A Long Life Moisture‐Enabled Electric Generator Based on Ionic Diode Rectification and Electrode Chemistry Regulation
Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy ef...
Saved in:
Published in | Advanced science Vol. 11; no. 15; pp. e2305530 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.04.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm−2. Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
A moisture‐enabled electric generator for power generation at high humidity for 1240 h is presented. The device simultaneously meets the requirements of fast capture of moisture molecules, high rectification ratio transport of ions, and sustained ion‐electron current conversion, and also provides a reliable solution for ultra‐long‐time humidity power generation. |
---|---|
AbstractList | Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl-. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm-2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl-. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm-2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm−2. Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. A moisture‐enabled electric generator for power generation at high humidity for 1240 h is presented. The device simultaneously meets the requirements of fast capture of moisture molecules, high rectification ratio transport of ions, and sustained ion‐electron current conversion, and also provides a reliable solution for ultra‐long‐time humidity power generation. Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl − . The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm −2 . Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl − . The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm −2 . Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. A moisture‐enabled electric generator for power generation at high humidity for 1240 h is presented. The device simultaneously meets the requirements of fast capture of moisture molecules, high rectification ratio transport of ions, and sustained ion‐electron current conversion, and also provides a reliable solution for ultra‐long‐time humidity power generation. Abstract Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion‐directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode‐type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion‐electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion‐to‐electron current conversion. A single device can deliver an open‐circuit voltage of about 1 V and a peak short‐circuit current density of 350 µA cm−2. Finally, the first‐principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl−. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm−2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl . The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm . Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance. |
Author | Fu, Chunqiao Lu, Xulei He, Qi‐Chang Zhou, Jian Yao, Yuming Feng, Haochen Shang, Kedong Zhang, Yong Jiang, Zhongbao Yang, Tingting |
AuthorAffiliation | 1 Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 P. R. China 2 Univ Gustave Eiffel MSME CNRS UMR 8208 Marne‐la‐Vallée F‐77454 France |
AuthorAffiliation_xml | – name: 1 Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 P. R. China – name: 2 Univ Gustave Eiffel MSME CNRS UMR 8208 Marne‐la‐Vallée F‐77454 France |
Author_xml | – sequence: 1 givenname: Chunqiao surname: Fu fullname: Fu, Chunqiao organization: Southwest Jiaotong University – sequence: 2 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: Southwest Jiaotong University – sequence: 3 givenname: Xulei surname: Lu fullname: Lu, Xulei organization: Southwest Jiaotong University – sequence: 4 givenname: Haochen surname: Feng fullname: Feng, Haochen organization: Southwest Jiaotong University – sequence: 5 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: Southwest Jiaotong University – sequence: 6 givenname: Kedong surname: Shang fullname: Shang, Kedong organization: Southwest Jiaotong University – sequence: 7 givenname: Zhongbao surname: Jiang fullname: Jiang, Zhongbao organization: Southwest Jiaotong University – sequence: 8 givenname: Yuming surname: Yao fullname: Yao, Yuming organization: Southwest Jiaotong University – sequence: 9 givenname: Qi‐Chang surname: He fullname: He, Qi‐Chang email: qichang.he@u-pem.fr organization: MSME – sequence: 10 givenname: Tingting orcidid: 0000-0001-6773-8438 surname: Yang fullname: Yang, Tingting email: yangtingting@swjtu.edu.cn organization: Southwest Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38353337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu2zAQRYkiRZO42XZZCOgmG7t8itSqcB03MeCiQF9bgqJGDg2ZTCkpgXf9hH5jvyT0K0gCFF1R4D33cjQzp-jIBw8IvSF4RDCm7011244opgwLwfALdEJJoYZMcX706PsYnbXtEmNMBJOcqFfomCkmGGPyBN2Ns3nwi2zuasg-B9d2fYS_v_9MvSkbqLJpA7aLzmaX4CGaLsTso2mTEHw2Cz4JFy5UkH1NmKudNZ1LivEH50abXMMqBcd1ohZ9s0Veo5e1aVo4258D9OPT9Pvkajj_cjmbjOdDm_4IDwmTFQWJFbUlF7au8tqCZSUYA6AqQ2uFWQ6WlxJbKIWobC5lXvO6JDzHhg3QbJdbBbPUN9GtTFzrYJzeXoS40CZ2zjaghbK2zi1IWVheUKJSlzgGkRtpTJGaN0Afdlk3fbmCyoLvommehD5VvLvWi3CrCcGUSkJTwvk-IYZfPbSdTo2x0DTGQ-hbTQuaC0q4VAl99wxdhj761CvNMM85LVQa4QC9fVzSQy2HASeA7wAbQ9tGqLV13XYCqULXaIL1ZpX0ZpX0wyol2-iZ7ZD8T8P-nTvXwPo_tB5f_PwmBcfsHvFJ3Nw |
CitedBy_id | crossref_primary_10_1016_j_isci_2025_112026 crossref_primary_10_1088_1402_4896_ad911f crossref_primary_10_1016_j_nanoen_2024_110291 crossref_primary_10_1038_s41467_024_55516_z crossref_primary_10_1039_D4EE02252A |
Cites_doi | 10.1038/s41565-018-0228-6 10.1002/adfm.201101967 10.1002/adma.201705925 10.1002/adfm.201604188 10.1016/0010-938X(93)90293-P 10.1002/adfm.202107330 10.1002/adma.201501867 10.1038/s41467-018-04942-x 10.1038/s41467-020-20296-9 10.1002/aenm.202202634 10.1016/j.electacta.2006.07.026 10.1039/C9EE00838A 10.1088/0957-4484/21/35/355601 10.1002/aenm.201902798 10.1038/ncomms4582 10.1016/j.rser.2015.11.031 10.1038/s41565-021-00903-6 10.1016/j.nanoen.2023.108220 10.1039/C9EE00252A 10.1002/smll.201704473 10.1016/j.nanoen.2019.104385 10.1039/D1MH00565K 10.1103/RevModPhys.80.839 10.1016/j.rser.2021.111172 10.1002/adma.202300748 10.1016/j.nanoen.2017.09.029 10.1039/C8EE01502C 10.1038/nnano.2014.56 10.1016/S0010-938X(65)90614-1 10.1038/s41467-022-31221-7 10.1038/s41467-022-31067-z 10.1038/s41467-018-06633-z 10.1016/j.nanoen.2018.02.012 10.1002/maco.19760271106 10.1149/1.2069096 10.1149/1.2134003 10.1038/s41467-022-32105-6 10.1002/adma.201503668 10.1038/nnano.2016.300 10.1002/adfm.201901798 10.1002/anie.201602708 10.1038/s41586-020-2010-9 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202305530 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_58ccf6ce779c4921838340e56a7aa915 PMC11022712 38353337 10_1002_advs_202305530 ADVS7540 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Sichuan Province funderid: 2023NSFSC0981 – fundername: Fundamental Research Funds for the Central Universities of China funderid: SWJTU 2682023QZ004; 2682023ZTPY001; 2682023KJ012; 2682022KJ017 – fundername: National Natural Science Foundation of China funderid: 51802293; 11890673 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2682023ZTPY001 – fundername: National Natural Science Foundation of China grantid: 11890673 – fundername: National Natural Science Foundation of China grantid: 51802293 – fundername: Natural Science Foundation of Sichuan Province grantid: 2023NSFSC0981 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2682023KJ012 – fundername: Fundamental Research Funds for the Central Universities of China grantid: SWJTU 2682023QZ004 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2682022KJ017 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5300-137d2e7082cb45cfd6fcec3beaaee8da2f8036ec4b70ceb55dc6776f4fb1460a3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:30:42 EDT 2025 Thu Aug 21 18:34:06 EDT 2025 Fri Jul 11 04:50:30 EDT 2025 Fri Jul 25 20:58:26 EDT 2025 Thu Apr 03 06:53:25 EDT 2025 Thu Apr 24 22:54:07 EDT 2025 Tue Jul 01 04:00:04 EDT 2025 Wed Jan 22 17:19:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | long lifetime electrode chemistry regulation ionic diode hydrovoltaic moisture |
Language | English |
License | Attribution 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5300-137d2e7082cb45cfd6fcec3beaaee8da2f8036ec4b70ceb55dc6776f4fb1460a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6773-8438 |
OpenAccessLink | https://doaj.org/article/58ccf6ce779c4921838340e56a7aa915 |
PMID | 38353337 |
PQID | 3046429853 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58ccf6ce779c4921838340e56a7aa915 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11022712 proquest_miscellaneous_2926521478 proquest_journals_3046429853 pubmed_primary_38353337 crossref_citationtrail_10_1002_advs_202305530 crossref_primary_10_1002_advs_202305530 wiley_primary_10_1002_advs_202305530_ADVS7540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 8 2017; 41 2019; 9 2022 2016; 13 26 2023 2022 2022; 108 12 13 2006; 52 2018 2022 2016 2021; 30 13 56 147 1975 1976; 122 27 2019; 12 2018 2015; 11 27 1965 1993 2018; 5 34 9 2016; 55 2018; 46 1999 2010; 21 2014; 5 2021; 12 2023 2017; 12 2020; 578 1992; 139 2018 2021; 9 16 2019; 29 2020; 68 2022; 32 2014; 9 2016; 28 2012; 22 2008; 80 2018; 14 2018; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Cotton F. A. (e_1_2_7_31_1) 1999 e_1_2_7_24_3 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_25_1 e_1_2_7_30_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 578 start-page: 550 year: 2020 publication-title: Nature – volume: 12 start-page: 47 year: 2021 publication-title: Nat. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3582 year: 2014 publication-title: Nat. Commun. – year: 2023 publication-title: Adv. Mater. – volume: 139 start-page: 3434 year: 1992 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 1109 year: 2018 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 317 year: 2017 publication-title: Nat. Nanotechnol. – volume: 14 year: 2018 publication-title: Small – volume: 22 start-page: 625 year: 2012 publication-title: Adv. Funct. Mater. – volume: 13 26 start-page: 3643 8784 year: 2022 2016 publication-title: Nat. Commun. Adv. Funct. Mater. – volume: 5 34 9 start-page: 279 1123 2559 year: 1965 1993 2018 publication-title: Corros. Sci. Corros. Sci. Nat. Commun. – volume: 9 16 start-page: 4166 811 year: 2018 2021 publication-title: Nat. Commun. Nat. Nanotechnol. – volume: 28 start-page: 144 year: 2016 publication-title: Adv. Mater. – volume: 30 13 56 147 start-page: 4369 133 year: 2018 2022 2016 2021 publication-title: Adv. Mater. Nat. Commun. Renewable Sustainable Energy Rev. Renewable Sustainable Energy Rev. – volume: 8 start-page: 2303 year: 2021 publication-title: Mater. Horiz. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 46 start-page: 297 year: 2018 publication-title: Nano Energy – volume: 80 start-page: 839 year: 2008 publication-title: Rev. Mod. Phys. – volume: 52 start-page: 1108 year: 2006 publication-title: Electrochim. Acta – volume: 122 27 start-page: 1296 792 year: 1975 1976 publication-title: J. Electrochem. Soc. Mater. Corros. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 55 start-page: 8003 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 11 27 start-page: 2839 4351 year: 2018 2015 publication-title: Energy Environ. Sci. Adv. Mater. – volume: 41 start-page: 367 year: 2017 publication-title: Nano Energy – volume: 21 year: 2010 publication-title: Nanotechnology – volume: 108 12 13 start-page: 3484 year: 2023 2022 2022 publication-title: Nano Energy Adv. Energy Mater. Nat. Commun. – volume: 9 start-page: 378 year: 2014 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 972 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1848 year: 2019 publication-title: Energy Environ. Sci. – year: 1999 – ident: e_1_2_7_4_1 doi: 10.1038/s41565-018-0228-6 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201101967 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201705925 – ident: e_1_2_7_16_2 doi: 10.1002/adfm.201604188 – ident: e_1_2_7_24_2 doi: 10.1016/0010-938X(93)90293-P – ident: e_1_2_7_10_1 doi: 10.1002/adfm.202107330 – ident: e_1_2_7_14_2 doi: 10.1002/adma.201501867 – ident: e_1_2_7_24_3 doi: 10.1038/s41467-018-04942-x – ident: e_1_2_7_21_1 doi: 10.1038/s41467-020-20296-9 – ident: e_1_2_7_22_2 doi: 10.1002/aenm.202202634 – ident: e_1_2_7_25_1 doi: 10.1016/j.electacta.2006.07.026 – ident: e_1_2_7_7_1 doi: 10.1039/C9EE00838A – ident: e_1_2_7_27_1 doi: 10.1088/0957-4484/21/35/355601 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.201902798 – ident: e_1_2_7_6_1 doi: 10.1038/ncomms4582 – ident: e_1_2_7_1_3 doi: 10.1016/j.rser.2015.11.031 – ident: e_1_2_7_8_2 doi: 10.1038/s41565-021-00903-6 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2023.108220 – ident: e_1_2_7_12_1 doi: 10.1039/C9EE00252A – ident: e_1_2_7_17_1 doi: 10.1002/smll.201704473 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2019.104385 – volume-title: Advanced Inorganic Chemistry year: 1999 ident: e_1_2_7_31_1 – ident: e_1_2_7_15_1 doi: 10.1039/D1MH00565K – ident: e_1_2_7_29_1 doi: 10.1103/RevModPhys.80.839 – ident: e_1_2_7_1_4 doi: 10.1016/j.rser.2021.111172 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202300748 – ident: e_1_2_7_2_1 doi: 10.1016/j.nanoen.2017.09.029 – ident: e_1_2_7_14_1 doi: 10.1039/C8EE01502C – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2014.56 – ident: e_1_2_7_24_1 doi: 10.1016/S0010-938X(65)90614-1 – ident: e_1_2_7_16_1 doi: 10.1038/s41467-022-31221-7 – ident: e_1_2_7_22_3 doi: 10.1038/s41467-022-31067-z – ident: e_1_2_7_8_1 doi: 10.1038/s41467-018-06633-z – ident: e_1_2_7_18_1 doi: 10.1016/j.nanoen.2018.02.012 – ident: e_1_2_7_30_2 doi: 10.1002/maco.19760271106 – ident: e_1_2_7_26_1 doi: 10.1149/1.2069096 – ident: e_1_2_7_30_1 doi: 10.1149/1.2134003 – ident: e_1_2_7_1_2 doi: 10.1038/s41467-022-32105-6 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201503668 – ident: e_1_2_7_3_1 doi: 10.1038/nnano.2016.300 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201901798 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201602708 – ident: e_1_2_7_19_1 doi: 10.1038/s41586-020-2010-9 |
SSID | ssj0001537418 |
Score | 2.3646848 |
Snippet | Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable ion/water... Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water... Abstract Considerable efforts have recently been made to augment the power density of moisture‐enabled electric generators. However, due to the unsustainable... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2305530 |
SubjectTerms | Alternative energy sources Carbon Chemical vapor deposition Chloride Electric fields Electricity electrode chemistry regulation Electrodes Energy resources Generators Humidity hydrovoltaic ionic diode long lifetime moisture Moisture absorption Nanostructured materials Renewable resources |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Jb9QwFLagvXBBlHVoQUZCAg5Ws9ixc0KdMlVBpUKFSr1Fjv08jISSdqbD7-e9xEk7YrvGtuK89fOS7zH22iY-KJ2CwGQvBSJiL-rcJsIaGUzmtZS2Y_s8LY7P5acLdRE33FbxWuUQE7tA7VtHe-T7dIKHsROzy_vLK0FVo-h0NZbQuMu2MQQbXHxtT2enX85udllUTvQsA1tjku1b_5NYujNiuqKrz7eyUUfa_yek-fuFydtAtstERw_Y_Qgh-UGv8x12B5qHbCc66Yq_jUzS7x6x9QE_aZs5P1kE4J9b1Oh6CWLW_S7l-ayrgLNwvB-Ai28-xZzmedvwj8SYyz8sWg_8jGJiiHt73DbDSGo7HOrFYa95rAT2mJ0fzb4dHotYZ0E4FEEi0lz7DDSCAVdL5YIvggOX12AtgPE2CwbzHDhZ68RBrZR3hdZFkKHGOJvY_AnbatoGnjEuAwJAUFZn0kuLWMLUZQpGWhuk9lpPmBjkXblIQk61MH5UPX1yVpF-qlE_E_Zm7H_Z02_8teeU1Df2Itrs7kG7nFfRCytlnAuFA61LJ0tChyaXCajCamvLVE3Y3qD8KvryqrqxvAl7NTajcOloxTbQrnEaZVYoKvlkJuxpbyvjTPAdiKlz_HazYUUbU91saRbfO6bvlNbjOs1QbJ3B_UcGFUKZrxox-PN_f8cuu4dj4gWkPbZ1vVzDC8RW1_XL6EC_AIoJI6A priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQe-GCaHkFWmQkJOAQNXHs2Dm2ZauCCkJApd4ix4_tSihBu932yk_gN_aXMOM4aSNAiGs8TpwZj-fz6xtCXurMeiFzl0Kw5ykgYps2hc5SrbhXzErOdWD7_Fgen_L3Z-Ls1i3-nh9iXHBDzwjjNTq4blZ7N6Sh2l4i3TZDyqoCJu2beL8W2fMZ_3SzyiIKpGfBDHMwu04LxfnA3JixvekrJpEpEPj_CXX-fnjyNqgNUenoPrkX4STd7-2_Re64dptsRYdd0deRVfrNA3K1T0-6dk5PFt7RDx1Yd7101z9-zsLlKUtnIR_OwtC-CkzF6QFEOEu7lr5D_lz6dtFZRz_jCOnjSh_V7VATyw6H7HEgNY95wR6S06PZ18PjNGZdSA0oIUvzQlrmJEAD03BhvC29caZonNbOKauZVxD1nOGNzIxrhLCmlLL03DdggEwXj8hG27XuCaHcAxx0QkvGLdeALFRT5U5xrT2XVsqEpIPGaxMpyTEzxre6J1NmNVqoHi2UkFej_PeejOOvkgdowFEKSbTDg245r6NP1kIZ40vjpKwMrxArqoJnTpRaal3lIiE7g_nr6NmrGneSIYYDyknIi7EYlIsbLbp13RqaUbFSYAIolZDHfW8ZWwLfAIRdwL-rST-aNHVa0i7OA-93jrNzmTNQW-hy_9BBDcDmiwRE_vQ_5Z-Ru_Awnk_aIRsXy7XbBeh10TwP3vULEC4odA priority: 102 providerName: Wiley-Blackwell |
Title | A Long Life Moisture‐Enabled Electric Generator Based on Ionic Diode Rectification and Electrode Chemistry Regulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305530 https://www.ncbi.nlm.nih.gov/pubmed/38353337 https://www.proquest.com/docview/3046429853 https://www.proquest.com/docview/2926521478 https://pubmed.ncbi.nlm.nih.gov/PMC11022712 https://doaj.org/article/58ccf6ce779c4921838340e56a7aa915 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLggym-grIyEBByiJo4dO8fddquCtlXVUqm3yLHHZSWUoLYLVx6BZ-RJGDtOtCtAvXCKFNvJZGbs-Rzb3xDyRmfWCZlDisGep4iIbdoUOku14k4xKznXge3zuDw85x8vxMVaqi-_J6ynB-4VtyuUMa40IGVleOUDuip4BqLUUusqHC9nGPPWJlP9-eDC07IMLI0Z29X2m2fnZp7hym95XotCgaz_bwjzz42S6wA2RKCDh-RBhI502ou8Te5A-4hsx855Td9FBun3j8n3KV107SVdLB3Qow4tubqCXz9-zsNBKUvnIffN0tC-CU676QyjmaVdSz94rly6v-ws0FM_Grr4V4_qdmjpy_aGTHFY6zLmAHtCzg_mn_YO05hhITWohCzNC2kZSIQBpuHCOFs6A6ZoQGsAZTVzCiMcGN7IzEAjhDWllKXjrsERNtPFU7LVdi08J5Q7hH4gtGTcco0oQjVVDopr7bi0UiYkHTRem0g_7rNgfKl74mRWewvVo4US8nas_7Un3vhnzZk34FjLE2aHG-hGdXSj-jY3SsjOYP469uLr2q8aY7xGRJOQ12MxKtcvqugWuhWKUbFS-GRPKiHPem8ZJcF3IJou8NvVhh9tiLpZ0i4_B47v3M_EZc5QbcHlbtFBjSDmTCL6fvE_lPGS3Mcnxw1KO2Tr5moFrxB73TQTcpfxkwm5N90_WpzhdTY_PjmdhM73G20kL_8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QO8IMY1Y4CRQMBDtMSx4_QBoXXr1LKuQmOT9pY5vpRKKNnaFcSf4jdynDjdKm5Pe63t1PE5PufzJd8H8EpG2nIRmxCTPQsREeuwSGQUyozZjGrBmKzZPsfp4IR9POWna_Cz_RbGXatsY2IdqHWl3B75tjvBw9iJ2eXD-UXoVKPc6WorodG4xYH58R2XbPP3wz2072tK9_vHu4PQqwqEiidRFMaJ0NQITH2qYFxZnVplVFIYKY3JtKQ2w6huFCtEpEzBuVapEKlltsCoEskEn3sL1lmCS5kOrPf6409HV7s6PHF0MC07ZES3pf7mWMGpY9ZyV62vZb9aJOBPyPb3C5rXgXOd-fbvwV0PWclO42MbsGbK-7Dhg8KcvPXM1e8ewGKHjKpyQkZTa8hhhR60mJmwX3-epUm_VtyZKtI0wMU-6WEO1aQqydAx9JK9aaUNOXIx2Pq9RCLLtqUr22316bDWxCuPPYSTG7HAI-iUVWmeAGEWAafhUlCmmUTskhXd2GRMSsuEFiKAsB3vXHnSc6e98TVv6Jpp7uyTL-0TwJtl_fOG7uOvNXvOfMtajqa7_qGaTXI_63OeKWVTZYToKtZ1aDRLWGR4KoWU3ZgHsNUaP_exY55feXoAL5fFOLjuKEeWplpgN7o05U5iKgvgceMry57gfyCGT_DdsxUvWunqakk5_VIzi8du_S9iisNWO9x_xiBH6PRZIObf_Pd7vIDbg-PDUT4ajg-ewh1s7y8_bUHncrYwzxDXXRbP_WQicHbT8_cXcdNiow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IMZnYYCRQMBD1MSx4-QBoXVttbJSTYNJewuOP0ollIx2BfGv8ddxTpxuFV9Pe43txPad7362L78DeC5DbbmITIDOngWIiHVQxDIMZMpsSrVgTNZsn9Pk4IS9O-WnW_Cz_RfGhVW2NrE21LpS7oy8527w0Haid-lZHxZxNBi9PfsauAxS7qa1TafRqMih-fEdt2_LN-MByvoFpaPhx_2DwGcYCBSPwzCIYqGpEegGVcG4sjqxyqi4MFIak2pJbYoW3ihWiFCZgnOtEiESy2yBFiaUMb73GmwL3BWFHdjuD6dHxxcnPDx21DAtU2RIe1J_cwzh1LFsubDrS56wThjwJ5T7e7DmZRBde8HRLbjp4SvZa_RtB7ZMeRt2vIFYkleexfr1HVjtkUlVzshkbg15X6E2rRYmGNa_amkyrLPvzBVpGuDGn_TRn2pSlWTs2HrJYF5pQ46dPbb-XJHIsm3pyvbbXHVYa-azkN2FkyuRwD3olFVpHgBhFsGn4VJQpplEHJMWWWRSJqVlQgvRhaCd71x5AnSXh-NL3lA309zJJ1_Lpwsv1_XPGuqPv9bsO_GtaznK7vpBtZjl3gLkPFXKJsoIkSmWOWSaxiw0PJFCyiziXdhthZ97O7LML7S-C8_WxTi57lpHlqZaYTcymnCXbirtwv1GV9Y9wW8gno9x7OmGFm10dbOknH-uWcYjdxYgIorTVivcf-YgRxj1QSD-f_jvcTyF67hu88l4evgIbmBzHwe1C53zxco8Roh3Xjzxa4nAp6tevr8A3T5m2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Long+Life+Moisture%E2%80%90Enabled+Electric+Generator+Based+on+Ionic+Diode+Rectification+and+Electrode+Chemistry+Regulation&rft.jtitle=Advanced+science&rft.au=Fu%2C+Chunqiao&rft.au=Zhou%2C+Jian&rft.au=Lu%2C+Xulei&rft.au=Feng%2C+Haochen&rft.date=2024-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=15&rft_id=info:doi/10.1002%2Fadvs.202305530&rft_id=info%3Apmid%2F38353337&rft.externalDocID=PMC11022712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |