Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency
Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C...
Saved in:
Published in | Advanced science Vol. 11; no. 35; pp. e2308176 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.09.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
This study investigates the global patterns of CUE and their links to fundamental environmental resources across climate zones. The study clarifies and theorizes resource limitations as the key mechanisms regulating CUE. Results underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. |
---|---|
AbstractList | Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
This study investigates the global patterns of CUE and their links to fundamental environmental resources across climate zones. The study clarifies and theorizes resource limitations as the key mechanisms regulating CUE. Results underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. |
Author | Xu, Xiaofeng Kuzyakov, Yakov Fang, Linchuan Peñuelas, Josep Sinsabaugh, Robert L. Hu, Junxi Cui, Yongxing Delgado‐Baquerizo, Manuel Chen, Ji Peng, Shushi Smith, Pete Moorhead, Daryl L. Geyer, Kevin M. |
AuthorAffiliation | 9 Department of Biology Young Harris College Young Harris GA 30582 USA 7 Department of Biology University of New Mexico Albuquerque NM 87131 USA 15 Peoples Friendship University of Russia (RUDN University) Moscow 117198 Russia 11 Institute of Biological and Environmental Sciences University of Aberdeen 23 St. Machar Drive Aberdeen AB24 3UU UK 13 CREAF, 08913 Cerdanyola del Vallès Barcelona Catalonia 08193 Spain 8 Biology Department San Diego State University San Diego CA 92182 USA 6 Department of Environmental Sciences University of Toledo Toledo OH 43606 USA 10 School of Resource and Environmental Engineering Wuhan University of Technology Wuhan 430070 China 14 Department of Soil Science of Temperate Ecosystems Department of Agricultural Soil Science University of Goettingen 37077 Göttingen Germany 4 College of Forestry Sichuan Agricultural University Chengdu 611130 China 17 Institute of Global Environmental Change Department of Earth and Environmental Science School of Human Settlements and Ci |
AuthorAffiliation_xml | – name: 16 State Key Laboratory of Loess and Quaternary Geology Institute of Earth Environment Chinese Academy of Sciences Xi'an 710061 China – name: 5 Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC, Av. Reina Mercedes 10 Sevilla E‐41012 Spain – name: 13 CREAF, 08913 Cerdanyola del Vallès Barcelona Catalonia 08193 Spain – name: 7 Department of Biology University of New Mexico Albuquerque NM 87131 USA – name: 8 Biology Department San Diego State University San Diego CA 92182 USA – name: 15 Peoples Friendship University of Russia (RUDN University) Moscow 117198 Russia – name: 1 Institute of Biology Freie Universität Berlin 14195 Berlin Germany – name: 6 Department of Environmental Sciences University of Toledo Toledo OH 43606 USA – name: 9 Department of Biology Young Harris College Young Harris GA 30582 USA – name: 3 Sino‐French Institute for Earth System Science College of Urban and Environmental Sciences Peking University Beijing 100871 China – name: 14 Department of Soil Science of Temperate Ecosystems Department of Agricultural Soil Science University of Goettingen 37077 Göttingen Germany – name: 12 CSIC, Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Barcelona Catalonia 08913 Spain – name: 2 Department of Agroecology Aarhus University Tjele 8830 Denmark – name: 10 School of Resource and Environmental Engineering Wuhan University of Technology Wuhan 430070 China – name: 17 Institute of Global Environmental Change Department of Earth and Environmental Science School of Human Settlements and Civil Engineering Xi'an Jiaotong University Xi'an Shaanxi Province 710049 China – name: 4 College of Forestry Sichuan Agricultural University Chengdu 611130 China – name: 11 Institute of Biological and Environmental Sciences University of Aberdeen 23 St. Machar Drive Aberdeen AB24 3UU UK |
Author_xml | – sequence: 1 givenname: Yongxing orcidid: 0000-0002-8624-2785 surname: Cui fullname: Cui, Yongxing email: cuiyongxing@zedat.fu-berlin.de organization: Peking University – sequence: 2 givenname: Junxi surname: Hu fullname: Hu, Junxi organization: Sichuan Agricultural University – sequence: 3 givenname: Shushi surname: Peng fullname: Peng, Shushi organization: Peking University – sequence: 4 givenname: Manuel surname: Delgado‐Baquerizo fullname: Delgado‐Baquerizo, Manuel organization: Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) – sequence: 5 givenname: Daryl L. surname: Moorhead fullname: Moorhead, Daryl L. organization: University of Toledo – sequence: 6 givenname: Robert L. surname: Sinsabaugh fullname: Sinsabaugh, Robert L. organization: University of New Mexico – sequence: 7 givenname: Xiaofeng surname: Xu fullname: Xu, Xiaofeng organization: San Diego State University – sequence: 8 givenname: Kevin M. surname: Geyer fullname: Geyer, Kevin M. organization: Young Harris College – sequence: 9 givenname: Linchuan surname: Fang fullname: Fang, Linchuan organization: Wuhan University of Technology – sequence: 10 givenname: Pete surname: Smith fullname: Smith, Pete organization: University of Aberdeen – sequence: 11 givenname: Josep surname: Peñuelas fullname: Peñuelas, Josep organization: CSIC, Global Ecology Unit CREAF‐CSIC‐UAB – sequence: 12 givenname: Yakov surname: Kuzyakov fullname: Kuzyakov, Yakov organization: Peoples Friendship University of Russia (RUDN University) – sequence: 13 givenname: Ji orcidid: 0000-0001-7026-6312 surname: Chen fullname: Chen, Ji email: chenji@ieecas.cn, ji.chen@agro.au.dk organization: Xi'an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39024521$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1PGzEQhq2KqlDKtcdqpV56CfX4a72nCgVKkVK1KtCr5fXOBkcbG-wNVf59nYZGwIWTLc87z4znnbdkL8SAhLwHegyUss-2u8_HjDJONdTqFTlg0OgJ10LsPbrvk6OcF5RSkLwWoN-Qfd5QJiSDA3I180s_-jCvfmGOq-QwV6fY-4DVeIPV-RBbO1Q_7ThiClXsq8voh-q7dym2vkSmNrUxVNcZq7O-985jcOt35HVvh4xHD-chuf56djX9Npn9OL-YnswmTnIKE20RbSdQ1k2LHdNMgqqlba2kTClQ0HYN6-qe94o6pTVtUNVUW-i0BEDBD8nFlttFuzC3yS9tWptovfn3ENPc2DR6N6Bh1DGhXYE2IGShqVa4DjQDxgSVXWF92bJuV-0SO4dhTHZ4An0aCf7GzOO9ARBMMg2F8OmBkOLdCvNolj47HAYbMK6yKS4xxRRveJF-fCZdlNmHMivDgTZKaJC6qD48bmnXy3_3iuB4Kyhu5Jyw30mAms2GmM2GmN2GlATxLMH50Y4-br7khxfT_vgB1y8UMSenvy91o4D_BRsczJY |
CitedBy_id | crossref_primary_10_1007_s42832_024_0284_9 crossref_primary_10_1111_gcb_17616 crossref_primary_10_1007_s11104_024_07059_x crossref_primary_10_1021_acs_est_4c07264 crossref_primary_10_1016_j_jenvman_2025_124898 crossref_primary_10_1016_j_apsoil_2024_105656 crossref_primary_10_1111_gcb_17543 crossref_primary_10_1111_gcb_70036 |
Cites_doi | 10.1016/j.soilbio.2020.107996 10.1038/sdata.2018.214 10.5194/bg-15-5929-2018 10.1016/j.soilbio.2022.108677 10.1038/s41579-022-00695-z 10.1016/j.soilbio.2020.107802 10.1038/nclimate3004 10.1038/nature08632 10.1029/2023GB007727 10.1016/j.geoderma.2022.115868 10.1038/s41586-023-06042-3 10.1038/s41564-018-0201-z 10.1038/s41467-020-17502-z 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 10.1146/annurev-ecolsys-112414-054234 10.1890/02-0472 10.1038/s41561-019-0352-4 10.1038/s41598-018-37186-2 10.1111/nph.12235 10.1038/nature16069 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1038/s43247-022-00523-5 10.1016/j.soilbio.2019.01.010 10.1126/science.abl4827 10.1111/ejss.12968 10.5194/essd-14-1917-2022 10.1111/gcb.15218 10.1111/j.1600-0706.2009.18540.x 10.1111/gcb.15550 10.1016/j.soilbio.2019.107584 10.1111/gcb.13489 10.1111/gcb.16060 10.18637/jss.v036.i03 10.1111/gcb.16226 10.1007/s10533-016-0191-y 10.1016/bs.agron.2021.11.002 10.1111/gcb.16765 10.1016/S0038-0717(00)00084-5 10.1111/gcb.12036 10.1111/gcb.16861 10.1201/9780203904039 10.1016/j.soilbio.2018.09.036 10.1016/j.soilbio.2005.08.006 10.1073/pnas.2207832120 10.1111/nph.12334 10.1038/s41579-019-0265-7 10.1038/ismej.2017.43 10.1038/ngeo844 10.1111/geb.12029 10.18637/jss.v034.i12 10.1111/j.1469-8137.2012.04225.x 10.1038/s41586-018-0358-x 10.1016/S0038-0717(03)00015-4 10.1007/s10533-020-00720-4 10.1890/15-2110.1 10.1146/annurev-ecolsys-071112-124414 10.1038/s41579-023-00980-5 10.1111/gcb.14738 10.1111/ele.12815 10.1111/gcb.12113 10.1002/2015GB005188 10.1073/pnas.2020790118 10.1111/geb.13378 10.1038/ngeo846 10.1111/ejss.13027 10.1126/science.aav0550 10.1016/j.soilbio.2023.108997 10.1016/S0038-0717(97)00094-1 10.1111/j.1461-0248.2009.01302.x 10.1038/ncomms3934 10.1038/s41467-022-35170-z 10.1111/gcb.16071 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202308176 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_20c248c1619145c686b4cd182122405d PMC11425281 39024521 10_1002_advs_202308176 ADVS8961 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2022M710004 – fundername: Aarhus Universitets Forskningsfond funderid: AUFF‐E‐2019‐7‐1 – fundername: Shaanxi Province Natural Science Foundation for Distinguished Young Scholar funderid: 2024JC‐JCQN‐32 – fundername: National Natural Science Foundation of China funderid: 2145130; 42361144886 – fundername: Spanish Government grants funderid: TED2021‐132627B‐I00; PID2022‐140808NB‐I00 – fundername: MCIN funderid: AEI/10.13039/501100011033 – fundername: Spanish Government grants grantid: TED2021-132627B-I00 – fundername: MCIN grantid: AEI/10.13039/501100011033 – fundername: China Postdoctoral Science Foundation grantid: 2022M710004 – fundername: Shaanxi Province Natural Science Foundation for Distinguished Young Scholar grantid: 2024JC-JCQN-32 – fundername: National Natural Science Foundation of China grantid: 42361144886 – fundername: Spanish Government grants grantid: PID2022-140808NB-I00 – fundername: National Natural Science Foundation of China grantid: 2145130 – fundername: Aarhus Universitets Forskningsfond grantid: AUFF-E-2019-7-1 – fundername: Spanish Government grants grantid: TED2021‐132627B‐I00; PID2022‐140808NB‐I00 – fundername: Shaanxi Province Natural Science Foundation for Distinguished Young Scholar grantid: 2024JC‐JCQN‐32 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN AAYXX CITATION EJD CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5301-8aeead4e579bed28251675aba50266161bd92d7f3f60c68809e6708a1d8511e43 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:32:17 EDT 2025 Thu Aug 21 18:31:16 EDT 2025 Fri Jul 11 06:14:28 EDT 2025 Fri Jul 25 09:36:19 EDT 2025 Mon Jul 21 05:58:32 EDT 2025 Thu Jul 03 08:33:17 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Aug 20 07:26:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | extracellular enzymatic activity microbial metabolisms resource limitations global change factors soil carbon cycling |
Language | English |
License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5301-8aeead4e579bed28251675aba50266161bd92d7f3f60c68809e6708a1d8511e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7026-6312 0000-0002-8624-2785 |
OpenAccessLink | https://www.proquest.com/docview/3109648158?pq-origsite=%requestingapplication% |
PMID | 39024521 |
PQID | 3109648158 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20c248c1619145c686b4cd182122405d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425281 proquest_miscellaneous_3082626393 proquest_journals_3109648158 pubmed_primary_39024521 crossref_primary_10_1002_advs_202308176 crossref_citationtrail_10_1002_advs_202308176 wiley_primary_10_1002_advs_202308176_ADVS8961 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 560 2022; 375 2021; 27 2013; 4 2023; 180 2022; 172 2013; 22 2017; 48 2023; 37 2006; 76 2006; 38 2019; 12 2008; 8 2022; 20 2020; 11 2019; 128 2021; 72 2021; 30 1999; 80 2022; 28 2019; 365 2020; 18 2013; 19 2009; 12 2018; 3 2018; 5 2023; 29 2010; 119 2019; 25 2021; 118 2013; 199 2016; 86 2024; 22 2013; 198 2010; 3 2023; 618 2003; 84 2022; 169 2010; 34 2017; 20 2019; 9 2010; 36 2023; 120 2021b; 72 2017; 23 2003; 35 2015; 528 2016; 127 2020; 145 2002 2012; 196 2016; 6 2015; 29 2020; 151 2022 2017; 11 2000; 32 2022a; 3 2020; 150 2009; 462 2019; 138 2022; 13 2022; 14 2020; 26 2016 1998; 30 2022b; 419 2012; 43 2018; 15 2019; 131 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Development Core Team R (e_1_2_10_76_1) 2016 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Muggeo V. M. R. (e_1_2_10_72_1) 2008; 8 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 9 start-page: 1 year: 2019 publication-title: Sci. Rep. – volume: 19 start-page: 252 year: 2013 publication-title: Global Change Biol. – volume: 86 start-page: 172 year: 2016 publication-title: Ecol. Monogr. – volume: 29 start-page: 4758 year: 2023 publication-title: Global Change Biol. – volume: 196 start-page: 79 year: 2012 publication-title: New Phytol. – volume: 72 start-page: 243 year: 2021 publication-title: Eur. J. Soil Sci. – volume: 29 start-page: 1782 year: 2015 publication-title: Global Biogeochem. Cycles – volume: 19 start-page: 988 year: 2013 publication-title: Global Change Biol. – volume: 43 start-page: 313 year: 2012 publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 145 year: 2020 publication-title: Soil Biol. Biochem. – volume: 11 start-page: 1890 year: 2017 publication-title: ISME J. – volume: 462 start-page: 795 year: 2009 publication-title: Nature – volume: 3 start-page: 184 year: 2022a publication-title: Commun. Earth Environ. – volume: 72 start-page: 679 year: 2021b publication-title: Eur. J. Soil Sci. – volume: 375 start-page: 266 year: 2022 publication-title: Science – volume: 15 start-page: 5929 year: 2018 publication-title: Biogeosciences – volume: 20 start-page: 1182 year: 2017 publication-title: Ecol. Lett. – volume: 3 start-page: 336 year: 2010 publication-title: Nat. Geosci. – volume: 34 start-page: 1 year: 2010 publication-title: J. Stat. Software – volume: 172 start-page: 1 year: 2022 publication-title: Adv. Agron. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 84 start-page: 2034 year: 2003 publication-title: Ecology – volume: 3 start-page: 315 year: 2010 publication-title: Nat. Geosci. – volume: 138 year: 2019 publication-title: Soil Biol. Biochem. – volume: 28 start-page: 4977 year: 2022 publication-title: Global Change Biol. – volume: 180 year: 2023 publication-title: Soil Biol. Biochem. – volume: 30 start-page: 2297 year: 2021 publication-title: Global Ecol. Biogeogr. – volume: 131 start-page: 195 year: 2019 publication-title: Soil Biol. Biochem. – volume: 32 start-page: 1485 year: 2000 publication-title: Soil Biol. Biochem. – volume: 528 start-page: 60 year: 2015 publication-title: Nature – year: 2022 – volume: 8 start-page: 20 year: 2008 publication-title: R. News – volume: 25 start-page: 3354 year: 2019 publication-title: Global Change Biol. – volume: 22 start-page: 737 year: 2013 publication-title: Global Ecol. Biogeogr – volume: 48 start-page: 419 year: 2017 publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 5 year: 2018 publication-title: Sci. Data – volume: 618 start-page: 981 year: 2023 publication-title: Nature – volume: 4 start-page: 2934 year: 2013 publication-title: Nat. Commun. – volume: 11 start-page: 1 year: 2020 publication-title: Nat. Commun. – volume: 29 start-page: 4412 year: 2023 publication-title: Global Change Biol. – volume: 560 start-page: 80 year: 2018 publication-title: Nature – volume: 36 start-page: 1 year: 2010 publication-title: J. Stat. Software – volume: 37 year: 2023 publication-title: Global Biogeochem. Cycles – volume: 419 year: 2022b publication-title: Geoderma – volume: 80 start-page: 1150 year: 1999 publication-title: Ecology – volume: 30 start-page: 57 year: 1998 publication-title: Soil Biol. Biochem. – volume: 365 year: 2019 publication-title: Science – volume: 20 start-page: 415 year: 2022 publication-title: Nat. Rev. Microbiol. – year: 2016 – volume: 151 start-page: 237 year: 2020 publication-title: Biogeochemistry – volume: 198 start-page: 656 year: 2013 publication-title: New Phytol. – volume: 6 start-page: 791 year: 2016 publication-title: Nat. Clim. Change – volume: 22 start-page: 226 year: 2024 publication-title: Nat. Rev. Microbiol. – volume: 26 start-page: 5077 year: 2020 publication-title: Global Change Biol. – volume: 76 start-page: 151 year: 2006 publication-title: Ecol. Monogr. – volume: 28 start-page: 3110 year: 2022 publication-title: Global Change Biol. – year: 2002 – volume: 12 start-page: 424 year: 2019 publication-title: Nat. Geosci. – volume: 18 start-page: 35 year: 2020 publication-title: Nat. Rev. Microbiol. – volume: 13 start-page: 7364 year: 2022 publication-title: Nat. Commun. – volume: 28 start-page: 2169 year: 2022 publication-title: Global Change Biol. – volume: 150 year: 2020 publication-title: Soil Biol. Biochem. – volume: 3 start-page: 977 year: 2018 publication-title: Nat. Microbiol. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 369 year: 2009 publication-title: Ecol. Lett. – volume: 127 start-page: 173 year: 2016 publication-title: Biogeochemistry – volume: 35 start-page: 549 year: 2003 publication-title: Soil Biol. Biochem. – volume: 128 start-page: 79 year: 2019 publication-title: Soil Biol. Biochem. – volume: 27 start-page: 2039 year: 2021 publication-title: Global Change Biol. – volume: 38 start-page: 898 year: 2006 publication-title: Soil Biol. Biochem. – volume: 199 start-page: 7 year: 2013 publication-title: New Phytol. – volume: 23 start-page: 2090 year: 2017 publication-title: Global Change Biol. – volume: 14 start-page: 1917 year: 2022 publication-title: Earth Sys. Sci. Data – volume: 119 start-page: 752 year: 2010 publication-title: Oikos – volume: 169 year: 2022 publication-title: Soil Biol. Biochem. – ident: e_1_2_10_55_1 doi: 10.1016/j.soilbio.2020.107996 – ident: e_1_2_10_59_1 doi: 10.1038/sdata.2018.214 – ident: e_1_2_10_8_1 doi: 10.5194/bg-15-5929-2018 – ident: e_1_2_10_5_1 doi: 10.1016/j.soilbio.2022.108677 – ident: e_1_2_10_30_1 doi: 10.1038/s41579-022-00695-z – ident: e_1_2_10_57_1 doi: 10.1016/j.soilbio.2020.107802 – ident: e_1_2_10_40_1 doi: 10.1038/nclimate3004 – ident: e_1_2_10_66_1 doi: 10.1038/nature08632 – ident: e_1_2_10_33_1 doi: 10.1029/2023GB007727 – ident: e_1_2_10_64_1 doi: 10.1016/j.geoderma.2022.115868 – ident: e_1_2_10_6_1 doi: 10.1038/s41586-023-06042-3 – ident: e_1_2_10_74_1 – ident: e_1_2_10_20_1 doi: 10.1038/s41564-018-0201-z – ident: e_1_2_10_7_1 doi: 10.1038/s41467-020-17502-z – ident: e_1_2_10_48_1 doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 – ident: e_1_2_10_58_1 doi: 10.1146/annurev-ecolsys-112414-054234 – ident: e_1_2_10_73_1 doi: 10.1890/02-0472 – ident: e_1_2_10_42_1 doi: 10.1038/s41561-019-0352-4 – ident: e_1_2_10_14_1 doi: 10.1038/s41598-018-37186-2 – ident: e_1_2_10_32_1 doi: 10.1111/nph.12235 – ident: e_1_2_10_35_1 doi: 10.1038/nature16069 – ident: e_1_2_10_70_1 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – ident: e_1_2_10_23_1 – ident: e_1_2_10_43_1 doi: 10.1038/s43247-022-00523-5 – volume-title: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing year: 2016 ident: e_1_2_10_76_1 – ident: e_1_2_10_13_1 doi: 10.1016/j.soilbio.2019.01.010 – ident: e_1_2_10_24_1 doi: 10.1126/science.abl4827 – ident: e_1_2_10_54_1 doi: 10.1111/ejss.12968 – ident: e_1_2_10_2_1 doi: 10.5194/essd-14-1917-2022 – ident: e_1_2_10_63_1 doi: 10.1111/gcb.15218 – ident: e_1_2_10_69_1 doi: 10.1111/j.1600-0706.2009.18540.x – ident: e_1_2_10_18_1 doi: 10.1111/gcb.15550 – ident: e_1_2_10_31_1 doi: 10.1016/j.soilbio.2019.107584 – ident: e_1_2_10_21_1 doi: 10.1111/gcb.13489 – ident: e_1_2_10_60_1 doi: 10.1111/gcb.16060 – ident: e_1_2_10_71_1 doi: 10.18637/jss.v036.i03 – ident: e_1_2_10_4_1 doi: 10.1111/gcb.16226 – ident: e_1_2_10_10_1 doi: 10.1007/s10533-016-0191-y – ident: e_1_2_10_51_1 doi: 10.1016/bs.agron.2021.11.002 – ident: e_1_2_10_19_1 doi: 10.1111/gcb.16765 – ident: e_1_2_10_37_1 doi: 10.1016/S0038-0717(00)00084-5 – ident: e_1_2_10_39_1 doi: 10.1111/gcb.12036 – ident: e_1_2_10_34_1 doi: 10.1111/gcb.16861 – ident: e_1_2_10_67_1 doi: 10.1201/9780203904039 – ident: e_1_2_10_47_1 doi: 10.1016/j.soilbio.2018.09.036 – ident: e_1_2_10_53_1 doi: 10.1016/j.soilbio.2005.08.006 – ident: e_1_2_10_56_1 doi: 10.1073/pnas.2207832120 – ident: e_1_2_10_3_1 doi: 10.1111/nph.12334 – ident: e_1_2_10_22_1 doi: 10.1038/s41579-019-0265-7 – ident: e_1_2_10_29_1 doi: 10.1038/ismej.2017.43 – ident: e_1_2_10_45_1 doi: 10.1038/ngeo844 – ident: e_1_2_10_36_1 doi: 10.1111/geb.12029 – ident: e_1_2_10_75_1 doi: 10.18637/jss.v034.i12 – ident: e_1_2_10_16_1 doi: 10.1111/j.1469-8137.2012.04225.x – ident: e_1_2_10_1_1 doi: 10.1038/s41586-018-0358-x – ident: e_1_2_10_27_1 doi: 10.1016/S0038-0717(03)00015-4 – volume: 8 start-page: 20 year: 2008 ident: e_1_2_10_72_1 publication-title: R. News – ident: e_1_2_10_11_1 doi: 10.1007/s10533-020-00720-4 – ident: e_1_2_10_25_1 doi: 10.1890/15-2110.1 – ident: e_1_2_10_26_1 doi: 10.1146/annurev-ecolsys-071112-124414 – ident: e_1_2_10_52_1 doi: 10.1038/s41579-023-00980-5 – ident: e_1_2_10_9_1 doi: 10.1111/gcb.14738 – ident: e_1_2_10_17_1 doi: 10.1111/ele.12815 – ident: e_1_2_10_28_1 doi: 10.1111/gcb.12113 – ident: e_1_2_10_15_1 doi: 10.1002/2015GB005188 – ident: e_1_2_10_46_1 doi: 10.1073/pnas.2020790118 – ident: e_1_2_10_65_1 doi: 10.1111/geb.13378 – ident: e_1_2_10_38_1 doi: 10.1038/ngeo846 – ident: e_1_2_10_61_1 doi: 10.1111/ejss.13027 – ident: e_1_2_10_12_1 doi: 10.1126/science.aav0550 – ident: e_1_2_10_50_1 doi: 10.1016/j.soilbio.2023.108997 – ident: e_1_2_10_62_1 doi: 10.1016/S0038-0717(97)00094-1 – ident: e_1_2_10_68_1 doi: 10.1111/j.1461-0248.2009.01302.x – ident: e_1_2_10_41_1 doi: 10.1038/ncomms3934 – ident: e_1_2_10_44_1 doi: 10.1038/s41467-022-35170-z – ident: e_1_2_10_49_1 doi: 10.1111/gcb.16071 |
SSID | ssj0001537418 |
Score | 2.4333537 |
Snippet | Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C... Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2308176 |
SubjectTerms | Carbon - metabolism Climate Climate Change Cold Ecosystem Efficiency Environmental conditions Experiments extracellular enzymatic activity Generalized linear models global change factors microbial metabolisms Nutrients Precipitation resource limitations Soil - chemistry soil carbon cycling Soil Microbiology Soil microorganisms Temperature effects Terrestrial ecosystems Water shortages |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDePIirs_6IoKgHop9pGly9LHLIiiCLuwtpGmKC0srrvr5nUm6ZRcVL143aQmTmZ1_mswvhJyCXtOi4CYE98nx040Jdc50yCsmLcuT1Djs4v0DH47Y3TgbL1z1hWfCPB7YGw4W5yZhwoAwkTHLDBe8YKYEVYxbQlFW4r8v5LyFxZSvD04RyzKnNEbJpS4_kc4NilvECBhZyEIO1v-Twvx-UHJRwLoMNNgg6610pFd-yD2yYutN0muDc0bPW4L0xRZ5dmVLkJTo_Ov8jN7aCgQlBb1HPeefPjq0Zk2bij41kym9nzgoE7Tc6LeiqeloZmnfISawPnObjAb955th2F6fEJoMwjYU2oKbMJvlsrClq1GF1YEudBZhVuZxUcqkzKu04hHYVUTS8jwSOi5RhVmW7pDVuqntHqG2yrGiNhK2TOGFUptE4izrggkk_wYknJtTmZYtjldcTJWnIicKza868wfkrOv_6qkav_a8xtnpeiEN2_0APqJaH1F_-UhADudzq9oQnSlEonJE1cDoT7pmCC7cMdG1bT6gDwgkxPXINCC73hW6kaTS7VrHARFLTrI01OWWevLiAN5Yv5wlAh4NnT_9YQMFCuVJSB7v_4cxDsgavJn5c3KHZPX97cMegbB6L45dDH0B0d0Z6A priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT9wwEIdHhV56Qd0-IGVbuVKltgeLPBzHPgIFoUpUSLASt8h2HFgJJdUG-vcz42QDUUFVr_Fs5Iw9658f8xngC-o1o6x0HLtPQUs3jptCGC5rob0o0swF7OLpL3myED8v88tHWfw9H2JccKPICP_XFODGdnsP0FBT_SHcNkpolRRyA15Sfi0d6kvF2cMqS54RnoVumMPZNc-UEGtyY5zuTV8xGZkCwP8p1fn34cnHojaMSsevYWuQk2y_b_8ZvPDNG5gNAduxbwNV-vtbuAipTDhQsfWKfcd--BrdwFADsp79z84CbrNhbc3O2-UNO10GUBOWHJqVbRu26Dw7CtgJytl8B4vjo4vDEz5cqcBdjqHMlfHYdYTPC219FfJWccZgrMljGqllYiudVkWd1TJ2EmNbe1nEyiQVKTMvsvew2bSN3wHm64KybGPlqwxfqI1LNbW8sUIRDTgCvnZn6QbeOF17cVP2pOS0JPeXo_sj-Dra_-5JG89aHlDrjFZEyA4P2tVVOQQcWrtUKIefpBOR47dIK1yFsynaSozzKoL5um3LIWy7kjCpkvA1WPvPYzEGHO2imMa3d2iDookQPjqLYLvvCmNNMh12spMI1KSTTKo6LWmW1wHqTTnNearwpzz0p3_4oETVcq60TD78p_0uvMKHoj8mN4fN29Wd_4i66tZ-CqFzD7jhF-E priority: 102 providerName: Wiley-Blackwell |
Title | Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202308176 https://www.ncbi.nlm.nih.gov/pubmed/39024521 https://www.proquest.com/docview/3109648158 https://www.proquest.com/docview/3082626393 https://pubmed.ncbi.nlm.nih.gov/PMC11425281 https://doaj.org/article/20c248c1619145c686b4cd182122405d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3ba9swFIcPa_Kyl7Hu6rULGgy2PZj6IsvS0-glpYylhKWBvhlZlrdAsdu43d-_c2Q5bdjtNToOlnSO9POR9AngPeo1LUthQnSfnFI3JtQ516GoubI8T1LjsIuzc3G25F8us0ufcOv8tsphTHQDddUaypEfEMFSEFlEfr6-CenWKFpd9Vdo7MAYh2ApRzA-mp7Pv91nWbKU8CwDrTFKDnT1kyjdqLxlTKCRB7ORg_b_SWn-vmHyoZB1M9HpU3jiJSQ77Pt8Fx7Z5hns-iDt2EdPkv70HC7c8SWcnNiQpe_Yia1RWDLUfazn_bO5Q2w2rK3Zol1dsdnKwZmw5Fivy7Zhy86yqUNN0DnNF7A8nV4cn4X-GoXQZBi-odQW3YXbLFelrdxZVfxK0KXOIpqdRVxWKqnyOq1FZATGs7Iij6SOK1JjlqcvYdS0jX0NzNY5nayNpK1S_EOlTaKot3XJJRGAAwiH5iyMZ4zTVRdXRU9HTgpq_mLT_AF82Nhf93SNv1oeUe9srIiK7X5o198LH2RobRIuDVZJxTzDuoiSmwq_oGj5MMqqAPaHvi18qHbFvWMF8G5TjEFGKye6se0d2qBQImyPSgN41bvC5k1S5Vav4wDklpNsvep2SbP64UDedI45SyQ-Gjp_-k8bFKhUFlKJ-M2_67EHj_EZ3u-E24fR7frOvkXpdFtOYCfh8wmMD09mXxcTHy0Tl4j4BfG1GBw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPJMKWAkEHCImofjOAeEaLvVlnZXFd2Veksdx4GVqqTdtCD-FL-RGefRrnideo3tKB5_tr94PN8AvEK-pmQmtIvwienoRrsq5soVBU8Mj4NQW9nF8USMZvzTcXS8Aj-7WBi6VtmtiXahzitNZ-SbpGApSFlEfjg7dylrFHlXuxQaDSz2zY_v-MtWv9_bwfF9HQS7w-n2yG2zCrg6QjS7Uhm0HjdRnGQmt6GbSJpVpiKPNivhZ3kS5HERFsLTAuGdGBF7Uvk5kRPDQ3zvLVjlofCCAaxuDSeHn69OdaKQ5GA6dUgv2FT5N1IFR6YvfRI2ubb72SQBf2K2v1_QvE6c7c63ew_utpSVfWwwtgYrprwPa-2iULO3rXL1uwcwteFSuBmyzitQsx1TIJFlyDNZk1-AHVpJz5JVBTuq5qdsPLdiUFiyrRZZVbJZbdjQSltQXOhDmN2IgR_BoKxK8wSYKWKK5PWkyUN8YaJ0kBC6VMYlKQ474HbmTHWraU6pNU7TRo05SMn8aW9-B9709c8aNY-_1tyi0elrkQq3fVAtvqTtpMbaOuBSY5cSn0fYF5FxneMfG7krvSh3YKMb27RdGur0CsgOvOyLcVKTp0aVprrEOkjMSCYoCR143ECh_5Iwsd5y3wG5BJKlT10uKedfrXA4xU1HgcSmrsXTf2yQIjM6konw1__djxdwezQdH6QHe5P9p3AH2_PmFt4GDC4Wl-YZ0raL7Hk7Vxic3PT0_AVeIVAl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMozpYCRQMAh2jycxD4gRLu7aildrWhX6i04jkNXqpKyaUH8NX4dM86jXfE69RpPong8Y3_2eL4BeIF4TYks1i6aT0JHN9pVCVduXHBpeBKE2tIuHkzj3Tn_cBwdr8HPLheGrlV2c6KdqPNK0xn5kBgsY2IWEcOivRYxG03enX11qYIURVq7chqNieybH99x-1a_3RvhWL8Mgsn4aGfXbSsMuDpCy3aFMqhJbqJEZia3aZwIoFWmIo8WrtjPchnkSREWsadjNHVp4sQTys8JqBge4ndvwHpCu6IBrG-Pp7NPlyc8UUjUMB1TpBcMVf6NGMIR9QufSE6urIS2YMCfUO7vlzWvgmi7Ck7uwO0WvrL3jb1twJop78JGO0HU7HXLYv3mHhzZ1ClcGFkXIajZyBQIahliTtbUGmAzS-9Zsqpgh9XilB0sLDEUtuyoZVaVbF4bNrY0F5Qjeh_m16LgBzAoq9I8AmaKhLJ6PWHyED8olQ4kWZrKuCD2YQfcTp2pbvnNqczGadowMwcpqT_t1e_Aq17-rGH2-KvkNo1OL0WM3PZBtfyStg6O0jrgQmOXpM8j7EuccZ3j7o1Cl16UO7DVjW3aThN1emnUDjzvm9HBKWqjSlNdoAyCNKIMkqEDDxtT6P8klDZy7jsgVoxk5VdXW8rFiSURpxzqKBD4qmvt6T86SBElHQoZ-5v_7sczuIlumX7cm-4_hlv4Om8u5G3B4Hx5YZ4ggjvPnrauwuDzdXvnL0AlVFo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limiting+Resources+Define+the+Global+Pattern+of+Soil+Microbial+Carbon+Use+Efficiency&rft.jtitle=Advanced+science&rft.au=Cui%2C+Yongxing&rft.au=Hu%2C+Junxi&rft.au=Peng%2C+Shushi&rft.au=Delgado%E2%80%90Baquerizo%2C+Manuel&rft.date=2024-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=35&rft_id=info:doi/10.1002%2Fadvs.202308176&rft_id=info%3Apmid%2F39024521&rft.externalDocID=PMC11425281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |