How do climate warming and plant species richness affect water use in experimental grasslands
Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Exp...
Saved in:
Published in | Plant and soil Vol. 288; no. 1-2; pp. 249 - 261 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Dordrecht
Dordrecht : Kluwer Academic Publishers
01.10.2006
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0032-079X 1573-5036 1573-5036 |
DOI | 10.1007/s11104-006-9112-5 |
Cover
Loading…
Abstract | Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m² ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities. |
---|---|
AbstractList | Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m² ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities. Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m super(2) ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3 degree C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities. Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m^sup 2^ ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities.[PUBLICATION ABSTRACT] Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m2 ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities. Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m(2) ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3 degrees C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities. |
Author | Lemmens, C. M. H. M Bossuyt, H Merckx, R Carnol, M Ceulemans, R Malchair, S Nijs, I Boeck, H. J. De |
Author_xml | – sequence: 1 fullname: Boeck, H. J. De – sequence: 2 fullname: Lemmens, C. M. H. M – sequence: 3 fullname: Bossuyt, H – sequence: 4 fullname: Malchair, S – sequence: 5 fullname: Carnol, M – sequence: 6 fullname: Merckx, R – sequence: 7 fullname: Nijs, I – sequence: 8 fullname: Ceulemans, R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18306405$$DView record in Pascal Francis |
BookMark | eNqFkk1rFTEUhgep4G31B7gQg6C4Gc13JstS1AoFF1pwIyE3c3LNZW5yTTJW_70ZpnTRRV0lIc9zTjh5T7uTmCJ03XOC3xGM1ftCCMG8x1j2mhDai0fdhgjFeoGZPOk2GDPaY6W_P-lOS9nj5UzkpvtxmW7QmJCbwsFWQDc2H0LcIRtHdJxsrKgcwQUoKAf3M0IpyHoPrjayQkZzARQigj9HyOEAsdoJ7bItpbljedo99nYq8Ox2PeuuP374dnHZX3359Pni_Kp3guraewejUAK45VQ4Lj0eySCI5pwRRxX1WA6cjH4Q25GP2mk5Ws0GP4BStCHsrKNr3SnADkzK22B-U5NsWPfztDPWmS0YSuVgqCAUN-nNKh1z-jVDqeYQioOpvRzSXAxXnCus-X9BooVUgxYNfPswiBkfiMScNfTVPXSf5hzbkIwS7QO1IAv0-hayxdnJZxtdKObYJm3zX0MGhiXHS1-1ci6nUjJ440K1NaRYsw1T62uWkJg1JKaFxCwhMYtJ7pl3xR9wXqzOvtSU7wTKCRVcLHN9ud57m4zd5fbi668UE4ZbKcqkZP8AHBfRdA |
CODEN | PLSOA2 |
CitedBy_id | crossref_primary_10_3389_fpls_2021_771424 crossref_primary_10_5194_acp_21_3059_2021 crossref_primary_10_1002_eco_103 crossref_primary_10_1016_j_jaridenv_2019_103994 crossref_primary_10_1111_1365_2745_13102 crossref_primary_10_1111_j_1365_2486_2010_02280_x crossref_primary_10_3389_fpls_2016_00538 crossref_primary_10_1007_s10021_017_0122_3 crossref_primary_10_1098_rsos_140541 crossref_primary_10_1111_j_1654_1103_2010_01199_x crossref_primary_10_1007_s11104_018_3790_7 crossref_primary_10_3390_w10111689 crossref_primary_10_1111_gcb_12248 crossref_primary_10_3390_insects14020191 crossref_primary_10_1016_j_agrformet_2020_108100 crossref_primary_10_1093_jpe_rtw010 crossref_primary_10_1016_j_ecolind_2023_110291 crossref_primary_10_1111_j_1365_2486_2012_02800_x crossref_primary_10_1007_s00442_008_0998_x crossref_primary_10_1111_ele_12243 crossref_primary_10_2135_cropsci2010_08_0456 crossref_primary_10_1016_j_ppees_2011_12_001 crossref_primary_10_1002_eco_1945 crossref_primary_10_2139_ssrn_4010973 crossref_primary_10_1016_j_plantsci_2014_11_001 crossref_primary_10_5194_hess_25_6087_2021 crossref_primary_10_1111_j_1365_2486_2010_02359_x crossref_primary_10_1371_journal_pone_0092044 crossref_primary_10_1002_2012WR013253 crossref_primary_10_1016_j_scitotenv_2024_170581 crossref_primary_10_1111_gcb_15501 crossref_primary_10_1111_gcb_12873 crossref_primary_10_1111_nph_14288 crossref_primary_10_5194_bg_5_585_2008 crossref_primary_10_1016_j_ecolecon_2014_12_019 crossref_primary_10_3390_rs13010082 crossref_primary_10_1016_j_agrformet_2015_12_059 crossref_primary_10_1016_j_apsoil_2009_08_006 crossref_primary_10_1080_15230430_2019_1618116 crossref_primary_10_1007_s11258_012_0163_9 crossref_primary_10_1016_j_scitotenv_2020_136691 crossref_primary_10_1007_s11104_013_1595_2 crossref_primary_10_1016_j_envexpbot_2010_08_013 crossref_primary_10_1038_s41598_020_77208_6 crossref_primary_10_1007_s11104_011_0789_8 crossref_primary_10_1016_j_scitotenv_2022_156368 crossref_primary_10_1016_j_agrformet_2016_02_013 crossref_primary_10_5194_bg_21_1371_2024 crossref_primary_10_1016_j_scitotenv_2023_167272 crossref_primary_10_1016_j_foreco_2016_02_018 crossref_primary_10_1016_j_agrformet_2013_07_016 crossref_primary_10_1016_j_watres_2023_120246 crossref_primary_10_5194_bg_18_3467_2021 crossref_primary_10_1186_s40663_016_0074_7 crossref_primary_10_5194_bg_4_27_2007 crossref_primary_10_1007_s11104_017_3377_8 crossref_primary_10_1007_s11104_013_1694_0 crossref_primary_10_5194_bg_21_949_2024 crossref_primary_10_1016_j_ecolind_2021_108464 crossref_primary_10_1111_j_1399_3054_2009_01214_x crossref_primary_10_1111_oik_06529 crossref_primary_10_1016_j_envpol_2011_08_050 crossref_primary_10_1007_s00344_013_9337_5 crossref_primary_10_1016_j_jhydrol_2022_128690 crossref_primary_10_1088_1748_9326_abc64d crossref_primary_10_4141_cjps2011_283 crossref_primary_10_3389_fevo_2023_1138965 crossref_primary_10_7717_peerj_2680 crossref_primary_10_1016_j_agrformet_2023_109594 crossref_primary_10_1080_15324982_2013_824046 crossref_primary_10_1890_15_1110_1 crossref_primary_10_1016_j_scitotenv_2023_166562 crossref_primary_10_1111_1365_2664_12595 crossref_primary_10_1007_s11104_014_2373_5 crossref_primary_10_1017_S1742170512000385 crossref_primary_10_12677_GSER_2021_102016 crossref_primary_10_1016_j_envexpbot_2014_04_002 crossref_primary_10_1007_s10584_016_1825_8 crossref_primary_10_1007_s11284_018_1568_2 crossref_primary_10_1002_ece3_1982 crossref_primary_10_1080_01431161_2013_826839 crossref_primary_10_1029_2009JG001120 crossref_primary_10_1111_1365_2745_13046 crossref_primary_10_1038_s41598_020_68472_7 crossref_primary_10_1016_j_scitotenv_2009_05_002 crossref_primary_10_1071_FP12345 crossref_primary_10_3390_atmos12010082 crossref_primary_10_1371_journal_pone_0036992 crossref_primary_10_1371_journal_pone_0225438 crossref_primary_10_1111_j_1399_3054_2007_00951_x crossref_primary_10_1007_s00442_019_04476_z crossref_primary_10_1111_gcb_12317 crossref_primary_10_1007_s10668_023_04228_3 crossref_primary_10_1002_ece3_5312 crossref_primary_10_3389_fpls_2022_945582 crossref_primary_10_1016_j_envexpbot_2013_11_003 crossref_primary_10_1890_08_0802_1 crossref_primary_10_1556_ComEc_9_2008_S_6 crossref_primary_10_1007_s11104_008_9612_6 crossref_primary_10_1111_1365_2435_12948 crossref_primary_10_1029_2018JG004873 crossref_primary_10_1111_j_1469_8137_2007_02122_x crossref_primary_10_1111_j_1365_2745_2009_01603_x |
Cites_doi | 10.1093/jxb/46.8.947 10.1078/1433-8319-00076 10.1038/nature03972 10.1006/anbo.1997.0430 10.1111/j.1399-3054.2005.00539.x 10.1038/35083573 10.1046/j.1469-8137.1997.00733.x 10.1111/j.0269-8463.2004.00901.x 10.1126/science.287.5459.1770 10.1890/04-0922 10.1034/j.1399-3054.2003.00174.x 10.1038/368734a0 10.1046/j.1365-2486.1999.00216.x 10.1007/978-3-642-80446-5_10 10.2307/3246587 10.1046/j.1365-2486.2002.00530.x 10.1038/37348 10.1016/j.envexpbot.2006.07.001 10.1023/A:1005308216173 10.1111/j.1469-8137.1976.tb01532.x 10.1657/1523-0430(2004)036[0298:ITBLCI]2.0.CO;2 10.1038/386698a0 10.1111/j.2006.0030-1299.14257.x 10.1016/j.envexpbot.2005.02.009 10.1007/BF00557852 10.1093/aob/mcf105 10.1073/pnas.0407524102 10.2134/agronj2003.1071 10.2307/3246588 10.1111/j.1752-1688.1987.tb00825.x 10.1007/978-3-662-05214-3 10.1111/j.1399-3054.2005.00455.x |
ContentType | Journal Article Web Resource |
Copyright | 2007 INIST-CNRS Springer Science+Business Media B.V. 2006 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Springer Science+Business Media B.V. 2006 |
DBID | FBQ AAYXX CITATION IQODW 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7QH 7U6 7UA F1W H96 L.G 7S9 L.6 Q33 |
DOI | 10.1007/s11104-006-9112-5 |
DatabaseName | AGRIS CrossRef Pascal-Francis ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts Aqualine Sustainability Science Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Water Resources Abstracts Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany |
EISSN | 1573-5036 |
EndPage | 261 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_25120 2139862251 18306405 10_1007_s11104_006_9112_5 24125450 US201301112366 |
Genre | Feature |
GeographicLocations | Belgium |
GeographicLocations_xml | – name: Belgium |
GroupedDBID | -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AGQPQ AHWEU AIXLP ATHPR PHGZM PQGLB PUEGO AAYXX CITATION AFOHR IQODW 3V. 7SN 7ST 7T7 88A 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7QH 7U6 7UA F1W H96 L.G 7S9 L.6 Q33 |
ID | FETCH-LOGICAL-c529t-fced575e4a425c46f0d185194431c272f06841df85bd4d9c96da938f8e77231c3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X 1573-5036 |
IngestDate | Fri Jul 18 15:28:32 EDT 2025 Mon Jul 21 11:21:04 EDT 2025 Fri Jul 11 10:09:49 EDT 2025 Fri Jul 11 04:46:19 EDT 2025 Fri Jul 25 11:14:17 EDT 2025 Mon Jul 21 09:16:09 EDT 2025 Tue Jul 01 00:58:40 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Sun Aug 24 12:10:19 EDT 2025 Thu Apr 03 09:44:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Soil plant relation Evapotranspiration, Global warming, Grassland species, Species richness Water use efficiency |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-fced575e4a425c46f0d185194431c272f06841df85bd4d9c96da938f8e77231c3 |
Notes | http://dx.doi.org/10.1007/s11104-006-9112-5 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-33750441130 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/25120 |
PQID | 751129513 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_25120 proquest_miscellaneous_47447094 proquest_miscellaneous_19567895 proquest_miscellaneous_1034816043 proquest_journals_751129513 pascalfrancis_primary_18306405 crossref_citationtrail_10_1007_s11104_006_9112_5 crossref_primary_10_1007_s11104_006_9112_5 jstor_primary_24125450 fao_agris_US201301112366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-10-01 |
PublicationDateYYYYMMDD | 2006-10-01 |
PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Plant and soil |
PublicationYear | 2006 |
Publisher | Dordrecht : Kluwer Academic Publishers Springer Springer Nature B.V |
Publisher_xml | – name: Dordrecht : Kluwer Academic Publishers – name: Springer – name: Springer Nature B.V |
References | W Beyschlag (9112_CR2) 1998; 59 A Eatherall (9112_CR10) 1997; 35 DA Haith (9112_CR13) 1987; 23 SR Saleska (9112_CR28) 1999; 5 J Ruijven van (9112_CR31) 2005; 102 W Larcher (9112_CR16) 2003 B Gielen (9112_CR12) 2005; 125 OE Sala (9112_CR27) 2000; 287 JT Houghton (9112_CR15) 2001 P Ciais (9112_CR7) 2005; 437 A Cernusca (9112_CR5) 1976; 23 S Naeem (9112_CR24) 1997; 390 R Ejrnæs (9112_CR11) 2000; 11 A Mahmoud (9112_CR20) 1976; 77 9112_CR9 RB Myneni (9112_CR22) 1997; 386 JHM Thornley (9112_CR29) 1997; 80 G-R Walther (9112_CR32) 2003; 6 LH Allen Jr (9112_CR1) 2003; 95 MM Chaves (9112_CR6) 2002; 89 HH Bruun (9112_CR3) 2000; 11 L Llorens (9112_CR18) 2003; 119 M Loreau (9112_CR19) 2001; 412 ZZ Xu (9112_CR33) 2005; 123 EB Carter (9112_CR4) 1997; 136 L Peer Van (9112_CR30) 2004; 18 DU Hooper (9112_CR14) 2005; 75 S Naeem (9112_CR23) 1994; 368 HJ Boeck De (9112_CR8) 2006; 113 FL Marchand (9112_CR21) 2004; 36 ML Rodrigues (9112_CR26) 1995; 46 CMHM Lemmens (9112_CR17) 2006; 56 M Reichstein (9112_CR25) 2002; 8 |
References_xml | – volume: 46 start-page: 947 year: 1995 ident: 9112_CR26 publication-title: J Exp Bot doi: 10.1093/jxb/46.8.947 – volume: 6 start-page: 169 year: 2003 ident: 9112_CR32 publication-title: Perspect Plant Ecol Evol Syst doi: 10.1078/1433-8319-00076 – volume-title: IPCC 2001. Climate change 2001: the scientific basis. Contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change year: 2001 ident: 9112_CR15 – volume: 437 start-page: 529 year: 2005 ident: 9112_CR7 publication-title: Nature doi: 10.1038/nature03972 – volume: 80 start-page: 205 year: 1997 ident: 9112_CR29 publication-title: Ann Bot doi: 10.1006/anbo.1997.0430 – volume: 125 start-page: 52 year: 2005 ident: 9112_CR12 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2005.00539.x – volume: 412 start-page: 72 year: 2001 ident: 9112_CR19 publication-title: Nature doi: 10.1038/35083573 – volume: 136 start-page: 245 year: 1997 ident: 9112_CR4 publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00733.x – volume: 18 start-page: 769 year: 2004 ident: 9112_CR30 publication-title: Funct Ecol doi: 10.1111/j.0269-8463.2004.00901.x – volume: 287 start-page: 1770 year: 2000 ident: 9112_CR27 publication-title: Science doi: 10.1126/science.287.5459.1770 – volume: 75 start-page: 3 year: 2005 ident: 9112_CR14 publication-title: Ecol Monogr doi: 10.1890/04-0922 – volume: 119 start-page: 231 year: 2003 ident: 9112_CR18 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.2003.00174.x – volume: 368 start-page: 734 year: 1994 ident: 9112_CR23 publication-title: Nature doi: 10.1038/368734a0 – volume: 5 start-page: 125 year: 1999 ident: 9112_CR28 publication-title: Global Change Biol doi: 10.1046/j.1365-2486.1999.00216.x – volume: 59 start-page: 283 year: 1998 ident: 9112_CR2 publication-title: Progr Bot doi: 10.1007/978-3-642-80446-5_10 – volume: 11 start-page: 573 year: 2000 ident: 9112_CR11 publication-title: J Veg Sci doi: 10.2307/3246587 – volume: 8 start-page: 999 year: 2002 ident: 9112_CR25 publication-title: Global Change Biol doi: 10.1046/j.1365-2486.2002.00530.x – volume: 390 start-page: 507 year: 1997 ident: 9112_CR24 publication-title: Nature doi: 10.1038/37348 – ident: 9112_CR9 doi: 10.1016/j.envexpbot.2006.07.001 – volume: 35 start-page: 17 year: 1997 ident: 9112_CR10 publication-title: Clim Change doi: 10.1023/A:1005308216173 – volume: 77 start-page: 431 year: 1976 ident: 9112_CR20 publication-title: New Phytol doi: 10.1111/j.1469-8137.1976.tb01532.x – volume: 36 start-page: 298 year: 2004 ident: 9112_CR21 publication-title: Arc Antarct Alp Res doi: 10.1657/1523-0430(2004)036[0298:ITBLCI]2.0.CO;2 – volume: 386 start-page: 698 year: 1997 ident: 9112_CR22 publication-title: Nature doi: 10.1038/386698a0 – volume: 113 start-page: 269 year: 2006 ident: 9112_CR8 publication-title: Oikos doi: 10.1111/j.2006.0030-1299.14257.x – volume: 56 start-page: 245 year: 2006 ident: 9112_CR17 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2005.02.009 – volume: 23 start-page: 141 year: 1976 ident: 9112_CR5 publication-title: Oecologia doi: 10.1007/BF00557852 – volume: 89 start-page: 907 year: 2002 ident: 9112_CR6 publication-title: Ann Bot doi: 10.1093/aob/mcf105 – volume: 102 start-page: 695 year: 2005 ident: 9112_CR31 publication-title: Proc Nat Sci USA doi: 10.1073/pnas.0407524102 – volume: 95 start-page: 1071 year: 2003 ident: 9112_CR1 publication-title: Agron J doi: 10.2134/agronj2003.1071 – volume: 11 start-page: 585 year: 2000 ident: 9112_CR3 publication-title: J Veg Sci doi: 10.2307/3246588 – volume: 23 start-page: 471 year: 1987 ident: 9112_CR13 publication-title: Water Resour Bull doi: 10.1111/j.1752-1688.1987.tb00825.x – volume-title: Physiological plant ecology year: 2003 ident: 9112_CR16 doi: 10.1007/978-3-662-05214-3 – volume: 123 start-page: 272 year: 2005 ident: 9112_CR33 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2005.00455.x |
RestrictionsOnAccess | open access |
SSID | ssj0003216 |
Score | 2.2060442 |
Snippet | Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we... |
SourceID | liege proquest pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 249 |
SubjectTerms | Agronomy. Soil science and plant productions Air temperature Ambient temperature Animal, plant and microbial ecology Biological and medical sciences Biologie végétale (sciences végétales, sylviculture, mycologie...) Biomass Climate change Drought Environmental sciences & ecology Evapotranspiration Flowers & plants Fundamental and applied biological sciences. Psychology Global warming Grassland soils grassland species Grasslands High temperature Life sciences Monoculture Phytobiology (plant sciences, forestry, mycology...) Plant species Plants Sciences de l’environnement & écologie Sciences du vivant Soil heating Soil water Soil water content soil-plant-atmosphere interactions Species species diversity Species richness Water use Water use efficiency |
Title | How do climate warming and plant species richness affect water use in experimental grasslands |
URI | https://www.jstor.org/stable/24125450 https://www.proquest.com/docview/751129513 https://www.proquest.com/docview/1034816043 https://www.proquest.com/docview/19567895 https://www.proquest.com/docview/47447094 http://orbi.ulg.ac.be/handle/2268/25120 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELbYxgM8IBhMC4NhJJ5AEWniJM7TtKFNFQ8TAir1CcuxnVKpSkrTbtq_5zs3yZjQ9tRIvUTOne_uu9z5jrEPBk4uoRmAzrokFHmehqWAXgkD34JwIq6s7_Z5mY0n4us0nXa1OW1XVtnbRG-obWPoG_nn3CODdJScLP-ENDSKkqvdBI0dtgcLLLHB987OL799H0xxEvvZp3QRRnkx7dOa_uwcHJ8IKaCGviMgu-OYdird9BWK-F1QApvKJnULzlXbkRf_WW_vki6es2cdluSnW-G_YI9cvc-ens5WXT8Nt88enzVAfzcv2a9xc81tw81iDozq-LWmIpgZ17XlywXYy-nMJcJmjrt_k_3j2pd6gBKs55vW8XnN_x0IwGcrIG9_VvjkFZtcnP_8Mg672QqhSeNiHVbGWSA1JzSU1oisiiw896gQABQmzuMqyqQY2UqmpRW2MEVmdZHISjrAcZAkB2y3bmp3yHhmo5GhvvGlTAQAldZQdA1CJ6XOEhuwqGesMl3jcZp_sVC3LZNJFopK7EgWKg3Yx-GW5bbrxkPEh5CW0uBuqyY_YsrFgiZOsixgB16Ew0OAVxARp1HAPnmZqmZVztVVrKjLtr_eLGZKG1U6BWAqFcE_UB_fkfztmiQFcBGWcNRvBdXZgFYNOzZg74d_obyUkdG1azYtXojOQWeRAM27-2gQweaySO-nELkQOfTq9YOrOGJP_OcjX4j4hu2uVxv3FoBqXR53avMXb44Y6A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61KRJwQFCoGgrtIsEFZOHY69cBVS20SmmJEDRSTl3W3nWIFNkhToj6o_iPfLOxUyrU3nqKpYyt9c7OzDeeF2OvMxg5n2YAGm18R0RR4KQCciUy2Ba4E16ubbfPXtjti8-DYLDG_jS1MJRW2ehEq6h1mdE38veRRQZBx9-f_HJoaBQFV5sJGstTcWouF_DYqg8nn8DeN553fHT-sevUQwWcLPCSmZNnRgOiGKFwWjMR5q6GyYIrD0uaeZGXu2EsOjqPg1QLnWRJqFXix3lsgENB4uO562xD-EAKLbZxeNT7-m2l-n3PzlqlC8eNkkETRrW1ejC0wiEHHvoFDuA1Q7ieq7LJiMTvmALmlKapKnAqX47Y-M9aWBN4_Jg9qrErP1getidszRSb7OHBcFr37zCb7N5hCbR5-ZRddMsF1yXPxiNgYsMXipJuhlwVmk_GYCenGk-46Rx3_yR9y5VNLQElWM3nleGjgv87gIAPp0D6tjZ5_xnr38m2b7FWURZmm_FQu52M-tSnsS8A4JSCYlEgNHGsQl-3mdtsrMzqRuc0b2Msr1o0Ey8kpfQRL2TQZm9Xt0yWXT5uI94Gt6TC7lay_92j2C9oPD8M22zLsnD1EOAjeOCB22bvLE9lOU1H8rcnqau3vZ6Ph1JlMjUSQDiWBDdBvXuN81drislhdLGEneYoyFrnVHIlIW32avUvlAVFgFRhynmFF6K669AVoNm7iQYecxQnwc0UIhIighw_v3UVe-x-9_zLmTw76Z3usAf205VNgnzBWrPp3LwEmJulu7UIcfbjrqX2L1uCVQM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61KUJwQFCoGgrtIsEFZNWx168DqlraKKUoqoBIObFde9chUmSHOKHqT-Pf8c3GTqlQe-spljK21js7M994Xoy9zWDkfJoBaLTxHRFFgZMKyJXIYFvgTni5tt0--2FvID4Pg-Ea-9PUwlBaZaMTraLWZUbfyPcjiwyCjr-f11kR58fdg-kvhwZIUaC1maaxPCFn5uoS3lv18fQYrH7ned2T7596Tj1gwMkCL5k7eWY04IoRCic3E2HuapgvuPWwqpkXebkbxqKj8zhItdBJloRaJX6cxwaYFCQ-nrvONiKqHm2xjaOT_vnXlRnwPTt3lS4cN0qGTUjV1u3B6AqHnHnoGjiDN4zieq7KJjsSvxMKnlPKpqrAtXw5buM_y2HNYfcpe1LjWH64PHjP2JopNtnjw9Gs7uVhNtmDoxLI8-o5-9ErL7kueTYZAx8bfqkoAWfEVaH5dALWcqr3hMvOcfdP0r1c2TQTUILtfFEZPi74v8MI-GgG1G_rlA9esMG9bPsWaxVlYbYZD7XbyahnfRr7AmBOKSgZBUITxyr0dZu5zcbKrG56TrM3JvK6XTPxQlJ6H_FCBm32fnXLdNnx4y7ibXBLKuxuJQffPIoDg8bzw7DNtiwLVw8BVoI3Hrht9sHyVJazdCx_e5I6fNvrxWQkVSZTIwGKY0nQE9S7Nzh_vaaYnEcXS9hpjoKs9U8lV9LSZm9W_0JxUDRIFaZcVHghqsEOXQGavdto4D1HcRLcTiEiISLI9Ms7V7HHHkJa5ZfT_tkOe2S_Ytl8yFesNZ8tzGvgunm6W0sQZxf3LbR_Ab3RWUE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+climate+warming+and+plant+species+richness+affect+water+use+in+experimental+grasslands%3F&rft.jtitle=Plant+and+soil&rft.au=DE+BOECK%2C+H.+J&rft.au=LEMMENS%2C+C.+M.+H.+M&rft.au=BOSSUYT%2C+H&rft.au=MALCHAIR%2C+S&rft.date=2006-10-01&rft.pub=Springer&rft.issn=0032-079X&rft.volume=288&rft.issue=1-2&rft.spage=249&rft.epage=261&rft_id=info:doi/10.1007%2Fs11104-006-9112-5&rft.externalDBID=n%2Fa&rft.externalDocID=18306405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |