N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells
Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their...
Saved in:
Published in | Cell reports (Cambridge) Vol. 26; no. 3; pp. 652 - 669.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration.
[Display omitted]
•rHSC and pHSCs are distinguished by their resistance or sensitivity to chemotherapy•pHSCs in the perivascular niche are largely eliminated by chemotherapy•rHSCs are maintained by N-cad+ cells and restore the HSC pool after chemotherapy•N-cad+ BMSPCs expand and produce SCF and other cytokines for rHSCs upon stress
Zhao et al. demonstrate that blood-forming stem cells have a back-up system in stressed condition. Both reserve and active stem cells are maintained in the bone marrow by specific niches. While the latter are chemo-sensitive, the former survive and restore stem cells, and thereby generate the blood system. |
---|---|
AbstractList | Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin
+
(N-cad
+
) bone-lining cells in homeostasis and post-chemotherapy. N-cad
+
cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes
in vitro
and
in vivo
. Finally, ablation of N-cad
+
niche cells or deletion of
SCF
from N-cad
+
niche cells impaired rHSC maintenance during homeostasis and regeneration.
Zhao et al. demonstrate that blood-forming stem cells have a back-up system in stressed condition. Both reserve and active stem cells are maintained in the bone marrow by specific niches. While the latter are chemo-sensitive, the former survive and restore stem cells, and thereby generate the blood system. Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration.Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration. Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin (N-cad ) bone-lining cells in homeostasis and post-chemotherapy. N-cad cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad niche cells or deletion of SCF from N-cad niche cells impaired rHSC maintenance during homeostasis and regeneration. Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration. [Display omitted] •rHSC and pHSCs are distinguished by their resistance or sensitivity to chemotherapy•pHSCs in the perivascular niche are largely eliminated by chemotherapy•rHSCs are maintained by N-cad+ cells and restore the HSC pool after chemotherapy•N-cad+ BMSPCs expand and produce SCF and other cytokines for rHSCs upon stress Zhao et al. demonstrate that blood-forming stem cells have a back-up system in stressed condition. Both reserve and active stem cells are maintained in the bone marrow by specific niches. While the latter are chemo-sensitive, the former survive and restore stem cells, and thereby generate the blood system. |
Author | Zhao, Meng He, Xi C. Smith, Sarah E. Li, Linheng Li, Zhenrui Marshall, Heather Perry, John M. Venkatraman, Aparna Wang, Jinxi Tao, Fang Ward, Christina Qian, Pengxu Chen, Shiyuan Unruh, Jay |
AuthorAffiliation | 1 Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China 6 Children’s Research Institute, Children’s Mercy, Kansas City, MO 64108, USA 7 These authors contributed equally 4 Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA 5 Center of Stem Cell and Regenerative Medicine, Institute of Hematology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 310058 8 Lead Contact 2 Stowers Institute for Medical Research, Kansas City, MO 66110, USA 3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA |
AuthorAffiliation_xml | – name: 3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA – name: 1 Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China – name: 5 Center of Stem Cell and Regenerative Medicine, Institute of Hematology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 310058 – name: 7 These authors contributed equally – name: 6 Children’s Research Institute, Children’s Mercy, Kansas City, MO 64108, USA – name: 2 Stowers Institute for Medical Research, Kansas City, MO 66110, USA – name: 4 Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA – name: 8 Lead Contact |
Author_xml | – sequence: 1 givenname: Meng surname: Zhao fullname: Zhao, Meng organization: Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China – sequence: 2 givenname: Fang surname: Tao fullname: Tao, Fang organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 3 givenname: Aparna surname: Venkatraman fullname: Venkatraman, Aparna organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 4 givenname: Zhenrui surname: Li fullname: Li, Zhenrui organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 5 givenname: Sarah E. surname: Smith fullname: Smith, Sarah E. organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 6 givenname: Jay surname: Unruh fullname: Unruh, Jay organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 7 givenname: Shiyuan surname: Chen fullname: Chen, Shiyuan organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 8 givenname: Christina surname: Ward fullname: Ward, Christina organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 9 givenname: Pengxu surname: Qian fullname: Qian, Pengxu organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 10 givenname: John M. surname: Perry fullname: Perry, John M. organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 11 givenname: Heather surname: Marshall fullname: Marshall, Heather organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 12 givenname: Jinxi surname: Wang fullname: Wang, Jinxi organization: Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA – sequence: 13 givenname: Xi C. surname: He fullname: He, Xi C. organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA – sequence: 14 givenname: Linheng surname: Li fullname: Li, Linheng email: lil@stowers.org organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30650358$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUVtrFDEUDqViL_YfFJlHX2aak7n7IOjSi1Bt8fIcMsmZ3SwzyZhkV_vvm2G3Un3QQMgh57vA952QQ2MNEnIONAMK1cU6kzg4nDJGocmAZbTND8gxYwApsKI-fDYfkTPv1zSeigK0xUtylNOqpHnZHJPV53Qh1AqdNunlr8mh99oskw_RLhFGJZ-Ec_Zn8jU4O4ohuXd2iUYH65IFDoOPe21CvMkX9Oi2mNzgKIKdrMagZeThuEO-Ii96MXg827-n5PvV5bfFTXp7d_1x8f42lSVrQ4ptrxrVNdgxpUpVY170okCGkvUd9EJhVTW0pCz-5lCUVFAUquxEI1gHRZOfknc73WnTjagkmuDEwCenR-EeuBWa_7kxesWXdsurpqV5PQu82Qs4-2ODPvBR-5j2IAzajecM6raAmrEZ-vq512-Tp3gj4O0OIJ313mHPpQ4iaDtb64ED5XOdfM13dfK5Tg6MxzojufiL_KT_H9o-AIwpbzU67qVGI1FphzJwZfW_BR4BEdC-cg |
CitedBy_id | crossref_primary_10_1155_2019_4038560 crossref_primary_10_3389_fonc_2020_606540 crossref_primary_10_1016_j_stemcr_2022_06_004 crossref_primary_10_1007_s12079_020_00602_2 crossref_primary_10_1016_j_stem_2023_05_003 crossref_primary_10_1093_procel_pwae022 crossref_primary_10_1097_CCO_0000000000000605 crossref_primary_10_1182_blood_2020005399 crossref_primary_10_1007_s11914_020_00572_9 crossref_primary_10_3389_fonc_2020_592733 crossref_primary_10_3390_cancers14051317 crossref_primary_10_3390_ijms23084462 crossref_primary_10_1016_j_ajps_2023_100868 crossref_primary_10_1016_j_trecan_2023_03_007 crossref_primary_10_1016_j_exphem_2023_09_005 crossref_primary_10_3389_fcell_2020_00611 crossref_primary_10_1016_j_exphem_2021_09_003 crossref_primary_10_1186_s13045_020_00994_z crossref_primary_10_1182_bloodadvances_2020001826 crossref_primary_10_1182_blood_2023023788 crossref_primary_10_1038_s41416_023_02401_z crossref_primary_10_1182_blood_2021011510 crossref_primary_10_3389_fimmu_2021_756231 crossref_primary_10_1016_j_stem_2023_09_013 crossref_primary_10_1007_s11899_023_00688_6 crossref_primary_10_1016_j_exphem_2021_09_007 crossref_primary_10_3390_diagnostics12071639 crossref_primary_10_1038_s41556_019_0322_5 crossref_primary_10_1002_cpz1_216 crossref_primary_10_1111_nyas_14184 crossref_primary_10_1016_j_ydbio_2021_05_010 crossref_primary_10_1016_j_cryobiol_2020_11_010 crossref_primary_10_1002_ca_23917 crossref_primary_10_1093_stcltm_szab019 crossref_primary_10_1084_jem_20201541 crossref_primary_10_1016_j_aanat_2023_152131 crossref_primary_10_1038_s41413_023_00249_w crossref_primary_10_1186_s13287_024_03896_w crossref_primary_10_1097_BS9_0000000000000119 crossref_primary_10_1097_MOH_0000000000000656 crossref_primary_10_1016_j_cell_2024_04_013 crossref_primary_10_3389_fimmu_2021_768439 crossref_primary_10_1152_ajpgi_00126_2019 crossref_primary_10_1155_2020_8885154 crossref_primary_10_1002_bies_202200121 crossref_primary_10_3389_fimmu_2022_811144 crossref_primary_10_1016_j_phymed_2024_155978 crossref_primary_10_1038_s43018_023_00607_x crossref_primary_10_1016_j_stem_2020_06_003 crossref_primary_10_1016_j_tips_2024_08_004 crossref_primary_10_3390_children8050371 crossref_primary_10_1158_2159_8290_CD_22_0220 crossref_primary_10_1002_sstr_202400065 crossref_primary_10_3389_fcell_2021_698047 crossref_primary_10_1016_j_xcrm_2022_100724 crossref_primary_10_1038_s42003_022_03591_7 crossref_primary_10_1182_blood_2019002615 crossref_primary_10_3390_cells10081849 crossref_primary_10_1084_jem_20201169 crossref_primary_10_1017_erm_2023_13 crossref_primary_10_1038_s41467_020_20091_6 crossref_primary_10_1016_j_ceb_2023_102284 crossref_primary_10_1016_j_celrep_2020_108530 crossref_primary_10_1002_jbmr_4410 crossref_primary_10_1007_s00018_021_03767_0 crossref_primary_10_1002_jbmr_4415 crossref_primary_10_1016_j_isci_2020_101222 crossref_primary_10_1182_bloodadvances_2021005983 crossref_primary_10_1038_s41568_020_0245_2 crossref_primary_10_3390_ijms21114124 crossref_primary_10_2174_1574888X15999200729162021 crossref_primary_10_21769_BioProtoc_1010338 crossref_primary_10_1155_2019_9026729 crossref_primary_10_1182_blood_2023021280 crossref_primary_10_1080_19490976_2024_2350784 crossref_primary_10_1172_JCI182125 crossref_primary_10_1097_MOH_0000000000000621 crossref_primary_10_3390_ijms23158238 crossref_primary_10_1016_j_ydbio_2021_03_003 crossref_primary_10_1182_blood_2021013048 crossref_primary_10_1016_j_celrep_2021_109119 crossref_primary_10_1371_journal_pgen_1011319 crossref_primary_10_3389_fbioe_2022_1049965 crossref_primary_10_1186_s12967_024_05900_6 crossref_primary_10_1016_j_stemcr_2022_05_014 crossref_primary_10_3390_ph15050592 crossref_primary_10_1016_j_exphem_2024_104233 crossref_primary_10_1016_j_intimp_2024_113909 crossref_primary_10_1111_bph_15924 crossref_primary_10_1002_jbmr_4282 crossref_primary_10_1016_j_exphem_2019_12_003 crossref_primary_10_1182_blood_2019000176 crossref_primary_10_1007_s10565_019_09510_7 crossref_primary_10_1016_j_stem_2019_02_007 crossref_primary_10_1038_s41375_024_02226_6 crossref_primary_10_1002_stem_3174 crossref_primary_10_3390_ijms25042173 crossref_primary_10_1016_j_exphem_2019_08_008 crossref_primary_10_3389_fimmu_2021_738204 crossref_primary_10_1038_s41467_020_20801_0 crossref_primary_10_12688_f1000research_22554_1 crossref_primary_10_1016_j_biomaterials_2022_121568 crossref_primary_10_14348_molcells_2021_0137 crossref_primary_10_4049_jimmunol_2200345 crossref_primary_10_26693_jmbs04_06_110 crossref_primary_10_1186_s13287_023_03464_8 crossref_primary_10_1016_j_devcel_2020_04_012 crossref_primary_10_1038_s41467_024_52318_1 |
Cites_doi | 10.1182/blood-2008-10-183459 10.1016/j.jim.2009.06.008 10.1016/j.stem.2008.01.017 10.1182/blood-2003-07-2315 10.1016/j.cell.2004.07.004 10.1016/j.ccr.2014.04.015 10.1016/j.molcel.2014.04.025 10.1016/j.molcel.2012.06.027 10.1038/nature11926 10.1038/nature07434 10.1038/nrc1074 10.1038/nm.3707 10.1096/fj.03-1466com 10.1177/1941738109350438 10.1016/j.cell.2004.10.010 10.1016/j.stem.2015.11.001 10.1038/nature07639 10.1016/j.copbio.2005.08.004 10.1186/1750-2187-3-15 10.1093/bioinformatics/btp616 10.1038/nature12495 10.1038/nature17997 10.1038/nature14131 10.1038/s41375-018-0220-z 10.1083/jcb.122.4.897 10.1074/jbc.M202447200 10.1084/jem.20091318 10.1016/j.cell.2016.10.022 10.1002/cne.10964 10.1016/j.cell.2008.10.048 10.1038/nature19807 10.1038/nature13145 10.1016/j.immuni.2012.08.025 10.1038/nature15250 10.1093/bioinformatics/btu638 10.1038/d41586-018-06756-9 10.1038/nature12612 10.1073/pnas.87.22.8736 10.1038/nbt.1517 10.1186/gb-2013-14-4-r36 10.1038/nri.2017.53 10.1038/sj.embor.7400685 10.1038/nature02041 10.1038/cr.2014.111 10.1016/j.immuni.2018.03.024 10.1038/nature07547 10.1016/j.cell.2005.10.034 10.1038/s41598-017-05654-w 10.1084/jem.20130428 10.1038/srep42487 10.1016/j.cell.2012.05.041 10.1038/nature10783 10.1016/j.stem.2008.01.003 10.1038/nature12984 10.1016/S0092-8674(00)81692-X 10.1093/bioinformatics/btp184 10.1016/j.ccr.2009.02.016 10.1038/nm.3706 10.1038/nature11885 10.1016/j.stem.2009.11.014 10.1038/nature16943 10.1016/j.cell.2011.09.053 10.1182/blood.V97.8.2293 10.1016/j.immuni.2006.10.016 10.1038/nature09135 10.1038/nature02040 10.1016/j.stem.2014.04.016 10.1038/nbt.1621 10.1634/stemcells.2005-0396 10.1038/nature17624 10.1016/j.cell.2014.03.065 10.1126/science.1180794 10.1016/j.cell.2018.07.029 10.1016/j.stem.2015.02.019 10.1146/annurev.cellbio.21.012704.131525 10.1172/JCI28551 10.1016/j.devcel.2007.02.004 10.1016/j.stem.2012.10.011 10.1016/j.stem.2012.02.007 10.1038/nature12303 10.4161/cam.22680 10.1126/science.287.5459.1804 |
ContentType | Journal Article |
Copyright | 2018 Stowers Institute for Medical Research Copyright © 2018 Stowers Institute for Medical Research. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Stowers Institute for Medical Research – notice: Copyright © 2018 Stowers Institute for Medical Research. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2018.12.093 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 669.e6 |
ExternalDocumentID | PMC6890378 30650358 10_1016_j_celrep_2018_12_093 S2211124718320539 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA168524 – fundername: NIDCR NIH HHS grantid: R01 DE018713 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-e9fd8db8eb2dd5d7e34fa4e2ec2fb1fade6680502fa431450a0ead5ba8a2b1483 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Thu Aug 21 18:21:39 EDT 2025 Fri Jul 11 01:39:32 EDT 2025 Thu Jan 02 22:59:25 EST 2025 Tue Jul 01 02:58:59 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Wed May 17 00:03:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | niche stress response MSC endosteum N-cadherin reserve stem cell |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 Stowers Institute for Medical Research. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-e9fd8db8eb2dd5d7e34fa4e2ec2fb1fade6680502fa431450a0ead5ba8a2b1483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS Conceptualization, L.L.; Investigation, M.Z., F.T., A.V., Z.L., P.Q., and H.M.; Methodology, S.E.S.; Software, J.U.; Formal Analysis, S.C. and C.W.; Resources, J.W. and X.C.H.; Writing – Original Draft, M.Z., F.T., and A.V.; Writing – Review & Editing, M.Z., F.T., A.V., J.M.P., and L.L.; Supervision, L.L. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124718320539 |
PMID | 30650358 |
PQID | 2179417228 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6890378 proquest_miscellaneous_2179417228 pubmed_primary_30650358 crossref_citationtrail_10_1016_j_celrep_2018_12_093 crossref_primary_10_1016_j_celrep_2018_12_093 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_12_093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Preibisch, Saalfeld, Tomancak (bib55) 2009; 25 Yousif, Di Russo, Sorokin (bib82) 2013; 7 Dominici, Rasini, Bussolari, Chen, Hofmann, Spano, Bernabei, Veronesi, Bertoni, Paolucci (bib21) 2009; 114 Foo, Turner, Adams, Compagni, Aubyn, Kogata, Lindblom, Shani, Zicha, Adams (bib25) 2006; 124 Kusumbe, Ramasamy, Adams (bib40) 2014; 507 Longley, Harkin, Johnston (bib48) 2003; 3 Wilson, Laurenti, Oser, van der Wath, Blanco-Bose, Jaworski, Offner, Dunant, Eshkind, Bockamp (bib76) 2008; 135 Krishnan, Bryant, Macdougald (bib38) 2006; 116 Schofield (bib63) 1978; 4 Zhang, Niu, Ye, Huang, He, Tong, Ross, Haug, Johnson, Feng (bib83) 2003; 425 Sugimura, He, Venkatraman, Arai, Box, Semerad, Haug, Peng, Zhong, Suda, Li (bib66) 2012; 150 Yamauchi, Hotta, Konishi, Miyake, Kawahara, Itoh (bib78) 2006; 7 Gazit, Mandal, Ebina, Ben-Zvi, Nombela-Arrieta, Silberstein, Rossi (bib28) 2014; 211 Raghunath, Salacinski, Sales, Butler, Seifalian (bib57) 2005; 16 Chan, Gulati, Sinha, Tompkins, Lopez, Carter, Ransom, Reinisch, Wearda, Murphy (bib14) 2018; 175 Li, Clevers (bib44) 2010; 327 Hu, Smyth (bib32) 2009; 347 Walter, Lier, Geiselhart, Thalheimer, Huntscha, Sobotta, Moehrle, Brocks, Bayindir, Kaschutnig (bib73) 2015; 520 Zhao, Perry, Marshall, Venkatraman, Qian, He, Ahamed, Li (bib84) 2014; 20 Bruns, Lucas, Pinho, Ahmed, Lambert, Kunisaki, Scheiermann, Schiff, Poncz, Bergman, Frenette (bib10) 2014; 20 Kearney, Kappas, Ellerstrom, DiPaola, Bautch (bib34) 2004; 103 Qian, He, Paulson, Li, Tao, Perry, Guo, Zhao, Zhi, Venkatraman, Haug, Parmely, Li, Dobrowsky, Ding, Kono, Ferguson-Smith, Li (bib56) 2016; 18 Arai, Hirao, Ohmura, Sato, Matsuoka, Takubo, Ito, Koh, Suda (bib3) 2004; 118 Ding, Saunders, Enikolopov, Morrison (bib20) 2012; 481 Gartel, Tyner (bib27) 2002; 1 Passegué, Wagner, Weissman (bib54) 2004; 119 Benz, Copley, Kent, Wohrer, Cortes, Aghaeepour, Ma, Mader, Rowe, Day (bib8) 2012; 10 Fleming, Janzen, Lo Celso, Guo, Leahy, Kronenberg, Scadden (bib24) 2008; 2 Yang, Zhu, Hou, Lan, Wu, Zhou, Teng, Yang (bib80) 2014; 24 Sophia Fox, Bedi, Rodeo (bib65) 2009; 1 Takubo, Nagamatsu, Kobayashi, Nakamura-Ishizu, Kobayashi, Ikeda, Goda, Rahimi, Johnson, Soga (bib69) 2013; 12 Dimitrova, Zamudio, Jong, Soukup, Resnick, Sarma, Ward, Raj, Lee, Sharp, Jacks (bib18) 2014; 54 Sugiyama, Kohara, Noda, Nagasawa (bib67) 2006; 25 Wei, Frenette (bib74) 2018; 48 Xie, Yin, Wiegraebe, He, Miller, Stark, Perko, Alexander, Schwartz, Grindley (bib77) 2009; 457 Venkatraman, He, Thorvaldsen, Sugimura, Perry, Tao, Zhao, Christenson, Sanchez, Yu (bib71) 2013; 500 Calvi, Adams, Weibrecht, Weber, Olson, Knight, Martin, Schipani, Divieti, Bringhurst (bib12) 2003; 425 Bujanover, Goldstein, Greenshpan, Turgeman, Klainberger, Scharff, Gazit (bib11) 2018; 32 Morita, Ema, Nakauchi (bib50) 2010; 207 Rao, Long, White, Svensson, Lou, Lokurkar, Jedrychowski, Ruas, Wrann, Lo (bib58) 2014; 157 Mignone, Kukekov, Chiang, Steindler, Enikolopov (bib49) 2004; 469 Santaguida, Schepers, King, Sabnis, Forsberg, Attema, Braun, Passegué (bib62) 2009; 15 Chan, Chen, Luppen, Kim, DeBoer, Wei, Helms, Kuo, Kraft, Weissman (bib13) 2009; 457 Weissman (bib75) 2000; 100 Lee, Boldo, Fernandez, Feelisch, Harmsen (bib42) 2017; 7 Anders, Pyl, Huber (bib2) 2015; 31 Lee, Cho, Hwang, Choi, Kim, Ahn, Kim, Oh, Lee, Koh (bib41) 2004; 18 Chen, Miyanishi, Wang, Yamazaki, Sinha, Kao, Seita, Sahoo, Nakauchi, Weissman (bib15) 2016; 530 Crane, Jeffery, Morrison (bib17) 2017; 17 Foudi, Hochedlinger, Van Buren, Schindler, Jaenisch, Carey, Hock (bib26) 2008; 27 Yamazaki, Ema, Karlsson, Yamaguchi, Miyoshi, Shioda, Taketo, Karlsson, Iwama, Nakauchi (bib79) 2011; 147 Duan, Shi, Chen, Wang, Yu, Qin, Zhou, Cai, Li, Zhang (bib22) 2014; 25 Cheng, Rodrigues, Shen, Yang, Dombkowski, Sykes, Scadden (bib16) 2000; 287 Sanjuan-Pla, Macaulay, Jensen, Woll, Luis, Mead, Moore, Carella, Matsuoka, Bouriez Jones (bib61) 2013; 502 Trapnell, Williams, Pertea, Mortazavi, Kwan, Van Baren, Salzberg, Wold, Pachter (bib70) 2010; 28 Ding, Morrison (bib19) 2013; 495 Lo Celso, Fleming, Wu, Zhao, Miake-Lye, Fujisaki, Côté, Rowe, Lin, Scadden (bib47) 2009; 457 Itkin, Gur-Cohen, Spencer, Schajnovitz, Ramasamy, Kusumbe, Ledergor, Jung, Milo, Poulos (bib33) 2016; 532 Li, Xie (bib45) 2005; 21 Rodina, Wang, Yan, Gomes, Dunphy, Pillarsetty, Koren, Gerecitano, Taldone, Zong (bib60) 2016; 538 Nilsson, Johnston, Coverdale (bib52) 2001; 97 Liebermann, Hoffman (bib46) 2008; 3 Robinson, McCarthy, Smyth (bib59) 2010; 26 Szilvassy, Humphries, Lansdorp, Eaves, Eaves (bib68) 1990; 87 Greenbaum, Hsu, Day, Schuettpelz, Christopher, Borgerding, Nagasawa, Link (bib29) 2013; 495 Zhou, Li, Wang, Zhu, Zhou, He, Ding, Xiong, Zheng, Li (bib85) 2016; 533 Kunisaki, Bruns, Scheiermann, Ahmed, Pinho, Zhang, Mizoguchi, Wei, Lucas, Ito (bib39) 2013; 502 Benveniste, Frelin, Janmohamed, Barbara, Herrington, Hyam, Iscove (bib7) 2010; 6 Haug, He, Grindley, Wunderlich, Gaudenz, Ross, Paulson, Wagner, Xie, Zhu (bib31) 2008; 2 Acar, Kocherlakota, Murphy, Peyer, Oguro, Inra, Jaiyeola, Zhao, Luby-Phelps, Morrison (bib1) 2015; 526 Arnold, Kim, Czubryt, Phan, McAnally, Qi, Shelton, Richardson, Bassel-Duby, Olson (bib4) 2007; 12 Yoon, Abdelmohsen, Srikantan, Yang, Martindale, De, Huarte, Zhan, Becker, Gorospe (bib81) 2012; 47 Bernitz, Kim, MacArthur, Sieburg, Moore (bib9) 2016; 167 Kindstedt, Holm, Sulniute, Martinez-Carrasco, Lundmark, Lundberg (bib37) 2017; 7 Lerner, Harrison (bib43) 1990; 18 Griseri, McKenzie, Schiering, Powrie (bib30) 2012; 37 Park, Nguyen, Dutt, Merdek, Bashar, Sterpetti, Tosolini, Testa, Toksoz (bib53) 2002; 277 Baldridge, King, Boles, Weksberg, Goodell (bib5) 2010; 465 Morrison, Scadden (bib51) 2014; 505 Sipp, Robey, Turner (bib64) 2018; 561 Wagers, Weissman (bib72) 2005; 24 Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib36) 2013; 14 Fleming, Alpern, Uchida, Ikuta, Spangrude, Weissman (bib23) 1993; 122 Beerman, Seita, Inlay, Weissman, Rossi (bib6) 2014; 15 Kfoury, Scadden (bib35) 2015; 16 Walter (10.1016/j.celrep.2018.12.093_bib73) 2015; 520 Qian (10.1016/j.celrep.2018.12.093_bib56) 2016; 18 Nilsson (10.1016/j.celrep.2018.12.093_bib52) 2001; 97 Arai (10.1016/j.celrep.2018.12.093_bib3) 2004; 118 Foudi (10.1016/j.celrep.2018.12.093_bib26) 2008; 27 Fleming (10.1016/j.celrep.2018.12.093_bib23) 1993; 122 Zhao (10.1016/j.celrep.2018.12.093_bib84) 2014; 20 Haug (10.1016/j.celrep.2018.12.093_bib31) 2008; 2 Gazit (10.1016/j.celrep.2018.12.093_bib28) 2014; 211 Sugimura (10.1016/j.celrep.2018.12.093_bib66) 2012; 150 Li (10.1016/j.celrep.2018.12.093_bib44) 2010; 327 Chan (10.1016/j.celrep.2018.12.093_bib14) 2018; 175 Weissman (10.1016/j.celrep.2018.12.093_bib75) 2000; 100 Lee (10.1016/j.celrep.2018.12.093_bib41) 2004; 18 Bruns (10.1016/j.celrep.2018.12.093_bib10) 2014; 20 Rodina (10.1016/j.celrep.2018.12.093_bib60) 2016; 538 Lerner (10.1016/j.celrep.2018.12.093_bib43) 1990; 18 Xie (10.1016/j.celrep.2018.12.093_bib77) 2009; 457 Cheng (10.1016/j.celrep.2018.12.093_bib16) 2000; 287 Duan (10.1016/j.celrep.2018.12.093_bib22) 2014; 25 Rao (10.1016/j.celrep.2018.12.093_bib58) 2014; 157 Kusumbe (10.1016/j.celrep.2018.12.093_bib40) 2014; 507 Griseri (10.1016/j.celrep.2018.12.093_bib30) 2012; 37 Yamazaki (10.1016/j.celrep.2018.12.093_bib79) 2011; 147 Baldridge (10.1016/j.celrep.2018.12.093_bib5) 2010; 465 Wei (10.1016/j.celrep.2018.12.093_bib74) 2018; 48 Kfoury (10.1016/j.celrep.2018.12.093_bib35) 2015; 16 Calvi (10.1016/j.celrep.2018.12.093_bib12) 2003; 425 Li (10.1016/j.celrep.2018.12.093_bib45) 2005; 21 Morrison (10.1016/j.celrep.2018.12.093_bib51) 2014; 505 Hu (10.1016/j.celrep.2018.12.093_bib32) 2009; 347 Kim (10.1016/j.celrep.2018.12.093_bib36) 2013; 14 Mignone (10.1016/j.celrep.2018.12.093_bib49) 2004; 469 Zhang (10.1016/j.celrep.2018.12.093_bib83) 2003; 425 Dominici (10.1016/j.celrep.2018.12.093_bib21) 2009; 114 Arnold (10.1016/j.celrep.2018.12.093_bib4) 2007; 12 Trapnell (10.1016/j.celrep.2018.12.093_bib70) 2010; 28 Foo (10.1016/j.celrep.2018.12.093_bib25) 2006; 124 Beerman (10.1016/j.celrep.2018.12.093_bib6) 2014; 15 Venkatraman (10.1016/j.celrep.2018.12.093_bib71) 2013; 500 Robinson (10.1016/j.celrep.2018.12.093_bib59) 2010; 26 Passegué (10.1016/j.celrep.2018.12.093_bib54) 2004; 119 Gartel (10.1016/j.celrep.2018.12.093_bib27) 2002; 1 Sipp (10.1016/j.celrep.2018.12.093_bib64) 2018; 561 Wagers (10.1016/j.celrep.2018.12.093_bib72) 2005; 24 Itkin (10.1016/j.celrep.2018.12.093_bib33) 2016; 532 Lo Celso (10.1016/j.celrep.2018.12.093_bib47) 2009; 457 Lee (10.1016/j.celrep.2018.12.093_bib42) 2017; 7 Takubo (10.1016/j.celrep.2018.12.093_bib69) 2013; 12 Bujanover (10.1016/j.celrep.2018.12.093_bib11) 2018; 32 Crane (10.1016/j.celrep.2018.12.093_bib17) 2017; 17 Benz (10.1016/j.celrep.2018.12.093_bib8) 2012; 10 Benveniste (10.1016/j.celrep.2018.12.093_bib7) 2010; 6 Kindstedt (10.1016/j.celrep.2018.12.093_bib37) 2017; 7 Fleming (10.1016/j.celrep.2018.12.093_bib24) 2008; 2 Greenbaum (10.1016/j.celrep.2018.12.093_bib29) 2013; 495 Park (10.1016/j.celrep.2018.12.093_bib53) 2002; 277 Sophia Fox (10.1016/j.celrep.2018.12.093_bib65) 2009; 1 Yoon (10.1016/j.celrep.2018.12.093_bib81) 2012; 47 Chan (10.1016/j.celrep.2018.12.093_bib13) 2009; 457 Dimitrova (10.1016/j.celrep.2018.12.093_bib18) 2014; 54 Preibisch (10.1016/j.celrep.2018.12.093_bib55) 2009; 25 Kearney (10.1016/j.celrep.2018.12.093_bib34) 2004; 103 Sanjuan-Pla (10.1016/j.celrep.2018.12.093_bib61) 2013; 502 Santaguida (10.1016/j.celrep.2018.12.093_bib62) 2009; 15 Krishnan (10.1016/j.celrep.2018.12.093_bib38) 2006; 116 Kunisaki (10.1016/j.celrep.2018.12.093_bib39) 2013; 502 Liebermann (10.1016/j.celrep.2018.12.093_bib46) 2008; 3 Schofield (10.1016/j.celrep.2018.12.093_bib63) 1978; 4 Wilson (10.1016/j.celrep.2018.12.093_bib76) 2008; 135 Yang (10.1016/j.celrep.2018.12.093_bib80) 2014; 24 Yousif (10.1016/j.celrep.2018.12.093_bib82) 2013; 7 Anders (10.1016/j.celrep.2018.12.093_bib2) 2015; 31 Bernitz (10.1016/j.celrep.2018.12.093_bib9) 2016; 167 Raghunath (10.1016/j.celrep.2018.12.093_bib57) 2005; 16 Ding (10.1016/j.celrep.2018.12.093_bib19) 2013; 495 Zhou (10.1016/j.celrep.2018.12.093_bib85) 2016; 533 Szilvassy (10.1016/j.celrep.2018.12.093_bib68) 1990; 87 Chen (10.1016/j.celrep.2018.12.093_bib15) 2016; 530 Yamauchi (10.1016/j.celrep.2018.12.093_bib78) 2006; 7 Morita (10.1016/j.celrep.2018.12.093_bib50) 2010; 207 Acar (10.1016/j.celrep.2018.12.093_bib1) 2015; 526 Ding (10.1016/j.celrep.2018.12.093_bib20) 2012; 481 Longley (10.1016/j.celrep.2018.12.093_bib48) 2003; 3 Sugiyama (10.1016/j.celrep.2018.12.093_bib67) 2006; 25 30849365 - Cell Stem Cell. 2019 Mar 7;24(3):355-356 |
References_xml | – volume: 7 start-page: 42487 year: 2017 ident: bib42 article-title: Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-β1 publication-title: Sci. Rep. – volume: 32 start-page: 2016 year: 2018 end-page: 2020 ident: bib11 article-title: Identification of immune-activated hematopoietic stem cells publication-title: Leukemia – volume: 2 start-page: 367 year: 2008 end-page: 379 ident: bib31 article-title: N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells publication-title: Cell Stem Cell – volume: 3 start-page: 15 year: 2008 ident: bib46 article-title: Gadd45 in stress signaling publication-title: J. Mol. Signal. – volume: 538 start-page: 397 year: 2016 end-page: 401 ident: bib60 article-title: The epichaperome is an integrated chaperome network that facilitates tumour survival publication-title: Nature – volume: 14 start-page: R36 year: 2013 ident: bib36 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. – volume: 530 start-page: 223 year: 2016 end-page: 227 ident: bib15 article-title: Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche publication-title: Nature – volume: 500 start-page: 345 year: 2013 end-page: 349 ident: bib71 article-title: Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence publication-title: Nature – volume: 347 start-page: 70 year: 2009 end-page: 78 ident: bib32 article-title: ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J. Immunol. Methods – volume: 3 start-page: 330 year: 2003 end-page: 338 ident: bib48 article-title: 5-fluorouracil: Mechanisms of action and clinical strategies publication-title: Nat. Rev. Cancer – volume: 457 start-page: 490 year: 2009 end-page: 494 ident: bib13 article-title: Endochondral ossification is required for haematopoietic stem-cell niche formation publication-title: Nature – volume: 495 start-page: 231 year: 2013 end-page: 235 ident: bib19 article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches publication-title: Nature – volume: 18 start-page: 1200 year: 2004 end-page: 1208 ident: bib41 article-title: Biological characterization of angiopoietin-3 and angiopoietin-4 publication-title: FASEB J. – volume: 12 start-page: 377 year: 2007 end-page: 389 ident: bib4 article-title: MEF2C transcription factor controls chondrocyte hypertrophy and bone development publication-title: Dev. Cell – volume: 16 start-page: 239 year: 2015 end-page: 253 ident: bib35 article-title: Mesenchymal cell contributions to the stem cell niche publication-title: Cell Stem Cell – volume: 25 start-page: 1463 year: 2009 end-page: 1465 ident: bib55 article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions publication-title: Bioinformatics – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib59 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 47 start-page: 648 year: 2012 end-page: 655 ident: bib81 article-title: LincRNA-p21 suppresses target mRNA translation publication-title: Mol. Cell – volume: 532 start-page: 323 year: 2016 end-page: 328 ident: bib33 article-title: Distinct bone marrow blood vessels differentially regulate haematopoiesis publication-title: Nature – volume: 175 start-page: 43 year: 2018 end-page: 56 ident: bib14 article-title: Identification of the human skeletal stem cell publication-title: Cell – volume: 211 start-page: 1315 year: 2014 end-page: 1331 ident: bib28 article-title: Fgd5 identifies hematopoietic stem cells in the murine bone marrow publication-title: J. Exp. Med. – volume: 116 start-page: 1202 year: 2006 end-page: 1209 ident: bib38 article-title: Regulation of bone mass by Wnt signaling publication-title: J. Clin. Invest. – volume: 502 start-page: 232 year: 2013 end-page: 236 ident: bib61 article-title: Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy publication-title: Nature – volume: 502 start-page: 637 year: 2013 end-page: 643 ident: bib39 article-title: Arteriolar niches maintain haematopoietic stem cell quiescence publication-title: Nature – volume: 533 start-page: 487 year: 2016 end-page: 492 ident: bib85 article-title: Tracing haematopoietic stem cell formation at single-cell resolution publication-title: Nature – volume: 28 start-page: 511 year: 2010 end-page: 515 ident: bib70 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol – volume: 1 start-page: 461 year: 2009 end-page: 468 ident: bib65 article-title: The basic science of articular cartilage: Structure, composition, and function publication-title: Sports Health – volume: 425 start-page: 836 year: 2003 end-page: 841 ident: bib83 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature – volume: 505 start-page: 327 year: 2014 end-page: 334 ident: bib51 article-title: The bone marrow niche for haematopoietic stem cells publication-title: Nature – volume: 457 start-page: 97 year: 2009 end-page: 101 ident: bib77 article-title: Detection of functional haematopoietic stem cell niche using real-time imaging publication-title: Nature – volume: 37 start-page: 1116 year: 2012 end-page: 1129 ident: bib30 article-title: Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation publication-title: Immunity – volume: 24 start-page: 1087 year: 2005 end-page: 1094 ident: bib72 article-title: Differential expression of {alpha}2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1loc-kit+Sca-1+ hematopoietic stem cells publication-title: Stem Cells – volume: 54 start-page: 777 year: 2014 end-page: 790 ident: bib18 article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint publication-title: Mol. Cell – volume: 119 start-page: 431 year: 2004 end-page: 443 ident: bib54 article-title: JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells publication-title: Cell – volume: 20 start-page: 1321 year: 2014 end-page: 1326 ident: bib84 article-title: Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells publication-title: Nat. Med. – volume: 457 start-page: 92 year: 2009 end-page: 96 ident: bib47 article-title: Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche publication-title: Nature – volume: 6 start-page: 48 year: 2010 end-page: 58 ident: bib7 article-title: Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential publication-title: Cell Stem Cell – volume: 7 start-page: 101 year: 2013 end-page: 110 ident: bib82 article-title: Laminin isoforms in endothelial and perivascular basement membranes publication-title: Cell Adh. Migr – volume: 15 start-page: 37 year: 2014 end-page: 50 ident: bib6 article-title: Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle publication-title: Cell Stem Cell – volume: 147 start-page: 1146 year: 2011 end-page: 1158 ident: bib79 article-title: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche publication-title: Cell – volume: 507 start-page: 323 year: 2014 end-page: 328 ident: bib40 article-title: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone publication-title: Nature – volume: 425 start-page: 841 year: 2003 end-page: 846 ident: bib12 article-title: Osteoblastic cells regulate the haematopoietic stem cell niche publication-title: Nature – volume: 24 start-page: 1266 year: 2014 end-page: 1269 ident: bib80 article-title: Osteogenic fate of hypertrophic chondrocytes publication-title: Cell Res. – volume: 277 start-page: 45361 year: 2002 end-page: 45370 ident: bib53 article-title: Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation publication-title: J. Biol. Chem. – volume: 100 start-page: 157 year: 2000 end-page: 168 ident: bib75 article-title: Stem cells: Units of development, units of regeneration, and units in evolution publication-title: Cell – volume: 15 start-page: 341 year: 2009 end-page: 352 ident: bib62 article-title: JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal publication-title: Cancer Cell – volume: 87 start-page: 8736 year: 1990 end-page: 8740 ident: bib68 article-title: Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy publication-title: Proc. Natl. Acad. Sci. USA – volume: 103 start-page: 4527 year: 2004 end-page: 4535 ident: bib34 article-title: The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis publication-title: Blood – volume: 207 start-page: 1173 year: 2010 end-page: 1182 ident: bib50 article-title: Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment publication-title: J. Exp. Med. – volume: 10 start-page: 273 year: 2012 end-page: 283 ident: bib8 article-title: Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs publication-title: Cell Stem Cell – volume: 12 start-page: 49 year: 2013 end-page: 61 ident: bib69 article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells publication-title: Cell Stem Cell – volume: 481 start-page: 457 year: 2012 end-page: 462 ident: bib20 article-title: Endothelial and perivascular cells maintain haematopoietic stem cells publication-title: Nature – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib2 article-title: HTSeq—a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 7 start-page: 5334 year: 2017 ident: bib37 article-title: CCL11, a novel mediator of inflammatory bone resorption publication-title: Sci. Rep. – volume: 157 start-page: 1279 year: 2014 end-page: 1291 ident: bib58 article-title: Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis publication-title: Cell – volume: 122 start-page: 897 year: 1993 end-page: 902 ident: bib23 article-title: Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells publication-title: J. Cell Biol. – volume: 20 start-page: 1315 year: 2014 end-page: 1320 ident: bib10 article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion publication-title: Nat. Med. – volume: 469 start-page: 311 year: 2004 end-page: 324 ident: bib49 article-title: Neural stem and progenitor cells in nestin-GFP transgenic mice publication-title: J. Comp. Neurol. – volume: 18 start-page: 114 year: 1990 end-page: 118 ident: bib43 article-title: 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation publication-title: Exp. Hematol. – volume: 25 start-page: 977 year: 2006 end-page: 988 ident: bib67 article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches publication-title: Immunity – volume: 526 start-page: 126 year: 2015 end-page: 130 ident: bib1 article-title: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal publication-title: Nature – volume: 21 start-page: 605 year: 2005 end-page: 631 ident: bib45 article-title: Stem cell niche: Structure and function publication-title: Annu. Rev. Cell Dev. Biol. – volume: 25 start-page: 778 year: 2014 end-page: 793 ident: bib22 article-title: Leukemia propagating cells rebuild an evolving niche in response to therapy publication-title: Cancer Cell – volume: 1 start-page: 639 year: 2002 end-page: 649 ident: bib27 article-title: The role of the cyclin-dependent kinase inhibitor p21 in apoptosis publication-title: Mol. Cancer Ther. – volume: 97 start-page: 2293 year: 2001 end-page: 2299 ident: bib52 article-title: Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches publication-title: Blood – volume: 561 start-page: 455 year: 2018 end-page: 457 ident: bib64 article-title: Clear up this stem-cell mess publication-title: Nature – volume: 520 start-page: 549 year: 2015 end-page: 552 ident: bib73 article-title: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells publication-title: Nature – volume: 135 start-page: 1118 year: 2008 end-page: 1129 ident: bib76 article-title: Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair publication-title: Cell – volume: 287 start-page: 1804 year: 2000 end-page: 1808 ident: bib16 article-title: Hematopoietic stem cell quiescence maintained by p21cip1/waf1 publication-title: Science – volume: 27 start-page: 84 year: 2008 end-page: 90 ident: bib26 article-title: Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells publication-title: Nat. Biotechnol – volume: 327 start-page: 542 year: 2010 end-page: 545 ident: bib44 article-title: Coexistence of quiescent and active adult stem cells in mammals publication-title: Science – volume: 16 start-page: 503 year: 2005 end-page: 509 ident: bib57 article-title: Advancing cartilage tissue engineering: The application of stem cell technology publication-title: Curr. Opin. Biotechnol. – volume: 48 start-page: 632 year: 2018 end-page: 648 ident: bib74 article-title: Niches for hematopoietic stem cells and their progeny publication-title: Immunity – volume: 114 start-page: 2333 year: 2009 end-page: 2343 ident: bib21 article-title: Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation publication-title: Blood – volume: 2 start-page: 274 year: 2008 end-page: 283 ident: bib24 article-title: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo publication-title: Cell Stem Cell – volume: 150 start-page: 351 year: 2012 end-page: 365 ident: bib66 article-title: Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche publication-title: Cell – volume: 18 start-page: 214 year: 2016 end-page: 228 ident: bib56 article-title: The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism publication-title: Cell Stem Cell – volume: 7 start-page: 649 year: 2006 end-page: 654 ident: bib78 article-title: Fgf21 is essential for haematopoiesis in zebrafish publication-title: EMBO Rep. – volume: 495 start-page: 227 year: 2013 end-page: 230 ident: bib29 article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance publication-title: Nature – volume: 17 start-page: 573 year: 2017 end-page: 590 ident: bib17 article-title: Adult haematopoietic stem cell niches publication-title: Nat. Rev. Immunol. – volume: 167 start-page: 1296 year: 2016 end-page: 1309 ident: bib9 article-title: Hematopoietic stem cells count and remember self-renewal divisions publication-title: Cell – volume: 124 start-page: 161 year: 2006 end-page: 173 ident: bib25 article-title: Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly publication-title: Cell – volume: 4 start-page: 7 year: 1978 end-page: 25 ident: bib63 article-title: The relationship between the spleen colony-forming cell and the haemopoietic stem cell publication-title: Blood Cells – volume: 118 start-page: 149 year: 2004 end-page: 161 ident: bib3 article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche publication-title: Cell – volume: 465 start-page: 793 year: 2010 end-page: 797 ident: bib5 article-title: Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection publication-title: Nature – volume: 114 start-page: 2333 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib21 article-title: Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation publication-title: Blood doi: 10.1182/blood-2008-10-183459 – volume: 347 start-page: 70 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib32 article-title: ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2009.06.008 – volume: 2 start-page: 367 year: 2008 ident: 10.1016/j.celrep.2018.12.093_bib31 article-title: N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.01.017 – volume: 103 start-page: 4527 year: 2004 ident: 10.1016/j.celrep.2018.12.093_bib34 article-title: The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis publication-title: Blood doi: 10.1182/blood-2003-07-2315 – volume: 118 start-page: 149 year: 2004 ident: 10.1016/j.celrep.2018.12.093_bib3 article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche publication-title: Cell doi: 10.1016/j.cell.2004.07.004 – volume: 25 start-page: 778 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib22 article-title: Leukemia propagating cells rebuild an evolving niche in response to therapy publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.04.015 – volume: 54 start-page: 777 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib18 article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.025 – volume: 47 start-page: 648 year: 2012 ident: 10.1016/j.celrep.2018.12.093_bib81 article-title: LincRNA-p21 suppresses target mRNA translation publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.027 – volume: 495 start-page: 227 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib29 article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance publication-title: Nature doi: 10.1038/nature11926 – volume: 457 start-page: 92 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib47 article-title: Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche publication-title: Nature doi: 10.1038/nature07434 – volume: 3 start-page: 330 year: 2003 ident: 10.1016/j.celrep.2018.12.093_bib48 article-title: 5-fluorouracil: Mechanisms of action and clinical strategies publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1074 – volume: 20 start-page: 1315 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib10 article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion publication-title: Nat. Med. doi: 10.1038/nm.3707 – volume: 18 start-page: 1200 year: 2004 ident: 10.1016/j.celrep.2018.12.093_bib41 article-title: Biological characterization of angiopoietin-3 and angiopoietin-4 publication-title: FASEB J. doi: 10.1096/fj.03-1466com – volume: 1 start-page: 461 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib65 article-title: The basic science of articular cartilage: Structure, composition, and function publication-title: Sports Health doi: 10.1177/1941738109350438 – volume: 119 start-page: 431 year: 2004 ident: 10.1016/j.celrep.2018.12.093_bib54 article-title: JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells publication-title: Cell doi: 10.1016/j.cell.2004.10.010 – volume: 18 start-page: 214 year: 2016 ident: 10.1016/j.celrep.2018.12.093_bib56 article-title: The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.11.001 – volume: 457 start-page: 97 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib77 article-title: Detection of functional haematopoietic stem cell niche using real-time imaging publication-title: Nature doi: 10.1038/nature07639 – volume: 16 start-page: 503 year: 2005 ident: 10.1016/j.celrep.2018.12.093_bib57 article-title: Advancing cartilage tissue engineering: The application of stem cell technology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2005.08.004 – volume: 3 start-page: 15 year: 2008 ident: 10.1016/j.celrep.2018.12.093_bib46 article-title: Gadd45 in stress signaling publication-title: J. Mol. Signal. doi: 10.1186/1750-2187-3-15 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.celrep.2018.12.093_bib59 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 502 start-page: 232 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib61 article-title: Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy publication-title: Nature doi: 10.1038/nature12495 – volume: 533 start-page: 487 year: 2016 ident: 10.1016/j.celrep.2018.12.093_bib85 article-title: Tracing haematopoietic stem cell formation at single-cell resolution publication-title: Nature doi: 10.1038/nature17997 – volume: 520 start-page: 549 year: 2015 ident: 10.1016/j.celrep.2018.12.093_bib73 article-title: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells publication-title: Nature doi: 10.1038/nature14131 – volume: 32 start-page: 2016 year: 2018 ident: 10.1016/j.celrep.2018.12.093_bib11 article-title: Identification of immune-activated hematopoietic stem cells publication-title: Leukemia doi: 10.1038/s41375-018-0220-z – volume: 122 start-page: 897 year: 1993 ident: 10.1016/j.celrep.2018.12.093_bib23 article-title: Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells publication-title: J. Cell Biol. doi: 10.1083/jcb.122.4.897 – volume: 277 start-page: 45361 year: 2002 ident: 10.1016/j.celrep.2018.12.093_bib53 article-title: Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202447200 – volume: 207 start-page: 1173 year: 2010 ident: 10.1016/j.celrep.2018.12.093_bib50 article-title: Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment publication-title: J. Exp. Med. doi: 10.1084/jem.20091318 – volume: 167 start-page: 1296 year: 2016 ident: 10.1016/j.celrep.2018.12.093_bib9 article-title: Hematopoietic stem cells count and remember self-renewal divisions publication-title: Cell doi: 10.1016/j.cell.2016.10.022 – volume: 469 start-page: 311 year: 2004 ident: 10.1016/j.celrep.2018.12.093_bib49 article-title: Neural stem and progenitor cells in nestin-GFP transgenic mice publication-title: J. Comp. Neurol. doi: 10.1002/cne.10964 – volume: 135 start-page: 1118 year: 2008 ident: 10.1016/j.celrep.2018.12.093_bib76 article-title: Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair publication-title: Cell doi: 10.1016/j.cell.2008.10.048 – volume: 538 start-page: 397 year: 2016 ident: 10.1016/j.celrep.2018.12.093_bib60 article-title: The epichaperome is an integrated chaperome network that facilitates tumour survival publication-title: Nature doi: 10.1038/nature19807 – volume: 507 start-page: 323 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib40 article-title: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone publication-title: Nature doi: 10.1038/nature13145 – volume: 37 start-page: 1116 year: 2012 ident: 10.1016/j.celrep.2018.12.093_bib30 article-title: Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation publication-title: Immunity doi: 10.1016/j.immuni.2012.08.025 – volume: 526 start-page: 126 year: 2015 ident: 10.1016/j.celrep.2018.12.093_bib1 article-title: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal publication-title: Nature doi: 10.1038/nature15250 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.celrep.2018.12.093_bib2 article-title: HTSeq—a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 561 start-page: 455 year: 2018 ident: 10.1016/j.celrep.2018.12.093_bib64 article-title: Clear up this stem-cell mess publication-title: Nature doi: 10.1038/d41586-018-06756-9 – volume: 502 start-page: 637 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib39 article-title: Arteriolar niches maintain haematopoietic stem cell quiescence publication-title: Nature doi: 10.1038/nature12612 – volume: 4 start-page: 7 year: 1978 ident: 10.1016/j.celrep.2018.12.093_bib63 article-title: The relationship between the spleen colony-forming cell and the haemopoietic stem cell publication-title: Blood Cells – volume: 87 start-page: 8736 year: 1990 ident: 10.1016/j.celrep.2018.12.093_bib68 article-title: Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.22.8736 – volume: 27 start-page: 84 year: 2008 ident: 10.1016/j.celrep.2018.12.093_bib26 article-title: Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells publication-title: Nat. Biotechnol doi: 10.1038/nbt.1517 – volume: 14 start-page: R36 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib36 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. doi: 10.1186/gb-2013-14-4-r36 – volume: 17 start-page: 573 year: 2017 ident: 10.1016/j.celrep.2018.12.093_bib17 article-title: Adult haematopoietic stem cell niches publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.53 – volume: 7 start-page: 649 year: 2006 ident: 10.1016/j.celrep.2018.12.093_bib78 article-title: Fgf21 is essential for haematopoiesis in zebrafish publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400685 – volume: 425 start-page: 836 year: 2003 ident: 10.1016/j.celrep.2018.12.093_bib83 article-title: Identification of the haematopoietic stem cell niche and control of the niche size publication-title: Nature doi: 10.1038/nature02041 – volume: 24 start-page: 1266 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib80 article-title: Osteogenic fate of hypertrophic chondrocytes publication-title: Cell Res. doi: 10.1038/cr.2014.111 – volume: 48 start-page: 632 year: 2018 ident: 10.1016/j.celrep.2018.12.093_bib74 article-title: Niches for hematopoietic stem cells and their progeny publication-title: Immunity doi: 10.1016/j.immuni.2018.03.024 – volume: 457 start-page: 490 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib13 article-title: Endochondral ossification is required for haematopoietic stem-cell niche formation publication-title: Nature doi: 10.1038/nature07547 – volume: 124 start-page: 161 year: 2006 ident: 10.1016/j.celrep.2018.12.093_bib25 article-title: Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly publication-title: Cell doi: 10.1016/j.cell.2005.10.034 – volume: 7 start-page: 5334 year: 2017 ident: 10.1016/j.celrep.2018.12.093_bib37 article-title: CCL11, a novel mediator of inflammatory bone resorption publication-title: Sci. Rep. doi: 10.1038/s41598-017-05654-w – volume: 211 start-page: 1315 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib28 article-title: Fgd5 identifies hematopoietic stem cells in the murine bone marrow publication-title: J. Exp. Med. doi: 10.1084/jem.20130428 – volume: 7 start-page: 42487 year: 2017 ident: 10.1016/j.celrep.2018.12.093_bib42 article-title: Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-β1 publication-title: Sci. Rep. doi: 10.1038/srep42487 – volume: 150 start-page: 351 year: 2012 ident: 10.1016/j.celrep.2018.12.093_bib66 article-title: Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche publication-title: Cell doi: 10.1016/j.cell.2012.05.041 – volume: 481 start-page: 457 year: 2012 ident: 10.1016/j.celrep.2018.12.093_bib20 article-title: Endothelial and perivascular cells maintain haematopoietic stem cells publication-title: Nature doi: 10.1038/nature10783 – volume: 2 start-page: 274 year: 2008 ident: 10.1016/j.celrep.2018.12.093_bib24 article-title: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.01.003 – volume: 505 start-page: 327 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib51 article-title: The bone marrow niche for haematopoietic stem cells publication-title: Nature doi: 10.1038/nature12984 – volume: 100 start-page: 157 year: 2000 ident: 10.1016/j.celrep.2018.12.093_bib75 article-title: Stem cells: Units of development, units of regeneration, and units in evolution publication-title: Cell doi: 10.1016/S0092-8674(00)81692-X – volume: 1 start-page: 639 year: 2002 ident: 10.1016/j.celrep.2018.12.093_bib27 article-title: The role of the cyclin-dependent kinase inhibitor p21 in apoptosis publication-title: Mol. Cancer Ther. – volume: 25 start-page: 1463 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib55 article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp184 – volume: 15 start-page: 341 year: 2009 ident: 10.1016/j.celrep.2018.12.093_bib62 article-title: JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.02.016 – volume: 20 start-page: 1321 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib84 article-title: Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells publication-title: Nat. Med. doi: 10.1038/nm.3706 – volume: 495 start-page: 231 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib19 article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches publication-title: Nature doi: 10.1038/nature11885 – volume: 6 start-page: 48 year: 2010 ident: 10.1016/j.celrep.2018.12.093_bib7 article-title: Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.11.014 – volume: 530 start-page: 223 year: 2016 ident: 10.1016/j.celrep.2018.12.093_bib15 article-title: Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche publication-title: Nature doi: 10.1038/nature16943 – volume: 147 start-page: 1146 year: 2011 ident: 10.1016/j.celrep.2018.12.093_bib79 article-title: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche publication-title: Cell doi: 10.1016/j.cell.2011.09.053 – volume: 97 start-page: 2293 year: 2001 ident: 10.1016/j.celrep.2018.12.093_bib52 article-title: Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches publication-title: Blood doi: 10.1182/blood.V97.8.2293 – volume: 25 start-page: 977 year: 2006 ident: 10.1016/j.celrep.2018.12.093_bib67 article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches publication-title: Immunity doi: 10.1016/j.immuni.2006.10.016 – volume: 465 start-page: 793 year: 2010 ident: 10.1016/j.celrep.2018.12.093_bib5 article-title: Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection publication-title: Nature doi: 10.1038/nature09135 – volume: 425 start-page: 841 year: 2003 ident: 10.1016/j.celrep.2018.12.093_bib12 article-title: Osteoblastic cells regulate the haematopoietic stem cell niche publication-title: Nature doi: 10.1038/nature02040 – volume: 15 start-page: 37 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib6 article-title: Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.04.016 – volume: 28 start-page: 511 year: 2010 ident: 10.1016/j.celrep.2018.12.093_bib70 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol doi: 10.1038/nbt.1621 – volume: 24 start-page: 1087 year: 2005 ident: 10.1016/j.celrep.2018.12.093_bib72 article-title: Differential expression of {alpha}2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1loc-kit+Sca-1+ hematopoietic stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2005-0396 – volume: 532 start-page: 323 year: 2016 ident: 10.1016/j.celrep.2018.12.093_bib33 article-title: Distinct bone marrow blood vessels differentially regulate haematopoiesis publication-title: Nature doi: 10.1038/nature17624 – volume: 157 start-page: 1279 year: 2014 ident: 10.1016/j.celrep.2018.12.093_bib58 article-title: Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis publication-title: Cell doi: 10.1016/j.cell.2014.03.065 – volume: 18 start-page: 114 year: 1990 ident: 10.1016/j.celrep.2018.12.093_bib43 article-title: 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation publication-title: Exp. Hematol. – volume: 327 start-page: 542 year: 2010 ident: 10.1016/j.celrep.2018.12.093_bib44 article-title: Coexistence of quiescent and active adult stem cells in mammals publication-title: Science doi: 10.1126/science.1180794 – volume: 175 start-page: 43 year: 2018 ident: 10.1016/j.celrep.2018.12.093_bib14 article-title: Identification of the human skeletal stem cell publication-title: Cell doi: 10.1016/j.cell.2018.07.029 – volume: 16 start-page: 239 year: 2015 ident: 10.1016/j.celrep.2018.12.093_bib35 article-title: Mesenchymal cell contributions to the stem cell niche publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.02.019 – volume: 21 start-page: 605 year: 2005 ident: 10.1016/j.celrep.2018.12.093_bib45 article-title: Stem cell niche: Structure and function publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.21.012704.131525 – volume: 116 start-page: 1202 year: 2006 ident: 10.1016/j.celrep.2018.12.093_bib38 article-title: Regulation of bone mass by Wnt signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI28551 – volume: 12 start-page: 377 year: 2007 ident: 10.1016/j.celrep.2018.12.093_bib4 article-title: MEF2C transcription factor controls chondrocyte hypertrophy and bone development publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.02.004 – volume: 12 start-page: 49 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib69 article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.011 – volume: 10 start-page: 273 year: 2012 ident: 10.1016/j.celrep.2018.12.093_bib8 article-title: Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.02.007 – volume: 500 start-page: 345 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib71 article-title: Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence publication-title: Nature doi: 10.1038/nature12303 – volume: 7 start-page: 101 year: 2013 ident: 10.1016/j.celrep.2018.12.093_bib82 article-title: Laminin isoforms in endothelial and perivascular basement membranes publication-title: Cell Adh. Migr doi: 10.4161/cam.22680 – volume: 287 start-page: 1804 year: 2000 ident: 10.1016/j.celrep.2018.12.093_bib16 article-title: Hematopoietic stem cell quiescence maintained by p21cip1/waf1 publication-title: Science doi: 10.1126/science.287.5459.1804 – reference: 30849365 - Cell Stem Cell. 2019 Mar 7;24(3):355-356 |
SSID | ssj0000601194 |
Score | 2.5430396 |
Snippet | Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 652 |
SubjectTerms | Cadherins - metabolism endosteum Hematopoietic Stem Cells - physiology Humans MSC N-cadherin niche reserve stem cell Stem Cells - metabolism stress response Stromal Cells - metabolism |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9wwzJTCYC9j37vuAw_2ai6248R5XI-WY9Ay6Ar3ZuxEWTOuyZFex_rvKznJsdsYhT3aloKxZElW9MHYp5AGLX0lhVQAIlWJF0H7HIe1lrWFUgH5Ic_Os-Vl-mVlVgdsMeXCUFjlKPsHmR6l9TgzH09zvmma-YXCtwtqp5yYElmJkvh0amMS3-p452eheiMy9kMkeEEIUwZdDPMqYd0DFa6UNvoFC_0vDfW3BfpnIOVvmun0KXsympT887DrZ-wA2ufs0dBk8u4FuzoXC1_FND9x8muIe22_8-OuBe7bip_FMoz8Ytt31_iZr32HPIX3vOcLWK9vcL1pyX_AKUiv_wl8SWVeu03XUP4j4sH1APmSXZ6efFssxdhfQZRGFVsBRV3ZKlh8XFeVqXLQae1TUEigOsjaV5BlNjGJwlktU5P4BPnOBG-9CviM0q_YYYubfcO4LIOxofB5kDoNEIpaeZX7DO1N4wtTzpieztSVY_Fx6oGxdlOU2Q83UMIRJZxUDikxY2KHtRmKbzwAn0_kcntM5FA_PID5caKuw_tFP018C93tjVMksdDKU3bGXg_U3u1Fk32rDa7ke3ywA6Da3fsrbXMVa3hntkh0bo_-e8dv2WMcUaybkOYdO9z2t_Ae7aNt-BAvwD17AxGM priority: 102 providerName: Elsevier |
Title | N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells |
URI | https://dx.doi.org/10.1016/j.celrep.2018.12.093 https://www.ncbi.nlm.nih.gov/pubmed/30650358 https://www.proquest.com/docview/2179417228 https://pubmed.ncbi.nlm.nih.gov/PMC6890378 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-O36cVTwNdIkTZM-iHjLHauwh6AL-xaSJvX26LVnd0_u_ntnmnb11OPwpZAmKWlmJvklmfyGkDcuc4JZzyjjIdCMp5Y6YRUkK8EqHUoecB9yfpTPFtmnpVzukDFm69CB638u7TCe1KKr3158v3wPBv_ul69WGeouIPsk0_3mXiFukdswNymMaTAfAH8cm5HjDI-aOUdfLp6p8T7dNR-6br76G4_-6Vb52zx1eJ_cGwBm8iFqxAOyE5qH5E4MOXn5iBwf0an1_aU_enARvWCbb8l-24TENj6Z96SMyZdN157CZz53LWgYWH2XTENdryF_1eBuQoIue92PkMyQ9LU9a1d4GxLqhdNY8jFZHB58nc7oEG2BlpIXGxqKymvvNCy1vZdeBZFVNgscxFU5Vlkf8lynMuXwVrBMpjYFLZTOassdLKrEE7LbQGOfkYSVTmpXWOWYyFxwRcUtVzYH9CltIcsJEWOfmnKgIseIGLUZfc5OTJSEQUkYxg1IYkLottZZpOK4obwaxWUGOBFhggHluaHm61G6BqwNj1BsE9rzteE4foFacT0hT6O0t20RiHaFhBx1RQ-2BZDJ-2pOszruGb1zXaRC6ef_-YcvyF1Iob8bZfIl2d105-EVYKSN2-v3FuD5cbm_15vAT-RHFCU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ra9swUHQdY_tS9l721GBfRSzJsuWPa2hJtyYM2kK-CcmSW4_UDm46tn_fOz9CszIK-2ifzgjdU-d7EPLFxU5y6znjIgQWi8gyJ20Kj4XkhQ65CBiHnM2T6Vn8baEWO2Qy1MJgWmWv-zud3mrr_s24P83xqizHJwLuLmCdUmRKYKXsAXkI3kCK0nm02N8EWrDhCG8HIiICQ4yhhK7N88rDsgnYuZLrNjCYyX-ZqLsu6N-ZlLdM0-FTstf7lPRrt-1nZCdUz8mjbsrknxfkYs4m1rd1fuzgd5f4Wp3T_boK1Faezto-jPRk3dSX8JkfTQ1MBYLe0ElYLq8AXlYYQKCYpdf8CnSKfV7rVV1iASTghctu5UtydnhwOpmyfsACy5XI1ixkhdfeabhde698GmRc2DgIoFDheGF9SBIdqUjAW8ljFdkIGE85q61wcI-Sr8huBZt9QyjPndIus6njMnbBZYWwIrUJOJzKZiofETmcqcn77uM4BGNphjSzn6ajhEFKGC4MUGJE2AZr1XXfuGd9OpDLbHGRAQNxD-bngboGBAz_mtgq1NdXRqDKAjdP6BF53VF7sxeJDq5UAEm3-GCzAJt3b0Oq8qJt4p3oLJKpfvvfO_5EHk9PZ8fm-Gj-_R15AhBMfGNcvSe76-Y6fABnae0-tsJwAziFFKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Cadherin-Expressing+Bone+and+Marrow+Stromal+Progenitor+Cells+Maintain+Reserve+Hematopoietic+Stem+Cells&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Zhao%2C+Meng&rft.au=Tao%2C+Fang&rft.au=Venkatraman%2C+Aparna&rft.au=Li%2C+Zhenrui&rft.date=2019-01-15&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=26&rft.issue=3&rft.spage=652&rft.epage=669.e6&rft_id=info:doi/10.1016%2Fj.celrep.2018.12.093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2018_12_093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |