Engineered Sensory Nerve Guides Self‐Adaptive Bone Healing via NGF‐TrkA Signaling Pathway
The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN d...
Saved in:
Published in | Advanced science Vol. 10; no. 10; pp. e2206155 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.04.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM‐constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF‐TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP‐dependent mechanism when combined with BMP‐2 delivery, which ingeniously alleviates side effects of BMP‐2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario.
The adaptation feature of sensory nerve during tissue formation is leveraged to propose a neuromodulation approach to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ. eSN sustained‐release NGF to promote sensory nerve reinnervation, which regulates MSC osteogenic differentiation, vascular regeneration, and regulates osteoblast and osteoclasts to participate in bone remodeling and guides self‐adaptive bone healing. |
---|---|
AbstractList | The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF-TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP-dependent mechanism when combined with BMP-2 delivery, which ingeniously alleviates side effects of BMP-2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario. The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM‐constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF‐TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP‐dependent mechanism when combined with BMP‐2 delivery, which ingeniously alleviates side effects of BMP‐2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario. The adaptation feature of sensory nerve during tissue formation is leveraged to propose a neuromodulation approach to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ. eSN sustained‐release NGF to promote sensory nerve reinnervation, which regulates MSC osteogenic differentiation, vascular regeneration, and regulates osteoblast and osteoclasts to participate in bone remodeling and guides self‐adaptive bone healing. Abstract The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM‐constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF‐TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP‐dependent mechanism when combined with BMP‐2 delivery, which ingeniously alleviates side effects of BMP‐2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario. The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF-TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP-dependent mechanism when combined with BMP-2 delivery, which ingeniously alleviates side effects of BMP-2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario.The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF-TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP-dependent mechanism when combined with BMP-2 delivery, which ingeniously alleviates side effects of BMP-2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario. |
Author | Ye, Zhaoming Shi, Wei Shao, Zhenxuan Zhang, Zengjie Zhang, Yongxing Qu, Hao Zhao, Shenzhi Huang, Xin Yu, Xiaohua Xu, Jianxiang Teng, Wangsiyuan Wu, Yan Sun, Hangxiang Jin, Xiaoqiang Yan, Xiaobo Wang, Fangqian |
AuthorAffiliation | 2 Department of Orthopedic Taizhou First People's Hospital Wenzhou Medical University 218 Hengjie Road, Huangyan District Taizhou City Zhejiang Province 318020 P. R. China 1 Department of Orthopedic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province 88 Jiefang Road Hangzhou City Zhejiang Province 310003 P. R. China |
AuthorAffiliation_xml | – name: 2 Department of Orthopedic Taizhou First People's Hospital Wenzhou Medical University 218 Hengjie Road, Huangyan District Taizhou City Zhejiang Province 318020 P. R. China – name: 1 Department of Orthopedic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province 88 Jiefang Road Hangzhou City Zhejiang Province 310003 P. R. China |
Author_xml | – sequence: 1 givenname: Zengjie surname: Zhang fullname: Zhang, Zengjie organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 2 givenname: Fangqian surname: Wang fullname: Wang, Fangqian organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 3 givenname: Xin surname: Huang fullname: Huang, Xin organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 4 givenname: Hangxiang surname: Sun fullname: Sun, Hangxiang organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 5 givenname: Jianxiang surname: Xu fullname: Xu, Jianxiang organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 6 givenname: Hao surname: Qu fullname: Qu, Hao organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 7 givenname: Xiaobo surname: Yan fullname: Yan, Xiaobo organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 8 givenname: Wei surname: Shi fullname: Shi, Wei organization: Wenzhou Medical University – sequence: 9 givenname: Wangsiyuan surname: Teng fullname: Teng, Wangsiyuan organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 10 givenname: Xiaoqiang surname: Jin fullname: Jin, Xiaoqiang organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 11 givenname: Zhenxuan surname: Shao fullname: Shao, Zhenxuan organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 12 givenname: Yongxing surname: Zhang fullname: Zhang, Yongxing organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 13 givenname: Shenzhi surname: Zhao fullname: Zhao, Shenzhi organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 14 givenname: Yan surname: Wu fullname: Wu, Yan email: wuyanzju@zju.edu.cn organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 15 givenname: Zhaoming surname: Ye fullname: Ye, Zhaoming email: yezhaoming@zju.edu.cn organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province – sequence: 16 givenname: Xiaohua orcidid: 0000-0002-0233-0121 surname: Yu fullname: Yu, Xiaohua email: xiaohuayu@zju.edu.cn organization: Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36725311$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxleoiJbSK0e0EhcuCf67Xp9QWtq0UlWQUrghy_aOU4fNOtibVLnxCDwjT4JD0qqthDjZmvnmN58987LY60IHRfEaoyFGiLzXzSoNCSIEVZjzZ8UBwbIe0JqxvQf3_eIopRlCCHMqGK5fFPu0EoRTjA-Kb6fd1HcAEZpyAl0KcV1eQVxBOV76BlIOtu73z1-jRi96n8PH2UJ5Drr13bRceV1ejc9y_jp-H5UTP-22ic-6v7nV61fFc6fbBEe787D4cnZ6fXI-uPw0vjgZXQ4spwgPGMaVRtRhKnBjCAfngGFjG2FlxZDkRoiGG4c4lhRx2xhTQ-0qK5nB1AI9LC623CbomVpEP9dxrYL26m8gxKnSsfe2BeWko0gbLXFlmJNMmtpigqyWWnMrRGZ92LIWSzOHxkLXR90-gj7OdP5GTcNK5ZGIbBZlwrsdIYYfS0i9mvtkoW11B2GZFBECS0Yop1n69ol0FpYxf-JGJTnBNL84q948tHTv5W6MWcC2AhtDShGcsr7XvQ8bh77N1jbuiNosjLpfmFw2fFJ2R_5nwa7PrW9h_R-1Gn38OuGYYfoHG7nTbA |
CitedBy_id | crossref_primary_10_1007_s11064_024_04118_8 crossref_primary_10_1038_s41413_024_00378_w crossref_primary_10_1016_j_biopha_2023_116024 crossref_primary_10_1021_acsami_4c16786 crossref_primary_10_1186_s12951_024_02430_7 crossref_primary_10_3389_fendo_2024_1386556 crossref_primary_10_1021_acsnano_3c11890 crossref_primary_10_1021_acs_biomac_3c00243 crossref_primary_10_1039_D4TB01923G crossref_primary_10_1002_EXP_70005 crossref_primary_10_1016_j_cej_2024_149444 crossref_primary_10_1016_j_cej_2024_154627 crossref_primary_10_3389_fbioe_2023_1226426 crossref_primary_10_1021_acsbiomaterials_3c01129 crossref_primary_10_1186_s40779_025_00596_1 crossref_primary_10_3389_fphys_2024_1423539 crossref_primary_10_1002_brx2_71 crossref_primary_10_1002_adfm_202304172 crossref_primary_10_1038_s41413_023_00302_8 crossref_primary_10_1002_med_22031 crossref_primary_10_1016_j_colsurfb_2024_114203 crossref_primary_10_1002_bmm2_12138 crossref_primary_10_1016_j_cej_2024_158258 crossref_primary_10_1089_ten_teb_2023_0267 crossref_primary_10_1021_acsami_4c01206 |
Cites_doi | 10.1016/j.mattod.2017.10.005 10.1016/S0306-4522(02)00165-3 10.1016/j.celrep.2019.08.021 10.1038/nm.4162 10.1002/smtd.202100763 10.2106/00004623-196345020-00008 10.1038/nature11000 10.1016/0196-9781(88)90023-X 10.1038/s41419-021-04003-0 10.1038/s41467-018-08097-7 10.1002/advs.202100584 10.1007/s10456-017-9541-1 10.1038/s41467-021-25143-z 10.1016/B978-0-444-53491-0.00014-6 10.1007/s00264-017-3734-5 10.1016/S8756-3282(00)00282-9 10.1097/PRS.0000000000003263 10.1212/WNL.33.3.357 10.1089/ten.tea.2014.0688 10.1016/j.biomaterials.2021.120984 10.1016/j.bone.2012.09.007 10.1038/nature12115 10.1016/j.addr.2015.04.007 10.1172/JCI128428 10.1002/adfm.201302859 10.1016/j.bone.2020.115645 10.1093/ejo/cjab072 10.1097/PR9.0000000000000867 10.1242/dev.133363 10.1016/j.celrep.2020.107696 10.1016/j.ebiom.2020.102970 10.1038/nm.2499 10.1016/j.msec.2020.111512 10.1152/ajpgi.00293.2020 10.1186/1741-7015-9-66 10.1021/acsnano.9b00489 10.1002/adhm.201801043 10.1146/annurev.biochem.72.121801.161629 10.2106/JBJS.H.01878 10.1016/j.biomaterials.2020.119833 10.1016/j.actbio.2016.12.012 10.1124/pr.54.2.233 10.1016/j.celrep.2016.08.002 10.1126/sciadv.abb5093 10.1002/adma.201701255 10.1359/jbmr.1999.14.8.1302 10.1002/jor.1100150120 10.1172/JCI131554 10.1186/s13075-014-0485-1 10.1016/j.neuroscience.2011.01.039 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202206155 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_f9f30aba916b4f949b8c120ca9aa5c77 PMC10074090 36725311 10_1002_advs_202206155 ADVS5141 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical and Key R&D Project of Zhejiang Province funderid: 2022C01076 – fundername: National Key Research and Development Projects funderid: 2018YFC1105400 – fundername: Zhejiang Undergraduate Talent Project funderid: 2020R401218 – fundername: National Natural Science Foundation of China funderid: 81872173; 82072959; 31870959 – fundername: Natural Science Foundation of Zhejiang province funderid: GF22H068757 – fundername: National Natural Science Foundation of China grantid: 82072959 – fundername: Natural Science Foundation of Zhejiang province grantid: GF22H068757 – fundername: National Key Research and Development Projects grantid: 2018YFC1105400 – fundername: Zhejiang Undergraduate Talent Project grantid: 2020R401218 – fundername: National Natural Science Foundation of China grantid: 31870959 – fundername: National Natural Science Foundation of China grantid: 81872173 – fundername: Medical and Key R&D Project of Zhejiang Province grantid: 2022C01076 – fundername: ; grantid: 81872173; 82072959; 31870959 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5301-4116a03f1371db25effe41bcd7c964095b77d5bf0519305cdbb8e8f6c94b13ce3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Thu Aug 21 18:38:30 EDT 2025 Fri Jul 11 06:12:24 EDT 2025 Sat Jul 26 02:20:04 EDT 2025 Wed Feb 19 02:24:35 EST 2025 Tue Jul 01 03:59:49 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Jan 22 16:22:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | sensory nerve osteogenesis BMP-2 nerve growth factor extracellular matrix |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5301-4116a03f1371db25effe41bcd7c964095b77d5bf0519305cdbb8e8f6c94b13ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0233-0121 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206155 |
PMID | 36725311 |
PQID | 2795213193 |
PQPubID | 4365299 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f9f30aba916b4f949b8c120ca9aa5c77 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10074090 proquest_miscellaneous_2771942353 proquest_journals_2795213193 pubmed_primary_36725311 crossref_citationtrail_10_1002_advs_202206155 crossref_primary_10_1002_advs_202206155 wiley_primary_10_1002_advs_202206155_ADVS5141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018 2019; 42 13 2019; 8 2021; 6 2012; 485 2021 2020 2019 2021; 8 239 13 118 1988 2002 2011; 9 113 178 2000; 26 2015; 94 2016 2021; 22 275 2016; 143 2014; 24 2011 2017; 9 20 2003 2016; 72 16 2017; 29 2019; 129 2011; 17 2021 2022 2019 2022; 142 6 10 44 2019 2014; 28 16 2020; 6 2021; 12 2017 2021; 49 12 2020; 31 2020; 130 2013; 117 2013; 52 2013; 497 2017 1983 1963 2009; 139 33 45 91 2002 1999 2015 2020 1997 2004 2018; 54 14 21 59 15 24 21 2020; 319 e_1_2_9_10_1 e_1_2_9_12_2 e_1_2_9_12_1 e_1_2_9_12_4 e_1_2_9_12_3 e_1_2_9_14_1 e_1_2_9_12_5 e_1_2_9_16_1 e_1_2_9_12_7 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_20_2 e_1_2_9_24_1 e_1_2_9_6_3 e_1_2_9_8_1 e_1_2_9_4_4 e_1_2_9_6_2 e_1_2_9_4_3 e_1_2_9_6_1 e_1_2_9_4_2 e_1_2_9_4_1 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_11_2 e_1_2_9_15_1 e_1_2_9_13_2 e_1_2_9_17_1 Stewart S. K. (e_1_2_9_1_2) 2019; 13 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_5_4 e_1_2_9_7_2 e_1_2_9_5_3 e_1_2_9_7_1 e_1_2_9_5_2 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_7_4 e_1_2_9_7_3 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 Jones K. B. (e_1_2_9_12_6) 2004; 24 e_1_2_9_29_1 |
References_xml | – volume: 72 16 start-page: 609 2723 year: 2003 2016 publication-title: Annu. Rev. Biochem. Cell Rep. – volume: 26 start-page: 663 year: 2000 publication-title: Bone – volume: 54 14 21 59 15 24 21 start-page: 233 1302 2241 133 123 362 year: 2002 1999 2015 2020 1997 2004 2018 publication-title: Pharmacol. Rev. J. Bone Miner. Res. Tissue Eng., Part A EBioMedicine J. Orthop. Res. Iowa Orthop. J. Mater. Today – volume: 497 start-page: 490 year: 2013 publication-title: Nature – volume: 17 start-page: 1344 year: 2011 publication-title: Nat. Med. – volume: 9 20 start-page: 66 291 year: 2011 2017 publication-title: BMC Med. Angiogenesis – volume: 8 239 13 118 start-page: 6581 year: 2021 2020 2019 2021 publication-title: Adv. Sci. Biomaterials ACS Nano Mater. Sci. Eng., C – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 24 start-page: 3082 year: 2014 publication-title: Adv. Funct. Mater. – volume: 22 275 start-page: 1160 year: 2016 2021 publication-title: Nat. Med. Biomaterials – volume: 139 33 45 91 start-page: 357 299 2886 year: 2017 1983 1963 2009 publication-title: Plast. Reconstr. Surg. Neurology J. Bone Joint Surg. J. Bone Joint Surg. – volume: 143 start-page: 2724 year: 2016 publication-title: Development – volume: 29 year: 2017 publication-title: Adv Mater – volume: 142 6 10 44 start-page: 181 404 year: 2021 2022 2019 2022 publication-title: Bone Small Methods Nat. Commun. Eur. J. Orthod. – volume: 94 start-page: 41 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 9 113 178 start-page: 165 155 196 year: 1988 2002 2011 publication-title: Peptides Neuroscience Neuroscience – volume: 12 start-page: 4939 year: 2021 publication-title: Nat. Commun. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 129 start-page: 5137 year: 2019 publication-title: J. Clin. Invest. – volume: 130 start-page: 3483 year: 2020 publication-title: J. Clin. Invest. – volume: 49 12 start-page: 101 729 year: 2017 2021 publication-title: Acta Biomater. Cell Death Dis. – volume: 319 start-page: G718 year: 2020 publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 52 start-page: 39 year: 2013 publication-title: Bone – volume: 28 16 start-page: 2757 485 year: 2019 2014 publication-title: Cell Rep. Arthritis Res. Ther. – volume: 6 year: 2021 publication-title: Pain Rep. – volume: 31 year: 2020 publication-title: Cell Rep. – volume: 485 start-page: 69 year: 2012 publication-title: Nature – volume: 42 13 start-page: 247 1 year: 2018 2019 publication-title: Int. Orthop. Malays Orthop. J. – volume: 117 start-page: 161 year: 2013 publication-title: Handbook of clinical neurology – ident: e_1_2_9_12_7 doi: 10.1016/j.mattod.2017.10.005 – ident: e_1_2_9_6_2 doi: 10.1016/S0306-4522(02)00165-3 – ident: e_1_2_9_17_1 doi: 10.1016/j.celrep.2019.08.021 – volume: 13 start-page: 1 year: 2019 ident: e_1_2_9_1_2 publication-title: Malays Orthop. J. – ident: e_1_2_9_11_1 doi: 10.1038/nm.4162 – ident: e_1_2_9_5_2 doi: 10.1002/smtd.202100763 – ident: e_1_2_9_7_3 doi: 10.2106/00004623-196345020-00008 – ident: e_1_2_9_9_1 doi: 10.1038/nature11000 – ident: e_1_2_9_6_1 doi: 10.1016/0196-9781(88)90023-X – ident: e_1_2_9_20_2 doi: 10.1038/s41419-021-04003-0 – ident: e_1_2_9_5_3 doi: 10.1038/s41467-018-08097-7 – ident: e_1_2_9_4_1 doi: 10.1002/advs.202100584 – ident: e_1_2_9_2_2 doi: 10.1007/s10456-017-9541-1 – ident: e_1_2_9_25_1 doi: 10.1038/s41467-021-25143-z – ident: e_1_2_9_19_1 doi: 10.1016/B978-0-444-53491-0.00014-6 – ident: e_1_2_9_1_1 doi: 10.1007/s00264-017-3734-5 – ident: e_1_2_9_22_1 doi: 10.1016/S8756-3282(00)00282-9 – ident: e_1_2_9_7_1 doi: 10.1097/PRS.0000000000003263 – ident: e_1_2_9_7_2 doi: 10.1212/WNL.33.3.357 – ident: e_1_2_9_12_3 doi: 10.1089/ten.tea.2014.0688 – ident: e_1_2_9_11_2 doi: 10.1016/j.biomaterials.2021.120984 – ident: e_1_2_9_27_1 doi: 10.1016/j.bone.2012.09.007 – volume: 24 start-page: 123 year: 2004 ident: e_1_2_9_12_6 publication-title: Iowa Orthop. J. – ident: e_1_2_9_8_1 doi: 10.1038/nature12115 – ident: e_1_2_9_16_1 doi: 10.1016/j.addr.2015.04.007 – ident: e_1_2_9_15_1 doi: 10.1172/JCI128428 – ident: e_1_2_9_28_1 doi: 10.1002/adfm.201302859 – ident: e_1_2_9_5_1 doi: 10.1016/j.bone.2020.115645 – ident: e_1_2_9_5_4 doi: 10.1093/ejo/cjab072 – ident: e_1_2_9_26_1 doi: 10.1097/PR9.0000000000000867 – ident: e_1_2_9_18_1 doi: 10.1242/dev.133363 – ident: e_1_2_9_14_1 doi: 10.1016/j.celrep.2020.107696 – ident: e_1_2_9_12_4 doi: 10.1016/j.ebiom.2020.102970 – ident: e_1_2_9_23_1 doi: 10.1038/nm.2499 – ident: e_1_2_9_4_4 doi: 10.1016/j.msec.2020.111512 – ident: e_1_2_9_24_1 doi: 10.1152/ajpgi.00293.2020 – ident: e_1_2_9_2_1 doi: 10.1186/1741-7015-9-66 – ident: e_1_2_9_4_3 doi: 10.1021/acsnano.9b00489 – ident: e_1_2_9_29_1 doi: 10.1002/adhm.201801043 – ident: e_1_2_9_13_1 doi: 10.1146/annurev.biochem.72.121801.161629 – ident: e_1_2_9_7_4 doi: 10.2106/JBJS.H.01878 – ident: e_1_2_9_4_2 doi: 10.1016/j.biomaterials.2020.119833 – ident: e_1_2_9_20_1 doi: 10.1016/j.actbio.2016.12.012 – ident: e_1_2_9_12_1 doi: 10.1124/pr.54.2.233 – ident: e_1_2_9_13_2 doi: 10.1016/j.celrep.2016.08.002 – ident: e_1_2_9_3_1 doi: 10.1126/sciadv.abb5093 – ident: e_1_2_9_21_1 doi: 10.1002/adma.201701255 – ident: e_1_2_9_12_2 doi: 10.1359/jbmr.1999.14.8.1302 – ident: e_1_2_9_12_5 doi: 10.1002/jor.1100150120 – ident: e_1_2_9_10_1 doi: 10.1172/JCI131554 – ident: e_1_2_9_17_2 doi: 10.1186/s13075-014-0485-1 – ident: e_1_2_9_6_3 doi: 10.1016/j.neuroscience.2011.01.039 |
SSID | ssj0001537418 |
Score | 2.4539833 |
Snippet | The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is... Abstract The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206155 |
SubjectTerms | Angiogenesis BMP‐2 Bone marrow Calcitonin Gene-Related Peptide Collagen Extracellular matrix Fractures Growth factors Homeostasis Kinases Metabolism nerve growth factor Nerve Growth Factor - metabolism osteogenesis Osteogenesis - physiology Receptor, trkA - metabolism Scanning electron microscopy sensory nerve Signal Transduction |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqQh-khcqVKtEeIuzYjpPjgrqgSqwqLUhcqsivtKuiLFpYEDd-Ar-RX8JMnI12VSouvcYjx5qH53My_oaQzzwPIrcG63B0SKWXLjVeIb02t9r5zHmLH_SPR_nRqfx-ps6WWn1hTVikB46K26vLWjADs_HcyrqUpS0cz5gzpTHK6fYeOeS8pcNUvB8skJZlwdLIsj3jr5GdO8swh6uVLNSS9T-FMP8ulFwGsG0GGr4iLzvoSAdxyRvkRWg2yUYXnJf0S8cg_fU1-blgGQyejuGcOp3d0hGWNtLD-cSD7Dic1w939wNvLnC7o_vTJlC8kQSJjF5PDB0dDmH8ZPZnQMeTX00c-AFo8cbcviGnw28nB0dp10chdQriN5Wc54aJmgvNQfUKK0Ukt85rV-ZwvlNWa69s3aI5psA8tghFnbtSWi5cEG_JWgPr2CLUwwYQHPeAzIyssVk1cxnk2UIZzgyTCUkXeq1cRzKOvS7Oq0iPnFVoh6q3Q0J2e_mLSK_xT8l9NFMvhbTY7QNwlqpzluo5Z0nI9sLIVRer8ApdAoaBrUgk5FM_DFGGv05ME6ZzlNG8BOSpQOZd9Il-JSLXGexkPCHFiresLHV1pJn8bpm8sUQFDMBAba1jPaODCqDKGBAuf_8_lPGBrMPMIpYhbZO1q9k87ADCurIf22B6BFVKJH8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELZauPRSAX0FaOVKldoeIuLYjpNTtVuxoEpdoS5I9BT5FboqSpaFpeLfdyZxQld9XZOJ4nhen-3JN4S8YZnnmdFYh6N8LJywsXYS6bWZUdal1hnc0P88zY7PxKdzeR423K5DWWUfE9tA7RqLe-QHqSog04DB8A-Lqxi7RuHpamih8ZBsQgjOYfG1OT6cnny532WRHOlZerbGJD3Q7hZZutMUc7lcy0Ytaf-fkObvBZO_Atk2E022yOMAIemo0_k2eeDrHbIdnPSavgtM0u-fkK8926B3dAbr1WZ5R6dY4kiPVnMHsjN_WcUjpxcY9Oi4qT3F_5IgndHbuabTo0l8uvw-orP5Rd1dPgHE-EPfPSVnk8PTj8dx6KUQWwk-HAvGMp3winHFYPolVosIZqxTtshgjSeNUk6aqkV0iQQVmdznVWYLYRi3nj8jGzWM4gWhDoKAt8wBOtOiwobViU0h1-ZSs0QnIiJxP6elDUTj2O_isuwoktMSdVAOOojI20F-0VFs_FVyjCoapJAau73QLC_K4GllVVQ80WB-LDOiKkRhcstgiLrQWlqlIrLfK7gM_gqvGKwrIq-H2-BpeHyia9-sUEaxAtCnBJnnnT0MI-GZSiGasYjka5ayNtT1O_X8W8vmjWUqoIAEpq01qv_MQQlwZQYol-3--zv2yCN4hndFRvtk42a58i8BP92YV8FJfgIH9Rj8 priority: 102 providerName: ProQuest |
Title | Engineered Sensory Nerve Guides Self‐Adaptive Bone Healing via NGF‐TrkA Signaling Pathway |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206155 https://www.ncbi.nlm.nih.gov/pubmed/36725311 https://www.proquest.com/docview/2795213193 https://www.proquest.com/docview/2771942353 https://pubmed.ncbi.nlm.nih.gov/PMC10074090 https://doaj.org/article/f9f30aba916b4f949b8c120ca9aa5c77 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagvXBBtPwF2pWRkIBD1Di24-S4C91WiK5WpJV6QZH_0q6ostW2W9Qbj8Az8iSdSbJpo4IQp0j2KLE8npnPk_FnQt6yxPPEaKzDUT4UTthQO4n02swo62LrDCb0DybJ_pH4fCyP75zib_ghuoQbWkbtr9HAtbnYuSUN1e4K6bbjGIOyfEjW8XwtsufHYnqbZZEc6VnwhjnYXYc8FWLF3BjFO_1X9CJTTeD_J9R5v3jyLqito9L4CXncwkk6bPS_QR74apNstAZ7Qd-3rNIfnpJvK-ZB72gOe9f54ppOsNyR7i1nDmRzf1b-_vlr6PQ5ukA6mlee4iklCG70aqbpZG8M_YeL70Oaz06qpmMKCPKHvn5Gjsa7hx_3w_ZuhdBKsOlQMJboiJeMKwbqkFg9IpixTtksgT2fNEo5acoa4UUSVGZSn5aJzYRh3Hr-nKxVMI6XhDpwCt4yB2hNixIvsI5sDLE3lZpFOhIBCVfzWtiWeBzvvzgrGsrkuEA9FJ0eAvKukz9vKDf-KjlCNXVSSJVdN8wXJ0VreUWZlTzSsBxZYkSZicyklsEQdaa1tEoFZGul5KK1X_iEygDXgHviAXnTdYPl4e8UXfn5EmUUywCNSpB50ayJbiQ8UTF4NxaQtLdaekPt91Sz05rdG8tWQAERTFu9sP4xBwXAlxxQL3v1n_KvySNo5E0V0hZZu1ws_TYArEszqG1oQNaHnw6-5PAc7U6mXwd1uuIGp8kjvw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXRHkGCiwSCDhY9Xp3vfEBoQSaprSNKpJK5WT25RJROSFtWuVP8RuZ8QsiXqde7bE93pmd-XY9_oaQ5yz2PDYa63CUD4QTNtBOIr02M8q6yDqDG_oHw3hwJD4cy-M18r3-FwbLKuuYWARqN7W4R74VqQQyDTgMfzv7FmDXKPy6WrfQKN1izy8vYcl29mb3Pdj3RRT1t8fvBkHVVSCwErw5EIzFOuQZ44qBIhLrJgQz1imbxLDakUYpJ01WYJtQgrKm4ztZbBNhGLeew32vkXXBYSnTIuu97eHhx5-7OpIjHUzNDhlGW9pdICt4FCF2kCvZr2gS8Cdk-3uB5q_Auch8_VvkZgVZabf0sQ2y5vPbZKMKCmf0VcVc_foO-VSzG3pHR7A-ns6XdIgllXRnMXEgO_KnWdB1eoZBlvamuaf4HxSkT3ox0XS40w_G869dOpqc5OXhQ0Col3p5lxxdySjfI60ctHhAqIOg4y1zgAa1yLBBdmgjyO0dqVmoQ9EmQT2mqa2IzbG_xmlaUjJHKdogbWzQJi8b-VlJ6fFXyR6aqJFCKu7iwHR-klYzO82SjIca3J3FRmSJSEzHMlBRJ1pLq1SbbNYGTqv4AI9ovLlNnjWnYWbj5xqd--kCZRRLAO1KkLlf-kOjCY9VBNGTtUlnxVNWVF09k0--FOzhWBYDBghh2Aqn-s8YpACPRoCq2cN_v8dTcn0wPthP93eHe4_IDbielwVOm6R1Pl_4x4Ddzs2TasJQ8vmq5-gPa9hVxw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEOUZKLBIIOBgxWt7vfEBoYQ2bSlEEWml9mT25RJROSFtWuWv8euY8QsiXqde7Uky2Xl9ux5_A_Ccxy6MtaI-HOm8yEbGU1YQvTbX0tjAWE0H-h-H8e5h9P5IHK3B9_pdGGqrrHNikajt1NAZeSeQCVYadJiwk1VtEaOtwdvZN48mSNGT1nqcRuki-255idu3szd7W2jrF0Ew2D54t-tVEwY8I9CzvYjzWPlhxkPJUSlBPRQR18ZKk8S48xFaSit0VuAcX6Diuuu6WWySSPPQuBC_9xqsS9wV-S1Y728PR59-nvCIkKhhaqZIP-goe0EM4UFAOEKsVMJiYMCfUO7vzZq_guiiCg5uwc0KvrJe6W8bsOby27BRJYgz9qpisX59B45rpkNn2Rj3ytP5kg2pvZLtLCYWZcfuNPN6Vs0o4bL-NHeM3onCUsouJooNdwbewfxrj40nJ3l5eYRo9VIt78LhlazyPWjlqMUDYBYTkDPcIjJUUUbDsn0TYJ3vCsV95Udt8Oo1TU1Fck6zNk7Tkp45SMkGaWODNrxs5GclvcdfJftkokaKaLmLC9P5SVpFeZolWegrdH0e6yhLokR3DUcVVaKUMFK2YbM2cFrlCvyJxrPb8Ky5jVFOj25U7qYLkpE8QeQrUOZ-6Q-NJmEsA8ykvA3dFU9ZUXX1Tj75UjCJU4sMGsDHZSuc6j9rkCJUGiPC5g___T-ewnWMzfTD3nD_EdzAj4dlr9MmtM7nC_cYYdy5flLFC4PPVx2iPwBpSln8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Sensory+Nerve+Guides+Self%E2%80%90Adaptive+Bone+Healing+via+NGF%E2%80%90TrkA+Signaling+Pathway&rft.jtitle=Advanced+science&rft.au=Zhang%2C+Zengjie&rft.au=Wang%2C+Fangqian&rft.au=Huang%2C+Xin&rft.au=Sun%2C+Hangxiang&rft.date=2023-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=10&rft.issue=10&rft_id=info:doi/10.1002%2Fadvs.202206155&rft_id=info%3Apmid%2F36725311&rft.externalDocID=PMC10074090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |