A Long Life Moisture‐Enabled Electric Generator Based on Ionic Diode Rectification and Electrode Chemistry Regulation

Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy ef...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 15; pp. e2305530 - n/a
Main Authors Fu, Chunqiao, Zhou, Jian, Lu, Xulei, Feng, Haochen, Zhang, Yong, Shang, Kedong, Jiang, Zhongbao, Yao, Yuming, He, Qi‐Chang, Yang, Tingting
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm−2. Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. A moisture‐enabled electric generator for power generation at high humidity for 1240 h is presented. The device simultaneously meets the requirements of fast capture of moisture molecules, high rectification ratio transport of ions, and sustained ion‐electron current conversion, and also provides a reliable solution for ultra‐long‐time humidity power generation.
AbstractList Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl-. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm-2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl-. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm-2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm−2. Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. A moisture‐enabled electric generator for power generation at high humidity for 1240 h is presented. The device simultaneously meets the requirements of fast capture of moisture molecules, high rectification ratio transport of ions, and sustained ion‐electron current conversion, and also provides a reliable solution for ultra‐long‐time humidity power generation.
Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl − . The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm −2 . Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl − . The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm −2 . Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. A moisture‐enabled electric generator for power generation at high humidity for 1240 h is presented. The device simultaneously meets the requirements of fast capture of moisture molecules, high rectification ratio transport of ions, and sustained ion‐electron current conversion, and also provides a reliable solution for ultra‐long‐time humidity power generation.
Abstract Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm−2. Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm−2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl . The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm . Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
Author Fu, Chunqiao
Lu, Xulei
He, Qi‐Chang
Zhou, Jian
Yao, Yuming
Feng, Haochen
Shang, Kedong
Zhang, Yong
Jiang, Zhongbao
Yang, Tingting
AuthorAffiliation 1 Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
2 Univ Gustave Eiffel MSME CNRS UMR 8208 Marne‐la‐Vallée F‐77454 France
AuthorAffiliation_xml – name: 1 Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
– name: 2 Univ Gustave Eiffel MSME CNRS UMR 8208 Marne‐la‐Vallée F‐77454 France
Author_xml – sequence: 1
  givenname: Chunqiao
  surname: Fu
  fullname: Fu, Chunqiao
  organization: Southwest Jiaotong University
– sequence: 2
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Southwest Jiaotong University
– sequence: 3
  givenname: Xulei
  surname: Lu
  fullname: Lu, Xulei
  organization: Southwest Jiaotong University
– sequence: 4
  givenname: Haochen
  surname: Feng
  fullname: Feng, Haochen
  organization: Southwest Jiaotong University
– sequence: 5
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: Southwest Jiaotong University
– sequence: 6
  givenname: Kedong
  surname: Shang
  fullname: Shang, Kedong
  organization: Southwest Jiaotong University
– sequence: 7
  givenname: Zhongbao
  surname: Jiang
  fullname: Jiang, Zhongbao
  organization: Southwest Jiaotong University
– sequence: 8
  givenname: Yuming
  surname: Yao
  fullname: Yao, Yuming
  organization: Southwest Jiaotong University
– sequence: 9
  givenname: Qi‐Chang
  surname: He
  fullname: He, Qi‐Chang
  email: qichang.he@u-pem.fr
  organization: MSME
– sequence: 10
  givenname: Tingting
  orcidid: 0000-0001-6773-8438
  surname: Yang
  fullname: Yang, Tingting
  email: yangtingting@swjtu.edu.cn
  organization: Southwest Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38353337$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu2zAQRYkiRZO42XZZCOgmG7t8itSqcB03MeCiQF9bgqJGDg2ZTCkpgXf9hH5jvyT0K0gCFF1R4D33cjQzp-jIBw8IvSF4RDCm7011244opgwLwfALdEJJoYZMcX706PsYnbXtEmNMBJOcqFfomCkmGGPyBN2Ns3nwi2zuasg-B9d2fYS_v_9MvSkbqLJpA7aLzmaX4CGaLsTso2mTEHw2Cz4JFy5UkH1NmKudNZ1LivEH50abXMMqBcd1ohZ9s0Veo5e1aVo4258D9OPT9Pvkajj_cjmbjOdDm_4IDwmTFQWJFbUlF7au8tqCZSUYA6AqQ2uFWQ6WlxJbKIWobC5lXvO6JDzHhg3QbJdbBbPUN9GtTFzrYJzeXoS40CZ2zjaghbK2zi1IWVheUKJSlzgGkRtpTJGaN0Afdlk3fbmCyoLvommehD5VvLvWi3CrCcGUSkJTwvk-IYZfPbSdTo2x0DTGQ-hbTQuaC0q4VAl99wxdhj761CvNMM85LVQa4QC9fVzSQy2HASeA7wAbQ9tGqLV13XYCqULXaIL1ZpX0ZpX0wyol2-iZ7ZD8T8P-nTvXwPo_tB5f_PwmBcfsHvFJ3Nw
CitedBy_id crossref_primary_10_1016_j_isci_2025_112026
crossref_primary_10_1088_1402_4896_ad911f
crossref_primary_10_1016_j_nanoen_2024_110291
crossref_primary_10_1038_s41467_024_55516_z
crossref_primary_10_1039_D4EE02252A
Cites_doi 10.1038/s41565-018-0228-6
10.1002/adfm.201101967
10.1002/adma.201705925
10.1002/adfm.201604188
10.1016/0010-938X(93)90293-P
10.1002/adfm.202107330
10.1002/adma.201501867
10.1038/s41467-018-04942-x
10.1038/s41467-020-20296-9
10.1002/aenm.202202634
10.1016/j.electacta.2006.07.026
10.1039/C9EE00838A
10.1088/0957-4484/21/35/355601
10.1002/aenm.201902798
10.1038/ncomms4582
10.1016/j.rser.2015.11.031
10.1038/s41565-021-00903-6
10.1016/j.nanoen.2023.108220
10.1039/C9EE00252A
10.1002/smll.201704473
10.1016/j.nanoen.2019.104385
10.1039/D1MH00565K
10.1103/RevModPhys.80.839
10.1016/j.rser.2021.111172
10.1002/adma.202300748
10.1016/j.nanoen.2017.09.029
10.1039/C8EE01502C
10.1038/nnano.2014.56
10.1016/S0010-938X(65)90614-1
10.1038/s41467-022-31221-7
10.1038/s41467-022-31067-z
10.1038/s41467-018-06633-z
10.1016/j.nanoen.2018.02.012
10.1002/maco.19760271106
10.1149/1.2069096
10.1149/1.2134003
10.1038/s41467-022-32105-6
10.1002/adma.201503668
10.1038/nnano.2016.300
10.1002/adfm.201901798
10.1002/anie.201602708
10.1038/s41586-020-2010-9
ContentType Journal Article
Copyright 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202305530
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_58ccf6ce779c4921838340e56a7aa915
PMC11022712
38353337
10_1002_advs_202305530
ADVS7540
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Sichuan Province
  funderid: 2023NSFSC0981
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: SWJTU 2682023QZ004; 2682023ZTPY001; 2682023KJ012; 2682022KJ017
– fundername: National Natural Science Foundation of China
  funderid: 51802293; 11890673
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2682023ZTPY001
– fundername: National Natural Science Foundation of China
  grantid: 11890673
– fundername: National Natural Science Foundation of China
  grantid: 51802293
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2023NSFSC0981
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2682023KJ012
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: SWJTU 2682023QZ004
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2682022KJ017
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5300-137d2e7082cb45cfd6fcec3beaaee8da2f8036ec4b70ceb55dc6776f4fb1460a3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:30:42 EDT 2025
Thu Aug 21 18:34:06 EDT 2025
Fri Jul 11 04:50:30 EDT 2025
Fri Jul 25 20:58:26 EDT 2025
Thu Apr 03 06:53:25 EDT 2025
Thu Apr 24 22:54:07 EDT 2025
Tue Jul 01 04:00:04 EDT 2025
Wed Jan 22 17:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords long lifetime
electrode chemistry regulation
ionic diode
hydrovoltaic
moisture
Language English
License Attribution
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5300-137d2e7082cb45cfd6fcec3beaaee8da2f8036ec4b70ceb55dc6776f4fb1460a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6773-8438
OpenAccessLink https://doaj.org/article/58ccf6ce779c4921838340e56a7aa915
PMID 38353337
PQID 3046429853
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_58ccf6ce779c4921838340e56a7aa915
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11022712
proquest_miscellaneous_2926521478
proquest_journals_3046429853
pubmed_primary_38353337
crossref_citationtrail_10_1002_advs_202305530
crossref_primary_10_1002_advs_202305530
wiley_primary_10_1002_advs_202305530_ADVS7540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 8
2017; 41
2019; 9
2022 2016; 13 26
2023 2022 2022; 108 12 13
2006; 52
2018 2022 2016 2021; 30 13 56 147
1975 1976; 122 27
2019; 12
2018 2015; 11 27
1965 1993 2018; 5 34 9
2016; 55
2018; 46
1999
2010; 21
2014; 5
2021; 12
2023
2017; 12
2020; 578
1992; 139
2018 2021; 9 16
2019; 29
2020; 68
2022; 32
2014; 9
2016; 28
2012; 22
2008; 80
2018; 14
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Cotton F. A. (e_1_2_7_31_1) 1999
e_1_2_7_24_3
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_25_1
e_1_2_7_30_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 578
  start-page: 550
  year: 2020
  publication-title: Nature
– volume: 12
  start-page: 47
  year: 2021
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3582
  year: 2014
  publication-title: Nat. Commun.
– year: 2023
  publication-title: Adv. Mater.
– volume: 139
  start-page: 3434
  year: 1992
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 1109
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 317
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 22
  start-page: 625
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 13 26
  start-page: 3643 8784
  year: 2022 2016
  publication-title: Nat. Commun. Adv. Funct. Mater.
– volume: 5 34 9
  start-page: 279 1123 2559
  year: 1965 1993 2018
  publication-title: Corros. Sci. Corros. Sci. Nat. Commun.
– volume: 9 16
  start-page: 4166 811
  year: 2018 2021
  publication-title: Nat. Commun. Nat. Nanotechnol.
– volume: 28
  start-page: 144
  year: 2016
  publication-title: Adv. Mater.
– volume: 30 13 56 147
  start-page: 4369 133
  year: 2018 2022 2016 2021
  publication-title: Adv. Mater. Nat. Commun. Renewable Sustainable Energy Rev. Renewable Sustainable Energy Rev.
– volume: 8
  start-page: 2303
  year: 2021
  publication-title: Mater. Horiz.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 297
  year: 2018
  publication-title: Nano Energy
– volume: 80
  start-page: 839
  year: 2008
  publication-title: Rev. Mod. Phys.
– volume: 52
  start-page: 1108
  year: 2006
  publication-title: Electrochim. Acta
– volume: 122 27
  start-page: 1296 792
  year: 1975 1976
  publication-title: J. Electrochem. Soc. Mater. Corros.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 55
  start-page: 8003
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 11 27
  start-page: 2839 4351
  year: 2018 2015
  publication-title: Energy Environ. Sci. Adv. Mater.
– volume: 41
  start-page: 367
  year: 2017
  publication-title: Nano Energy
– volume: 21
  year: 2010
  publication-title: Nanotechnology
– volume: 108 12 13
  start-page: 3484
  year: 2023 2022 2022
  publication-title: Nano Energy Adv. Energy Mater. Nat. Commun.
– volume: 9
  start-page: 378
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 972
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1848
  year: 2019
  publication-title: Energy Environ. Sci.
– year: 1999
– ident: e_1_2_7_4_1
  doi: 10.1038/s41565-018-0228-6
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201101967
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201705925
– ident: e_1_2_7_16_2
  doi: 10.1002/adfm.201604188
– ident: e_1_2_7_24_2
  doi: 10.1016/0010-938X(93)90293-P
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.202107330
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.201501867
– ident: e_1_2_7_24_3
  doi: 10.1038/s41467-018-04942-x
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-020-20296-9
– ident: e_1_2_7_22_2
  doi: 10.1002/aenm.202202634
– ident: e_1_2_7_25_1
  doi: 10.1016/j.electacta.2006.07.026
– ident: e_1_2_7_7_1
  doi: 10.1039/C9EE00838A
– ident: e_1_2_7_27_1
  doi: 10.1088/0957-4484/21/35/355601
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.201902798
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms4582
– ident: e_1_2_7_1_3
  doi: 10.1016/j.rser.2015.11.031
– ident: e_1_2_7_8_2
  doi: 10.1038/s41565-021-00903-6
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2023.108220
– ident: e_1_2_7_12_1
  doi: 10.1039/C9EE00252A
– ident: e_1_2_7_17_1
  doi: 10.1002/smll.201704473
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2019.104385
– volume-title: Advanced Inorganic Chemistry
  year: 1999
  ident: e_1_2_7_31_1
– ident: e_1_2_7_15_1
  doi: 10.1039/D1MH00565K
– ident: e_1_2_7_29_1
  doi: 10.1103/RevModPhys.80.839
– ident: e_1_2_7_1_4
  doi: 10.1016/j.rser.2021.111172
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202300748
– ident: e_1_2_7_2_1
  doi: 10.1016/j.nanoen.2017.09.029
– ident: e_1_2_7_14_1
  doi: 10.1039/C8EE01502C
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2014.56
– ident: e_1_2_7_24_1
  doi: 10.1016/S0010-938X(65)90614-1
– ident: e_1_2_7_16_1
  doi: 10.1038/s41467-022-31221-7
– ident: e_1_2_7_22_3
  doi: 10.1038/s41467-022-31067-z
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-018-06633-z
– ident: e_1_2_7_18_1
  doi: 10.1016/j.nanoen.2018.02.012
– ident: e_1_2_7_30_2
  doi: 10.1002/maco.19760271106
– ident: e_1_2_7_26_1
  doi: 10.1149/1.2069096
– ident: e_1_2_7_30_1
  doi: 10.1149/1.2134003
– ident: e_1_2_7_1_2
  doi: 10.1038/s41467-022-32105-6
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201503668
– ident: e_1_2_7_3_1
  doi: 10.1038/nnano.2016.300
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201901798
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201602708
– ident: e_1_2_7_19_1
  doi: 10.1038/s41586-020-2010-9
SSID ssj0001537418
Score 2.3646848
Snippet Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water...
Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water...
Abstract Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2305530
SubjectTerms Alternative energy sources
Carbon
Chemical vapor deposition
Chloride
Electric fields
Electricity
electrode chemistry regulation
Electrodes
Energy resources
Generators
Humidity
hydrovoltaic
ionic diode
long lifetime
moisture
Moisture absorption
Nanostructured materials
Renewable resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Jb9QwFLagvXBBlHVoQUZCAg5Ws9ixc0KdMlVBpUKFSr1Fjv08jISSdqbD7-e9xEk7YrvGtuK89fOS7zH22iY-KJ2CwGQvBSJiL-rcJsIaGUzmtZS2Y_s8LY7P5acLdRE33FbxWuUQE7tA7VtHe-T7dIKHsROzy_vLK0FVo-h0NZbQuMu2MQQbXHxtT2enX85udllUTvQsA1tjku1b_5NYujNiuqKrz7eyUUfa_yek-fuFydtAtstERw_Y_Qgh-UGv8x12B5qHbCc66Yq_jUzS7x6x9QE_aZs5P1kE4J9b1Oh6CWLW_S7l-ayrgLNwvB-Ai28-xZzmedvwj8SYyz8sWg_8jGJiiHt73DbDSGo7HOrFYa95rAT2mJ0fzb4dHotYZ0E4FEEi0lz7DDSCAVdL5YIvggOX12AtgPE2CwbzHDhZ68RBrZR3hdZFkKHGOJvY_AnbatoGnjEuAwJAUFZn0kuLWMLUZQpGWhuk9lpPmBjkXblIQk61MH5UPX1yVpF-qlE_E_Zm7H_Z02_8teeU1Df2Itrs7kG7nFfRCytlnAuFA61LJ0tChyaXCajCamvLVE3Y3qD8KvryqrqxvAl7NTajcOloxTbQrnEaZVYoKvlkJuxpbyvjTPAdiKlz_HazYUUbU91saRbfO6bvlNbjOs1QbJ3B_UcGFUKZrxox-PN_f8cuu4dj4gWkPbZ1vVzDC8RW1_XL6EC_AIoJI6A
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe-GCaHkFWmQkJOAQNXHs2Dm2ZauCCkJApd4ix4_tSihBu932yk_gN_aXMOM4aSNAiGs8TpwZj-fz6xtCXurMeiFzl0Kw5ykgYps2hc5SrbhXzErOdWD7_Fgen_L3Z-Ls1i3-nh9iXHBDzwjjNTq4blZ7N6Sh2l4i3TZDyqoCJu2beL8W2fMZ_3SzyiIKpGfBDHMwu04LxfnA3JixvekrJpEpEPj_CXX-fnjyNqgNUenoPrkX4STd7-2_Re64dptsRYdd0deRVfrNA3K1T0-6dk5PFt7RDx1Yd7101z9-zsLlKUtnIR_OwtC-CkzF6QFEOEu7lr5D_lz6dtFZRz_jCOnjSh_V7VATyw6H7HEgNY95wR6S06PZ18PjNGZdSA0oIUvzQlrmJEAD03BhvC29caZonNbOKauZVxD1nOGNzIxrhLCmlLL03DdggEwXj8hG27XuCaHcAxx0QkvGLdeALFRT5U5xrT2XVsqEpIPGaxMpyTEzxre6J1NmNVqoHi2UkFej_PeejOOvkgdowFEKSbTDg245r6NP1kIZ40vjpKwMrxArqoJnTpRaal3lIiE7g_nr6NmrGneSIYYDyknIi7EYlIsbLbp13RqaUbFSYAIolZDHfW8ZWwLfAIRdwL-rST-aNHVa0i7OA-93jrNzmTNQW-hy_9BBDcDmiwRE_vQ_5Z-Ru_Awnk_aIRsXy7XbBeh10TwP3vULEC4odA
  priority: 102
  providerName: Wiley-Blackwell
Title A Long Life Moisture‐Enabled Electric Generator Based on Ionic Diode Rectification and Electrode Chemistry Regulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305530
https://www.ncbi.nlm.nih.gov/pubmed/38353337
https://www.proquest.com/docview/3046429853
https://www.proquest.com/docview/2926521478
https://pubmed.ncbi.nlm.nih.gov/PMC11022712
https://doaj.org/article/58ccf6ce779c4921838340e56a7aa915
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLggym-grIyEBByiJo4dO8fddquCtlXVUqm3yLHHZSWUoLYLVx6BZ-RJGDtOtCtAvXCKFNvJZGbs-Rzb3xDyRmfWCZlDisGep4iIbdoUOku14k4xKznXge3zuDw85x8vxMVaqi-_J6ynB-4VtyuUMa40IGVleOUDuip4BqLUUusqHC9nGPPWJlP9-eDC07IMLI0Z29X2m2fnZp7hym95XotCgaz_bwjzz42S6wA2RKCDh-RBhI502ou8Te5A-4hsx855Td9FBun3j8n3KV107SVdLB3Qow4tubqCXz9-zsNBKUvnIffN0tC-CU676QyjmaVdSz94rly6v-ws0FM_Grr4V4_qdmjpy_aGTHFY6zLmAHtCzg_mn_YO05hhITWohCzNC2kZSIQBpuHCOFs6A6ZoQGsAZTVzCiMcGN7IzEAjhDWllKXjrsERNtPFU7LVdi08J5Q7hH4gtGTcco0oQjVVDopr7bi0UiYkHTRem0g_7rNgfKl74mRWewvVo4US8nas_7Un3vhnzZk34FjLE2aHG-hGdXSj-jY3SsjOYP469uLr2q8aY7xGRJOQ12MxKtcvqugWuhWKUbFS-GRPKiHPem8ZJcF3IJou8NvVhh9tiLpZ0i4_B47v3M_EZc5QbcHlbtFBjSDmTCL6fvE_lPGS3Mcnxw1KO2Tr5moFrxB73TQTcpfxkwm5N90_WpzhdTY_PjmdhM73G20kL_8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QO8IMY1Y4CRQMBDtMSx4_QBoXXr1LKuQmOT9pY5vpRKKNnaFcSf4jdynDjdKm5Pe63t1PE5PufzJd8H8EpG2nIRmxCTPQsREeuwSGQUyozZjGrBmKzZPsfp4IR9POWna_Cz_RbGXatsY2IdqHWl3B75tjvBw9iJ2eXD-UXoVKPc6WorodG4xYH58R2XbPP3wz2072tK9_vHu4PQqwqEiidRFMaJ0NQITH2qYFxZnVplVFIYKY3JtKQ2w6huFCtEpEzBuVapEKlltsCoEskEn3sL1lmCS5kOrPf6409HV7s6PHF0MC07ZES3pf7mWMGpY9ZyV62vZb9aJOBPyPb3C5rXgXOd-fbvwV0PWclO42MbsGbK-7Dhg8KcvPXM1e8ewGKHjKpyQkZTa8hhhR60mJmwX3-epUm_VtyZKtI0wMU-6WEO1aQqydAx9JK9aaUNOXIx2Pq9RCLLtqUr22316bDWxCuPPYSTG7HAI-iUVWmeAGEWAafhUlCmmUTskhXd2GRMSsuEFiKAsB3vXHnSc6e98TVv6Jpp7uyTL-0TwJtl_fOG7uOvNXvOfMtajqa7_qGaTXI_63OeKWVTZYToKtZ1aDRLWGR4KoWU3ZgHsNUaP_exY55feXoAL5fFOLjuKEeWplpgN7o05U5iKgvgceMry57gfyCGT_DdsxUvWunqakk5_VIzi8du_S9iisNWO9x_xiBH6PRZIObf_Pd7vIDbg-PDUT4ajg-ewh1s7y8_bUHncrYwzxDXXRbP_WQicHbT8_cXcdNiow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IMZnYYCRQMBD1MSx4-QBoXVttbJSTYNJewuOP0ollIx2BfGv8ddxTpxuFV9Pe43txPad7362L78DeC5DbbmITIDOngWIiHVQxDIMZMpsSrVgTNZsn9Pk4IS9O-WnW_Cz_RfGhVW2NrE21LpS7oy8527w0Haid-lZHxZxNBi9PfsauAxS7qa1TafRqMih-fEdt2_LN-MByvoFpaPhx_2DwGcYCBSPwzCIYqGpEegGVcG4sjqxyqi4MFIak2pJbYoW3ihWiFCZgnOtEiESy2yBFiaUMb73GmwL3BWFHdjuD6dHxxcnPDx21DAtU2RIe1J_cwzh1LFsubDrS56wThjwJ5T7e7DmZRBde8HRLbjp4SvZa_RtB7ZMeRt2vIFYkleexfr1HVjtkUlVzshkbg15X6E2rRYmGNa_amkyrLPvzBVpGuDGn_TRn2pSlWTs2HrJYF5pQ46dPbb-XJHIsm3pyvbbXHVYa-azkN2FkyuRwD3olFVpHgBhFsGn4VJQpplEHJMWWWRSJqVlQgvRhaCd71x5AnSXh-NL3lA309zJJ1_Lpwsv1_XPGuqPv9bsO_GtaznK7vpBtZjl3gLkPFXKJsoIkSmWOWSaxiw0PJFCyiziXdhthZ97O7LML7S-C8_WxTi57lpHlqZaYTcymnCXbirtwv1GV9Y9wW8gno9x7OmGFm10dbOknH-uWcYjdxYgIorTVivcf-YgRxj1QSD-f_jvcTyF67hu88l4evgIbmBzHwe1C53zxco8Roh3Xjzxa4nAp6tevr8A3T5m2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Long+Life+Moisture%E2%80%90Enabled+Electric+Generator+Based+on+Ionic+Diode+Rectification+and+Electrode+Chemistry+Regulation&rft.jtitle=Advanced+science&rft.au=Fu%2C+Chunqiao&rft.au=Zhou%2C+Jian&rft.au=Lu%2C+Xulei&rft.au=Feng%2C+Haochen&rft.date=2024-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=15&rft_id=info:doi/10.1002%2Fadvs.202305530&rft_id=info%3Apmid%2F38353337&rft.externalDocID=PMC11022712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon