Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency

Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 35; pp. e2308176 - n/a
Main Authors Cui, Yongxing, Hu, Junxi, Peng, Shushi, Delgado‐Baquerizo, Manuel, Moorhead, Daryl L., Sinsabaugh, Robert L., Xu, Xiaofeng, Geyer, Kevin M., Fang, Linchuan, Smith, Pete, Peñuelas, Josep, Kuzyakov, Yakov, Chen, Ji
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.09.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. This study investigates the global patterns of CUE and their links to fundamental environmental resources across climate zones. The study clarifies and theorizes resource limitations as the key mechanisms regulating CUE. Results underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
AbstractList Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. This study investigates the global patterns of CUE and their links to fundamental environmental resources across climate zones. The study clarifies and theorizes resource limitations as the key mechanisms regulating CUE. Results underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Author Xu, Xiaofeng
Kuzyakov, Yakov
Fang, Linchuan
Peñuelas, Josep
Sinsabaugh, Robert L.
Hu, Junxi
Cui, Yongxing
Delgado‐Baquerizo, Manuel
Chen, Ji
Peng, Shushi
Smith, Pete
Moorhead, Daryl L.
Geyer, Kevin M.
AuthorAffiliation 9 Department of Biology Young Harris College Young Harris GA 30582 USA
7 Department of Biology University of New Mexico Albuquerque NM 87131 USA
15 Peoples Friendship University of Russia (RUDN University) Moscow 117198 Russia
11 Institute of Biological and Environmental Sciences University of Aberdeen 23 St. Machar Drive Aberdeen AB24 3UU UK
13 CREAF, 08913 Cerdanyola del Vallès Barcelona Catalonia 08193 Spain
8 Biology Department San Diego State University San Diego CA 92182 USA
6 Department of Environmental Sciences University of Toledo Toledo OH 43606 USA
10 School of Resource and Environmental Engineering Wuhan University of Technology Wuhan 430070 China
14 Department of Soil Science of Temperate Ecosystems Department of Agricultural Soil Science University of Goettingen 37077 Göttingen Germany
4 College of Forestry Sichuan Agricultural University Chengdu 611130 China
17 Institute of Global Environmental Change Department of Earth and Environmental Science School of Human Settlements and Ci
AuthorAffiliation_xml – name: 16 State Key Laboratory of Loess and Quaternary Geology Institute of Earth Environment Chinese Academy of Sciences Xi'an 710061 China
– name: 5 Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC, Av. Reina Mercedes 10 Sevilla E‐41012 Spain
– name: 13 CREAF, 08913 Cerdanyola del Vallès Barcelona Catalonia 08193 Spain
– name: 7 Department of Biology University of New Mexico Albuquerque NM 87131 USA
– name: 8 Biology Department San Diego State University San Diego CA 92182 USA
– name: 15 Peoples Friendship University of Russia (RUDN University) Moscow 117198 Russia
– name: 1 Institute of Biology Freie Universität Berlin 14195 Berlin Germany
– name: 6 Department of Environmental Sciences University of Toledo Toledo OH 43606 USA
– name: 9 Department of Biology Young Harris College Young Harris GA 30582 USA
– name: 3 Sino‐French Institute for Earth System Science College of Urban and Environmental Sciences Peking University Beijing 100871 China
– name: 14 Department of Soil Science of Temperate Ecosystems Department of Agricultural Soil Science University of Goettingen 37077 Göttingen Germany
– name: 12 CSIC, Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Barcelona Catalonia 08913 Spain
– name: 2 Department of Agroecology Aarhus University Tjele 8830 Denmark
– name: 10 School of Resource and Environmental Engineering Wuhan University of Technology Wuhan 430070 China
– name: 17 Institute of Global Environmental Change Department of Earth and Environmental Science School of Human Settlements and Civil Engineering Xi'an Jiaotong University Xi'an Shaanxi Province 710049 China
– name: 4 College of Forestry Sichuan Agricultural University Chengdu 611130 China
– name: 11 Institute of Biological and Environmental Sciences University of Aberdeen 23 St. Machar Drive Aberdeen AB24 3UU UK
Author_xml – sequence: 1
  givenname: Yongxing
  orcidid: 0000-0002-8624-2785
  surname: Cui
  fullname: Cui, Yongxing
  email: cuiyongxing@zedat.fu-berlin.de
  organization: Peking University
– sequence: 2
  givenname: Junxi
  surname: Hu
  fullname: Hu, Junxi
  organization: Sichuan Agricultural University
– sequence: 3
  givenname: Shushi
  surname: Peng
  fullname: Peng, Shushi
  organization: Peking University
– sequence: 4
  givenname: Manuel
  surname: Delgado‐Baquerizo
  fullname: Delgado‐Baquerizo, Manuel
  organization: Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS)
– sequence: 5
  givenname: Daryl L.
  surname: Moorhead
  fullname: Moorhead, Daryl L.
  organization: University of Toledo
– sequence: 6
  givenname: Robert L.
  surname: Sinsabaugh
  fullname: Sinsabaugh, Robert L.
  organization: University of New Mexico
– sequence: 7
  givenname: Xiaofeng
  surname: Xu
  fullname: Xu, Xiaofeng
  organization: San Diego State University
– sequence: 8
  givenname: Kevin M.
  surname: Geyer
  fullname: Geyer, Kevin M.
  organization: Young Harris College
– sequence: 9
  givenname: Linchuan
  surname: Fang
  fullname: Fang, Linchuan
  organization: Wuhan University of Technology
– sequence: 10
  givenname: Pete
  surname: Smith
  fullname: Smith, Pete
  organization: University of Aberdeen
– sequence: 11
  givenname: Josep
  surname: Peñuelas
  fullname: Peñuelas, Josep
  organization: CSIC, Global Ecology Unit CREAF‐CSIC‐UAB
– sequence: 12
  givenname: Yakov
  surname: Kuzyakov
  fullname: Kuzyakov, Yakov
  organization: Peoples Friendship University of Russia (RUDN University)
– sequence: 13
  givenname: Ji
  orcidid: 0000-0001-7026-6312
  surname: Chen
  fullname: Chen, Ji
  email: chenji@ieecas.cn, ji.chen@agro.au.dk
  organization: Xi'an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39024521$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1PGzEQhq2KqlDKtcdqpV56CfX4a72nCgVKkVK1KtCr5fXOBkcbG-wNVf59nYZGwIWTLc87z4znnbdkL8SAhLwHegyUss-2u8_HjDJONdTqFTlg0OgJ10LsPbrvk6OcF5RSkLwWoN-Qfd5QJiSDA3I180s_-jCvfmGOq-QwV6fY-4DVeIPV-RBbO1Q_7ThiClXsq8voh-q7dym2vkSmNrUxVNcZq7O-985jcOt35HVvh4xHD-chuf56djX9Npn9OL-YnswmTnIKE20RbSdQ1k2LHdNMgqqlba2kTClQ0HYN6-qe94o6pTVtUNVUW-i0BEDBD8nFlttFuzC3yS9tWptovfn3ENPc2DR6N6Bh1DGhXYE2IGShqVa4DjQDxgSVXWF92bJuV-0SO4dhTHZ4An0aCf7GzOO9ARBMMg2F8OmBkOLdCvNolj47HAYbMK6yKS4xxRRveJF-fCZdlNmHMivDgTZKaJC6qD48bmnXy3_3iuB4Kyhu5Jyw30mAms2GmM2GmN2GlATxLMH50Y4-br7khxfT_vgB1y8UMSenvy91o4D_BRsczJY
CitedBy_id crossref_primary_10_1007_s42832_024_0284_9
crossref_primary_10_1111_gcb_17616
crossref_primary_10_1007_s11104_024_07059_x
crossref_primary_10_1021_acs_est_4c07264
crossref_primary_10_1016_j_jenvman_2025_124898
crossref_primary_10_1016_j_apsoil_2024_105656
crossref_primary_10_1111_gcb_17543
crossref_primary_10_1111_gcb_70036
Cites_doi 10.1016/j.soilbio.2020.107996
10.1038/sdata.2018.214
10.5194/bg-15-5929-2018
10.1016/j.soilbio.2022.108677
10.1038/s41579-022-00695-z
10.1016/j.soilbio.2020.107802
10.1038/nclimate3004
10.1038/nature08632
10.1029/2023GB007727
10.1016/j.geoderma.2022.115868
10.1038/s41586-023-06042-3
10.1038/s41564-018-0201-z
10.1038/s41467-020-17502-z
10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
10.1146/annurev-ecolsys-112414-054234
10.1890/02-0472
10.1038/s41561-019-0352-4
10.1038/s41598-018-37186-2
10.1111/nph.12235
10.1038/nature16069
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1038/s43247-022-00523-5
10.1016/j.soilbio.2019.01.010
10.1126/science.abl4827
10.1111/ejss.12968
10.5194/essd-14-1917-2022
10.1111/gcb.15218
10.1111/j.1600-0706.2009.18540.x
10.1111/gcb.15550
10.1016/j.soilbio.2019.107584
10.1111/gcb.13489
10.1111/gcb.16060
10.18637/jss.v036.i03
10.1111/gcb.16226
10.1007/s10533-016-0191-y
10.1016/bs.agron.2021.11.002
10.1111/gcb.16765
10.1016/S0038-0717(00)00084-5
10.1111/gcb.12036
10.1111/gcb.16861
10.1201/9780203904039
10.1016/j.soilbio.2018.09.036
10.1016/j.soilbio.2005.08.006
10.1073/pnas.2207832120
10.1111/nph.12334
10.1038/s41579-019-0265-7
10.1038/ismej.2017.43
10.1038/ngeo844
10.1111/geb.12029
10.18637/jss.v034.i12
10.1111/j.1469-8137.2012.04225.x
10.1038/s41586-018-0358-x
10.1016/S0038-0717(03)00015-4
10.1007/s10533-020-00720-4
10.1890/15-2110.1
10.1146/annurev-ecolsys-071112-124414
10.1038/s41579-023-00980-5
10.1111/gcb.14738
10.1111/ele.12815
10.1111/gcb.12113
10.1002/2015GB005188
10.1073/pnas.2020790118
10.1111/geb.13378
10.1038/ngeo846
10.1111/ejss.13027
10.1126/science.aav0550
10.1016/j.soilbio.2023.108997
10.1016/S0038-0717(97)00094-1
10.1111/j.1461-0248.2009.01302.x
10.1038/ncomms3934
10.1038/s41467-022-35170-z
10.1111/gcb.16071
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202308176
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_20c248c1619145c686b4cd182122405d
PMC11425281
39024521
10_1002_advs_202308176
ADVS8961
Genre article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2022M710004
– fundername: Aarhus Universitets Forskningsfond
  funderid: AUFF‐E‐2019‐7‐1
– fundername: Shaanxi Province Natural Science Foundation for Distinguished Young Scholar
  funderid: 2024JC‐JCQN‐32
– fundername: National Natural Science Foundation of China
  funderid: 2145130; 42361144886
– fundername: Spanish Government grants
  funderid: TED2021‐132627B‐I00; PID2022‐140808NB‐I00
– fundername: MCIN
  funderid: AEI/10.13039/501100011033
– fundername: Spanish Government grants
  grantid: TED2021-132627B-I00
– fundername: MCIN
  grantid: AEI/10.13039/501100011033
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M710004
– fundername: Shaanxi Province Natural Science Foundation for Distinguished Young Scholar
  grantid: 2024JC-JCQN-32
– fundername: National Natural Science Foundation of China
  grantid: 42361144886
– fundername: Spanish Government grants
  grantid: PID2022-140808NB-I00
– fundername: National Natural Science Foundation of China
  grantid: 2145130
– fundername: Aarhus Universitets Forskningsfond
  grantid: AUFF-E-2019-7-1
– fundername: Spanish Government grants
  grantid: TED2021‐132627B‐I00; PID2022‐140808NB‐I00
– fundername: Shaanxi Province Natural Science Foundation for Distinguished Young Scholar
  grantid: 2024JC‐JCQN‐32
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
CITATION
EJD
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5301-8aeead4e579bed28251675aba50266161bd92d7f3f60c68809e6708a1d8511e43
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:32:17 EDT 2025
Thu Aug 21 18:31:16 EDT 2025
Fri Jul 11 06:14:28 EDT 2025
Fri Jul 25 09:36:19 EDT 2025
Mon Jul 21 05:58:32 EDT 2025
Thu Jul 03 08:33:17 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Aug 20 07:26:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords extracellular enzymatic activity
microbial metabolisms
resource limitations
global change factors
soil carbon cycling
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5301-8aeead4e579bed28251675aba50266161bd92d7f3f60c68809e6708a1d8511e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7026-6312
0000-0002-8624-2785
OpenAccessLink https://www.proquest.com/docview/3109648158?pq-origsite=%requestingapplication%
PMID 39024521
PQID 3109648158
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_20c248c1619145c686b4cd182122405d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425281
proquest_miscellaneous_3082626393
proquest_journals_3109648158
pubmed_primary_39024521
crossref_primary_10_1002_advs_202308176
crossref_citationtrail_10_1002_advs_202308176
wiley_primary_10_1002_advs_202308176_ADVS8961
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 560
2022; 375
2021; 27
2013; 4
2023; 180
2022; 172
2013; 22
2017; 48
2023; 37
2006; 76
2006; 38
2019; 12
2008; 8
2022; 20
2020; 11
2019; 128
2021; 72
2021; 30
1999; 80
2022; 28
2019; 365
2020; 18
2013; 19
2009; 12
2018; 3
2018; 5
2023; 29
2010; 119
2019; 25
2021; 118
2013; 199
2016; 86
2024; 22
2013; 198
2010; 3
2023; 618
2003; 84
2022; 169
2010; 34
2017; 20
2019; 9
2010; 36
2023; 120
2021b; 72
2017; 23
2003; 35
2015; 528
2016; 127
2020; 145
2002
2012; 196
2016; 6
2015; 29
2020; 151
2022
2017; 11
2000; 32
2022a; 3
2020; 150
2009; 462
2019; 138
2022; 13
2022; 14
2020; 26
2016
1998; 30
2022b; 419
2012; 43
2018; 15
2019; 131
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Development Core Team R (e_1_2_10_76_1) 2016
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Muggeo V. M. R. (e_1_2_10_72_1) 2008; 8
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 9
  start-page: 1
  year: 2019
  publication-title: Sci. Rep.
– volume: 19
  start-page: 252
  year: 2013
  publication-title: Global Change Biol.
– volume: 86
  start-page: 172
  year: 2016
  publication-title: Ecol. Monogr.
– volume: 29
  start-page: 4758
  year: 2023
  publication-title: Global Change Biol.
– volume: 196
  start-page: 79
  year: 2012
  publication-title: New Phytol.
– volume: 72
  start-page: 243
  year: 2021
  publication-title: Eur. J. Soil Sci.
– volume: 29
  start-page: 1782
  year: 2015
  publication-title: Global Biogeochem. Cycles
– volume: 19
  start-page: 988
  year: 2013
  publication-title: Global Change Biol.
– volume: 43
  start-page: 313
  year: 2012
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 145
  year: 2020
  publication-title: Soil Biol. Biochem.
– volume: 11
  start-page: 1890
  year: 2017
  publication-title: ISME J.
– volume: 462
  start-page: 795
  year: 2009
  publication-title: Nature
– volume: 3
  start-page: 184
  year: 2022a
  publication-title: Commun. Earth Environ.
– volume: 72
  start-page: 679
  year: 2021b
  publication-title: Eur. J. Soil Sci.
– volume: 375
  start-page: 266
  year: 2022
  publication-title: Science
– volume: 15
  start-page: 5929
  year: 2018
  publication-title: Biogeosciences
– volume: 20
  start-page: 1182
  year: 2017
  publication-title: Ecol. Lett.
– volume: 3
  start-page: 336
  year: 2010
  publication-title: Nat. Geosci.
– volume: 34
  start-page: 1
  year: 2010
  publication-title: J. Stat. Software
– volume: 172
  start-page: 1
  year: 2022
  publication-title: Adv. Agron.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 84
  start-page: 2034
  year: 2003
  publication-title: Ecology
– volume: 3
  start-page: 315
  year: 2010
  publication-title: Nat. Geosci.
– volume: 138
  year: 2019
  publication-title: Soil Biol. Biochem.
– volume: 28
  start-page: 4977
  year: 2022
  publication-title: Global Change Biol.
– volume: 180
  year: 2023
  publication-title: Soil Biol. Biochem.
– volume: 30
  start-page: 2297
  year: 2021
  publication-title: Global Ecol. Biogeogr.
– volume: 131
  start-page: 195
  year: 2019
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 1485
  year: 2000
  publication-title: Soil Biol. Biochem.
– volume: 528
  start-page: 60
  year: 2015
  publication-title: Nature
– year: 2022
– volume: 8
  start-page: 20
  year: 2008
  publication-title: R. News
– volume: 25
  start-page: 3354
  year: 2019
  publication-title: Global Change Biol.
– volume: 22
  start-page: 737
  year: 2013
  publication-title: Global Ecol. Biogeogr
– volume: 48
  start-page: 419
  year: 2017
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 5
  year: 2018
  publication-title: Sci. Data
– volume: 618
  start-page: 981
  year: 2023
  publication-title: Nature
– volume: 4
  start-page: 2934
  year: 2013
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1
  year: 2020
  publication-title: Nat. Commun.
– volume: 29
  start-page: 4412
  year: 2023
  publication-title: Global Change Biol.
– volume: 560
  start-page: 80
  year: 2018
  publication-title: Nature
– volume: 36
  start-page: 1
  year: 2010
  publication-title: J. Stat. Software
– volume: 37
  year: 2023
  publication-title: Global Biogeochem. Cycles
– volume: 419
  year: 2022b
  publication-title: Geoderma
– volume: 80
  start-page: 1150
  year: 1999
  publication-title: Ecology
– volume: 30
  start-page: 57
  year: 1998
  publication-title: Soil Biol. Biochem.
– volume: 365
  year: 2019
  publication-title: Science
– volume: 20
  start-page: 415
  year: 2022
  publication-title: Nat. Rev. Microbiol.
– year: 2016
– volume: 151
  start-page: 237
  year: 2020
  publication-title: Biogeochemistry
– volume: 198
  start-page: 656
  year: 2013
  publication-title: New Phytol.
– volume: 6
  start-page: 791
  year: 2016
  publication-title: Nat. Clim. Change
– volume: 22
  start-page: 226
  year: 2024
  publication-title: Nat. Rev. Microbiol.
– volume: 26
  start-page: 5077
  year: 2020
  publication-title: Global Change Biol.
– volume: 76
  start-page: 151
  year: 2006
  publication-title: Ecol. Monogr.
– volume: 28
  start-page: 3110
  year: 2022
  publication-title: Global Change Biol.
– year: 2002
– volume: 12
  start-page: 424
  year: 2019
  publication-title: Nat. Geosci.
– volume: 18
  start-page: 35
  year: 2020
  publication-title: Nat. Rev. Microbiol.
– volume: 13
  start-page: 7364
  year: 2022
  publication-title: Nat. Commun.
– volume: 28
  start-page: 2169
  year: 2022
  publication-title: Global Change Biol.
– volume: 150
  year: 2020
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 977
  year: 2018
  publication-title: Nat. Microbiol.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 369
  year: 2009
  publication-title: Ecol. Lett.
– volume: 127
  start-page: 173
  year: 2016
  publication-title: Biogeochemistry
– volume: 35
  start-page: 549
  year: 2003
  publication-title: Soil Biol. Biochem.
– volume: 128
  start-page: 79
  year: 2019
  publication-title: Soil Biol. Biochem.
– volume: 27
  start-page: 2039
  year: 2021
  publication-title: Global Change Biol.
– volume: 38
  start-page: 898
  year: 2006
  publication-title: Soil Biol. Biochem.
– volume: 199
  start-page: 7
  year: 2013
  publication-title: New Phytol.
– volume: 23
  start-page: 2090
  year: 2017
  publication-title: Global Change Biol.
– volume: 14
  start-page: 1917
  year: 2022
  publication-title: Earth Sys. Sci. Data
– volume: 119
  start-page: 752
  year: 2010
  publication-title: Oikos
– volume: 169
  year: 2022
  publication-title: Soil Biol. Biochem.
– ident: e_1_2_10_55_1
  doi: 10.1016/j.soilbio.2020.107996
– ident: e_1_2_10_59_1
  doi: 10.1038/sdata.2018.214
– ident: e_1_2_10_8_1
  doi: 10.5194/bg-15-5929-2018
– ident: e_1_2_10_5_1
  doi: 10.1016/j.soilbio.2022.108677
– ident: e_1_2_10_30_1
  doi: 10.1038/s41579-022-00695-z
– ident: e_1_2_10_57_1
  doi: 10.1016/j.soilbio.2020.107802
– ident: e_1_2_10_40_1
  doi: 10.1038/nclimate3004
– ident: e_1_2_10_66_1
  doi: 10.1038/nature08632
– ident: e_1_2_10_33_1
  doi: 10.1029/2023GB007727
– ident: e_1_2_10_64_1
  doi: 10.1016/j.geoderma.2022.115868
– ident: e_1_2_10_6_1
  doi: 10.1038/s41586-023-06042-3
– ident: e_1_2_10_74_1
– ident: e_1_2_10_20_1
  doi: 10.1038/s41564-018-0201-z
– ident: e_1_2_10_7_1
  doi: 10.1038/s41467-020-17502-z
– ident: e_1_2_10_48_1
  doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
– ident: e_1_2_10_58_1
  doi: 10.1146/annurev-ecolsys-112414-054234
– ident: e_1_2_10_73_1
  doi: 10.1890/02-0472
– ident: e_1_2_10_42_1
  doi: 10.1038/s41561-019-0352-4
– ident: e_1_2_10_14_1
  doi: 10.1038/s41598-018-37186-2
– ident: e_1_2_10_32_1
  doi: 10.1111/nph.12235
– ident: e_1_2_10_35_1
  doi: 10.1038/nature16069
– ident: e_1_2_10_70_1
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– ident: e_1_2_10_23_1
– ident: e_1_2_10_43_1
  doi: 10.1038/s43247-022-00523-5
– volume-title: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing
  year: 2016
  ident: e_1_2_10_76_1
– ident: e_1_2_10_13_1
  doi: 10.1016/j.soilbio.2019.01.010
– ident: e_1_2_10_24_1
  doi: 10.1126/science.abl4827
– ident: e_1_2_10_54_1
  doi: 10.1111/ejss.12968
– ident: e_1_2_10_2_1
  doi: 10.5194/essd-14-1917-2022
– ident: e_1_2_10_63_1
  doi: 10.1111/gcb.15218
– ident: e_1_2_10_69_1
  doi: 10.1111/j.1600-0706.2009.18540.x
– ident: e_1_2_10_18_1
  doi: 10.1111/gcb.15550
– ident: e_1_2_10_31_1
  doi: 10.1016/j.soilbio.2019.107584
– ident: e_1_2_10_21_1
  doi: 10.1111/gcb.13489
– ident: e_1_2_10_60_1
  doi: 10.1111/gcb.16060
– ident: e_1_2_10_71_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_10_4_1
  doi: 10.1111/gcb.16226
– ident: e_1_2_10_10_1
  doi: 10.1007/s10533-016-0191-y
– ident: e_1_2_10_51_1
  doi: 10.1016/bs.agron.2021.11.002
– ident: e_1_2_10_19_1
  doi: 10.1111/gcb.16765
– ident: e_1_2_10_37_1
  doi: 10.1016/S0038-0717(00)00084-5
– ident: e_1_2_10_39_1
  doi: 10.1111/gcb.12036
– ident: e_1_2_10_34_1
  doi: 10.1111/gcb.16861
– ident: e_1_2_10_67_1
  doi: 10.1201/9780203904039
– ident: e_1_2_10_47_1
  doi: 10.1016/j.soilbio.2018.09.036
– ident: e_1_2_10_53_1
  doi: 10.1016/j.soilbio.2005.08.006
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.2207832120
– ident: e_1_2_10_3_1
  doi: 10.1111/nph.12334
– ident: e_1_2_10_22_1
  doi: 10.1038/s41579-019-0265-7
– ident: e_1_2_10_29_1
  doi: 10.1038/ismej.2017.43
– ident: e_1_2_10_45_1
  doi: 10.1038/ngeo844
– ident: e_1_2_10_36_1
  doi: 10.1111/geb.12029
– ident: e_1_2_10_75_1
  doi: 10.18637/jss.v034.i12
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1469-8137.2012.04225.x
– ident: e_1_2_10_1_1
  doi: 10.1038/s41586-018-0358-x
– ident: e_1_2_10_27_1
  doi: 10.1016/S0038-0717(03)00015-4
– volume: 8
  start-page: 20
  year: 2008
  ident: e_1_2_10_72_1
  publication-title: R. News
– ident: e_1_2_10_11_1
  doi: 10.1007/s10533-020-00720-4
– ident: e_1_2_10_25_1
  doi: 10.1890/15-2110.1
– ident: e_1_2_10_26_1
  doi: 10.1146/annurev-ecolsys-071112-124414
– ident: e_1_2_10_52_1
  doi: 10.1038/s41579-023-00980-5
– ident: e_1_2_10_9_1
  doi: 10.1111/gcb.14738
– ident: e_1_2_10_17_1
  doi: 10.1111/ele.12815
– ident: e_1_2_10_28_1
  doi: 10.1111/gcb.12113
– ident: e_1_2_10_15_1
  doi: 10.1002/2015GB005188
– ident: e_1_2_10_46_1
  doi: 10.1073/pnas.2020790118
– ident: e_1_2_10_65_1
  doi: 10.1111/geb.13378
– ident: e_1_2_10_38_1
  doi: 10.1038/ngeo846
– ident: e_1_2_10_61_1
  doi: 10.1111/ejss.13027
– ident: e_1_2_10_12_1
  doi: 10.1126/science.aav0550
– ident: e_1_2_10_50_1
  doi: 10.1016/j.soilbio.2023.108997
– ident: e_1_2_10_62_1
  doi: 10.1016/S0038-0717(97)00094-1
– ident: e_1_2_10_68_1
  doi: 10.1111/j.1461-0248.2009.01302.x
– ident: e_1_2_10_41_1
  doi: 10.1038/ncomms3934
– ident: e_1_2_10_44_1
  doi: 10.1038/s41467-022-35170-z
– ident: e_1_2_10_49_1
  doi: 10.1111/gcb.16071
SSID ssj0001537418
Score 2.4333537
Snippet Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C...
Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2308176
SubjectTerms Carbon - metabolism
Climate
Climate Change
Cold
Ecosystem
Efficiency
Environmental conditions
Experiments
extracellular enzymatic activity
Generalized linear models
global change factors
microbial metabolisms
Nutrients
Precipitation
resource limitations
Soil - chemistry
soil carbon cycling
Soil Microbiology
Soil microorganisms
Temperature effects
Terrestrial ecosystems
Water shortages
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDePIirs_6IoKgHop9pGly9LHLIiiCLuwtpGmKC0srrvr5nUm6ZRcVL143aQmTmZ1_mswvhJyCXtOi4CYE98nx040Jdc50yCsmLcuT1Djs4v0DH47Y3TgbL1z1hWfCPB7YGw4W5yZhwoAwkTHLDBe8YKYEVYxbQlFW4r8v5LyFxZSvD04RyzKnNEbJpS4_kc4NilvECBhZyEIO1v-Twvx-UHJRwLoMNNgg6610pFd-yD2yYutN0muDc0bPW4L0xRZ5dmVLkJTo_Ov8jN7aCgQlBb1HPeefPjq0Zk2bij41kym9nzgoE7Tc6LeiqeloZmnfISawPnObjAb955th2F6fEJoMwjYU2oKbMJvlsrClq1GF1YEudBZhVuZxUcqkzKu04hHYVUTS8jwSOi5RhVmW7pDVuqntHqG2yrGiNhK2TOGFUptE4izrggkk_wYknJtTmZYtjldcTJWnIicKza868wfkrOv_6qkav_a8xtnpeiEN2_0APqJaH1F_-UhADudzq9oQnSlEonJE1cDoT7pmCC7cMdG1bT6gDwgkxPXINCC73hW6kaTS7VrHARFLTrI01OWWevLiAN5Yv5wlAh4NnT_9YQMFCuVJSB7v_4cxDsgavJn5c3KHZPX97cMegbB6L45dDH0B0d0Z6A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT9wwEIdHhV56Qd0-IGVbuVKltgeLPBzHPgIFoUpUSLASt8h2HFgJJdUG-vcz42QDUUFVr_Fs5Iw9658f8xngC-o1o6x0HLtPQUs3jptCGC5rob0o0swF7OLpL3myED8v88tHWfw9H2JccKPICP_XFODGdnsP0FBT_SHcNkpolRRyA15Sfi0d6kvF2cMqS54RnoVumMPZNc-UEGtyY5zuTV8xGZkCwP8p1fn34cnHojaMSsevYWuQk2y_b_8ZvPDNG5gNAduxbwNV-vtbuAipTDhQsfWKfcd--BrdwFADsp79z84CbrNhbc3O2-UNO10GUBOWHJqVbRu26Dw7CtgJytl8B4vjo4vDEz5cqcBdjqHMlfHYdYTPC219FfJWccZgrMljGqllYiudVkWd1TJ2EmNbe1nEyiQVKTMvsvew2bSN3wHm64KybGPlqwxfqI1LNbW8sUIRDTgCvnZn6QbeOF17cVP2pOS0JPeXo_sj-Dra_-5JG89aHlDrjFZEyA4P2tVVOQQcWrtUKIefpBOR47dIK1yFsynaSozzKoL5um3LIWy7kjCpkvA1WPvPYzEGHO2imMa3d2iDookQPjqLYLvvCmNNMh12spMI1KSTTKo6LWmW1wHqTTnNearwpzz0p3_4oETVcq60TD78p_0uvMKHoj8mN4fN29Wd_4i66tZ-CqFzD7jhF-E
  priority: 102
  providerName: Wiley-Blackwell
Title Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202308176
https://www.ncbi.nlm.nih.gov/pubmed/39024521
https://www.proquest.com/docview/3109648158
https://www.proquest.com/docview/3082626393
https://pubmed.ncbi.nlm.nih.gov/PMC11425281
https://doaj.org/article/20c248c1619145c686b4cd182122405d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3ba9swFIcPa_Kyl7Hu6rULGgy2PZj6IsvS0-glpYylhKWBvhlZlrdAsdu43d-_c2Q5bdjtNToOlnSO9POR9AngPeo1LUthQnSfnFI3JtQ516GoubI8T1LjsIuzc3G25F8us0ufcOv8tsphTHQDddUaypEfEMFSEFlEfr6-CenWKFpd9Vdo7MAYh2ApRzA-mp7Pv91nWbKU8CwDrTFKDnT1kyjdqLxlTKCRB7ORg_b_SWn-vmHyoZB1M9HpU3jiJSQ77Pt8Fx7Z5hns-iDt2EdPkv70HC7c8SWcnNiQpe_Yia1RWDLUfazn_bO5Q2w2rK3Zol1dsdnKwZmw5Fivy7Zhy86yqUNN0DnNF7A8nV4cn4X-GoXQZBi-odQW3YXbLFelrdxZVfxK0KXOIpqdRVxWKqnyOq1FZATGs7Iij6SOK1JjlqcvYdS0jX0NzNY5nayNpK1S_EOlTaKot3XJJRGAAwiH5iyMZ4zTVRdXRU9HTgpq_mLT_AF82Nhf93SNv1oeUe9srIiK7X5o198LH2RobRIuDVZJxTzDuoiSmwq_oGj5MMqqAPaHvi18qHbFvWMF8G5TjEFGKye6se0d2qBQImyPSgN41bvC5k1S5Vav4wDklpNsvep2SbP64UDedI45SyQ-Gjp_-k8bFKhUFlKJ-M2_67EHj_EZ3u-E24fR7frOvkXpdFtOYCfh8wmMD09mXxcTHy0Tl4j4BfG1GBw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPJMKWAkEHCImofjOAeEaLvVlnZXFd2Veksdx4GVqqTdtCD-FL-RGefRrnideo3tKB5_tr94PN8AvEK-pmQmtIvwienoRrsq5soVBU8Mj4NQW9nF8USMZvzTcXS8Aj-7WBi6VtmtiXahzitNZ-SbpGApSFlEfjg7dylrFHlXuxQaDSz2zY_v-MtWv9_bwfF9HQS7w-n2yG2zCrg6QjS7Uhm0HjdRnGQmt6GbSJpVpiKPNivhZ3kS5HERFsLTAuGdGBF7Uvk5kRPDQ3zvLVjlofCCAaxuDSeHn69OdaKQ5GA6dUgv2FT5N1IFR6YvfRI2ubb72SQBf2K2v1_QvE6c7c63ew_utpSVfWwwtgYrprwPa-2iULO3rXL1uwcwteFSuBmyzitQsx1TIJFlyDNZk1-AHVpJz5JVBTuq5qdsPLdiUFiyrRZZVbJZbdjQSltQXOhDmN2IgR_BoKxK8wSYKWKK5PWkyUN8YaJ0kBC6VMYlKQ474HbmTHWraU6pNU7TRo05SMn8aW9-B9709c8aNY-_1tyi0elrkQq3fVAtvqTtpMbaOuBSY5cSn0fYF5FxneMfG7krvSh3YKMb27RdGur0CsgOvOyLcVKTp0aVprrEOkjMSCYoCR143ECh_5Iwsd5y3wG5BJKlT10uKedfrXA4xU1HgcSmrsXTf2yQIjM6konw1__djxdwezQdH6QHe5P9p3AH2_PmFt4GDC4Wl-YZ0raL7Hk7Vxic3PT0_AVeIVAl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMozpYCRQMAh2jycxD4gRLu7aildrWhX6i04jkNXqpKyaUH8NX4dM86jXfE69RpPong8Y3_2eL4BeIF4TYks1i6aT0JHN9pVCVduXHBpeBKE2tIuHkzj3Tn_cBwdr8HPLheGrlV2c6KdqPNK0xn5kBgsY2IWEcOivRYxG03enX11qYIURVq7chqNieybH99x-1a_3RvhWL8Mgsn4aGfXbSsMuDpCy3aFMqhJbqJEZia3aZwIoFWmIo8WrtjPchnkSREWsadjNHVp4sQTys8JqBge4ndvwHpCu6IBrG-Pp7NPlyc8UUjUMB1TpBcMVf6NGMIR9QufSE6urIS2YMCfUO7vlzWvgmi7Ck7uwO0WvrL3jb1twJop78JGO0HU7HXLYv3mHhzZ1ClcGFkXIajZyBQIahliTtbUGmAzS-9Zsqpgh9XilB0sLDEUtuyoZVaVbF4bNrY0F5Qjeh_m16LgBzAoq9I8AmaKhLJ6PWHyED8olQ4kWZrKuCD2YQfcTp2pbvnNqczGadowMwcpqT_t1e_Aq17-rGH2-KvkNo1OL0WM3PZBtfyStg6O0jrgQmOXpM8j7EuccZ3j7o1Cl16UO7DVjW3aThN1emnUDjzvm9HBKWqjSlNdoAyCNKIMkqEDDxtT6P8klDZy7jsgVoxk5VdXW8rFiSURpxzqKBD4qmvt6T86SBElHQoZ-5v_7sczuIlumX7cm-4_hlv4Om8u5G3B4Hx5YZ4ggjvPnrauwuDzdXvnL0AlVFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limiting+Resources+Define+the+Global+Pattern+of+Soil+Microbial+Carbon+Use+Efficiency&rft.jtitle=Advanced+science&rft.au=Cui%2C+Yongxing&rft.au=Hu%2C+Junxi&rft.au=Peng%2C+Shushi&rft.au=Delgado%E2%80%90Baquerizo%2C+Manuel&rft.date=2024-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=35&rft_id=info:doi/10.1002%2Fadvs.202308176&rft_id=info%3Apmid%2F39024521&rft.externalDocID=PMC11425281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon