ZAKβ is activated by cellular compression and mediates contraction‐induced MAP kinase signaling in skeletal muscle

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 41; no. 17; pp. e111650 - n/a
Main Authors Nordgaard, Cathrine, Vind, Anna Constance, Stonadge, Amy, Kjøbsted, Rasmus, Snieckute, Goda, Antas, Pedro, Blasius, Melanie, Reinert, Marie Sofie, Del Val, Ana Martinez, Bekker‐Jensen, Dorte Breinholdt, Haahr, Peter, Miroshnikova, Yekaterina A, Mazouzi, Abdelghani, Falk, Sarah, Perrier‐Groult, Emeline, Tiedje, Christopher, Li, Xiang, Jakobsen, Jens Rithamer, Jørgensen, Nicolas Oldenburg, Wojtaszewski, Jørgen FP, Mallein‐Gerin, Frederic, Andersen, Jesper Løvind, Pennisi, Cristian Pablo, Clemmensen, Christoffer, Kassem, Moustapha, Jafari, Abbas, Brummelkamp, Thijn, Li, Vivian SW, Wickström, Sara A, Olsen, Jesper Velgaard, Blanco, Gonzalo, Bekker‐Jensen, Simon
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2022
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.15252/embj.2022111650

Cover

Loading…
Abstract Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro , and muscle contraction in vivo . This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Synopsis Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli. Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction. ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene. Graphical Abstract ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli.
AbstractList Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro , and muscle contraction in vivo . This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. image Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli. Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction. ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKb is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKb's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro , and muscle contraction in vivo . This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Synopsis Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli. Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction. ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene. Graphical Abstract ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro , and muscle contraction in vivo . This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Synopsis Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli. Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction. ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene. ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli.
Author Kassem, Moustapha
Jørgensen, Nicolas Oldenburg
Snieckute, Goda
Miroshnikova, Yekaterina A
Haahr, Peter
Pennisi, Cristian Pablo
Tiedje, Christopher
Mallein‐Gerin, Frederic
Kjøbsted, Rasmus
Olsen, Jesper Velgaard
Clemmensen, Christoffer
Mazouzi, Abdelghani
Li, Xiang
Falk, Sarah
Antas, Pedro
Blanco, Gonzalo
Andersen, Jesper Løvind
Blasius, Melanie
Li, Vivian SW
Wickström, Sara A
Del Val, Ana Martinez
Perrier‐Groult, Emeline
Jafari, Abbas
Stonadge, Amy
Jakobsen, Jens Rithamer
Nordgaard, Cathrine
Vind, Anna Constance
Reinert, Marie Sofie
Brummelkamp, Thijn
Wojtaszewski, Jørgen FP
Bekker‐Jensen, Dorte Breinholdt
Bekker‐Jensen, Simon
AuthorAffiliation 13 Department of Endocrinology and Metabolism University Hospital of Odense and University of Southern Denmark Odense Denmark
15 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
3 Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
5 Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen Copenhagen Denmark
7 Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science University of Helsinki Helsinki Finland
14 Oncode Institute, Division of Biochemistry The Netherlands Cancer Institute Amsterdam The Netherlands
12 Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem) University of Copenhagen Copenhagen Denmark
4 Stem Cell and Cancer Biology Laboratory The Francis Crick Institute London
AuthorAffiliation_xml – name: 12 Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem) University of Copenhagen Copenhagen Denmark
– name: 8 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
– name: 10 Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen Bispebjerg Hospital Copenhagen Denmark
– name: 16 Cancer Genomics Center Amsterdam The Netherlands
– name: 6 Division of Biochemistry The Netherlands Cancer Institute Amsterdam The Netherlands
– name: 3 Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
– name: 11 Regenerative Medicine Group, Department of Health Science and Technology Aalborg University Aalborg Denmark
– name: 4 Stem Cell and Cancer Biology Laboratory The Francis Crick Institute London UK
– name: 9 Institut de Biologie et Chimie des Protéines CNRS UMR5305 Lyon France
– name: 5 Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen Copenhagen Denmark
– name: 14 Oncode Institute, Division of Biochemistry The Netherlands Cancer Institute Amsterdam The Netherlands
– name: 15 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
– name: 7 Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science University of Helsinki Helsinki Finland
– name: 1 Center for Healthy Aging, Department of Cellular and Molecular Medicine University of Copenhagen Copenhagen Denmark
– name: 13 Department of Endocrinology and Metabolism University Hospital of Odense and University of Southern Denmark Odense Denmark
– name: 2 Department of Biology University of York York UK
Author_xml – sequence: 1
  givenname: Cathrine
  surname: Nordgaard
  fullname: Nordgaard, Cathrine
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
– sequence: 2
  givenname: Anna Constance
  surname: Vind
  fullname: Vind, Anna Constance
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
– sequence: 3
  givenname: Amy
  orcidid: 0000-0002-5381-0555
  surname: Stonadge
  fullname: Stonadge, Amy
  organization: Department of Biology, University of York
– sequence: 4
  givenname: Rasmus
  surname: Kjøbsted
  fullname: Kjøbsted, Rasmus
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen
– sequence: 5
  givenname: Goda
  surname: Snieckute
  fullname: Snieckute, Goda
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
– sequence: 6
  givenname: Pedro
  surname: Antas
  fullname: Antas, Pedro
  organization: Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute
– sequence: 7
  givenname: Melanie
  orcidid: 0000-0001-5032-2209
  surname: Blasius
  fullname: Blasius, Melanie
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
– sequence: 8
  givenname: Marie Sofie
  surname: Reinert
  fullname: Reinert, Marie Sofie
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
– sequence: 9
  givenname: Ana Martinez
  surname: Del Val
  fullname: Del Val, Ana Martinez
  organization: Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen
– sequence: 10
  givenname: Dorte Breinholdt
  surname: Bekker‐Jensen
  fullname: Bekker‐Jensen, Dorte Breinholdt
  organization: Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen
– sequence: 11
  givenname: Peter
  orcidid: 0000-0001-9680-2304
  surname: Haahr
  fullname: Haahr, Peter
  organization: Division of Biochemistry, The Netherlands Cancer Institute
– sequence: 12
  givenname: Yekaterina A
  surname: Miroshnikova
  fullname: Miroshnikova, Yekaterina A
  organization: Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki
– sequence: 13
  givenname: Abdelghani
  orcidid: 0000-0003-0298-6304
  surname: Mazouzi
  fullname: Mazouzi, Abdelghani
  organization: Division of Biochemistry, The Netherlands Cancer Institute
– sequence: 14
  givenname: Sarah
  surname: Falk
  fullname: Falk, Sarah
  organization: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 15
  givenname: Emeline
  surname: Perrier‐Groult
  fullname: Perrier‐Groult, Emeline
  organization: Institut de Biologie et Chimie des Protéines, CNRS UMR5305
– sequence: 16
  givenname: Christopher
  surname: Tiedje
  fullname: Tiedje, Christopher
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
– sequence: 17
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Department of Biology, University of York
– sequence: 18
  givenname: Jens Rithamer
  surname: Jakobsen
  fullname: Jakobsen, Jens Rithamer
  organization: Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital
– sequence: 19
  givenname: Nicolas Oldenburg
  surname: Jørgensen
  fullname: Jørgensen, Nicolas Oldenburg
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen
– sequence: 20
  givenname: Jørgen FP
  surname: Wojtaszewski
  fullname: Wojtaszewski, Jørgen FP
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen
– sequence: 21
  givenname: Frederic
  orcidid: 0000-0001-6177-6273
  surname: Mallein‐Gerin
  fullname: Mallein‐Gerin, Frederic
  organization: Institut de Biologie et Chimie des Protéines, CNRS UMR5305
– sequence: 22
  givenname: Jesper Løvind
  surname: Andersen
  fullname: Andersen, Jesper Løvind
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital
– sequence: 23
  givenname: Cristian Pablo
  orcidid: 0000-0002-7716-1182
  surname: Pennisi
  fullname: Pennisi, Cristian Pablo
  organization: Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University
– sequence: 24
  givenname: Christoffer
  orcidid: 0000-0003-2456-9667
  surname: Clemmensen
  fullname: Clemmensen, Christoffer
  organization: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 25
  givenname: Moustapha
  surname: Kassem
  fullname: Kassem, Moustapha
  organization: Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Department of Endocrinology and Metabolism, University Hospital of Odense and University of Southern Denmark
– sequence: 26
  givenname: Abbas
  surname: Jafari
  fullname: Jafari, Abbas
  organization: Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen
– sequence: 27
  givenname: Thijn
  surname: Brummelkamp
  fullname: Brummelkamp, Thijn
  organization: Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Cancer Genomics Center
– sequence: 28
  givenname: Vivian SW
  orcidid: 0000-0003-2041-0085
  surname: Li
  fullname: Li, Vivian SW
  organization: Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute
– sequence: 29
  givenname: Sara A
  surname: Wickström
  fullname: Wickström, Sara A
  organization: Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki
– sequence: 30
  givenname: Jesper Velgaard
  orcidid: 0000-0002-4747-4938
  surname: Olsen
  fullname: Olsen, Jesper Velgaard
  organization: Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen
– sequence: 31
  givenname: Gonzalo
  orcidid: 0000-0003-3827-3111
  surname: Blanco
  fullname: Blanco, Gonzalo
  organization: Department of Biology, University of York
– sequence: 32
  givenname: Simon
  orcidid: 0000-0002-7308-4597
  surname: Bekker‐Jensen
  fullname: Bekker‐Jensen, Simon
  email: sbj@sund.ku.dk
  organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen
BackLink https://hal.science/hal-03740001$$DView record in HAL
BookMark eNqFkcFu1DAQhi1URLcLd46WuMAhZezYSSwhpKUqFNgKDnDhYjmOs_XWcbZxsmhvPALPwoPwEDwJTlNRdSXgZMnzfzP_zH-EDnzrDUKPCRwTTjl9bppyfUyBUkJIxuEemhGWQUIh5wdoBjQjCSOFOERHIawBgBc5eYAOU14IkYpshoYvi_c_f2AbsNK93areVLjcYW2cG5zqsG6bTWdCsK3Hyle4MZWNohALvu9GpvW_vn23vhp0RM8XH_Gl9SoYHOzKK2f9CluPw6VxplcON0PQzjxE92vlgnl0887R59enn07OkuWHN29PFstE8xQgyXlFRKlEqnmtci1YyRnkgkJR16lWghSG10ZDpcoMeGmitmZK8ELxqiQ5Tefo5dR3M5TRuTajZyc3nW1Ut5OtsvJuxdsLuWq3UrCUQcFig2dTg4s97GyxlOMfpDmLdyVbErVPb4Z17dVgQi8bG8ZDKm_aIUiaiQwIpde-nuxJ1-3QxXNFVQ5FxiiL-cwRTCrdtSF0pv7jgIC8zl-O-cvb_COS7SHa9moMKa5n3b_AFxP41Tqz--8geXr-6t0dnEx4iKRfme52ob-O_A1Umdnx
CitedBy_id crossref_primary_10_1126_science_adf3208
crossref_primary_10_1093_hmg_ddad113
crossref_primary_10_1016_j_molcel_2023_11_028
crossref_primary_10_26508_lsa_202302522
crossref_primary_10_1038_s41580_023_00606_x
crossref_primary_10_1038_s42255_022_00711_9
crossref_primary_10_1016_j_yexcr_2023_113766
crossref_primary_10_26508_lsa_202201862
crossref_primary_10_1016_j_molmet_2023_101816
crossref_primary_10_1038_s41568_024_00745_z
crossref_primary_10_1016_j_molcel_2024_10_044
crossref_primary_10_1016_j_cub_2024_07_079
crossref_primary_10_1016_j_jaut_2023_103112
crossref_primary_10_1042_BCJ20220314
crossref_primary_10_1016_j_cmet_2022_10_011
crossref_primary_10_1152_physrev_00039_2022
crossref_primary_10_1038_s41419_023_05997_5
Cites_doi 10.1074/jbc.M111994200
10.1182/blood-2008-03-144022
10.1038/nrc2694
10.1038/s41467-021-21178-4
10.1038/s41586-020-2830-7
10.1093/bioinformatics/btw580
10.1371/journal.pone.0036964
10.1038/s41586-020-2555-7
10.1038/s41467-020-14609-1
10.1074/jbc.274.7.4341
10.1152/japplphysiol.00085.2007
10.1042/ETLS20180051
10.15252/embj.2019102578
10.1093/brain/aww257
10.1093/emboj/17.9.2596
10.1152/physrev.90100.2007
10.1038/nature22376
10.1038/nprot.2014.134
10.1021/acs.jmedchem.7b00572
10.1038/s41467-019-14146-6
10.1242/jeb.175794
10.1073/pnas.1415213112
10.1038/nprot.2009.63
10.1002/jcb.22437
10.1016/j.cell.2020.03.052
10.3389/fphys.2019.00042
10.3389/fphys.2020.00813
10.1038/s41580-019-0134-2
10.1016/j.cell.2014.05.046
10.1074/mcp.TIR119.001906
10.1038/ncb1071
10.1101/gr.199430.115
10.1016/j.molcel.2020.03.021
10.1074/jbc.RA119.009167
10.1016/S0092-8674(00)00116-1
10.1016/j.cell.2020.06.006
10.1113/JP273101
10.1016/j.bbrc.2011.02.127
10.1074/jbc.M603627200
10.1038/nmeth.3901
10.1091/mbc.e17-02-0087
10.1136/ard.2009.119479
10.1074/mcp.TIR118.001270
10.1007/s10974-009-9189-6
10.1002/jcp.10080
10.1016/j.cmet.2015.09.001
10.2741/2057
10.3390/toxins8090259
10.1038/s41467-018-05439-3
10.3389/fphys.2018.00824
10.1152/japplphysiol.00418.2017
10.1038/ncb3387
10.1002/smll.201903857
10.1093/nar/gkaa757
10.1016/j.tibs.2016.09.004
10.1074/jbc.M807574200
10.1101/cshperspect.a029751
ContentType Journal Article
Copyright The Author(s) 2022
2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2022
– notice: 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
24P
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.2022111650
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Cathrine Nordgaard et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC9434084
oai_HAL_hal_03740001v1
10_15252_embj_2022111650
EMBJ2022111650
Genre article
GrantInformation_xml – fundername: Sundhed og Sygdom, Det Frie Forskningsråd (FSS, DFF)
  grantid: 9039‐00007B; FSS 8020‐00288
  funderid: 10.13039/100008392
– fundername: Novo Nordisk Fonden (NNF)
  grantid: NNF21OC0071475; NNF20SA0064340; NNF17OC0026114; NNF18CC0034900; NFF 17SA0031406; NNF14CC0001
  funderid: 10.13039/501100009708
– fundername: EC ¦ ERC ¦ HORIZON EUROPE European Research Council (ERC)
  grantid: 863911 ‐ PHYRIST
– fundername: Lundbeckfonden (Lundbeck Foundation)
  grantid: R190‐2014‐4037; R238‐2016‐2859
  funderid: 10.13039/501100003554
– fundername: Sundhed og Sygdom, Det Frie Forskningsråd (FSS, DFF)
  funderid: 9039‐00007B; FSS 8020‐00288
– fundername: EC ¦ ERC ¦ HORIZON EUROPE European Research Council (ERC)
  funderid: 863911 ‐ PHYRIST
– fundername: Novo Nordisk Fonden (NNF)
  funderid: NNF21OC0071475; NNF20SA0064340; NNF17OC0026114; NNF18CC0034900; NFF 17SA0031406; NNF14CC0001
– fundername: Lundbeckfonden (Lundbeck Foundation)
  funderid: R190‐2014‐4037; R238‐2016‐2859
– fundername: ;
  grantid: NNF21OC0071475; NNF20SA0064340; NNF17OC0026114; NNF18CC0034900; NFF 17SA0031406; NNF14CC0001
– fundername: ;
  grantid: 9039‐00007B; FSS 8020‐00288
– fundername: ;
  grantid: R190‐2014‐4037; R238‐2016‐2859
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
-Q-
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
AASGY
AASML
AAYXX
ABUWG
ABZEH
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
AEUYN
AFKRA
AGQPQ
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CITATION
COF
D1J
DWQXO
EJD
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M1P
M2O
M7P
NAO
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5300-75d19ba93c5fa7c94b54079208ff3ca918e5fec0dab605be9baf4a958a5db1723
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 13:48:05 EDT 2025
Sat Jul 26 06:30:19 EDT 2025
Fri Jul 11 04:07:56 EDT 2025
Fri Jul 25 10:45:05 EDT 2025
Tue Jul 01 01:47:23 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Jan 22 16:23:17 EST 2025
Fri Feb 21 02:37:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords mechanobiology
muscle contraction
myopathy
ZAKβ
ZAKb Subject Categories Musculoskeletal System
Post-translational Modifications & Proteolysis
Language English
License Attribution-NonCommercial-NoDerivs
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5300-75d19ba93c5fa7c94b54079208ff3ca918e5fec0dab605be9baf4a958a5db1723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4747-4938
0000-0003-2041-0085
0000-0003-0298-6304
0000-0001-9680-2304
0000-0001-5032-2209
0000-0002-5381-0555
0000-0001-6177-6273
0000-0002-7716-1182
0000-0002-7308-4597
0000-0003-2456-9667
0000-0003-3827-3111
OpenAccessLink https://doi.org/10.15252/embj.2022111650
PMID 35899396
PQID 2708642499
PQPubID 35985
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9434084
hal_primary_oai_HAL_hal_03740001v1
proquest_miscellaneous_2696012272
proquest_journals_2708642499
crossref_primary_10_15252_embj_2022111650
crossref_citationtrail_10_15252_embj_2022111650
wiley_primary_10_15252_embj_2022111650_EMBJ2022111650
springer_journals_10_15252_embj_2022111650
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 1 September 2022
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Inagaki, Omori, Kim, Komatsu, Scott, Ray, Yamada, Matsumoto, Mishina, Ninomiya‐Tsuji (CR22) 2008; 283
Bamman, Roberts, Adams (CR2) 2018; 8
Kramer, Goodyear (CR26) 2007; 1985
Xia, Pfeifer, Cho, Discher, Irianto (CR56) 2018; 2
Bougault, Aubert‐Foucher, Paumier, Perrier‐Groult, Huot, Hot, Duterque‐Coquillaud, Mallein‐Gerin (CR7) 2012; 7
Finan, Guilak (CR15) 2010; 109
Wagner, Nebreda (CR50) 2009; 9
Lee, Jun (CR29) 2019; 10
Luther (CR33) 2009; 30
Chen‐Izu, Izu (CR12) 2017; 595
Tobiume, Saitoh, Ichijo (CR44) 2002; 191
Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (CR45) 2016; 13
Aragona, Sifrim, Malfait, Song, Van Herck, Dekoninck, Gargouri, Lapouge, Swedlund, Dubois (CR1) 2020; 584
Blythe, Muraki, Ludlow, Stylianidis, Gilbert, Evans, Cuthbertson, Foster, Swift, Li (CR6) 2019; 294
Wu, Peterson, Zinshteyn, Regot, Green (CR54) 2020; 182
Wu, Lewis, Grandl (CR55) 2017; 42
Brockmann, Blomen, Nieuwenhuis, Stickel, Raaben, Bleijerveld, Altelaar, Jae, Brummelkamp (CR9) 2017; 546
Vind, Snieckute, Blasius, Tiedje, Krogh, Bekker‐Jensen, Andersen, Nordgaard, Tollenaere, Lund (CR49) 2020; 78
Fukuno, Matsui, Kanda, Suzuki, Matsumoto, Sasaki, Kobayashi, Tamura (CR16) 2011; 408
Bekker‐Jensen, Bernhardt, Hogrebe, Martinez‐Val, Verbeke, Gandhi, Kelstrup, Reiter, Olsen (CR4) 2020; 11
Le, Ghatak, Yeung, Tellkamp, Gunschmann, Dieterich, Yeroslaviz, Habermann, Pombo, Niessen (CR28) 2016; 18
Nava, Miroshnikova, Biggs, Whitefield, Metge, Boucas, Vihinen, Jokitalo, Li, Garcia Arcos (CR36) 2020; 181
Spielmann, Kakar, Tayebi, Leettola, Nurnberg, Sowada, Lupianez, Harabula, Flottmann, Horn (CR42) 2016; 26
Hammaker, Firestein (CR18) 2010; 69
Hoffman, Jensen, Yoshigi, Beckerle (CR19) 2017; 28
Kechagia, Ivaska, Roca‐Cusachs (CR25) 2019; 20
Yang, Wang, Jaenisch (CR57) 2014; 9
Kumar, Mazzanti, Mistrik, Kosar, Beznoussenko, Mironov, Garre, Parazzoli, Shivashankar, Scita (CR27) 2014; 158
Uhlik, Abell, Johnson, Sun, Cuevas, Lobel‐Rice, Horne, Dell'Acqua, Johnson (CR46) 2003; 5
Randhawa, Wakeling (CR40) 2018; 221
Bougault, Paumier, Aubert‐Foucher, Mallein‐Gerin (CR8) 2009; 4
Wang, You, Lotinun, Zhang, Wu, Zou (CR52) 2020; 11
Martino, Perestrelo, Vinarsky, Pagliari, Forte (CR35) 2018; 9
Cuenda, Cohen (CR13) 1999; 274
Bekker‐Jensen, Martinez‐Val, Steigerwald, Ruther, Fort, Arrey, Harder, Makarov, Olsen (CR5) 2020; 19
Wieczorek, Combes, Lazar, Giai Gianetto, Gatto, Dorffer, Hesse, Coute, Ferro, Bruley (CR53) 2017; 33
Davis (CR14) 2000; 103
Burkholder (CR10) 2007; 12
Huangfu, Omori, Akira, Matsumoto, Ninomiya‐Tsuji (CR21) 2006; 281
Vind, Genzor, Bekker‐Jensen (CR48) 2020; 48
Jandhyala, Wong, Mantis, Magun, Leong, Thorpe (CR23) 2016; 8
Batth, Tollenaere, Ruther, Gonzalez‐Franquesa, Prabhakar, Bekker‐Jensen, Deshmukh, Olsen (CR3) 2019; 18
Nelson, Parker, Burchfield, Hoffman, Needham, Cooke, Naim, Sylow, Ling, Francis (CR37) 2019; 38
Swarnkar, Karuppaiah, Mbalaviele, Chen, Abu‐Amer (CR43) 2015; 112
Chang, Lu, Shibu, Dai, Luo, Zhang, Li, Zhao, Zhang, Xu (CR11) 2017; 60
Saitoh, Nishitoh, Fujii, Takeda, Tobiume, Sawada, Kawabata, Miyazono, Ichijo (CR41) 1998; 17
Liu, Yao, Li, Wang, Zheng, Cao (CR32) 2008; 112
Marshall, Saade, Ghitani, Coombs, Szczot, Keller, Ogata, Daou, Stowers, Bonnemann (CR34) 2020; 588
Liu, Yu, Young, Stone, Hanasoge, Kirby, Varadarajan, Colonna, Liu, Raj (CR31) 2020; 16
Hoffman, Parker, Chaudhuri, Fisher‐Wellman, Kleinert, Humphrey, Yang, Holliday, Trefely, Fazakerley (CR20) 2015; 22
Jiang, Yin, Wu, Zhang, Wang, Cheng, Zhou, Xiao (CR24) 2021; 12
Powers (CR39) 2017; 1985
Pedersen, Febbraio (CR38) 2008; 88
Gross, Callow, Waldbaum, Thomas, Ruggieri (CR17) 2002; 277
Lessard, MacDonald, Pathak, Han, Coffey, Edge, Rivas, Hirshman, Davis, Goodyear (CR30) 2018; 9
Wakeling, Ross, Ryan, Bolsterlee, Konno, Dominguez, Nigam (CR51) 2020; 11
Vasli, Harris, Karamchandani, Bareke, Majewski, Romero, Stojkovic, Barresi, Tasfaout, Charlton (CR47) 2017; 140
2017; 42
2010; 109
2002; 191
2020a; 48
2007; 1985
2019; 10
2017; 1985
2002; 277
2020; 16
2019; 18
2020; 11
2017; 595
2018; 9
2018; 8
1998; 17
2018; 2
2010; 69
2019; 20
2011; 408
2017; 33
2003; 5
2006; 281
2008; 112
2014; 9
2020b; 78
2018; 221
2017; 60
2017; 28
2020; 181
2020; 182
2020; 588
2019; 38
2020; 584
2016; 18
2007; 12
2014; 158
2008; 283
2016; 13
2020a; 11
2009; 30
2020b; 19
2021; 12
2000; 103
2015; 112
2015; 22
1999; 274
2009; 9
2017; 140
2008; 88
2009; 4
2019; 294
2012; 7
2016; 26
2016; 8
2017; 546
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 69
  start-page: i77
  year: 2010
  end-page: i82
  ident: CR18
  article-title: "go upstream, young man": Lessons learned from the p38 saga
  publication-title: Ann Rheum Dis
– volume: 9
  start-page: 824
  year: 2018
  ident: CR35
  article-title: Cellular mechanotransduction: From tension to function
  publication-title: Front Physiol
– volume: 9
  start-page: 1956
  year: 2014
  end-page: 1968
  ident: CR57
  article-title: Generating genetically modified mice using CRISPR/Cas‐mediated genome engineering
  publication-title: Nat Protoc
– volume: 158
  start-page: 633
  year: 2014
  end-page: 646
  ident: CR27
  article-title: ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress
  publication-title: Cell
– volume: 11
  start-page: 813
  year: 2020
  ident: CR51
  article-title: The energy of muscle contraction. I. Tissue force and deformation during fixed‐end contractions
  publication-title: Front Physiol
– volume: 588
  start-page: 290
  year: 2020
  end-page: 295
  ident: CR34
  article-title: PIEZO2 in sensory neurons and urothelial cells coordinates urination
  publication-title: Nature
– volume: 42
  start-page: 57
  year: 2017
  end-page: 71
  ident: CR55
  article-title: Touch, tension, and transduction ‐ the function and regulation of piezo ion channels
  publication-title: Trends Biochem Sci
– volume: 112
  start-page: 4961
  year: 2008
  end-page: 4970
  ident: CR32
  article-title: CaMKII promotes TLR‐triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages
  publication-title: Blood
– volume: 103
  start-page: 239
  year: 2000
  end-page: 252
  ident: CR14
  article-title: Signal transduction by the JNK group of MAP kinases
  publication-title: Cell
– volume: 1985
  start-page: 388
  year: 2007
  end-page: 395
  ident: CR26
  article-title: Exercise, MAPK, and NF‐kappaB signaling in skeletal muscle
  publication-title: J Appl Physiol
– volume: 277
  start-page: 13873
  year: 2002
  end-page: 13882
  ident: CR17
  article-title: MRK, a mixed lineage kinase‐related molecule that plays a role in gamma‐radiation‐induced cell cycle arrest
  publication-title: J Biol Chem
– volume: 9
  start-page: 3030
  year: 2018
  ident: CR30
  article-title: JNK regulates muscle remodeling via myostatin/SMAD inhibition
  publication-title: Nat Commun
– volume: 78
  start-page: 700
  year: 2020
  end-page: 713.e7
  ident: CR49
  article-title: ZAKalpha recognizes stalled ribosomes through partially redundant sensor domains
  publication-title: Mol Cell
– volume: 112
  start-page: 154
  year: 2015
  end-page: 159
  ident: CR43
  article-title: Osteopetrosis in TAK1‐deficient mice owing to defective NF‐kappaB and NOTCH signaling
  publication-title: Proc Natl Acad Sci U S A
– volume: 1985
  start-page: 460
  year: 2017
  end-page: 472
  ident: CR39
  article-title: Exercise: Teaching myocytes new tricks
  publication-title: J Appl Physiol
– volume: 221
  year: 2018
  ident: CR40
  article-title: Transverse anisotropy in the deformation of the muscle during dynamic contractions
  publication-title: J Exp Biol
– volume: 294
  start-page: 17395
  year: 2019
  end-page: 17408
  ident: CR6
  article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen‐activated protein kinase activity and interleukin‐6 secretion
  publication-title: J Biol Chem
– volume: 20
  start-page: 457
  year: 2019
  end-page: 473
  ident: CR25
  article-title: Integrins as biomechanical sensors of the microenvironment
  publication-title: Nat Rev Mol Cell Biol
– volume: 2
  start-page: 713
  year: 2018
  end-page: 725
  ident: CR56
  article-title: Nuclear mechanosensing
  publication-title: Emerg Top Life Sci
– volume: 595
  start-page: 3949
  year: 2017
  end-page: 3958
  ident: CR12
  article-title: Mechano‐chemo‐transduction in cardiac myocytes
  publication-title: J Physiol
– volume: 283
  start-page: 33080
  year: 2008
  end-page: 33086
  ident: CR22
  article-title: TAK1‐binding protein 1, TAB1, mediates osmotic stress‐induced TAK1 activation but is dispensable for TAK1‐mediated cytokine signaling
  publication-title: J Biol Chem
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: CR45
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat Methods
– volume: 191
  start-page: 95
  year: 2002
  end-page: 104
  ident: CR44
  article-title: Activation of apoptosis signal‐regulating kinase 1 by the stress‐induced activating phosphorylation of pre‐formed oligomer
  publication-title: J Cell Physiol
– volume: 22
  start-page: 922
  year: 2015
  end-page: 935
  ident: CR20
  article-title: Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise‐regulated kinases and AMPK substrates
  publication-title: Cell Metab
– volume: 140
  start-page: 37
  year: 2017
  end-page: 48
  ident: CR47
  article-title: Recessive mutations in the kinase ZAK cause a congenital myopathy with fibre type disproportion
  publication-title: Brain
– volume: 38
  year: 2019
  ident: CR37
  article-title: Phosphoproteomics reveals conserved exercise‐stimulated signaling and AMPK regulation of store‐operated calcium entry
  publication-title: EMBO J
– volume: 11
  start-page: 282
  year: 2020
  ident: CR52
  article-title: Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast‐osteoclast crosstalk
  publication-title: Nat Commun
– volume: 11
  start-page: 787
  year: 2020
  ident: CR4
  article-title: Rapid and site‐specific deep phosphoproteome profiling by data‐independent acquisition without the need for spectral libraries
  publication-title: Nat Commun
– volume: 584
  start-page: 268
  year: 2020
  end-page: 273
  ident: CR1
  article-title: Mechanisms of stretch‐mediated skin expansion at single‐cell resolution
  publication-title: Nature
– volume: 12
  start-page: 174
  year: 2007
  end-page: 191
  ident: CR10
  article-title: Mechanotransduction in skeletal muscle
  publication-title: Front Biosci
– volume: 9
  start-page: 537
  year: 2009
  end-page: 549
  ident: CR50
  article-title: Signal integration by JNK and p38 MAPK pathways in cancer development
  publication-title: Nat Rev Cancer
– volume: 60
  start-page: 5927
  year: 2017
  end-page: 5932
  ident: CR11
  article-title: Structure based design of N‐(3‐((1H‐Pyrazolo[3,4‐b]pyridin‐5‐yl)ethynyl))benzenesulfonamides as selective leucine‐zipper and sterile‐alpha motif kinase (ZAK) inhibitors
  publication-title: J Med Chem
– volume: 181
  start-page: 800
  year: 2020
  end-page: 817.e22
  ident: CR36
  article-title: Heterochromatin‐driven nuclear softening protects the genome against mechanical stress‐induced damage
  publication-title: Cell
– volume: 408
  start-page: 202
  year: 2011
  end-page: 207
  ident: CR16
  article-title: TGF‐beta‐activated kinase 1 mediates mechanical stress‐induced IL‐6 expression in osteoblasts
  publication-title: Biochem Biophys Res Commun
– volume: 546
  start-page: 307
  year: 2017
  end-page: 311
  ident: CR9
  article-title: Genetic wiring maps of single‐cell protein states reveal an off‐switch for GPCR signalling
  publication-title: Nature
– volume: 16
  year: 2020
  ident: CR31
  article-title: Cell mechanical and physiological behavior in the regime of rapid mechanical compressions that lead to cell volume change
  publication-title: Small
– volume: 7
  year: 2012
  ident: CR7
  article-title: Dynamic compression of chondrocyte‐agarose constructs reveals new candidate mechanosensitive genes
  publication-title: PLoS One
– volume: 28
  start-page: 2661
  year: 2017
  end-page: 2675
  ident: CR19
  article-title: Mechanical signals activate p38 MAPK pathway‐dependent reinforcement of Actin via mechanosensitive HspB1
  publication-title: Mol Biol Cell
– volume: 274
  start-page: 4341
  year: 1999
  end-page: 4346
  ident: CR13
  article-title: Stress‐activated protein kinase‐2/p38 and a rapamycin‐sensitive pathway are required for C2C12 myogenesis
  publication-title: J Biol Chem
– volume: 8
  start-page: 259
  year: 2016
  ident: CR23
  article-title: A novel ZAK knockout mouse with a defective ribotoxic stress response
  publication-title: Toxins
– volume: 4
  start-page: 928
  year: 2009
  end-page: 938
  ident: CR8
  article-title: Investigating conversion of mechanical force into biochemical signaling in three‐dimensional chondrocyte cultures
  publication-title: Nat Protoc
– volume: 18
  start-page: 1027
  year: 2019
  end-page: 1035
  ident: CR3
  article-title: Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation
  publication-title: Mol Cell Proteomics
– volume: 12
  start-page: 869
  year: 2021
  ident: CR24
  article-title: The mechanosensitive Piezo1 channel mediates heart mechano‐chemo transduction
  publication-title: Nat Commun
– volume: 88
  start-page: 1379
  year: 2008
  end-page: 1406
  ident: CR38
  article-title: Muscle as an endocrine organ: Focus on muscle‐derived interleukin‐6
  publication-title: Physiol Rev
– volume: 48
  start-page: 10648
  year: 2020
  end-page: 10661
  ident: CR48
  article-title: Ribosomal stress‐surveillance: Three pathways is a magic number
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 864
  year: 2016
  end-page: 875
  ident: CR28
  article-title: Mechanical regulation of transcription controls Polycomb‐mediated gene silencing during lineage commitment
  publication-title: Nat Cell Biol
– volume: 281
  start-page: 28802
  year: 2006
  end-page: 28810
  ident: CR21
  article-title: Osmotic stress activates the TAK1‐JNK pathway while blocking TAK1‐mediated NF‐kappaB activation: TAO2 regulates TAK1 pathways
  publication-title: J Biol Chem
– volume: 33
  start-page: 135
  year: 2017
  end-page: 136
  ident: CR53
  article-title: DAPAR & ProStaR: Software to perform statistical analyses in quantitative discovery proteomics
  publication-title: Bioinformatics
– volume: 30
  start-page: 171
  year: 2009
  end-page: 185
  ident: CR33
  article-title: The vertebrate muscle Z‐disc: Sarcomere anchor for structure and signalling
  publication-title: J Muscle Res Cell Motil
– volume: 8
  year: 2018
  ident: CR2
  article-title: Molecular regulation of exercise‐induced muscle fiber hypertrophy
  publication-title: Cold Spring Harb Perspect Med
– volume: 109
  start-page: 460
  year: 2010
  end-page: 467
  ident: CR15
  article-title: The effects of osmotic stress on the structure and function of the cell nucleus
  publication-title: J Cell Biochem
– volume: 26
  start-page: 183
  year: 2016
  end-page: 191
  ident: CR42
  article-title: Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice
  publication-title: Genome Res
– volume: 182
  start-page: 404
  year: 2020
  end-page: 416.e4
  ident: CR54
  article-title: Ribosome collisions trigger general stress responses to regulate cell fate
  publication-title: Cell
– volume: 19
  start-page: 716
  year: 2020
  end-page: 729
  ident: CR5
  article-title: A compact quadrupole‐orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients
  publication-title: Mol Cell Proteomics
– volume: 5
  start-page: 1104
  year: 2003
  end-page: 1110
  ident: CR46
  article-title: Rac‐MEKK3‐MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock
  publication-title: Nat Cell Biol
– volume: 10
  start-page: 42
  year: 2019
  ident: CR29
  article-title: Role of Myokines in regulating skeletal muscle mass and function
  publication-title: Front Physiol
– volume: 17
  start-page: 2596
  year: 1998
  end-page: 2606
  ident: CR41
  article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1
  publication-title: EMBO J
– volume: 221
  year: 2018
  article-title: Transverse anisotropy in the deformation of the muscle during dynamic contractions
  publication-title: J Exp Biol
– volume: 48
  start-page: 10648
  year: 2020a
  end-page: 10661
  article-title: Ribosomal stress‐surveillance: Three pathways is a magic number
  publication-title: Nucleic Acids Res
– volume: 38
  year: 2019
  article-title: Phosphoproteomics reveals conserved exercise‐stimulated signaling and AMPK regulation of store‐operated calcium entry
  publication-title: EMBO J
– volume: 12
  start-page: 174
  year: 2007
  end-page: 191
  article-title: Mechanotransduction in skeletal muscle
  publication-title: Front Biosci
– volume: 103
  start-page: 239
  year: 2000
  end-page: 252
  article-title: Signal transduction by the JNK group of MAP kinases
  publication-title: Cell
– volume: 22
  start-page: 922
  year: 2015
  end-page: 935
  article-title: Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise‐regulated kinases and AMPK substrates
  publication-title: Cell Metab
– volume: 546
  start-page: 307
  year: 2017
  end-page: 311
  article-title: Genetic wiring maps of single‐cell protein states reveal an off‐switch for GPCR signalling
  publication-title: Nature
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat Methods
– volume: 16
  year: 2020
  article-title: Cell mechanical and physiological behavior in the regime of rapid mechanical compressions that lead to cell volume change
  publication-title: Small
– volume: 18
  start-page: 864
  year: 2016
  end-page: 875
  article-title: Mechanical regulation of transcription controls Polycomb‐mediated gene silencing during lineage commitment
  publication-title: Nat Cell Biol
– volume: 9
  start-page: 824
  year: 2018
  article-title: Cellular mechanotransduction: From tension to function
  publication-title: Front Physiol
– volume: 408
  start-page: 202
  year: 2011
  end-page: 207
  article-title: TGF‐beta‐activated kinase 1 mediates mechanical stress‐induced IL‐6 expression in osteoblasts
  publication-title: Biochem Biophys Res Commun
– volume: 182
  start-page: 404
  year: 2020
  end-page: 416.e4
  article-title: Ribosome collisions trigger general stress responses to regulate cell fate
  publication-title: Cell
– volume: 5
  start-page: 1104
  year: 2003
  end-page: 1110
  article-title: Rac‐MEKK3‐MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock
  publication-title: Nat Cell Biol
– volume: 12
  start-page: 869
  year: 2021
  article-title: The mechanosensitive Piezo1 channel mediates heart mechano‐chemo transduction
  publication-title: Nat Commun
– volume: 30
  start-page: 171
  year: 2009
  end-page: 185
  article-title: The vertebrate muscle Z‐disc: Sarcomere anchor for structure and signalling
  publication-title: J Muscle Res Cell Motil
– volume: 9
  start-page: 537
  year: 2009
  end-page: 549
  article-title: Signal integration by JNK and p38 MAPK pathways in cancer development
  publication-title: Nat Rev Cancer
– volume: 281
  start-page: 28802
  year: 2006
  end-page: 28810
  article-title: Osmotic stress activates the TAK1‐JNK pathway while blocking TAK1‐mediated NF‐kappaB activation: TAO2 regulates TAK1 pathways
  publication-title: J Biol Chem
– volume: 1985
  start-page: 460
  year: 2017
  end-page: 472
  article-title: Exercise: Teaching myocytes new tricks
  publication-title: J Appl Physiol
– volume: 1985
  start-page: 388
  year: 2007
  end-page: 395
  article-title: Exercise, MAPK, and NF‐kappaB signaling in skeletal muscle
  publication-title: J Appl Physiol
– volume: 584
  start-page: 268
  year: 2020
  end-page: 273
  article-title: Mechanisms of stretch‐mediated skin expansion at single‐cell resolution
  publication-title: Nature
– volume: 20
  start-page: 457
  year: 2019
  end-page: 473
  article-title: Integrins as biomechanical sensors of the microenvironment
  publication-title: Nat Rev Mol Cell Biol
– volume: 2
  start-page: 713
  year: 2018
  end-page: 725
  article-title: Nuclear mechanosensing
  publication-title: Emerg Top Life Sci
– volume: 283
  start-page: 33080
  year: 2008
  end-page: 33086
  article-title: TAK1‐binding protein 1, TAB1, mediates osmotic stress‐induced TAK1 activation but is dispensable for TAK1‐mediated cytokine signaling
  publication-title: J Biol Chem
– volume: 588
  start-page: 290
  year: 2020
  end-page: 295
  article-title: PIEZO2 in sensory neurons and urothelial cells coordinates urination
  publication-title: Nature
– volume: 9
  start-page: 3030
  year: 2018
  article-title: JNK regulates muscle remodeling via myostatin/SMAD inhibition
  publication-title: Nat Commun
– volume: 26
  start-page: 183
  year: 2016
  end-page: 191
  article-title: Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice
  publication-title: Genome Res
– volume: 28
  start-page: 2661
  year: 2017
  end-page: 2675
  article-title: Mechanical signals activate p38 MAPK pathway‐dependent reinforcement of Actin via mechanosensitive HspB1
  publication-title: Mol Biol Cell
– volume: 42
  start-page: 57
  year: 2017
  end-page: 71
  article-title: Touch, tension, and transduction ‐ the function and regulation of piezo ion channels
  publication-title: Trends Biochem Sci
– volume: 88
  start-page: 1379
  year: 2008
  end-page: 1406
  article-title: Muscle as an endocrine organ: Focus on muscle‐derived interleukin‐6
  publication-title: Physiol Rev
– volume: 18
  start-page: 1027
  year: 2019
  end-page: 1035
  article-title: Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation
  publication-title: Mol Cell Proteomics
– volume: 181
  start-page: 800
  year: 2020
  end-page: 817.e22
  article-title: Heterochromatin‐driven nuclear softening protects the genome against mechanical stress‐induced damage
  publication-title: Cell
– volume: 60
  start-page: 5927
  year: 2017
  end-page: 5932
  article-title: Structure based design of N‐(3‐((1H‐Pyrazolo[3,4‐b]pyridin‐5‐yl)ethynyl))benzenesulfonamides as selective leucine‐zipper and sterile‐alpha motif kinase (ZAK) inhibitors
  publication-title: J Med Chem
– volume: 109
  start-page: 460
  year: 2010
  end-page: 467
  article-title: The effects of osmotic stress on the structure and function of the cell nucleus
  publication-title: J Cell Biochem
– volume: 11
  start-page: 282
  year: 2020
  article-title: Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast‐osteoclast crosstalk
  publication-title: Nat Commun
– volume: 112
  start-page: 154
  year: 2015
  end-page: 159
  article-title: Osteopetrosis in TAK1‐deficient mice owing to defective NF‐kappaB and NOTCH signaling
  publication-title: Proc Natl Acad Sci U S A
– volume: 69
  start-page: i77
  year: 2010
  end-page: i82
  article-title: "go upstream, young man": Lessons learned from the p38 saga
  publication-title: Ann Rheum Dis
– volume: 8
  start-page: 259
  year: 2016
  article-title: A novel ZAK knockout mouse with a defective ribotoxic stress response
  publication-title: Toxins
– volume: 112
  start-page: 4961
  year: 2008
  end-page: 4970
  article-title: CaMKII promotes TLR‐triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages
  publication-title: Blood
– volume: 595
  start-page: 3949
  year: 2017
  end-page: 3958
  article-title: Mechano‐chemo‐transduction in cardiac myocytes
  publication-title: J Physiol
– volume: 11
  start-page: 813
  year: 2020
  article-title: The energy of muscle contraction. I. Tissue force and deformation during fixed‐end contractions
  publication-title: Front Physiol
– volume: 17
  start-page: 2596
  year: 1998
  end-page: 2606
  article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1
  publication-title: EMBO J
– volume: 277
  start-page: 13873
  year: 2002
  end-page: 13882
  article-title: MRK, a mixed lineage kinase‐related molecule that plays a role in gamma‐radiation‐induced cell cycle arrest
  publication-title: J Biol Chem
– volume: 191
  start-page: 95
  year: 2002
  end-page: 104
  article-title: Activation of apoptosis signal‐regulating kinase 1 by the stress‐induced activating phosphorylation of pre‐formed oligomer
  publication-title: J Cell Physiol
– volume: 294
  start-page: 17395
  year: 2019
  end-page: 17408
  article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen‐activated protein kinase activity and interleukin‐6 secretion
  publication-title: J Biol Chem
– volume: 4
  start-page: 928
  year: 2009
  end-page: 938
  article-title: Investigating conversion of mechanical force into biochemical signaling in three‐dimensional chondrocyte cultures
  publication-title: Nat Protoc
– volume: 10
  start-page: 42
  year: 2019
  article-title: Role of Myokines in regulating skeletal muscle mass and function
  publication-title: Front Physiol
– volume: 274
  start-page: 4341
  year: 1999
  end-page: 4346
  article-title: Stress‐activated protein kinase‐2/p38 and a rapamycin‐sensitive pathway are required for C2C12 myogenesis
  publication-title: J Biol Chem
– volume: 7
  year: 2012
  article-title: Dynamic compression of chondrocyte‐agarose constructs reveals new candidate mechanosensitive genes
  publication-title: PLoS One
– volume: 158
  start-page: 633
  year: 2014
  end-page: 646
  article-title: ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress
  publication-title: Cell
– volume: 78
  start-page: 700
  year: 2020b
  end-page: 713.e7
  article-title: ZAKalpha recognizes stalled ribosomes through partially redundant sensor domains
  publication-title: Mol Cell
– volume: 140
  start-page: 37
  year: 2017
  end-page: 48
  article-title: Recessive mutations in the kinase ZAK cause a congenital myopathy with fibre type disproportion
  publication-title: Brain
– volume: 9
  start-page: 1956
  year: 2014
  end-page: 1968
  article-title: Generating genetically modified mice using CRISPR/Cas‐mediated genome engineering
  publication-title: Nat Protoc
– volume: 8
  year: 2018
  article-title: Molecular regulation of exercise‐induced muscle fiber hypertrophy
  publication-title: Cold Spring Harb Perspect Med
– volume: 11
  start-page: 787
  year: 2020a
  article-title: Rapid and site‐specific deep phosphoproteome profiling by data‐independent acquisition without the need for spectral libraries
  publication-title: Nat Commun
– volume: 33
  start-page: 135
  year: 2017
  end-page: 136
  article-title: DAPAR & ProStaR: Software to perform statistical analyses in quantitative discovery proteomics
  publication-title: Bioinformatics
– volume: 19
  start-page: 716
  year: 2020b
  end-page: 729
  article-title: A compact quadrupole‐orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients
  publication-title: Mol Cell Proteomics
– ident: e_1_2_9_18_1
  doi: 10.1074/jbc.M111994200
– ident: e_1_2_9_33_1
  doi: 10.1182/blood-2008-03-144022
– ident: e_1_2_9_51_1
  doi: 10.1038/nrc2694
– ident: e_1_2_9_25_1
  doi: 10.1038/s41467-021-21178-4
– ident: e_1_2_9_35_1
  doi: 10.1038/s41586-020-2830-7
– ident: e_1_2_9_54_1
  doi: 10.1093/bioinformatics/btw580
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pone.0036964
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586-020-2555-7
– ident: e_1_2_9_5_1
  doi: 10.1038/s41467-020-14609-1
– ident: e_1_2_9_14_1
  doi: 10.1074/jbc.274.7.4341
– ident: e_1_2_9_27_1
  doi: 10.1152/japplphysiol.00085.2007
– ident: e_1_2_9_57_1
  doi: 10.1042/ETLS20180051
– ident: e_1_2_9_38_1
  doi: 10.15252/embj.2019102578
– ident: e_1_2_9_48_1
  doi: 10.1093/brain/aww257
– ident: e_1_2_9_42_1
  doi: 10.1093/emboj/17.9.2596
– ident: e_1_2_9_39_1
  doi: 10.1152/physrev.90100.2007
– ident: e_1_2_9_10_1
  doi: 10.1038/nature22376
– ident: e_1_2_9_58_1
  doi: 10.1038/nprot.2014.134
– ident: e_1_2_9_12_1
  doi: 10.1021/acs.jmedchem.7b00572
– ident: e_1_2_9_53_1
  doi: 10.1038/s41467-019-14146-6
– ident: e_1_2_9_41_1
  doi: 10.1242/jeb.175794
– ident: e_1_2_9_44_1
  doi: 10.1073/pnas.1415213112
– ident: e_1_2_9_9_1
  doi: 10.1038/nprot.2009.63
– ident: e_1_2_9_16_1
  doi: 10.1002/jcb.22437
– ident: e_1_2_9_37_1
  doi: 10.1016/j.cell.2020.03.052
– ident: e_1_2_9_30_1
  doi: 10.3389/fphys.2019.00042
– ident: e_1_2_9_52_1
  doi: 10.3389/fphys.2020.00813
– ident: e_1_2_9_26_1
  doi: 10.1038/s41580-019-0134-2
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cell.2014.05.046
– ident: e_1_2_9_6_1
  doi: 10.1074/mcp.TIR119.001906
– ident: e_1_2_9_47_1
  doi: 10.1038/ncb1071
– ident: e_1_2_9_43_1
  doi: 10.1101/gr.199430.115
– ident: e_1_2_9_50_1
  doi: 10.1016/j.molcel.2020.03.021
– ident: e_1_2_9_7_1
  doi: 10.1074/jbc.RA119.009167
– ident: e_1_2_9_15_1
  doi: 10.1016/S0092-8674(00)00116-1
– ident: e_1_2_9_55_1
  doi: 10.1016/j.cell.2020.06.006
– ident: e_1_2_9_13_1
  doi: 10.1113/JP273101
– ident: e_1_2_9_17_1
  doi: 10.1016/j.bbrc.2011.02.127
– ident: e_1_2_9_22_1
  doi: 10.1074/jbc.M603627200
– ident: e_1_2_9_46_1
  doi: 10.1038/nmeth.3901
– ident: e_1_2_9_20_1
  doi: 10.1091/mbc.e17-02-0087
– ident: e_1_2_9_19_1
  doi: 10.1136/ard.2009.119479
– ident: e_1_2_9_4_1
  doi: 10.1074/mcp.TIR118.001270
– ident: e_1_2_9_34_1
  doi: 10.1007/s10974-009-9189-6
– ident: e_1_2_9_45_1
  doi: 10.1002/jcp.10080
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cmet.2015.09.001
– ident: e_1_2_9_11_1
  doi: 10.2741/2057
– ident: e_1_2_9_24_1
  doi: 10.3390/toxins8090259
– ident: e_1_2_9_31_1
  doi: 10.1038/s41467-018-05439-3
– ident: e_1_2_9_36_1
  doi: 10.3389/fphys.2018.00824
– ident: e_1_2_9_40_1
  doi: 10.1152/japplphysiol.00418.2017
– ident: e_1_2_9_29_1
  doi: 10.1038/ncb3387
– ident: e_1_2_9_32_1
  doi: 10.1002/smll.201903857
– ident: e_1_2_9_49_1
  doi: 10.1093/nar/gkaa757
– ident: e_1_2_9_56_1
  doi: 10.1016/j.tibs.2016.09.004
– ident: e_1_2_9_23_1
  doi: 10.1074/jbc.M807574200
– ident: e_1_2_9_3_1
  doi: 10.1101/cshperspect.a029751
SSID ssj0005871
Score 2.4911287
Snippet Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle,...
SourceID pubmedcentral
hal
proquest
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e111650
SubjectTerms Adaptation
Cell lines
Compression
Compressive properties
Defects
EMBO25
EMBO31
Fibers
Hypertrophy
Kinases
Life Sciences
MAP kinase
Mechanical properties
Mechanical stimuli
mechanobiology
Muscle contraction
Muscles
Muscular function
Musculoskeletal system
Mutation
Myopathy
Myosin
Osmotic shock
Physiological responses
Signaling
Skeletal muscle
Stimuli
ZAKβ
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwELWgCNFNBQVEaEEGsQEpauJHEi8vVaurwkVdUKliE9mxo17aulXTW6k7PoFv4UP4CL6EGedxm0qAxDKJ4zxmHJ_jzJwh5I3MuNWVhK-flUBQjEhjI-o8tlxxZzIr6gwTnGefsumB2DuUhzdyYVp9iGHBDUdG-F7jANem6Sv2oGqoOzVfgeAxoDBphrT9HmbYon4-E_vLMI8ikK6wziLSQnW_KrGPrVs9jKamu0cYGHkDdd6OmRx-nI5hbZiXdh-StQ5Q0knrAY_IHefXyf22xOT1Onmw3Vd0e0wWXyYffv6g84ZiNsMVoExLzTXFtXsMRqUYXt6GxXqqvaUhqwSgKA3x7G0GxK9v34HFgz9YOpvs0-O5h2mQYhSIxsR2Ove0OYapDDA9PV00cEtPyMHuzuftadyVXYgryZMkzqVNldGKV7LWeaWEQZE-xZKirnmlVVo4WbsqsdoAFzIO2tZCK1loaQ3gIf6UrPgz754RmvG0Njkz0IMVgG10xmwiLIr2S5bwKiJb_Rsvq06THEtjnJTITdBGJdqoXNooIm-HM85bPY6_tH0NRhyaoZD2dPKxxH2ouoPw9iqNyGZv47Ibvk3JcmB6Apipisir4TBYCy2ivTtbQJsMyF_KWM4iko98Y3TF8RE_PwoS3qjKlxQiIu96L1pe_M-PI4Of_fO5y53Z-73l5vP_PG-DrOJGG1C3SVYuLxbuBSCwS_MyDLHf5CUoGw
  priority: 102
  providerName: Wiley-Blackwell
Title ZAKβ is activated by cellular compression and mediates contraction‐induced MAP kinase signaling in skeletal muscle
URI https://link.springer.com/article/10.15252/embj.2022111650
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022111650
https://www.proquest.com/docview/2708642499
https://www.proquest.com/docview/2696012272
https://hal.science/hal-03740001
https://pubmed.ncbi.nlm.nih.gov/PMC9434084
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2iRYhuKiggQktlEBuQosbPJMth1GpUGNQFlSo2kR0n6tDWrTqdSt3xCXwLH8JH8CXcm2RmGsRDLJM4cZLjxOfY514DvNJGeltq_Pt5jQLFKR47Vaexl7msnPGqNhTgPP5gRodq_0gfdeMdFAtze_5eCy12qjP3GWWcQKHCDYnzu5pLQ-13aIZLM0fWSKtmNEXxLO8mJH93hV4HtHJM9sdb3PJXZ-RierRPXpveZ-8BrHe0kQ1anB_CnSpswL12IcmbDbg_nK_b9ghmnwbvvn9jkymjmIVr5JKeuRtGI_RkOWVkIm_Nr4HZ4FkTO4KEkzWu9TbO4ceXr6jVEXXPxoMDdjIJ2Nkx8npYCl9nk8CmJ9hhIXNnZ7Mp3tJjONzb_Tgcxd3iCnGpZZLEqfY8dzaXpa5tWubKUSq-XCRZXcvS5jyrdF2VibcOFY-rsGytbK4zq71D1iOfwGo4D9VTYEby2qXC4RW8QgZjjfCJ8pSaX4tElhHszN94UXaZx2kBjNOCFAhhVBBGxRKjCF4vzrhos278pexLBHFRjNJljwbvC9pHuXWIxF7zCLbmGBfdRzotRIp6TqH-zCN4sTiMaBEiNlTnMyxjUOJxIVIRQdprG70a-0fC5LhJ1E2595JMRfBm3oqWlf_5cXTTzv753MXu-O3-cvPZ_1SyCWu00XrltmD16nJWPUdydeW2YUWog-3m6_oJIWgdTw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD6CITRuEAwQgQEGcQNStMQ_SXxZqk1laycuNmniJrJjRytjHqLrpN3xCDwLD8JD8CSck6TtgvgRl63dOM7n1N9nf-cY4KXKhDOVwn8_p1CgWJnGVtZ57IQW3mZO1hkFOE_2s9Gh3D1SR916B8XCXN2_V1zxLX9qP6CM4yhU0ozE-Q2JOpnMe8NsuDJzFI20alZTZFrobkPyd1foTUDXj8n-eIVb_uqMXG6P9slrM_vs3IHbHW1kgxbnu3DNhw242R4kebkB68PFuW33YP5-sPf9G5vOGMUsXCCXdMxeMlqhJ8spIxN5a34NzATHmtgRJJysca23cQ4_vnxFrY6oOzYZvGMn04CTHSOvh6HwdTYNbHaCExYyd3Y6n-Et3YfDne2D4SjuDleIKyWSJM6VS7U1WlSqNnmlpaVUfJonRV2Lyui08Kr2VeKMRcVjPdatpdGqMMpZZD3iAayFs-AfAstEWtucW7yCk8hgTMZdIh2l5lc8EVUEW4snXlZd5nE6AONjSQqEMCoJo3KFUQSvlr_41Gbd-EvdFwjishqlyx4NxiV9R7l1iMRepBFsLjAuu5d0VvIc9ZxE_akjeL4sRrQIERP82RzrZCjxUs5zHkHeGxu9FvslYXrcJOqm3HtJISN4vRhFq8b_3B3VjLN_9rvcnrzZXX189D-NPIP10cFkXI7f7u89hltU0PrmNmHt_PPcP0GidW6fNu_YT_brH2U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD6CIRg3CAYTgQEGcQNS1MSxk_iylFVlW6ddMGniJrLjRCvbvIm0k3bHI_AsPAgPwZNwTn5agvgRl03cOOlx6u-zv_MdgJcyjqzOJf77WYkExYjQN6JMfBupqDCxFWVMCc7T_XhyKHaO5FG74FZ1avduS7LJaSCXJjcfXNiyq9fDB8WZ-YjkjiN9CWOi7DeQp9TbtKN4tJJ4pDXhqtdYRJiqdpvyd1foTUvXj0kU-RPi_FUvudw07UPaek4a34U7LZhkwyb69-Ba4TbgZlNe8moD1kddNbf7sPgw3P32lc0qRpkMl4gwLTNXjNbtSYjKSFreSGId086yOqMEYSirtexN9sP3z1-QweNYsGw6PGAnM4dTICMFiKakdjZzrDrBaQzxPDtbVHhLD-BwvP1-NPHbkgt-LqMg8BNpQ2W0inJZ6iRXwpBBn-JBWpZRrlWYFrIs8sBqgzzIFNi2FFrJVEtrEAtFm7Dmzl3xEFgchaVJuMErWIG4RsfcBsKSYb_kQZR7MOh-8Sxv_cipLMZpRryEYpRRjLJVjDx4tfzGRePF8Ze2LzCIy2Zkoj0Z7mV0jBx3CNpehh5sdTHO2le3yniCLE8gK1UePF-exmhRRLQrzhfYJkbiF3KecA-S3tjo9dg_42bHtX03OfIFqfDgdTeKVp3_-XFkPc7--dzZ9vTNzurjo__p5BncOng7zvbe7e8-htt0vBHTbcHa_NOieILoa26e1q_YD2ChJ6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZAK%CE%B2+is+activated+by+cellular+compression+and+mediates+contraction%E2%80%90induced+MAP+kinase+signaling+in+skeletal+muscle&rft.jtitle=The+EMBO+journal&rft.au=Nordgaard%2C+Cathrine&rft.au=Vind%2C+Anna+Constance&rft.au=Stonadge%2C+Amy&rft.au=Kj%C3%B8bsted%2C+Rasmus&rft.date=2022-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=41&rft.issue=17&rft_id=info:doi/10.15252%2Fembj.2022111650&rft_id=info%3Apmid%2F35899396&rft.externalDocID=PMC9434084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon