ZAKβ is activated by cellular compression and mediates contraction‐induced MAP kinase signaling in skeletal muscle
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense...
Saved in:
Published in | The EMBO journal Vol. 41; no. 17; pp. e111650 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2022
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.2022111650 |
Cover
Loading…
Abstract | Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression
in vitro
, and muscle contraction
in vivo
. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
Synopsis
Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli.
ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli.
Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle
Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction.
ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene.
Graphical Abstract
ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. |
---|---|
AbstractList | Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression
in vitro
, and muscle contraction
in vivo
. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
image
Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli.
ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli.
Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle
Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction.
ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene. Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKb is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKb's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro , and muscle contraction in vivo . This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Synopsis Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli. Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction. ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene. Graphical Abstract ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro , and muscle contraction in vivo . This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling. Synopsis Mutations in the MAP3 kinase ZAKβ are associated with progressive muscle weakness in human patients. Here, ZAKβ is shown to protect against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. ZAKβ is activated by hyperosmotic shock and compressive mechanical stimuli. Mechanical stress‐dependent ZAKβ activation depends on its recruitment to stress fibers in human cell lines and Z‐discs in the skeletal muscle Mice deficient for the ZAK gene show defects in p38 and JNK activation upon skeletal muscle contraction. ZAK knockout mice display muscle pathologies that are reminiscent of human patients mutated in the ZAK gene. ZAKβ protects against myopathy by inducing p38 and JNK signaling in response to mechanical stimuli. |
Author | Kassem, Moustapha Jørgensen, Nicolas Oldenburg Snieckute, Goda Miroshnikova, Yekaterina A Haahr, Peter Pennisi, Cristian Pablo Tiedje, Christopher Mallein‐Gerin, Frederic Kjøbsted, Rasmus Olsen, Jesper Velgaard Clemmensen, Christoffer Mazouzi, Abdelghani Li, Xiang Falk, Sarah Antas, Pedro Blanco, Gonzalo Andersen, Jesper Løvind Blasius, Melanie Li, Vivian SW Wickström, Sara A Del Val, Ana Martinez Perrier‐Groult, Emeline Jafari, Abbas Stonadge, Amy Jakobsen, Jens Rithamer Nordgaard, Cathrine Vind, Anna Constance Reinert, Marie Sofie Brummelkamp, Thijn Wojtaszewski, Jørgen FP Bekker‐Jensen, Dorte Breinholdt Bekker‐Jensen, Simon |
AuthorAffiliation | 13 Department of Endocrinology and Metabolism University Hospital of Odense and University of Southern Denmark Odense Denmark 15 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria 3 Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark 5 Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen Copenhagen Denmark 7 Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science University of Helsinki Helsinki Finland 14 Oncode Institute, Division of Biochemistry The Netherlands Cancer Institute Amsterdam The Netherlands 12 Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem) University of Copenhagen Copenhagen Denmark 4 Stem Cell and Cancer Biology Laboratory The Francis Crick Institute London |
AuthorAffiliation_xml | – name: 12 Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem) University of Copenhagen Copenhagen Denmark – name: 8 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark – name: 10 Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen Bispebjerg Hospital Copenhagen Denmark – name: 16 Cancer Genomics Center Amsterdam The Netherlands – name: 6 Division of Biochemistry The Netherlands Cancer Institute Amsterdam The Netherlands – name: 3 Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark – name: 11 Regenerative Medicine Group, Department of Health Science and Technology Aalborg University Aalborg Denmark – name: 4 Stem Cell and Cancer Biology Laboratory The Francis Crick Institute London UK – name: 9 Institut de Biologie et Chimie des Protéines CNRS UMR5305 Lyon France – name: 5 Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research University of Copenhagen Copenhagen Denmark – name: 14 Oncode Institute, Division of Biochemistry The Netherlands Cancer Institute Amsterdam The Netherlands – name: 15 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria – name: 7 Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science University of Helsinki Helsinki Finland – name: 1 Center for Healthy Aging, Department of Cellular and Molecular Medicine University of Copenhagen Copenhagen Denmark – name: 13 Department of Endocrinology and Metabolism University Hospital of Odense and University of Southern Denmark Odense Denmark – name: 2 Department of Biology University of York York UK |
Author_xml | – sequence: 1 givenname: Cathrine surname: Nordgaard fullname: Nordgaard, Cathrine organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen – sequence: 2 givenname: Anna Constance surname: Vind fullname: Vind, Anna Constance organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen – sequence: 3 givenname: Amy orcidid: 0000-0002-5381-0555 surname: Stonadge fullname: Stonadge, Amy organization: Department of Biology, University of York – sequence: 4 givenname: Rasmus surname: Kjøbsted fullname: Kjøbsted, Rasmus organization: Department of Nutrition, Exercise and Sports, University of Copenhagen – sequence: 5 givenname: Goda surname: Snieckute fullname: Snieckute, Goda organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen – sequence: 6 givenname: Pedro surname: Antas fullname: Antas, Pedro organization: Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute – sequence: 7 givenname: Melanie orcidid: 0000-0001-5032-2209 surname: Blasius fullname: Blasius, Melanie organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen – sequence: 8 givenname: Marie Sofie surname: Reinert fullname: Reinert, Marie Sofie organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen – sequence: 9 givenname: Ana Martinez surname: Del Val fullname: Del Val, Ana Martinez organization: Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen – sequence: 10 givenname: Dorte Breinholdt surname: Bekker‐Jensen fullname: Bekker‐Jensen, Dorte Breinholdt organization: Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen – sequence: 11 givenname: Peter orcidid: 0000-0001-9680-2304 surname: Haahr fullname: Haahr, Peter organization: Division of Biochemistry, The Netherlands Cancer Institute – sequence: 12 givenname: Yekaterina A surname: Miroshnikova fullname: Miroshnikova, Yekaterina A organization: Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki – sequence: 13 givenname: Abdelghani orcidid: 0000-0003-0298-6304 surname: Mazouzi fullname: Mazouzi, Abdelghani organization: Division of Biochemistry, The Netherlands Cancer Institute – sequence: 14 givenname: Sarah surname: Falk fullname: Falk, Sarah organization: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 15 givenname: Emeline surname: Perrier‐Groult fullname: Perrier‐Groult, Emeline organization: Institut de Biologie et Chimie des Protéines, CNRS UMR5305 – sequence: 16 givenname: Christopher surname: Tiedje fullname: Tiedje, Christopher organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen – sequence: 17 givenname: Xiang surname: Li fullname: Li, Xiang organization: Department of Biology, University of York – sequence: 18 givenname: Jens Rithamer surname: Jakobsen fullname: Jakobsen, Jens Rithamer organization: Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital – sequence: 19 givenname: Nicolas Oldenburg surname: Jørgensen fullname: Jørgensen, Nicolas Oldenburg organization: Department of Nutrition, Exercise and Sports, University of Copenhagen – sequence: 20 givenname: Jørgen FP surname: Wojtaszewski fullname: Wojtaszewski, Jørgen FP organization: Department of Nutrition, Exercise and Sports, University of Copenhagen – sequence: 21 givenname: Frederic orcidid: 0000-0001-6177-6273 surname: Mallein‐Gerin fullname: Mallein‐Gerin, Frederic organization: Institut de Biologie et Chimie des Protéines, CNRS UMR5305 – sequence: 22 givenname: Jesper Løvind surname: Andersen fullname: Andersen, Jesper Løvind organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital – sequence: 23 givenname: Cristian Pablo orcidid: 0000-0002-7716-1182 surname: Pennisi fullname: Pennisi, Cristian Pablo organization: Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University – sequence: 24 givenname: Christoffer orcidid: 0000-0003-2456-9667 surname: Clemmensen fullname: Clemmensen, Christoffer organization: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 25 givenname: Moustapha surname: Kassem fullname: Kassem, Moustapha organization: Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Department of Endocrinology and Metabolism, University Hospital of Odense and University of Southern Denmark – sequence: 26 givenname: Abbas surname: Jafari fullname: Jafari, Abbas organization: Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen – sequence: 27 givenname: Thijn surname: Brummelkamp fullname: Brummelkamp, Thijn organization: Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Cancer Genomics Center – sequence: 28 givenname: Vivian SW orcidid: 0000-0003-2041-0085 surname: Li fullname: Li, Vivian SW organization: Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute – sequence: 29 givenname: Sara A surname: Wickström fullname: Wickström, Sara A organization: Stem Cells and Metabolism Research Program, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki – sequence: 30 givenname: Jesper Velgaard orcidid: 0000-0002-4747-4938 surname: Olsen fullname: Olsen, Jesper Velgaard organization: Mass Spectrometry for Quantitative Proteomics, Proteomics Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen – sequence: 31 givenname: Gonzalo orcidid: 0000-0003-3827-3111 surname: Blanco fullname: Blanco, Gonzalo organization: Department of Biology, University of York – sequence: 32 givenname: Simon orcidid: 0000-0002-7308-4597 surname: Bekker‐Jensen fullname: Bekker‐Jensen, Simon email: sbj@sund.ku.dk organization: Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen |
BackLink | https://hal.science/hal-03740001$$DView record in HAL |
BookMark | eNqFkcFu1DAQhi1URLcLd46WuMAhZezYSSwhpKUqFNgKDnDhYjmOs_XWcbZxsmhvPALPwoPwEDwJTlNRdSXgZMnzfzP_zH-EDnzrDUKPCRwTTjl9bppyfUyBUkJIxuEemhGWQUIh5wdoBjQjCSOFOERHIawBgBc5eYAOU14IkYpshoYvi_c_f2AbsNK93areVLjcYW2cG5zqsG6bTWdCsK3Hyle4MZWNohALvu9GpvW_vn23vhp0RM8XH_Gl9SoYHOzKK2f9CluPw6VxplcON0PQzjxE92vlgnl0887R59enn07OkuWHN29PFstE8xQgyXlFRKlEqnmtci1YyRnkgkJR16lWghSG10ZDpcoMeGmitmZK8ELxqiQ5Tefo5dR3M5TRuTajZyc3nW1Ut5OtsvJuxdsLuWq3UrCUQcFig2dTg4s97GyxlOMfpDmLdyVbErVPb4Z17dVgQi8bG8ZDKm_aIUiaiQwIpde-nuxJ1-3QxXNFVQ5FxiiL-cwRTCrdtSF0pv7jgIC8zl-O-cvb_COS7SHa9moMKa5n3b_AFxP41Tqz--8geXr-6t0dnEx4iKRfme52ob-O_A1Umdnx |
CitedBy_id | crossref_primary_10_1126_science_adf3208 crossref_primary_10_1093_hmg_ddad113 crossref_primary_10_1016_j_molcel_2023_11_028 crossref_primary_10_26508_lsa_202302522 crossref_primary_10_1038_s41580_023_00606_x crossref_primary_10_1038_s42255_022_00711_9 crossref_primary_10_1016_j_yexcr_2023_113766 crossref_primary_10_26508_lsa_202201862 crossref_primary_10_1016_j_molmet_2023_101816 crossref_primary_10_1038_s41568_024_00745_z crossref_primary_10_1016_j_molcel_2024_10_044 crossref_primary_10_1016_j_cub_2024_07_079 crossref_primary_10_1016_j_jaut_2023_103112 crossref_primary_10_1042_BCJ20220314 crossref_primary_10_1016_j_cmet_2022_10_011 crossref_primary_10_1152_physrev_00039_2022 crossref_primary_10_1038_s41419_023_05997_5 |
Cites_doi | 10.1074/jbc.M111994200 10.1182/blood-2008-03-144022 10.1038/nrc2694 10.1038/s41467-021-21178-4 10.1038/s41586-020-2830-7 10.1093/bioinformatics/btw580 10.1371/journal.pone.0036964 10.1038/s41586-020-2555-7 10.1038/s41467-020-14609-1 10.1074/jbc.274.7.4341 10.1152/japplphysiol.00085.2007 10.1042/ETLS20180051 10.15252/embj.2019102578 10.1093/brain/aww257 10.1093/emboj/17.9.2596 10.1152/physrev.90100.2007 10.1038/nature22376 10.1038/nprot.2014.134 10.1021/acs.jmedchem.7b00572 10.1038/s41467-019-14146-6 10.1242/jeb.175794 10.1073/pnas.1415213112 10.1038/nprot.2009.63 10.1002/jcb.22437 10.1016/j.cell.2020.03.052 10.3389/fphys.2019.00042 10.3389/fphys.2020.00813 10.1038/s41580-019-0134-2 10.1016/j.cell.2014.05.046 10.1074/mcp.TIR119.001906 10.1038/ncb1071 10.1101/gr.199430.115 10.1016/j.molcel.2020.03.021 10.1074/jbc.RA119.009167 10.1016/S0092-8674(00)00116-1 10.1016/j.cell.2020.06.006 10.1113/JP273101 10.1016/j.bbrc.2011.02.127 10.1074/jbc.M603627200 10.1038/nmeth.3901 10.1091/mbc.e17-02-0087 10.1136/ard.2009.119479 10.1074/mcp.TIR118.001270 10.1007/s10974-009-9189-6 10.1002/jcp.10080 10.1016/j.cmet.2015.09.001 10.2741/2057 10.3390/toxins8090259 10.1038/s41467-018-05439-3 10.3389/fphys.2018.00824 10.1152/japplphysiol.00418.2017 10.1038/ncb3387 10.1002/smll.201903857 10.1093/nar/gkaa757 10.1016/j.tibs.2016.09.004 10.1074/jbc.M807574200 10.1101/cshperspect.a029751 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C 24P AAYXX CITATION 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embj.2022111650 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Cathrine Nordgaard et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC9434084 oai_HAL_hal_03740001v1 10_15252_embj_2022111650 EMBJ2022111650 |
Genre | article |
GrantInformation_xml | – fundername: Sundhed og Sygdom, Det Frie Forskningsråd (FSS, DFF) grantid: 9039‐00007B; FSS 8020‐00288 funderid: 10.13039/100008392 – fundername: Novo Nordisk Fonden (NNF) grantid: NNF21OC0071475; NNF20SA0064340; NNF17OC0026114; NNF18CC0034900; NFF 17SA0031406; NNF14CC0001 funderid: 10.13039/501100009708 – fundername: EC ¦ ERC ¦ HORIZON EUROPE European Research Council (ERC) grantid: 863911 ‐ PHYRIST – fundername: Lundbeckfonden (Lundbeck Foundation) grantid: R190‐2014‐4037; R238‐2016‐2859 funderid: 10.13039/501100003554 – fundername: Sundhed og Sygdom, Det Frie Forskningsråd (FSS, DFF) funderid: 9039‐00007B; FSS 8020‐00288 – fundername: EC ¦ ERC ¦ HORIZON EUROPE European Research Council (ERC) funderid: 863911 ‐ PHYRIST – fundername: Novo Nordisk Fonden (NNF) funderid: NNF21OC0071475; NNF20SA0064340; NNF17OC0026114; NNF18CC0034900; NFF 17SA0031406; NNF14CC0001 – fundername: Lundbeckfonden (Lundbeck Foundation) funderid: R190‐2014‐4037; R238‐2016‐2859 – fundername: ; grantid: NNF21OC0071475; NNF20SA0064340; NNF17OC0026114; NNF18CC0034900; NFF 17SA0031406; NNF14CC0001 – fundername: ; grantid: 9039‐00007B; FSS 8020‐00288 – fundername: ; grantid: R190‐2014‐4037; R238‐2016‐2859 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI -Q- .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP AASGY AASML AAYXX ABUWG ABZEH ACBWZ ACKIV ACRPL ACYXJ ADNMO AEUYN AFKRA AGQPQ AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO EJD FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P NAO PCBAR PHGZM PHGZT PQQKQ PROAC PSQYO RIG RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5300-75d19ba93c5fa7c94b54079208ff3ca918e5fec0dab605be9baf4a958a5db1723 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 13:48:05 EDT 2025 Sat Jul 26 06:30:19 EDT 2025 Fri Jul 11 04:07:56 EDT 2025 Fri Jul 25 10:45:05 EDT 2025 Tue Jul 01 01:47:23 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Jan 22 16:23:17 EST 2025 Fri Feb 21 02:37:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | mechanobiology muscle contraction myopathy ZAKβ ZAKb Subject Categories Musculoskeletal System Post-translational Modifications & Proteolysis |
Language | English |
License | Attribution-NonCommercial-NoDerivs Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5300-75d19ba93c5fa7c94b54079208ff3ca918e5fec0dab605be9baf4a958a5db1723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4747-4938 0000-0003-2041-0085 0000-0003-0298-6304 0000-0001-9680-2304 0000-0001-5032-2209 0000-0002-5381-0555 0000-0001-6177-6273 0000-0002-7716-1182 0000-0002-7308-4597 0000-0003-2456-9667 0000-0003-3827-3111 |
OpenAccessLink | https://doi.org/10.15252/embj.2022111650 |
PMID | 35899396 |
PQID | 2708642499 |
PQPubID | 35985 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9434084 hal_primary_oai_HAL_hal_03740001v1 proquest_miscellaneous_2696012272 proquest_journals_2708642499 crossref_primary_10_15252_embj_2022111650 crossref_citationtrail_10_15252_embj_2022111650 wiley_primary_10_15252_embj_2022111650_EMBJ2022111650 springer_journals_10_15252_embj_2022111650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 September 2022 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 1 September 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Inagaki, Omori, Kim, Komatsu, Scott, Ray, Yamada, Matsumoto, Mishina, Ninomiya‐Tsuji (CR22) 2008; 283 Bamman, Roberts, Adams (CR2) 2018; 8 Kramer, Goodyear (CR26) 2007; 1985 Xia, Pfeifer, Cho, Discher, Irianto (CR56) 2018; 2 Bougault, Aubert‐Foucher, Paumier, Perrier‐Groult, Huot, Hot, Duterque‐Coquillaud, Mallein‐Gerin (CR7) 2012; 7 Finan, Guilak (CR15) 2010; 109 Wagner, Nebreda (CR50) 2009; 9 Lee, Jun (CR29) 2019; 10 Luther (CR33) 2009; 30 Chen‐Izu, Izu (CR12) 2017; 595 Tobiume, Saitoh, Ichijo (CR44) 2002; 191 Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (CR45) 2016; 13 Aragona, Sifrim, Malfait, Song, Van Herck, Dekoninck, Gargouri, Lapouge, Swedlund, Dubois (CR1) 2020; 584 Blythe, Muraki, Ludlow, Stylianidis, Gilbert, Evans, Cuthbertson, Foster, Swift, Li (CR6) 2019; 294 Wu, Peterson, Zinshteyn, Regot, Green (CR54) 2020; 182 Wu, Lewis, Grandl (CR55) 2017; 42 Brockmann, Blomen, Nieuwenhuis, Stickel, Raaben, Bleijerveld, Altelaar, Jae, Brummelkamp (CR9) 2017; 546 Vind, Snieckute, Blasius, Tiedje, Krogh, Bekker‐Jensen, Andersen, Nordgaard, Tollenaere, Lund (CR49) 2020; 78 Fukuno, Matsui, Kanda, Suzuki, Matsumoto, Sasaki, Kobayashi, Tamura (CR16) 2011; 408 Bekker‐Jensen, Bernhardt, Hogrebe, Martinez‐Val, Verbeke, Gandhi, Kelstrup, Reiter, Olsen (CR4) 2020; 11 Le, Ghatak, Yeung, Tellkamp, Gunschmann, Dieterich, Yeroslaviz, Habermann, Pombo, Niessen (CR28) 2016; 18 Nava, Miroshnikova, Biggs, Whitefield, Metge, Boucas, Vihinen, Jokitalo, Li, Garcia Arcos (CR36) 2020; 181 Spielmann, Kakar, Tayebi, Leettola, Nurnberg, Sowada, Lupianez, Harabula, Flottmann, Horn (CR42) 2016; 26 Hammaker, Firestein (CR18) 2010; 69 Hoffman, Jensen, Yoshigi, Beckerle (CR19) 2017; 28 Kechagia, Ivaska, Roca‐Cusachs (CR25) 2019; 20 Yang, Wang, Jaenisch (CR57) 2014; 9 Kumar, Mazzanti, Mistrik, Kosar, Beznoussenko, Mironov, Garre, Parazzoli, Shivashankar, Scita (CR27) 2014; 158 Uhlik, Abell, Johnson, Sun, Cuevas, Lobel‐Rice, Horne, Dell'Acqua, Johnson (CR46) 2003; 5 Randhawa, Wakeling (CR40) 2018; 221 Bougault, Paumier, Aubert‐Foucher, Mallein‐Gerin (CR8) 2009; 4 Wang, You, Lotinun, Zhang, Wu, Zou (CR52) 2020; 11 Martino, Perestrelo, Vinarsky, Pagliari, Forte (CR35) 2018; 9 Cuenda, Cohen (CR13) 1999; 274 Bekker‐Jensen, Martinez‐Val, Steigerwald, Ruther, Fort, Arrey, Harder, Makarov, Olsen (CR5) 2020; 19 Wieczorek, Combes, Lazar, Giai Gianetto, Gatto, Dorffer, Hesse, Coute, Ferro, Bruley (CR53) 2017; 33 Davis (CR14) 2000; 103 Burkholder (CR10) 2007; 12 Huangfu, Omori, Akira, Matsumoto, Ninomiya‐Tsuji (CR21) 2006; 281 Vind, Genzor, Bekker‐Jensen (CR48) 2020; 48 Jandhyala, Wong, Mantis, Magun, Leong, Thorpe (CR23) 2016; 8 Batth, Tollenaere, Ruther, Gonzalez‐Franquesa, Prabhakar, Bekker‐Jensen, Deshmukh, Olsen (CR3) 2019; 18 Nelson, Parker, Burchfield, Hoffman, Needham, Cooke, Naim, Sylow, Ling, Francis (CR37) 2019; 38 Swarnkar, Karuppaiah, Mbalaviele, Chen, Abu‐Amer (CR43) 2015; 112 Chang, Lu, Shibu, Dai, Luo, Zhang, Li, Zhao, Zhang, Xu (CR11) 2017; 60 Saitoh, Nishitoh, Fujii, Takeda, Tobiume, Sawada, Kawabata, Miyazono, Ichijo (CR41) 1998; 17 Liu, Yao, Li, Wang, Zheng, Cao (CR32) 2008; 112 Marshall, Saade, Ghitani, Coombs, Szczot, Keller, Ogata, Daou, Stowers, Bonnemann (CR34) 2020; 588 Liu, Yu, Young, Stone, Hanasoge, Kirby, Varadarajan, Colonna, Liu, Raj (CR31) 2020; 16 Hoffman, Parker, Chaudhuri, Fisher‐Wellman, Kleinert, Humphrey, Yang, Holliday, Trefely, Fazakerley (CR20) 2015; 22 Jiang, Yin, Wu, Zhang, Wang, Cheng, Zhou, Xiao (CR24) 2021; 12 Powers (CR39) 2017; 1985 Pedersen, Febbraio (CR38) 2008; 88 Gross, Callow, Waldbaum, Thomas, Ruggieri (CR17) 2002; 277 Lessard, MacDonald, Pathak, Han, Coffey, Edge, Rivas, Hirshman, Davis, Goodyear (CR30) 2018; 9 Wakeling, Ross, Ryan, Bolsterlee, Konno, Dominguez, Nigam (CR51) 2020; 11 Vasli, Harris, Karamchandani, Bareke, Majewski, Romero, Stojkovic, Barresi, Tasfaout, Charlton (CR47) 2017; 140 2017; 42 2010; 109 2002; 191 2020a; 48 2007; 1985 2019; 10 2017; 1985 2002; 277 2020; 16 2019; 18 2020; 11 2017; 595 2018; 9 2018; 8 1998; 17 2018; 2 2010; 69 2019; 20 2011; 408 2017; 33 2003; 5 2006; 281 2008; 112 2014; 9 2020b; 78 2018; 221 2017; 60 2017; 28 2020; 181 2020; 182 2020; 588 2019; 38 2020; 584 2016; 18 2007; 12 2014; 158 2008; 283 2016; 13 2020a; 11 2009; 30 2020b; 19 2021; 12 2000; 103 2015; 112 2015; 22 1999; 274 2009; 9 2017; 140 2008; 88 2009; 4 2019; 294 2012; 7 2016; 26 2016; 8 2017; 546 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 69 start-page: i77 year: 2010 end-page: i82 ident: CR18 article-title: "go upstream, young man": Lessons learned from the p38 saga publication-title: Ann Rheum Dis – volume: 9 start-page: 824 year: 2018 ident: CR35 article-title: Cellular mechanotransduction: From tension to function publication-title: Front Physiol – volume: 9 start-page: 1956 year: 2014 end-page: 1968 ident: CR57 article-title: Generating genetically modified mice using CRISPR/Cas‐mediated genome engineering publication-title: Nat Protoc – volume: 158 start-page: 633 year: 2014 end-page: 646 ident: CR27 article-title: ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress publication-title: Cell – volume: 11 start-page: 813 year: 2020 ident: CR51 article-title: The energy of muscle contraction. I. Tissue force and deformation during fixed‐end contractions publication-title: Front Physiol – volume: 588 start-page: 290 year: 2020 end-page: 295 ident: CR34 article-title: PIEZO2 in sensory neurons and urothelial cells coordinates urination publication-title: Nature – volume: 42 start-page: 57 year: 2017 end-page: 71 ident: CR55 article-title: Touch, tension, and transduction ‐ the function and regulation of piezo ion channels publication-title: Trends Biochem Sci – volume: 112 start-page: 4961 year: 2008 end-page: 4970 ident: CR32 article-title: CaMKII promotes TLR‐triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages publication-title: Blood – volume: 103 start-page: 239 year: 2000 end-page: 252 ident: CR14 article-title: Signal transduction by the JNK group of MAP kinases publication-title: Cell – volume: 1985 start-page: 388 year: 2007 end-page: 395 ident: CR26 article-title: Exercise, MAPK, and NF‐kappaB signaling in skeletal muscle publication-title: J Appl Physiol – volume: 277 start-page: 13873 year: 2002 end-page: 13882 ident: CR17 article-title: MRK, a mixed lineage kinase‐related molecule that plays a role in gamma‐radiation‐induced cell cycle arrest publication-title: J Biol Chem – volume: 9 start-page: 3030 year: 2018 ident: CR30 article-title: JNK regulates muscle remodeling via myostatin/SMAD inhibition publication-title: Nat Commun – volume: 78 start-page: 700 year: 2020 end-page: 713.e7 ident: CR49 article-title: ZAKalpha recognizes stalled ribosomes through partially redundant sensor domains publication-title: Mol Cell – volume: 112 start-page: 154 year: 2015 end-page: 159 ident: CR43 article-title: Osteopetrosis in TAK1‐deficient mice owing to defective NF‐kappaB and NOTCH signaling publication-title: Proc Natl Acad Sci U S A – volume: 1985 start-page: 460 year: 2017 end-page: 472 ident: CR39 article-title: Exercise: Teaching myocytes new tricks publication-title: J Appl Physiol – volume: 221 year: 2018 ident: CR40 article-title: Transverse anisotropy in the deformation of the muscle during dynamic contractions publication-title: J Exp Biol – volume: 294 start-page: 17395 year: 2019 end-page: 17408 ident: CR6 article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen‐activated protein kinase activity and interleukin‐6 secretion publication-title: J Biol Chem – volume: 20 start-page: 457 year: 2019 end-page: 473 ident: CR25 article-title: Integrins as biomechanical sensors of the microenvironment publication-title: Nat Rev Mol Cell Biol – volume: 2 start-page: 713 year: 2018 end-page: 725 ident: CR56 article-title: Nuclear mechanosensing publication-title: Emerg Top Life Sci – volume: 595 start-page: 3949 year: 2017 end-page: 3958 ident: CR12 article-title: Mechano‐chemo‐transduction in cardiac myocytes publication-title: J Physiol – volume: 283 start-page: 33080 year: 2008 end-page: 33086 ident: CR22 article-title: TAK1‐binding protein 1, TAB1, mediates osmotic stress‐induced TAK1 activation but is dispensable for TAK1‐mediated cytokine signaling publication-title: J Biol Chem – volume: 13 start-page: 731 year: 2016 end-page: 740 ident: CR45 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods – volume: 191 start-page: 95 year: 2002 end-page: 104 ident: CR44 article-title: Activation of apoptosis signal‐regulating kinase 1 by the stress‐induced activating phosphorylation of pre‐formed oligomer publication-title: J Cell Physiol – volume: 22 start-page: 922 year: 2015 end-page: 935 ident: CR20 article-title: Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise‐regulated kinases and AMPK substrates publication-title: Cell Metab – volume: 140 start-page: 37 year: 2017 end-page: 48 ident: CR47 article-title: Recessive mutations in the kinase ZAK cause a congenital myopathy with fibre type disproportion publication-title: Brain – volume: 38 year: 2019 ident: CR37 article-title: Phosphoproteomics reveals conserved exercise‐stimulated signaling and AMPK regulation of store‐operated calcium entry publication-title: EMBO J – volume: 11 start-page: 282 year: 2020 ident: CR52 article-title: Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast‐osteoclast crosstalk publication-title: Nat Commun – volume: 11 start-page: 787 year: 2020 ident: CR4 article-title: Rapid and site‐specific deep phosphoproteome profiling by data‐independent acquisition without the need for spectral libraries publication-title: Nat Commun – volume: 584 start-page: 268 year: 2020 end-page: 273 ident: CR1 article-title: Mechanisms of stretch‐mediated skin expansion at single‐cell resolution publication-title: Nature – volume: 12 start-page: 174 year: 2007 end-page: 191 ident: CR10 article-title: Mechanotransduction in skeletal muscle publication-title: Front Biosci – volume: 9 start-page: 537 year: 2009 end-page: 549 ident: CR50 article-title: Signal integration by JNK and p38 MAPK pathways in cancer development publication-title: Nat Rev Cancer – volume: 60 start-page: 5927 year: 2017 end-page: 5932 ident: CR11 article-title: Structure based design of N‐(3‐((1H‐Pyrazolo[3,4‐b]pyridin‐5‐yl)ethynyl))benzenesulfonamides as selective leucine‐zipper and sterile‐alpha motif kinase (ZAK) inhibitors publication-title: J Med Chem – volume: 181 start-page: 800 year: 2020 end-page: 817.e22 ident: CR36 article-title: Heterochromatin‐driven nuclear softening protects the genome against mechanical stress‐induced damage publication-title: Cell – volume: 408 start-page: 202 year: 2011 end-page: 207 ident: CR16 article-title: TGF‐beta‐activated kinase 1 mediates mechanical stress‐induced IL‐6 expression in osteoblasts publication-title: Biochem Biophys Res Commun – volume: 546 start-page: 307 year: 2017 end-page: 311 ident: CR9 article-title: Genetic wiring maps of single‐cell protein states reveal an off‐switch for GPCR signalling publication-title: Nature – volume: 16 year: 2020 ident: CR31 article-title: Cell mechanical and physiological behavior in the regime of rapid mechanical compressions that lead to cell volume change publication-title: Small – volume: 7 year: 2012 ident: CR7 article-title: Dynamic compression of chondrocyte‐agarose constructs reveals new candidate mechanosensitive genes publication-title: PLoS One – volume: 28 start-page: 2661 year: 2017 end-page: 2675 ident: CR19 article-title: Mechanical signals activate p38 MAPK pathway‐dependent reinforcement of Actin via mechanosensitive HspB1 publication-title: Mol Biol Cell – volume: 274 start-page: 4341 year: 1999 end-page: 4346 ident: CR13 article-title: Stress‐activated protein kinase‐2/p38 and a rapamycin‐sensitive pathway are required for C2C12 myogenesis publication-title: J Biol Chem – volume: 8 start-page: 259 year: 2016 ident: CR23 article-title: A novel ZAK knockout mouse with a defective ribotoxic stress response publication-title: Toxins – volume: 4 start-page: 928 year: 2009 end-page: 938 ident: CR8 article-title: Investigating conversion of mechanical force into biochemical signaling in three‐dimensional chondrocyte cultures publication-title: Nat Protoc – volume: 18 start-page: 1027 year: 2019 end-page: 1035 ident: CR3 article-title: Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation publication-title: Mol Cell Proteomics – volume: 12 start-page: 869 year: 2021 ident: CR24 article-title: The mechanosensitive Piezo1 channel mediates heart mechano‐chemo transduction publication-title: Nat Commun – volume: 88 start-page: 1379 year: 2008 end-page: 1406 ident: CR38 article-title: Muscle as an endocrine organ: Focus on muscle‐derived interleukin‐6 publication-title: Physiol Rev – volume: 48 start-page: 10648 year: 2020 end-page: 10661 ident: CR48 article-title: Ribosomal stress‐surveillance: Three pathways is a magic number publication-title: Nucleic Acids Res – volume: 18 start-page: 864 year: 2016 end-page: 875 ident: CR28 article-title: Mechanical regulation of transcription controls Polycomb‐mediated gene silencing during lineage commitment publication-title: Nat Cell Biol – volume: 281 start-page: 28802 year: 2006 end-page: 28810 ident: CR21 article-title: Osmotic stress activates the TAK1‐JNK pathway while blocking TAK1‐mediated NF‐kappaB activation: TAO2 regulates TAK1 pathways publication-title: J Biol Chem – volume: 33 start-page: 135 year: 2017 end-page: 136 ident: CR53 article-title: DAPAR & ProStaR: Software to perform statistical analyses in quantitative discovery proteomics publication-title: Bioinformatics – volume: 30 start-page: 171 year: 2009 end-page: 185 ident: CR33 article-title: The vertebrate muscle Z‐disc: Sarcomere anchor for structure and signalling publication-title: J Muscle Res Cell Motil – volume: 8 year: 2018 ident: CR2 article-title: Molecular regulation of exercise‐induced muscle fiber hypertrophy publication-title: Cold Spring Harb Perspect Med – volume: 109 start-page: 460 year: 2010 end-page: 467 ident: CR15 article-title: The effects of osmotic stress on the structure and function of the cell nucleus publication-title: J Cell Biochem – volume: 26 start-page: 183 year: 2016 end-page: 191 ident: CR42 article-title: Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice publication-title: Genome Res – volume: 182 start-page: 404 year: 2020 end-page: 416.e4 ident: CR54 article-title: Ribosome collisions trigger general stress responses to regulate cell fate publication-title: Cell – volume: 19 start-page: 716 year: 2020 end-page: 729 ident: CR5 article-title: A compact quadrupole‐orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients publication-title: Mol Cell Proteomics – volume: 5 start-page: 1104 year: 2003 end-page: 1110 ident: CR46 article-title: Rac‐MEKK3‐MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock publication-title: Nat Cell Biol – volume: 10 start-page: 42 year: 2019 ident: CR29 article-title: Role of Myokines in regulating skeletal muscle mass and function publication-title: Front Physiol – volume: 17 start-page: 2596 year: 1998 end-page: 2606 ident: CR41 article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1 publication-title: EMBO J – volume: 221 year: 2018 article-title: Transverse anisotropy in the deformation of the muscle during dynamic contractions publication-title: J Exp Biol – volume: 48 start-page: 10648 year: 2020a end-page: 10661 article-title: Ribosomal stress‐surveillance: Three pathways is a magic number publication-title: Nucleic Acids Res – volume: 38 year: 2019 article-title: Phosphoproteomics reveals conserved exercise‐stimulated signaling and AMPK regulation of store‐operated calcium entry publication-title: EMBO J – volume: 12 start-page: 174 year: 2007 end-page: 191 article-title: Mechanotransduction in skeletal muscle publication-title: Front Biosci – volume: 103 start-page: 239 year: 2000 end-page: 252 article-title: Signal transduction by the JNK group of MAP kinases publication-title: Cell – volume: 22 start-page: 922 year: 2015 end-page: 935 article-title: Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise‐regulated kinases and AMPK substrates publication-title: Cell Metab – volume: 546 start-page: 307 year: 2017 end-page: 311 article-title: Genetic wiring maps of single‐cell protein states reveal an off‐switch for GPCR signalling publication-title: Nature – volume: 13 start-page: 731 year: 2016 end-page: 740 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods – volume: 16 year: 2020 article-title: Cell mechanical and physiological behavior in the regime of rapid mechanical compressions that lead to cell volume change publication-title: Small – volume: 18 start-page: 864 year: 2016 end-page: 875 article-title: Mechanical regulation of transcription controls Polycomb‐mediated gene silencing during lineage commitment publication-title: Nat Cell Biol – volume: 9 start-page: 824 year: 2018 article-title: Cellular mechanotransduction: From tension to function publication-title: Front Physiol – volume: 408 start-page: 202 year: 2011 end-page: 207 article-title: TGF‐beta‐activated kinase 1 mediates mechanical stress‐induced IL‐6 expression in osteoblasts publication-title: Biochem Biophys Res Commun – volume: 182 start-page: 404 year: 2020 end-page: 416.e4 article-title: Ribosome collisions trigger general stress responses to regulate cell fate publication-title: Cell – volume: 5 start-page: 1104 year: 2003 end-page: 1110 article-title: Rac‐MEKK3‐MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock publication-title: Nat Cell Biol – volume: 12 start-page: 869 year: 2021 article-title: The mechanosensitive Piezo1 channel mediates heart mechano‐chemo transduction publication-title: Nat Commun – volume: 30 start-page: 171 year: 2009 end-page: 185 article-title: The vertebrate muscle Z‐disc: Sarcomere anchor for structure and signalling publication-title: J Muscle Res Cell Motil – volume: 9 start-page: 537 year: 2009 end-page: 549 article-title: Signal integration by JNK and p38 MAPK pathways in cancer development publication-title: Nat Rev Cancer – volume: 281 start-page: 28802 year: 2006 end-page: 28810 article-title: Osmotic stress activates the TAK1‐JNK pathway while blocking TAK1‐mediated NF‐kappaB activation: TAO2 regulates TAK1 pathways publication-title: J Biol Chem – volume: 1985 start-page: 460 year: 2017 end-page: 472 article-title: Exercise: Teaching myocytes new tricks publication-title: J Appl Physiol – volume: 1985 start-page: 388 year: 2007 end-page: 395 article-title: Exercise, MAPK, and NF‐kappaB signaling in skeletal muscle publication-title: J Appl Physiol – volume: 584 start-page: 268 year: 2020 end-page: 273 article-title: Mechanisms of stretch‐mediated skin expansion at single‐cell resolution publication-title: Nature – volume: 20 start-page: 457 year: 2019 end-page: 473 article-title: Integrins as biomechanical sensors of the microenvironment publication-title: Nat Rev Mol Cell Biol – volume: 2 start-page: 713 year: 2018 end-page: 725 article-title: Nuclear mechanosensing publication-title: Emerg Top Life Sci – volume: 283 start-page: 33080 year: 2008 end-page: 33086 article-title: TAK1‐binding protein 1, TAB1, mediates osmotic stress‐induced TAK1 activation but is dispensable for TAK1‐mediated cytokine signaling publication-title: J Biol Chem – volume: 588 start-page: 290 year: 2020 end-page: 295 article-title: PIEZO2 in sensory neurons and urothelial cells coordinates urination publication-title: Nature – volume: 9 start-page: 3030 year: 2018 article-title: JNK regulates muscle remodeling via myostatin/SMAD inhibition publication-title: Nat Commun – volume: 26 start-page: 183 year: 2016 end-page: 191 article-title: Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice publication-title: Genome Res – volume: 28 start-page: 2661 year: 2017 end-page: 2675 article-title: Mechanical signals activate p38 MAPK pathway‐dependent reinforcement of Actin via mechanosensitive HspB1 publication-title: Mol Biol Cell – volume: 42 start-page: 57 year: 2017 end-page: 71 article-title: Touch, tension, and transduction ‐ the function and regulation of piezo ion channels publication-title: Trends Biochem Sci – volume: 88 start-page: 1379 year: 2008 end-page: 1406 article-title: Muscle as an endocrine organ: Focus on muscle‐derived interleukin‐6 publication-title: Physiol Rev – volume: 18 start-page: 1027 year: 2019 end-page: 1035 article-title: Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation publication-title: Mol Cell Proteomics – volume: 181 start-page: 800 year: 2020 end-page: 817.e22 article-title: Heterochromatin‐driven nuclear softening protects the genome against mechanical stress‐induced damage publication-title: Cell – volume: 60 start-page: 5927 year: 2017 end-page: 5932 article-title: Structure based design of N‐(3‐((1H‐Pyrazolo[3,4‐b]pyridin‐5‐yl)ethynyl))benzenesulfonamides as selective leucine‐zipper and sterile‐alpha motif kinase (ZAK) inhibitors publication-title: J Med Chem – volume: 109 start-page: 460 year: 2010 end-page: 467 article-title: The effects of osmotic stress on the structure and function of the cell nucleus publication-title: J Cell Biochem – volume: 11 start-page: 282 year: 2020 article-title: Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast‐osteoclast crosstalk publication-title: Nat Commun – volume: 112 start-page: 154 year: 2015 end-page: 159 article-title: Osteopetrosis in TAK1‐deficient mice owing to defective NF‐kappaB and NOTCH signaling publication-title: Proc Natl Acad Sci U S A – volume: 69 start-page: i77 year: 2010 end-page: i82 article-title: "go upstream, young man": Lessons learned from the p38 saga publication-title: Ann Rheum Dis – volume: 8 start-page: 259 year: 2016 article-title: A novel ZAK knockout mouse with a defective ribotoxic stress response publication-title: Toxins – volume: 112 start-page: 4961 year: 2008 end-page: 4970 article-title: CaMKII promotes TLR‐triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages publication-title: Blood – volume: 595 start-page: 3949 year: 2017 end-page: 3958 article-title: Mechano‐chemo‐transduction in cardiac myocytes publication-title: J Physiol – volume: 11 start-page: 813 year: 2020 article-title: The energy of muscle contraction. I. Tissue force and deformation during fixed‐end contractions publication-title: Front Physiol – volume: 17 start-page: 2596 year: 1998 end-page: 2606 article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1 publication-title: EMBO J – volume: 277 start-page: 13873 year: 2002 end-page: 13882 article-title: MRK, a mixed lineage kinase‐related molecule that plays a role in gamma‐radiation‐induced cell cycle arrest publication-title: J Biol Chem – volume: 191 start-page: 95 year: 2002 end-page: 104 article-title: Activation of apoptosis signal‐regulating kinase 1 by the stress‐induced activating phosphorylation of pre‐formed oligomer publication-title: J Cell Physiol – volume: 294 start-page: 17395 year: 2019 end-page: 17408 article-title: Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen‐activated protein kinase activity and interleukin‐6 secretion publication-title: J Biol Chem – volume: 4 start-page: 928 year: 2009 end-page: 938 article-title: Investigating conversion of mechanical force into biochemical signaling in three‐dimensional chondrocyte cultures publication-title: Nat Protoc – volume: 10 start-page: 42 year: 2019 article-title: Role of Myokines in regulating skeletal muscle mass and function publication-title: Front Physiol – volume: 274 start-page: 4341 year: 1999 end-page: 4346 article-title: Stress‐activated protein kinase‐2/p38 and a rapamycin‐sensitive pathway are required for C2C12 myogenesis publication-title: J Biol Chem – volume: 7 year: 2012 article-title: Dynamic compression of chondrocyte‐agarose constructs reveals new candidate mechanosensitive genes publication-title: PLoS One – volume: 158 start-page: 633 year: 2014 end-page: 646 article-title: ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress publication-title: Cell – volume: 78 start-page: 700 year: 2020b end-page: 713.e7 article-title: ZAKalpha recognizes stalled ribosomes through partially redundant sensor domains publication-title: Mol Cell – volume: 140 start-page: 37 year: 2017 end-page: 48 article-title: Recessive mutations in the kinase ZAK cause a congenital myopathy with fibre type disproportion publication-title: Brain – volume: 9 start-page: 1956 year: 2014 end-page: 1968 article-title: Generating genetically modified mice using CRISPR/Cas‐mediated genome engineering publication-title: Nat Protoc – volume: 8 year: 2018 article-title: Molecular regulation of exercise‐induced muscle fiber hypertrophy publication-title: Cold Spring Harb Perspect Med – volume: 11 start-page: 787 year: 2020a article-title: Rapid and site‐specific deep phosphoproteome profiling by data‐independent acquisition without the need for spectral libraries publication-title: Nat Commun – volume: 33 start-page: 135 year: 2017 end-page: 136 article-title: DAPAR & ProStaR: Software to perform statistical analyses in quantitative discovery proteomics publication-title: Bioinformatics – volume: 19 start-page: 716 year: 2020b end-page: 729 article-title: A compact quadrupole‐orbitrap mass spectrometer with FAIMS interface improves proteome coverage in short LC gradients publication-title: Mol Cell Proteomics – ident: e_1_2_9_18_1 doi: 10.1074/jbc.M111994200 – ident: e_1_2_9_33_1 doi: 10.1182/blood-2008-03-144022 – ident: e_1_2_9_51_1 doi: 10.1038/nrc2694 – ident: e_1_2_9_25_1 doi: 10.1038/s41467-021-21178-4 – ident: e_1_2_9_35_1 doi: 10.1038/s41586-020-2830-7 – ident: e_1_2_9_54_1 doi: 10.1093/bioinformatics/btw580 – ident: e_1_2_9_8_1 doi: 10.1371/journal.pone.0036964 – ident: e_1_2_9_2_1 doi: 10.1038/s41586-020-2555-7 – ident: e_1_2_9_5_1 doi: 10.1038/s41467-020-14609-1 – ident: e_1_2_9_14_1 doi: 10.1074/jbc.274.7.4341 – ident: e_1_2_9_27_1 doi: 10.1152/japplphysiol.00085.2007 – ident: e_1_2_9_57_1 doi: 10.1042/ETLS20180051 – ident: e_1_2_9_38_1 doi: 10.15252/embj.2019102578 – ident: e_1_2_9_48_1 doi: 10.1093/brain/aww257 – ident: e_1_2_9_42_1 doi: 10.1093/emboj/17.9.2596 – ident: e_1_2_9_39_1 doi: 10.1152/physrev.90100.2007 – ident: e_1_2_9_10_1 doi: 10.1038/nature22376 – ident: e_1_2_9_58_1 doi: 10.1038/nprot.2014.134 – ident: e_1_2_9_12_1 doi: 10.1021/acs.jmedchem.7b00572 – ident: e_1_2_9_53_1 doi: 10.1038/s41467-019-14146-6 – ident: e_1_2_9_41_1 doi: 10.1242/jeb.175794 – ident: e_1_2_9_44_1 doi: 10.1073/pnas.1415213112 – ident: e_1_2_9_9_1 doi: 10.1038/nprot.2009.63 – ident: e_1_2_9_16_1 doi: 10.1002/jcb.22437 – ident: e_1_2_9_37_1 doi: 10.1016/j.cell.2020.03.052 – ident: e_1_2_9_30_1 doi: 10.3389/fphys.2019.00042 – ident: e_1_2_9_52_1 doi: 10.3389/fphys.2020.00813 – ident: e_1_2_9_26_1 doi: 10.1038/s41580-019-0134-2 – ident: e_1_2_9_28_1 doi: 10.1016/j.cell.2014.05.046 – ident: e_1_2_9_6_1 doi: 10.1074/mcp.TIR119.001906 – ident: e_1_2_9_47_1 doi: 10.1038/ncb1071 – ident: e_1_2_9_43_1 doi: 10.1101/gr.199430.115 – ident: e_1_2_9_50_1 doi: 10.1016/j.molcel.2020.03.021 – ident: e_1_2_9_7_1 doi: 10.1074/jbc.RA119.009167 – ident: e_1_2_9_15_1 doi: 10.1016/S0092-8674(00)00116-1 – ident: e_1_2_9_55_1 doi: 10.1016/j.cell.2020.06.006 – ident: e_1_2_9_13_1 doi: 10.1113/JP273101 – ident: e_1_2_9_17_1 doi: 10.1016/j.bbrc.2011.02.127 – ident: e_1_2_9_22_1 doi: 10.1074/jbc.M603627200 – ident: e_1_2_9_46_1 doi: 10.1038/nmeth.3901 – ident: e_1_2_9_20_1 doi: 10.1091/mbc.e17-02-0087 – ident: e_1_2_9_19_1 doi: 10.1136/ard.2009.119479 – ident: e_1_2_9_4_1 doi: 10.1074/mcp.TIR118.001270 – ident: e_1_2_9_34_1 doi: 10.1007/s10974-009-9189-6 – ident: e_1_2_9_45_1 doi: 10.1002/jcp.10080 – ident: e_1_2_9_21_1 doi: 10.1016/j.cmet.2015.09.001 – ident: e_1_2_9_11_1 doi: 10.2741/2057 – ident: e_1_2_9_24_1 doi: 10.3390/toxins8090259 – ident: e_1_2_9_31_1 doi: 10.1038/s41467-018-05439-3 – ident: e_1_2_9_36_1 doi: 10.3389/fphys.2018.00824 – ident: e_1_2_9_40_1 doi: 10.1152/japplphysiol.00418.2017 – ident: e_1_2_9_29_1 doi: 10.1038/ncb3387 – ident: e_1_2_9_32_1 doi: 10.1002/smll.201903857 – ident: e_1_2_9_49_1 doi: 10.1093/nar/gkaa757 – ident: e_1_2_9_56_1 doi: 10.1016/j.tibs.2016.09.004 – ident: e_1_2_9_23_1 doi: 10.1074/jbc.M807574200 – ident: e_1_2_9_3_1 doi: 10.1101/cshperspect.a029751 |
SSID | ssj0005871 |
Score | 2.4911287 |
Snippet | Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle,... |
SourceID | pubmedcentral hal proquest crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e111650 |
SubjectTerms | Adaptation Cell lines Compression Compressive properties Defects EMBO25 EMBO31 Fibers Hypertrophy Kinases Life Sciences MAP kinase Mechanical properties Mechanical stimuli mechanobiology Muscle contraction Muscles Muscular function Musculoskeletal system Mutation Myopathy Myosin Osmotic shock Physiological responses Signaling Skeletal muscle Stimuli ZAKβ |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwELWgCNFNBQVEaEEGsQEpauJHEi8vVaurwkVdUKliE9mxo17aulXTW6k7PoFv4UP4CL6EGedxm0qAxDKJ4zxmHJ_jzJwh5I3MuNWVhK-flUBQjEhjI-o8tlxxZzIr6gwTnGefsumB2DuUhzdyYVp9iGHBDUdG-F7jANem6Sv2oGqoOzVfgeAxoDBphrT9HmbYon4-E_vLMI8ikK6wziLSQnW_KrGPrVs9jKamu0cYGHkDdd6OmRx-nI5hbZiXdh-StQ5Q0knrAY_IHefXyf22xOT1Onmw3Vd0e0wWXyYffv6g84ZiNsMVoExLzTXFtXsMRqUYXt6GxXqqvaUhqwSgKA3x7G0GxK9v34HFgz9YOpvs0-O5h2mQYhSIxsR2Ove0OYapDDA9PV00cEtPyMHuzuftadyVXYgryZMkzqVNldGKV7LWeaWEQZE-xZKirnmlVVo4WbsqsdoAFzIO2tZCK1loaQ3gIf6UrPgz754RmvG0Njkz0IMVgG10xmwiLIr2S5bwKiJb_Rsvq06THEtjnJTITdBGJdqoXNooIm-HM85bPY6_tH0NRhyaoZD2dPKxxH2ouoPw9iqNyGZv47Ibvk3JcmB6Apipisir4TBYCy2ivTtbQJsMyF_KWM4iko98Y3TF8RE_PwoS3qjKlxQiIu96L1pe_M-PI4Of_fO5y53Z-73l5vP_PG-DrOJGG1C3SVYuLxbuBSCwS_MyDLHf5CUoGw priority: 102 providerName: Wiley-Blackwell |
Title | ZAKβ is activated by cellular compression and mediates contraction‐induced MAP kinase signaling in skeletal muscle |
URI | https://link.springer.com/article/10.15252/embj.2022111650 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022111650 https://www.proquest.com/docview/2708642499 https://www.proquest.com/docview/2696012272 https://hal.science/hal-03740001 https://pubmed.ncbi.nlm.nih.gov/PMC9434084 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2iRYhuKiggQktlEBuQosbPJMth1GpUGNQFlSo2kR0n6tDWrTqdSt3xCXwLH8JH8CXcm2RmGsRDLJM4cZLjxOfY514DvNJGeltq_Pt5jQLFKR47Vaexl7msnPGqNhTgPP5gRodq_0gfdeMdFAtze_5eCy12qjP3GWWcQKHCDYnzu5pLQ-13aIZLM0fWSKtmNEXxLO8mJH93hV4HtHJM9sdb3PJXZ-RierRPXpveZ-8BrHe0kQ1anB_CnSpswL12IcmbDbg_nK_b9ghmnwbvvn9jkymjmIVr5JKeuRtGI_RkOWVkIm_Nr4HZ4FkTO4KEkzWu9TbO4ceXr6jVEXXPxoMDdjIJ2Nkx8npYCl9nk8CmJ9hhIXNnZ7Mp3tJjONzb_Tgcxd3iCnGpZZLEqfY8dzaXpa5tWubKUSq-XCRZXcvS5jyrdF2VibcOFY-rsGytbK4zq71D1iOfwGo4D9VTYEby2qXC4RW8QgZjjfCJ8pSaX4tElhHszN94UXaZx2kBjNOCFAhhVBBGxRKjCF4vzrhos278pexLBHFRjNJljwbvC9pHuXWIxF7zCLbmGBfdRzotRIp6TqH-zCN4sTiMaBEiNlTnMyxjUOJxIVIRQdprG70a-0fC5LhJ1E2595JMRfBm3oqWlf_5cXTTzv753MXu-O3-cvPZ_1SyCWu00XrltmD16nJWPUdydeW2YUWog-3m6_oJIWgdTw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD6CITRuEAwQgQEGcQNStMQ_SXxZqk1laycuNmniJrJjRytjHqLrpN3xCDwLD8JD8CSck6TtgvgRl63dOM7n1N9nf-cY4KXKhDOVwn8_p1CgWJnGVtZ57IQW3mZO1hkFOE_2s9Gh3D1SR916B8XCXN2_V1zxLX9qP6CM4yhU0ozE-Q2JOpnMe8NsuDJzFI20alZTZFrobkPyd1foTUDXj8n-eIVb_uqMXG6P9slrM_vs3IHbHW1kgxbnu3DNhw242R4kebkB68PFuW33YP5-sPf9G5vOGMUsXCCXdMxeMlqhJ8spIxN5a34NzATHmtgRJJysca23cQ4_vnxFrY6oOzYZvGMn04CTHSOvh6HwdTYNbHaCExYyd3Y6n-Et3YfDne2D4SjuDleIKyWSJM6VS7U1WlSqNnmlpaVUfJonRV2Lyui08Kr2VeKMRcVjPdatpdGqMMpZZD3iAayFs-AfAstEWtucW7yCk8hgTMZdIh2l5lc8EVUEW4snXlZd5nE6AONjSQqEMCoJo3KFUQSvlr_41Gbd-EvdFwjishqlyx4NxiV9R7l1iMRepBFsLjAuu5d0VvIc9ZxE_akjeL4sRrQIERP82RzrZCjxUs5zHkHeGxu9FvslYXrcJOqm3HtJISN4vRhFq8b_3B3VjLN_9rvcnrzZXX189D-NPIP10cFkXI7f7u89hltU0PrmNmHt_PPcP0GidW6fNu_YT_brH2U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD6CIRg3CAYTgQEGcQNS1MSxk_iylFVlW6ddMGniJrLjRCvbvIm0k3bHI_AsPAgPwZNwTn5agvgRl03cOOlx6u-zv_MdgJcyjqzOJf77WYkExYjQN6JMfBupqDCxFWVMCc7T_XhyKHaO5FG74FZ1avduS7LJaSCXJjcfXNiyq9fDB8WZ-YjkjiN9CWOi7DeQp9TbtKN4tJJ4pDXhqtdYRJiqdpvyd1foTUvXj0kU-RPi_FUvudw07UPaek4a34U7LZhkwyb69-Ba4TbgZlNe8moD1kddNbf7sPgw3P32lc0qRpkMl4gwLTNXjNbtSYjKSFreSGId086yOqMEYSirtexN9sP3z1-QweNYsGw6PGAnM4dTICMFiKakdjZzrDrBaQzxPDtbVHhLD-BwvP1-NPHbkgt-LqMg8BNpQ2W0inJZ6iRXwpBBn-JBWpZRrlWYFrIs8sBqgzzIFNi2FFrJVEtrEAtFm7Dmzl3xEFgchaVJuMErWIG4RsfcBsKSYb_kQZR7MOh-8Sxv_cipLMZpRryEYpRRjLJVjDx4tfzGRePF8Ze2LzCIy2Zkoj0Z7mV0jBx3CNpehh5sdTHO2le3yniCLE8gK1UePF-exmhRRLQrzhfYJkbiF3KecA-S3tjo9dg_42bHtX03OfIFqfDgdTeKVp3_-XFkPc7--dzZ9vTNzurjo__p5BncOng7zvbe7e8-htt0vBHTbcHa_NOieILoa26e1q_YD2ChJ6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZAK%CE%B2+is+activated+by+cellular+compression+and+mediates+contraction%E2%80%90induced+MAP+kinase+signaling+in+skeletal+muscle&rft.jtitle=The+EMBO+journal&rft.au=Nordgaard%2C+Cathrine&rft.au=Vind%2C+Anna+Constance&rft.au=Stonadge%2C+Amy&rft.au=Kj%C3%B8bsted%2C+Rasmus&rft.date=2022-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=41&rft.issue=17&rft_id=info:doi/10.15252%2Fembj.2022111650&rft_id=info%3Apmid%2F35899396&rft.externalDocID=PMC9434084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |