AFeKsoZKLBIIECq1Y299toPCKWlUUKaUPWQ-mb2comE7NAmIP4Uv5EZXxBxPfXR3sPrndnZb_b4BuAZ7dwIYbWHk4H0hI64p5XTno2tcQF3IrO03jGZRsNT8e4sPFuD781dGDpW2djE0lDbwtAa-Q7RkiM0joLgzfyzR1GjaHe1CaFRqcXYffuKLtvl69FblO9z3x_sn-wNvTqqgGcoQo5nETQYl1hfGxGY2IZKW2l55EJtecZ9E0jfxRZhQ0-h9yD8XpboSGYy44YnygZY7zVYF0HE_Q6s7-5PD49-ruqEAdHBNOyQ3N9R9guxgiPSx5mUr8x-ZZCAPyHb3w9o_gqcy5lvcBM2asjK-pWObcKay2_BZm0ULtnLmrn61W2w73NToEbODBsf9Y-32WRpZjkT20zllvXJtOJj35uU8UGcZQN01guNAH5RpZZqwvaKYk5cz44homaHKh9N2YgOOZXJd-D0Sjr8LnTyInf3gUnZo41S28MCwpgoNgIdSoOwwwilhO2C13RvamqOcwq18Smt2Jn9lMSRtuLowos2_7xi9_hrzl2SVpuLWLnLF8XFeVoP8lQo7mJpIklFQum0NMa4UKmkF2SZjbqw1cg6rU0FfqJV7C48bZNxkNPOjcpdscQ8cUJII4yxinuVarQtCegyMbrlXYhXlGalqasp-exjSSSOrj9FgQ-x20r9-k8fpIiUjhHc-A_-_R9P4PrwZHKQHoym44dwg8pXB4C2oLO4WLpHCOMW-nE9dhh8uOrh-gM9aFmf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVEK8IMppKLBIIECqFR9rr_2AUHpEDSEhaqnUN3cvQyRkhzYB8df4dcz4gojrqY_O7trOzrHf7I6_AXhKJzecG-XiYiBcrmLPVdIq1yRG29CzPDe03zGZxocn_M1pdLoB39tvYSitsvWJlaM2paY98j7RkiM0jsOwnzdpEbP94evFZ5cqSNFJa1tOo1aRsf32FcO3i1ejfZT1syAYHrzfO3SbCgOupmo5rkEAoW1qAqV5qBMTSWWE8WIbKePlXqBDEdjEIITwJUYSPPDzVMUiF7mnvVSaEO97BTYFRUU92Nw9mM6Ofu7wRCFRw7RMkV7Ql-YLMYQj6sdV1VtbCauCAX9Cub8na_4KoqtVcHgDrjfwlQ1qfduCDVvchK3GQVywFw2L9ctbYN4VukTtnGs2Phoc77DJSs8LxneYLAwbkJvFy4E7qWqFWMOGGLiXCsH8sm6tVIbtleWCeJ8tQ3TNZrIYTdmIEp6q5ttwcikTfgd6RVnYe8CE8OnQ1Pg4gGsdJ5pjcKkRgmguJTcOuO30ZrrhO6eyG5-ymqk5yEgcWScOB553_Rc108dfe-6StLpexNBd_VCef8gag8-49GwidCxoSCSsElprG0mZ-mGem9iB7VbWWeM28BGdkjvwpGtGg6dTHFnYcoV9kpRQR5TgLe7WqtG9SUgfFqMyOpCsKc3aq663FPOPFam4j9iR-zzCaav06z9zkCFqOkagE9z_9_94DFfRTLO3o-n4AVyj4XUu0Db0lucr-xAR3VI9akyHwdllW-sPamNd1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenic+KRAS%2C+Mucin+4%2C+and+Activin+A%E2%80%90Mediated+Fibroblast+Activation+Cooperate+for+PanIN+Initiation&rft.jtitle=Advanced+science&rft.au=Hu%2C+Chun%E2%80%90Mei&rft.au=Huang%2C+Chien%E2%80%90Chang&rft.au=Hsu%2C+Min%E2%80%90Fen&rft.au=Chien%2C+Hung%E2%80%90Jen&rft.date=2023-12-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=36&rft_id=info:doi/10.1002%2Fadvs.202301240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202301240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |