N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells

Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 26; no. 3; pp. 652 - 669.e6
Main Authors Zhao, Meng, Tao, Fang, Venkatraman, Aparna, Li, Zhenrui, Smith, Sarah E., Unruh, Jay, Chen, Shiyuan, Ward, Christina, Qian, Pengxu, Perry, John M., Marshall, Heather, Wang, Jinxi, He, Xi C., Li, Linheng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration. [Display omitted] •rHSC and pHSCs are distinguished by their resistance or sensitivity to chemotherapy•pHSCs in the perivascular niche are largely eliminated by chemotherapy•rHSCs are maintained by N-cad+ cells and restore the HSC pool after chemotherapy•N-cad+ BMSPCs expand and produce SCF and other cytokines for rHSCs upon stress Zhao et al. demonstrate that blood-forming stem cells have a back-up system in stressed condition. Both reserve and active stem cells are maintained in the bone marrow by specific niches. While the latter are chemo-sensitive, the former survive and restore stem cells, and thereby generate the blood system.
AbstractList Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin + (N-cad + ) bone-lining cells in homeostasis and post-chemotherapy. N-cad + cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo . Finally, ablation of N-cad + niche cells or deletion of SCF from N-cad + niche cells impaired rHSC maintenance during homeostasis and regeneration. Zhao et al. demonstrate that blood-forming stem cells have a back-up system in stressed condition. Both reserve and active stem cells are maintained in the bone marrow by specific niches. While the latter are chemo-sensitive, the former survive and restore stem cells, and thereby generate the blood system.
Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration.Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration.
Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin (N-cad ) bone-lining cells in homeostasis and post-chemotherapy. N-cad cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad niche cells or deletion of SCF from N-cad niche cells impaired rHSC maintenance during homeostasis and regeneration.
Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are distinctively regulated by BM niches remain unclear. Here, we functionally distinguished reserve HSCs (rHSCs) from primed HSCs (pHSCs) based on their response to chemotherapy and examined how they are dichotomously regulated by BM niches. Both pHSCs and rHSCs supported long-term hematopoiesis in homeostasis; however, pHSCs were sensitive but rHSCs were resistant to chemotherapy. Surviving rHSCs restored the HSC pool and supported hematopoietic regeneration after chemotherapy. The rHSCs were preferentially maintained in the endosteal region that enriches N-cadherin+ (N-cad+) bone-lining cells in homeostasis and post-chemotherapy. N-cad+ cells were functional bone and marrow stromal progenitor cells (BMSPCs), giving rise to osteoblasts, adipocytes, and chondrocytes in vitro and in vivo. Finally, ablation of N-cad+ niche cells or deletion of SCF from N-cad+ niche cells impaired rHSC maintenance during homeostasis and regeneration. [Display omitted] •rHSC and pHSCs are distinguished by their resistance or sensitivity to chemotherapy•pHSCs in the perivascular niche are largely eliminated by chemotherapy•rHSCs are maintained by N-cad+ cells and restore the HSC pool after chemotherapy•N-cad+ BMSPCs expand and produce SCF and other cytokines for rHSCs upon stress Zhao et al. demonstrate that blood-forming stem cells have a back-up system in stressed condition. Both reserve and active stem cells are maintained in the bone marrow by specific niches. While the latter are chemo-sensitive, the former survive and restore stem cells, and thereby generate the blood system.
Author Zhao, Meng
He, Xi C.
Smith, Sarah E.
Li, Linheng
Li, Zhenrui
Marshall, Heather
Perry, John M.
Venkatraman, Aparna
Wang, Jinxi
Tao, Fang
Ward, Christina
Qian, Pengxu
Chen, Shiyuan
Unruh, Jay
AuthorAffiliation 1 Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China
6 Children’s Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
7 These authors contributed equally
4 Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
5 Center of Stem Cell and Regenerative Medicine, Institute of Hematology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 310058
8 Lead Contact
2 Stowers Institute for Medical Research, Kansas City, MO 66110, USA
3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
AuthorAffiliation_xml – name: 3 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
– name: 1 Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China
– name: 5 Center of Stem Cell and Regenerative Medicine, Institute of Hematology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China 310058
– name: 7 These authors contributed equally
– name: 6 Children’s Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
– name: 2 Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– name: 4 Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
– name: 8 Lead Contact
Author_xml – sequence: 1
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
  organization: Institute of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University; Key Laboratory of Stem Cells and Tissue Engineering Sun Yat-Sen University, Guangzhou 510000, China
– sequence: 2
  givenname: Fang
  surname: Tao
  fullname: Tao, Fang
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 3
  givenname: Aparna
  surname: Venkatraman
  fullname: Venkatraman, Aparna
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 4
  givenname: Zhenrui
  surname: Li
  fullname: Li, Zhenrui
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 5
  givenname: Sarah E.
  surname: Smith
  fullname: Smith, Sarah E.
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 6
  givenname: Jay
  surname: Unruh
  fullname: Unruh, Jay
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 7
  givenname: Shiyuan
  surname: Chen
  fullname: Chen, Shiyuan
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 8
  givenname: Christina
  surname: Ward
  fullname: Ward, Christina
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 9
  givenname: Pengxu
  surname: Qian
  fullname: Qian, Pengxu
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 10
  givenname: John M.
  surname: Perry
  fullname: Perry, John M.
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 11
  givenname: Heather
  surname: Marshall
  fullname: Marshall, Heather
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 12
  givenname: Jinxi
  surname: Wang
  fullname: Wang, Jinxi
  organization: Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
– sequence: 13
  givenname: Xi C.
  surname: He
  fullname: He, Xi C.
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
– sequence: 14
  givenname: Linheng
  surname: Li
  fullname: Li, Linheng
  email: lil@stowers.org
  organization: Stowers Institute for Medical Research, Kansas City, MO 66110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30650358$$D View this record in MEDLINE/PubMed
BookMark eNqFUVtrFDEUDqViL_YfFJlHX2aak7n7IOjSi1Bt8fIcMsmZ3SwzyZhkV_vvm2G3Un3QQMgh57vA952QQ2MNEnIONAMK1cU6kzg4nDJGocmAZbTND8gxYwApsKI-fDYfkTPv1zSeigK0xUtylNOqpHnZHJPV53Qh1AqdNunlr8mh99oskw_RLhFGJZ-Ec_Zn8jU4O4ohuXd2iUYH65IFDoOPe21CvMkX9Oi2mNzgKIKdrMagZeThuEO-Ii96MXg827-n5PvV5bfFTXp7d_1x8f42lSVrQ4ptrxrVNdgxpUpVY170okCGkvUd9EJhVTW0pCz-5lCUVFAUquxEI1gHRZOfknc73WnTjagkmuDEwCenR-EeuBWa_7kxesWXdsurpqV5PQu82Qs4-2ODPvBR-5j2IAzajecM6raAmrEZ-vq512-Tp3gj4O0OIJ313mHPpQ4iaDtb64ED5XOdfM13dfK5Tg6MxzojufiL_KT_H9o-AIwpbzU67qVGI1FphzJwZfW_BR4BEdC-cg
CitedBy_id crossref_primary_10_1155_2019_4038560
crossref_primary_10_3389_fonc_2020_606540
crossref_primary_10_1016_j_stemcr_2022_06_004
crossref_primary_10_1007_s12079_020_00602_2
crossref_primary_10_1016_j_stem_2023_05_003
crossref_primary_10_1093_procel_pwae022
crossref_primary_10_1097_CCO_0000000000000605
crossref_primary_10_1182_blood_2020005399
crossref_primary_10_1007_s11914_020_00572_9
crossref_primary_10_3389_fonc_2020_592733
crossref_primary_10_3390_cancers14051317
crossref_primary_10_3390_ijms23084462
crossref_primary_10_1016_j_ajps_2023_100868
crossref_primary_10_1016_j_trecan_2023_03_007
crossref_primary_10_1016_j_exphem_2023_09_005
crossref_primary_10_3389_fcell_2020_00611
crossref_primary_10_1016_j_exphem_2021_09_003
crossref_primary_10_1186_s13045_020_00994_z
crossref_primary_10_1182_bloodadvances_2020001826
crossref_primary_10_1182_blood_2023023788
crossref_primary_10_1038_s41416_023_02401_z
crossref_primary_10_1182_blood_2021011510
crossref_primary_10_3389_fimmu_2021_756231
crossref_primary_10_1016_j_stem_2023_09_013
crossref_primary_10_1007_s11899_023_00688_6
crossref_primary_10_1016_j_exphem_2021_09_007
crossref_primary_10_3390_diagnostics12071639
crossref_primary_10_1038_s41556_019_0322_5
crossref_primary_10_1002_cpz1_216
crossref_primary_10_1111_nyas_14184
crossref_primary_10_1016_j_ydbio_2021_05_010
crossref_primary_10_1016_j_cryobiol_2020_11_010
crossref_primary_10_1002_ca_23917
crossref_primary_10_1093_stcltm_szab019
crossref_primary_10_1084_jem_20201541
crossref_primary_10_1016_j_aanat_2023_152131
crossref_primary_10_1038_s41413_023_00249_w
crossref_primary_10_1186_s13287_024_03896_w
crossref_primary_10_1097_BS9_0000000000000119
crossref_primary_10_1097_MOH_0000000000000656
crossref_primary_10_1016_j_cell_2024_04_013
crossref_primary_10_3389_fimmu_2021_768439
crossref_primary_10_1152_ajpgi_00126_2019
crossref_primary_10_1155_2020_8885154
crossref_primary_10_1002_bies_202200121
crossref_primary_10_3389_fimmu_2022_811144
crossref_primary_10_1016_j_phymed_2024_155978
crossref_primary_10_1038_s43018_023_00607_x
crossref_primary_10_1016_j_stem_2020_06_003
crossref_primary_10_1016_j_tips_2024_08_004
crossref_primary_10_3390_children8050371
crossref_primary_10_1158_2159_8290_CD_22_0220
crossref_primary_10_1002_sstr_202400065
crossref_primary_10_3389_fcell_2021_698047
crossref_primary_10_1016_j_xcrm_2022_100724
crossref_primary_10_1038_s42003_022_03591_7
crossref_primary_10_1182_blood_2019002615
crossref_primary_10_3390_cells10081849
crossref_primary_10_1084_jem_20201169
crossref_primary_10_1017_erm_2023_13
crossref_primary_10_1038_s41467_020_20091_6
crossref_primary_10_1016_j_ceb_2023_102284
crossref_primary_10_1016_j_celrep_2020_108530
crossref_primary_10_1002_jbmr_4410
crossref_primary_10_1007_s00018_021_03767_0
crossref_primary_10_1002_jbmr_4415
crossref_primary_10_1016_j_isci_2020_101222
crossref_primary_10_1182_bloodadvances_2021005983
crossref_primary_10_1038_s41568_020_0245_2
crossref_primary_10_3390_ijms21114124
crossref_primary_10_2174_1574888X15999200729162021
crossref_primary_10_21769_BioProtoc_1010338
crossref_primary_10_1155_2019_9026729
crossref_primary_10_1182_blood_2023021280
crossref_primary_10_1080_19490976_2024_2350784
crossref_primary_10_1172_JCI182125
crossref_primary_10_1097_MOH_0000000000000621
crossref_primary_10_3390_ijms23158238
crossref_primary_10_1016_j_ydbio_2021_03_003
crossref_primary_10_1182_blood_2021013048
crossref_primary_10_1016_j_celrep_2021_109119
crossref_primary_10_1371_journal_pgen_1011319
crossref_primary_10_3389_fbioe_2022_1049965
crossref_primary_10_1186_s12967_024_05900_6
crossref_primary_10_1016_j_stemcr_2022_05_014
crossref_primary_10_3390_ph15050592
crossref_primary_10_1016_j_exphem_2024_104233
crossref_primary_10_1016_j_intimp_2024_113909
crossref_primary_10_1111_bph_15924
crossref_primary_10_1002_jbmr_4282
crossref_primary_10_1016_j_exphem_2019_12_003
crossref_primary_10_1182_blood_2019000176
crossref_primary_10_1007_s10565_019_09510_7
crossref_primary_10_1016_j_stem_2019_02_007
crossref_primary_10_1038_s41375_024_02226_6
crossref_primary_10_1002_stem_3174
crossref_primary_10_3390_ijms25042173
crossref_primary_10_1016_j_exphem_2019_08_008
crossref_primary_10_3389_fimmu_2021_738204
crossref_primary_10_1038_s41467_020_20801_0
crossref_primary_10_12688_f1000research_22554_1
crossref_primary_10_1016_j_biomaterials_2022_121568
crossref_primary_10_14348_molcells_2021_0137
crossref_primary_10_4049_jimmunol_2200345
crossref_primary_10_26693_jmbs04_06_110
crossref_primary_10_1186_s13287_023_03464_8
crossref_primary_10_1016_j_devcel_2020_04_012
crossref_primary_10_1038_s41467_024_52318_1
Cites_doi 10.1182/blood-2008-10-183459
10.1016/j.jim.2009.06.008
10.1016/j.stem.2008.01.017
10.1182/blood-2003-07-2315
10.1016/j.cell.2004.07.004
10.1016/j.ccr.2014.04.015
10.1016/j.molcel.2014.04.025
10.1016/j.molcel.2012.06.027
10.1038/nature11926
10.1038/nature07434
10.1038/nrc1074
10.1038/nm.3707
10.1096/fj.03-1466com
10.1177/1941738109350438
10.1016/j.cell.2004.10.010
10.1016/j.stem.2015.11.001
10.1038/nature07639
10.1016/j.copbio.2005.08.004
10.1186/1750-2187-3-15
10.1093/bioinformatics/btp616
10.1038/nature12495
10.1038/nature17997
10.1038/nature14131
10.1038/s41375-018-0220-z
10.1083/jcb.122.4.897
10.1074/jbc.M202447200
10.1084/jem.20091318
10.1016/j.cell.2016.10.022
10.1002/cne.10964
10.1016/j.cell.2008.10.048
10.1038/nature19807
10.1038/nature13145
10.1016/j.immuni.2012.08.025
10.1038/nature15250
10.1093/bioinformatics/btu638
10.1038/d41586-018-06756-9
10.1038/nature12612
10.1073/pnas.87.22.8736
10.1038/nbt.1517
10.1186/gb-2013-14-4-r36
10.1038/nri.2017.53
10.1038/sj.embor.7400685
10.1038/nature02041
10.1038/cr.2014.111
10.1016/j.immuni.2018.03.024
10.1038/nature07547
10.1016/j.cell.2005.10.034
10.1038/s41598-017-05654-w
10.1084/jem.20130428
10.1038/srep42487
10.1016/j.cell.2012.05.041
10.1038/nature10783
10.1016/j.stem.2008.01.003
10.1038/nature12984
10.1016/S0092-8674(00)81692-X
10.1093/bioinformatics/btp184
10.1016/j.ccr.2009.02.016
10.1038/nm.3706
10.1038/nature11885
10.1016/j.stem.2009.11.014
10.1038/nature16943
10.1016/j.cell.2011.09.053
10.1182/blood.V97.8.2293
10.1016/j.immuni.2006.10.016
10.1038/nature09135
10.1038/nature02040
10.1016/j.stem.2014.04.016
10.1038/nbt.1621
10.1634/stemcells.2005-0396
10.1038/nature17624
10.1016/j.cell.2014.03.065
10.1126/science.1180794
10.1016/j.cell.2018.07.029
10.1016/j.stem.2015.02.019
10.1146/annurev.cellbio.21.012704.131525
10.1172/JCI28551
10.1016/j.devcel.2007.02.004
10.1016/j.stem.2012.10.011
10.1016/j.stem.2012.02.007
10.1038/nature12303
10.4161/cam.22680
10.1126/science.287.5459.1804
ContentType Journal Article
Copyright 2018 Stowers Institute for Medical Research
Copyright © 2018 Stowers Institute for Medical Research. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Stowers Institute for Medical Research
– notice: Copyright © 2018 Stowers Institute for Medical Research. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2018.12.093
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 669.e6
ExternalDocumentID PMC6890378
30650358
10_1016_j_celrep_2018_12_093
S2211124718320539
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA168524
– fundername: NIDCR NIH HHS
  grantid: R01 DE018713
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-e9fd8db8eb2dd5d7e34fa4e2ec2fb1fade6680502fa431450a0ead5ba8a2b1483
IEDL.DBID M48
ISSN 2211-1247
IngestDate Thu Aug 21 18:21:39 EDT 2025
Fri Jul 11 01:39:32 EDT 2025
Thu Jan 02 22:59:25 EST 2025
Tue Jul 01 02:58:59 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Wed May 17 00:03:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords niche
stress response
MSC
endosteum
N-cadherin
reserve stem cell
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 Stowers Institute for Medical Research. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-e9fd8db8eb2dd5d7e34fa4e2ec2fb1fade6680502fa431450a0ead5ba8a2b1483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
Conceptualization, L.L.; Investigation, M.Z., F.T., A.V., Z.L., P.Q., and H.M.; Methodology, S.E.S.; Software, J.U.; Formal Analysis, S.C. and C.W.; Resources, J.W. and X.C.H.; Writing – Original Draft, M.Z., F.T., and A.V.; Writing – Review & Editing, M.Z., F.T., A.V., J.M.P., and L.L.; Supervision, L.L.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124718320539
PMID 30650358
PQID 2179417228
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6890378
proquest_miscellaneous_2179417228
pubmed_primary_30650358
crossref_citationtrail_10_1016_j_celrep_2018_12_093
crossref_primary_10_1016_j_celrep_2018_12_093
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_12_093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Preibisch, Saalfeld, Tomancak (bib55) 2009; 25
Yousif, Di Russo, Sorokin (bib82) 2013; 7
Dominici, Rasini, Bussolari, Chen, Hofmann, Spano, Bernabei, Veronesi, Bertoni, Paolucci (bib21) 2009; 114
Foo, Turner, Adams, Compagni, Aubyn, Kogata, Lindblom, Shani, Zicha, Adams (bib25) 2006; 124
Kusumbe, Ramasamy, Adams (bib40) 2014; 507
Longley, Harkin, Johnston (bib48) 2003; 3
Wilson, Laurenti, Oser, van der Wath, Blanco-Bose, Jaworski, Offner, Dunant, Eshkind, Bockamp (bib76) 2008; 135
Krishnan, Bryant, Macdougald (bib38) 2006; 116
Schofield (bib63) 1978; 4
Zhang, Niu, Ye, Huang, He, Tong, Ross, Haug, Johnson, Feng (bib83) 2003; 425
Sugimura, He, Venkatraman, Arai, Box, Semerad, Haug, Peng, Zhong, Suda, Li (bib66) 2012; 150
Yamauchi, Hotta, Konishi, Miyake, Kawahara, Itoh (bib78) 2006; 7
Gazit, Mandal, Ebina, Ben-Zvi, Nombela-Arrieta, Silberstein, Rossi (bib28) 2014; 211
Raghunath, Salacinski, Sales, Butler, Seifalian (bib57) 2005; 16
Chan, Gulati, Sinha, Tompkins, Lopez, Carter, Ransom, Reinisch, Wearda, Murphy (bib14) 2018; 175
Li, Clevers (bib44) 2010; 327
Hu, Smyth (bib32) 2009; 347
Walter, Lier, Geiselhart, Thalheimer, Huntscha, Sobotta, Moehrle, Brocks, Bayindir, Kaschutnig (bib73) 2015; 520
Zhao, Perry, Marshall, Venkatraman, Qian, He, Ahamed, Li (bib84) 2014; 20
Bruns, Lucas, Pinho, Ahmed, Lambert, Kunisaki, Scheiermann, Schiff, Poncz, Bergman, Frenette (bib10) 2014; 20
Kearney, Kappas, Ellerstrom, DiPaola, Bautch (bib34) 2004; 103
Qian, He, Paulson, Li, Tao, Perry, Guo, Zhao, Zhi, Venkatraman, Haug, Parmely, Li, Dobrowsky, Ding, Kono, Ferguson-Smith, Li (bib56) 2016; 18
Arai, Hirao, Ohmura, Sato, Matsuoka, Takubo, Ito, Koh, Suda (bib3) 2004; 118
Ding, Saunders, Enikolopov, Morrison (bib20) 2012; 481
Gartel, Tyner (bib27) 2002; 1
Passegué, Wagner, Weissman (bib54) 2004; 119
Benz, Copley, Kent, Wohrer, Cortes, Aghaeepour, Ma, Mader, Rowe, Day (bib8) 2012; 10
Fleming, Janzen, Lo Celso, Guo, Leahy, Kronenberg, Scadden (bib24) 2008; 2
Yang, Zhu, Hou, Lan, Wu, Zhou, Teng, Yang (bib80) 2014; 24
Sophia Fox, Bedi, Rodeo (bib65) 2009; 1
Takubo, Nagamatsu, Kobayashi, Nakamura-Ishizu, Kobayashi, Ikeda, Goda, Rahimi, Johnson, Soga (bib69) 2013; 12
Dimitrova, Zamudio, Jong, Soukup, Resnick, Sarma, Ward, Raj, Lee, Sharp, Jacks (bib18) 2014; 54
Sugiyama, Kohara, Noda, Nagasawa (bib67) 2006; 25
Wei, Frenette (bib74) 2018; 48
Xie, Yin, Wiegraebe, He, Miller, Stark, Perko, Alexander, Schwartz, Grindley (bib77) 2009; 457
Venkatraman, He, Thorvaldsen, Sugimura, Perry, Tao, Zhao, Christenson, Sanchez, Yu (bib71) 2013; 500
Calvi, Adams, Weibrecht, Weber, Olson, Knight, Martin, Schipani, Divieti, Bringhurst (bib12) 2003; 425
Bujanover, Goldstein, Greenshpan, Turgeman, Klainberger, Scharff, Gazit (bib11) 2018; 32
Morita, Ema, Nakauchi (bib50) 2010; 207
Rao, Long, White, Svensson, Lou, Lokurkar, Jedrychowski, Ruas, Wrann, Lo (bib58) 2014; 157
Mignone, Kukekov, Chiang, Steindler, Enikolopov (bib49) 2004; 469
Santaguida, Schepers, King, Sabnis, Forsberg, Attema, Braun, Passegué (bib62) 2009; 15
Chan, Chen, Luppen, Kim, DeBoer, Wei, Helms, Kuo, Kraft, Weissman (bib13) 2009; 457
Weissman (bib75) 2000; 100
Lee, Boldo, Fernandez, Feelisch, Harmsen (bib42) 2017; 7
Anders, Pyl, Huber (bib2) 2015; 31
Lee, Cho, Hwang, Choi, Kim, Ahn, Kim, Oh, Lee, Koh (bib41) 2004; 18
Chen, Miyanishi, Wang, Yamazaki, Sinha, Kao, Seita, Sahoo, Nakauchi, Weissman (bib15) 2016; 530
Crane, Jeffery, Morrison (bib17) 2017; 17
Foudi, Hochedlinger, Van Buren, Schindler, Jaenisch, Carey, Hock (bib26) 2008; 27
Yamazaki, Ema, Karlsson, Yamaguchi, Miyoshi, Shioda, Taketo, Karlsson, Iwama, Nakauchi (bib79) 2011; 147
Duan, Shi, Chen, Wang, Yu, Qin, Zhou, Cai, Li, Zhang (bib22) 2014; 25
Cheng, Rodrigues, Shen, Yang, Dombkowski, Sykes, Scadden (bib16) 2000; 287
Sanjuan-Pla, Macaulay, Jensen, Woll, Luis, Mead, Moore, Carella, Matsuoka, Bouriez Jones (bib61) 2013; 502
Trapnell, Williams, Pertea, Mortazavi, Kwan, Van Baren, Salzberg, Wold, Pachter (bib70) 2010; 28
Ding, Morrison (bib19) 2013; 495
Lo Celso, Fleming, Wu, Zhao, Miake-Lye, Fujisaki, Côté, Rowe, Lin, Scadden (bib47) 2009; 457
Itkin, Gur-Cohen, Spencer, Schajnovitz, Ramasamy, Kusumbe, Ledergor, Jung, Milo, Poulos (bib33) 2016; 532
Li, Xie (bib45) 2005; 21
Rodina, Wang, Yan, Gomes, Dunphy, Pillarsetty, Koren, Gerecitano, Taldone, Zong (bib60) 2016; 538
Nilsson, Johnston, Coverdale (bib52) 2001; 97
Liebermann, Hoffman (bib46) 2008; 3
Robinson, McCarthy, Smyth (bib59) 2010; 26
Szilvassy, Humphries, Lansdorp, Eaves, Eaves (bib68) 1990; 87
Greenbaum, Hsu, Day, Schuettpelz, Christopher, Borgerding, Nagasawa, Link (bib29) 2013; 495
Zhou, Li, Wang, Zhu, Zhou, He, Ding, Xiong, Zheng, Li (bib85) 2016; 533
Kunisaki, Bruns, Scheiermann, Ahmed, Pinho, Zhang, Mizoguchi, Wei, Lucas, Ito (bib39) 2013; 502
Benveniste, Frelin, Janmohamed, Barbara, Herrington, Hyam, Iscove (bib7) 2010; 6
Haug, He, Grindley, Wunderlich, Gaudenz, Ross, Paulson, Wagner, Xie, Zhu (bib31) 2008; 2
Acar, Kocherlakota, Murphy, Peyer, Oguro, Inra, Jaiyeola, Zhao, Luby-Phelps, Morrison (bib1) 2015; 526
Arnold, Kim, Czubryt, Phan, McAnally, Qi, Shelton, Richardson, Bassel-Duby, Olson (bib4) 2007; 12
Yoon, Abdelmohsen, Srikantan, Yang, Martindale, De, Huarte, Zhan, Becker, Gorospe (bib81) 2012; 47
Bernitz, Kim, MacArthur, Sieburg, Moore (bib9) 2016; 167
Kindstedt, Holm, Sulniute, Martinez-Carrasco, Lundmark, Lundberg (bib37) 2017; 7
Lerner, Harrison (bib43) 1990; 18
Griseri, McKenzie, Schiering, Powrie (bib30) 2012; 37
Park, Nguyen, Dutt, Merdek, Bashar, Sterpetti, Tosolini, Testa, Toksoz (bib53) 2002; 277
Baldridge, King, Boles, Weksberg, Goodell (bib5) 2010; 465
Morrison, Scadden (bib51) 2014; 505
Sipp, Robey, Turner (bib64) 2018; 561
Wagers, Weissman (bib72) 2005; 24
Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib36) 2013; 14
Fleming, Alpern, Uchida, Ikuta, Spangrude, Weissman (bib23) 1993; 122
Beerman, Seita, Inlay, Weissman, Rossi (bib6) 2014; 15
Kfoury, Scadden (bib35) 2015; 16
Walter (10.1016/j.celrep.2018.12.093_bib73) 2015; 520
Qian (10.1016/j.celrep.2018.12.093_bib56) 2016; 18
Nilsson (10.1016/j.celrep.2018.12.093_bib52) 2001; 97
Arai (10.1016/j.celrep.2018.12.093_bib3) 2004; 118
Foudi (10.1016/j.celrep.2018.12.093_bib26) 2008; 27
Fleming (10.1016/j.celrep.2018.12.093_bib23) 1993; 122
Zhao (10.1016/j.celrep.2018.12.093_bib84) 2014; 20
Haug (10.1016/j.celrep.2018.12.093_bib31) 2008; 2
Gazit (10.1016/j.celrep.2018.12.093_bib28) 2014; 211
Sugimura (10.1016/j.celrep.2018.12.093_bib66) 2012; 150
Li (10.1016/j.celrep.2018.12.093_bib44) 2010; 327
Chan (10.1016/j.celrep.2018.12.093_bib14) 2018; 175
Weissman (10.1016/j.celrep.2018.12.093_bib75) 2000; 100
Lee (10.1016/j.celrep.2018.12.093_bib41) 2004; 18
Bruns (10.1016/j.celrep.2018.12.093_bib10) 2014; 20
Rodina (10.1016/j.celrep.2018.12.093_bib60) 2016; 538
Lerner (10.1016/j.celrep.2018.12.093_bib43) 1990; 18
Xie (10.1016/j.celrep.2018.12.093_bib77) 2009; 457
Cheng (10.1016/j.celrep.2018.12.093_bib16) 2000; 287
Duan (10.1016/j.celrep.2018.12.093_bib22) 2014; 25
Rao (10.1016/j.celrep.2018.12.093_bib58) 2014; 157
Kusumbe (10.1016/j.celrep.2018.12.093_bib40) 2014; 507
Griseri (10.1016/j.celrep.2018.12.093_bib30) 2012; 37
Yamazaki (10.1016/j.celrep.2018.12.093_bib79) 2011; 147
Baldridge (10.1016/j.celrep.2018.12.093_bib5) 2010; 465
Wei (10.1016/j.celrep.2018.12.093_bib74) 2018; 48
Kfoury (10.1016/j.celrep.2018.12.093_bib35) 2015; 16
Calvi (10.1016/j.celrep.2018.12.093_bib12) 2003; 425
Li (10.1016/j.celrep.2018.12.093_bib45) 2005; 21
Morrison (10.1016/j.celrep.2018.12.093_bib51) 2014; 505
Hu (10.1016/j.celrep.2018.12.093_bib32) 2009; 347
Kim (10.1016/j.celrep.2018.12.093_bib36) 2013; 14
Mignone (10.1016/j.celrep.2018.12.093_bib49) 2004; 469
Zhang (10.1016/j.celrep.2018.12.093_bib83) 2003; 425
Dominici (10.1016/j.celrep.2018.12.093_bib21) 2009; 114
Arnold (10.1016/j.celrep.2018.12.093_bib4) 2007; 12
Trapnell (10.1016/j.celrep.2018.12.093_bib70) 2010; 28
Foo (10.1016/j.celrep.2018.12.093_bib25) 2006; 124
Beerman (10.1016/j.celrep.2018.12.093_bib6) 2014; 15
Venkatraman (10.1016/j.celrep.2018.12.093_bib71) 2013; 500
Robinson (10.1016/j.celrep.2018.12.093_bib59) 2010; 26
Passegué (10.1016/j.celrep.2018.12.093_bib54) 2004; 119
Gartel (10.1016/j.celrep.2018.12.093_bib27) 2002; 1
Sipp (10.1016/j.celrep.2018.12.093_bib64) 2018; 561
Wagers (10.1016/j.celrep.2018.12.093_bib72) 2005; 24
Itkin (10.1016/j.celrep.2018.12.093_bib33) 2016; 532
Lo Celso (10.1016/j.celrep.2018.12.093_bib47) 2009; 457
Lee (10.1016/j.celrep.2018.12.093_bib42) 2017; 7
Takubo (10.1016/j.celrep.2018.12.093_bib69) 2013; 12
Bujanover (10.1016/j.celrep.2018.12.093_bib11) 2018; 32
Crane (10.1016/j.celrep.2018.12.093_bib17) 2017; 17
Benz (10.1016/j.celrep.2018.12.093_bib8) 2012; 10
Benveniste (10.1016/j.celrep.2018.12.093_bib7) 2010; 6
Kindstedt (10.1016/j.celrep.2018.12.093_bib37) 2017; 7
Fleming (10.1016/j.celrep.2018.12.093_bib24) 2008; 2
Greenbaum (10.1016/j.celrep.2018.12.093_bib29) 2013; 495
Park (10.1016/j.celrep.2018.12.093_bib53) 2002; 277
Sophia Fox (10.1016/j.celrep.2018.12.093_bib65) 2009; 1
Yoon (10.1016/j.celrep.2018.12.093_bib81) 2012; 47
Chan (10.1016/j.celrep.2018.12.093_bib13) 2009; 457
Dimitrova (10.1016/j.celrep.2018.12.093_bib18) 2014; 54
Preibisch (10.1016/j.celrep.2018.12.093_bib55) 2009; 25
Kearney (10.1016/j.celrep.2018.12.093_bib34) 2004; 103
Sanjuan-Pla (10.1016/j.celrep.2018.12.093_bib61) 2013; 502
Santaguida (10.1016/j.celrep.2018.12.093_bib62) 2009; 15
Krishnan (10.1016/j.celrep.2018.12.093_bib38) 2006; 116
Kunisaki (10.1016/j.celrep.2018.12.093_bib39) 2013; 502
Liebermann (10.1016/j.celrep.2018.12.093_bib46) 2008; 3
Schofield (10.1016/j.celrep.2018.12.093_bib63) 1978; 4
Wilson (10.1016/j.celrep.2018.12.093_bib76) 2008; 135
Yang (10.1016/j.celrep.2018.12.093_bib80) 2014; 24
Yousif (10.1016/j.celrep.2018.12.093_bib82) 2013; 7
Anders (10.1016/j.celrep.2018.12.093_bib2) 2015; 31
Bernitz (10.1016/j.celrep.2018.12.093_bib9) 2016; 167
Raghunath (10.1016/j.celrep.2018.12.093_bib57) 2005; 16
Ding (10.1016/j.celrep.2018.12.093_bib19) 2013; 495
Zhou (10.1016/j.celrep.2018.12.093_bib85) 2016; 533
Szilvassy (10.1016/j.celrep.2018.12.093_bib68) 1990; 87
Chen (10.1016/j.celrep.2018.12.093_bib15) 2016; 530
Yamauchi (10.1016/j.celrep.2018.12.093_bib78) 2006; 7
Morita (10.1016/j.celrep.2018.12.093_bib50) 2010; 207
Acar (10.1016/j.celrep.2018.12.093_bib1) 2015; 526
Ding (10.1016/j.celrep.2018.12.093_bib20) 2012; 481
Longley (10.1016/j.celrep.2018.12.093_bib48) 2003; 3
Sugiyama (10.1016/j.celrep.2018.12.093_bib67) 2006; 25
30849365 - Cell Stem Cell. 2019 Mar 7;24(3):355-356
References_xml – volume: 7
  start-page: 42487
  year: 2017
  ident: bib42
  article-title: Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-β1
  publication-title: Sci. Rep.
– volume: 32
  start-page: 2016
  year: 2018
  end-page: 2020
  ident: bib11
  article-title: Identification of immune-activated hematopoietic stem cells
  publication-title: Leukemia
– volume: 2
  start-page: 367
  year: 2008
  end-page: 379
  ident: bib31
  article-title: N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells
  publication-title: Cell Stem Cell
– volume: 3
  start-page: 15
  year: 2008
  ident: bib46
  article-title: Gadd45 in stress signaling
  publication-title: J. Mol. Signal.
– volume: 538
  start-page: 397
  year: 2016
  end-page: 401
  ident: bib60
  article-title: The epichaperome is an integrated chaperome network that facilitates tumour survival
  publication-title: Nature
– volume: 14
  start-page: R36
  year: 2013
  ident: bib36
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
– volume: 530
  start-page: 223
  year: 2016
  end-page: 227
  ident: bib15
  article-title: Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
  publication-title: Nature
– volume: 500
  start-page: 345
  year: 2013
  end-page: 349
  ident: bib71
  article-title: Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence
  publication-title: Nature
– volume: 347
  start-page: 70
  year: 2009
  end-page: 78
  ident: bib32
  article-title: ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J. Immunol. Methods
– volume: 3
  start-page: 330
  year: 2003
  end-page: 338
  ident: bib48
  article-title: 5-fluorouracil: Mechanisms of action and clinical strategies
  publication-title: Nat. Rev. Cancer
– volume: 457
  start-page: 490
  year: 2009
  end-page: 494
  ident: bib13
  article-title: Endochondral ossification is required for haematopoietic stem-cell niche formation
  publication-title: Nature
– volume: 495
  start-page: 231
  year: 2013
  end-page: 235
  ident: bib19
  article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
  publication-title: Nature
– volume: 18
  start-page: 1200
  year: 2004
  end-page: 1208
  ident: bib41
  article-title: Biological characterization of angiopoietin-3 and angiopoietin-4
  publication-title: FASEB J.
– volume: 12
  start-page: 377
  year: 2007
  end-page: 389
  ident: bib4
  article-title: MEF2C transcription factor controls chondrocyte hypertrophy and bone development
  publication-title: Dev. Cell
– volume: 16
  start-page: 239
  year: 2015
  end-page: 253
  ident: bib35
  article-title: Mesenchymal cell contributions to the stem cell niche
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 1463
  year: 2009
  end-page: 1465
  ident: bib55
  article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions
  publication-title: Bioinformatics
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib59
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 47
  start-page: 648
  year: 2012
  end-page: 655
  ident: bib81
  article-title: LincRNA-p21 suppresses target mRNA translation
  publication-title: Mol. Cell
– volume: 532
  start-page: 323
  year: 2016
  end-page: 328
  ident: bib33
  article-title: Distinct bone marrow blood vessels differentially regulate haematopoiesis
  publication-title: Nature
– volume: 175
  start-page: 43
  year: 2018
  end-page: 56
  ident: bib14
  article-title: Identification of the human skeletal stem cell
  publication-title: Cell
– volume: 211
  start-page: 1315
  year: 2014
  end-page: 1331
  ident: bib28
  article-title: Fgd5 identifies hematopoietic stem cells in the murine bone marrow
  publication-title: J. Exp. Med.
– volume: 116
  start-page: 1202
  year: 2006
  end-page: 1209
  ident: bib38
  article-title: Regulation of bone mass by Wnt signaling
  publication-title: J. Clin. Invest.
– volume: 502
  start-page: 232
  year: 2013
  end-page: 236
  ident: bib61
  article-title: Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
  publication-title: Nature
– volume: 502
  start-page: 637
  year: 2013
  end-page: 643
  ident: bib39
  article-title: Arteriolar niches maintain haematopoietic stem cell quiescence
  publication-title: Nature
– volume: 533
  start-page: 487
  year: 2016
  end-page: 492
  ident: bib85
  article-title: Tracing haematopoietic stem cell formation at single-cell resolution
  publication-title: Nature
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  ident: bib70
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol
– volume: 1
  start-page: 461
  year: 2009
  end-page: 468
  ident: bib65
  article-title: The basic science of articular cartilage: Structure, composition, and function
  publication-title: Sports Health
– volume: 425
  start-page: 836
  year: 2003
  end-page: 841
  ident: bib83
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
– volume: 505
  start-page: 327
  year: 2014
  end-page: 334
  ident: bib51
  article-title: The bone marrow niche for haematopoietic stem cells
  publication-title: Nature
– volume: 457
  start-page: 97
  year: 2009
  end-page: 101
  ident: bib77
  article-title: Detection of functional haematopoietic stem cell niche using real-time imaging
  publication-title: Nature
– volume: 37
  start-page: 1116
  year: 2012
  end-page: 1129
  ident: bib30
  article-title: Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation
  publication-title: Immunity
– volume: 24
  start-page: 1087
  year: 2005
  end-page: 1094
  ident: bib72
  article-title: Differential expression of {alpha}2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1loc-kit+Sca-1+ hematopoietic stem cells
  publication-title: Stem Cells
– volume: 54
  start-page: 777
  year: 2014
  end-page: 790
  ident: bib18
  article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint
  publication-title: Mol. Cell
– volume: 119
  start-page: 431
  year: 2004
  end-page: 443
  ident: bib54
  article-title: JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells
  publication-title: Cell
– volume: 20
  start-page: 1321
  year: 2014
  end-page: 1326
  ident: bib84
  article-title: Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
  publication-title: Nat. Med.
– volume: 457
  start-page: 92
  year: 2009
  end-page: 96
  ident: bib47
  article-title: Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche
  publication-title: Nature
– volume: 6
  start-page: 48
  year: 2010
  end-page: 58
  ident: bib7
  article-title: Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 101
  year: 2013
  end-page: 110
  ident: bib82
  article-title: Laminin isoforms in endothelial and perivascular basement membranes
  publication-title: Cell Adh. Migr
– volume: 15
  start-page: 37
  year: 2014
  end-page: 50
  ident: bib6
  article-title: Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle
  publication-title: Cell Stem Cell
– volume: 147
  start-page: 1146
  year: 2011
  end-page: 1158
  ident: bib79
  article-title: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
  publication-title: Cell
– volume: 507
  start-page: 323
  year: 2014
  end-page: 328
  ident: bib40
  article-title: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone
  publication-title: Nature
– volume: 425
  start-page: 841
  year: 2003
  end-page: 846
  ident: bib12
  article-title: Osteoblastic cells regulate the haematopoietic stem cell niche
  publication-title: Nature
– volume: 24
  start-page: 1266
  year: 2014
  end-page: 1269
  ident: bib80
  article-title: Osteogenic fate of hypertrophic chondrocytes
  publication-title: Cell Res.
– volume: 277
  start-page: 45361
  year: 2002
  end-page: 45370
  ident: bib53
  article-title: Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation
  publication-title: J. Biol. Chem.
– volume: 100
  start-page: 157
  year: 2000
  end-page: 168
  ident: bib75
  article-title: Stem cells: Units of development, units of regeneration, and units in evolution
  publication-title: Cell
– volume: 15
  start-page: 341
  year: 2009
  end-page: 352
  ident: bib62
  article-title: JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal
  publication-title: Cancer Cell
– volume: 87
  start-page: 8736
  year: 1990
  end-page: 8740
  ident: bib68
  article-title: Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 103
  start-page: 4527
  year: 2004
  end-page: 4535
  ident: bib34
  article-title: The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis
  publication-title: Blood
– volume: 207
  start-page: 1173
  year: 2010
  end-page: 1182
  ident: bib50
  article-title: Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
  publication-title: J. Exp. Med.
– volume: 10
  start-page: 273
  year: 2012
  end-page: 283
  ident: bib8
  article-title: Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs
  publication-title: Cell Stem Cell
– volume: 12
  start-page: 49
  year: 2013
  end-page: 61
  ident: bib69
  article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
  publication-title: Cell Stem Cell
– volume: 481
  start-page: 457
  year: 2012
  end-page: 462
  ident: bib20
  article-title: Endothelial and perivascular cells maintain haematopoietic stem cells
  publication-title: Nature
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib2
  article-title: HTSeq—a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 7
  start-page: 5334
  year: 2017
  ident: bib37
  article-title: CCL11, a novel mediator of inflammatory bone resorption
  publication-title: Sci. Rep.
– volume: 157
  start-page: 1279
  year: 2014
  end-page: 1291
  ident: bib58
  article-title: Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis
  publication-title: Cell
– volume: 122
  start-page: 897
  year: 1993
  end-page: 902
  ident: bib23
  article-title: Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells
  publication-title: J. Cell Biol.
– volume: 20
  start-page: 1315
  year: 2014
  end-page: 1320
  ident: bib10
  article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
  publication-title: Nat. Med.
– volume: 469
  start-page: 311
  year: 2004
  end-page: 324
  ident: bib49
  article-title: Neural stem and progenitor cells in nestin-GFP transgenic mice
  publication-title: J. Comp. Neurol.
– volume: 18
  start-page: 114
  year: 1990
  end-page: 118
  ident: bib43
  article-title: 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation
  publication-title: Exp. Hematol.
– volume: 25
  start-page: 977
  year: 2006
  end-page: 988
  ident: bib67
  article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
  publication-title: Immunity
– volume: 526
  start-page: 126
  year: 2015
  end-page: 130
  ident: bib1
  article-title: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
  publication-title: Nature
– volume: 21
  start-page: 605
  year: 2005
  end-page: 631
  ident: bib45
  article-title: Stem cell niche: Structure and function
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 25
  start-page: 778
  year: 2014
  end-page: 793
  ident: bib22
  article-title: Leukemia propagating cells rebuild an evolving niche in response to therapy
  publication-title: Cancer Cell
– volume: 1
  start-page: 639
  year: 2002
  end-page: 649
  ident: bib27
  article-title: The role of the cyclin-dependent kinase inhibitor p21 in apoptosis
  publication-title: Mol. Cancer Ther.
– volume: 97
  start-page: 2293
  year: 2001
  end-page: 2299
  ident: bib52
  article-title: Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches
  publication-title: Blood
– volume: 561
  start-page: 455
  year: 2018
  end-page: 457
  ident: bib64
  article-title: Clear up this stem-cell mess
  publication-title: Nature
– volume: 520
  start-page: 549
  year: 2015
  end-page: 552
  ident: bib73
  article-title: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
  publication-title: Nature
– volume: 135
  start-page: 1118
  year: 2008
  end-page: 1129
  ident: bib76
  article-title: Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
  publication-title: Cell
– volume: 287
  start-page: 1804
  year: 2000
  end-page: 1808
  ident: bib16
  article-title: Hematopoietic stem cell quiescence maintained by p21cip1/waf1
  publication-title: Science
– volume: 27
  start-page: 84
  year: 2008
  end-page: 90
  ident: bib26
  article-title: Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
  publication-title: Nat. Biotechnol
– volume: 327
  start-page: 542
  year: 2010
  end-page: 545
  ident: bib44
  article-title: Coexistence of quiescent and active adult stem cells in mammals
  publication-title: Science
– volume: 16
  start-page: 503
  year: 2005
  end-page: 509
  ident: bib57
  article-title: Advancing cartilage tissue engineering: The application of stem cell technology
  publication-title: Curr. Opin. Biotechnol.
– volume: 48
  start-page: 632
  year: 2018
  end-page: 648
  ident: bib74
  article-title: Niches for hematopoietic stem cells and their progeny
  publication-title: Immunity
– volume: 114
  start-page: 2333
  year: 2009
  end-page: 2343
  ident: bib21
  article-title: Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation
  publication-title: Blood
– volume: 2
  start-page: 274
  year: 2008
  end-page: 283
  ident: bib24
  article-title: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo
  publication-title: Cell Stem Cell
– volume: 150
  start-page: 351
  year: 2012
  end-page: 365
  ident: bib66
  article-title: Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche
  publication-title: Cell
– volume: 18
  start-page: 214
  year: 2016
  end-page: 228
  ident: bib56
  article-title: The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 649
  year: 2006
  end-page: 654
  ident: bib78
  article-title: Fgf21 is essential for haematopoiesis in zebrafish
  publication-title: EMBO Rep.
– volume: 495
  start-page: 227
  year: 2013
  end-page: 230
  ident: bib29
  article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
  publication-title: Nature
– volume: 17
  start-page: 573
  year: 2017
  end-page: 590
  ident: bib17
  article-title: Adult haematopoietic stem cell niches
  publication-title: Nat. Rev. Immunol.
– volume: 167
  start-page: 1296
  year: 2016
  end-page: 1309
  ident: bib9
  article-title: Hematopoietic stem cells count and remember self-renewal divisions
  publication-title: Cell
– volume: 124
  start-page: 161
  year: 2006
  end-page: 173
  ident: bib25
  article-title: Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly
  publication-title: Cell
– volume: 4
  start-page: 7
  year: 1978
  end-page: 25
  ident: bib63
  article-title: The relationship between the spleen colony-forming cell and the haemopoietic stem cell
  publication-title: Blood Cells
– volume: 118
  start-page: 149
  year: 2004
  end-page: 161
  ident: bib3
  article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
  publication-title: Cell
– volume: 465
  start-page: 793
  year: 2010
  end-page: 797
  ident: bib5
  article-title: Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection
  publication-title: Nature
– volume: 114
  start-page: 2333
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib21
  article-title: Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation
  publication-title: Blood
  doi: 10.1182/blood-2008-10-183459
– volume: 347
  start-page: 70
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib32
  article-title: ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2009.06.008
– volume: 2
  start-page: 367
  year: 2008
  ident: 10.1016/j.celrep.2018.12.093_bib31
  article-title: N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.017
– volume: 103
  start-page: 4527
  year: 2004
  ident: 10.1016/j.celrep.2018.12.093_bib34
  article-title: The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis
  publication-title: Blood
  doi: 10.1182/blood-2003-07-2315
– volume: 118
  start-page: 149
  year: 2004
  ident: 10.1016/j.celrep.2018.12.093_bib3
  article-title: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
  publication-title: Cell
  doi: 10.1016/j.cell.2004.07.004
– volume: 25
  start-page: 778
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib22
  article-title: Leukemia propagating cells rebuild an evolving niche in response to therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.04.015
– volume: 54
  start-page: 777
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib18
  article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.025
– volume: 47
  start-page: 648
  year: 2012
  ident: 10.1016/j.celrep.2018.12.093_bib81
  article-title: LincRNA-p21 suppresses target mRNA translation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.027
– volume: 495
  start-page: 227
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib29
  article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
  publication-title: Nature
  doi: 10.1038/nature11926
– volume: 457
  start-page: 92
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib47
  article-title: Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche
  publication-title: Nature
  doi: 10.1038/nature07434
– volume: 3
  start-page: 330
  year: 2003
  ident: 10.1016/j.celrep.2018.12.093_bib48
  article-title: 5-fluorouracil: Mechanisms of action and clinical strategies
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1074
– volume: 20
  start-page: 1315
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib10
  article-title: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
  publication-title: Nat. Med.
  doi: 10.1038/nm.3707
– volume: 18
  start-page: 1200
  year: 2004
  ident: 10.1016/j.celrep.2018.12.093_bib41
  article-title: Biological characterization of angiopoietin-3 and angiopoietin-4
  publication-title: FASEB J.
  doi: 10.1096/fj.03-1466com
– volume: 1
  start-page: 461
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib65
  article-title: The basic science of articular cartilage: Structure, composition, and function
  publication-title: Sports Health
  doi: 10.1177/1941738109350438
– volume: 119
  start-page: 431
  year: 2004
  ident: 10.1016/j.celrep.2018.12.093_bib54
  article-title: JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2004.10.010
– volume: 18
  start-page: 214
  year: 2016
  ident: 10.1016/j.celrep.2018.12.093_bib56
  article-title: The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.11.001
– volume: 457
  start-page: 97
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib77
  article-title: Detection of functional haematopoietic stem cell niche using real-time imaging
  publication-title: Nature
  doi: 10.1038/nature07639
– volume: 16
  start-page: 503
  year: 2005
  ident: 10.1016/j.celrep.2018.12.093_bib57
  article-title: Advancing cartilage tissue engineering: The application of stem cell technology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2005.08.004
– volume: 3
  start-page: 15
  year: 2008
  ident: 10.1016/j.celrep.2018.12.093_bib46
  article-title: Gadd45 in stress signaling
  publication-title: J. Mol. Signal.
  doi: 10.1186/1750-2187-3-15
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.celrep.2018.12.093_bib59
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 502
  start-page: 232
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib61
  article-title: Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
  publication-title: Nature
  doi: 10.1038/nature12495
– volume: 533
  start-page: 487
  year: 2016
  ident: 10.1016/j.celrep.2018.12.093_bib85
  article-title: Tracing haematopoietic stem cell formation at single-cell resolution
  publication-title: Nature
  doi: 10.1038/nature17997
– volume: 520
  start-page: 549
  year: 2015
  ident: 10.1016/j.celrep.2018.12.093_bib73
  article-title: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature14131
– volume: 32
  start-page: 2016
  year: 2018
  ident: 10.1016/j.celrep.2018.12.093_bib11
  article-title: Identification of immune-activated hematopoietic stem cells
  publication-title: Leukemia
  doi: 10.1038/s41375-018-0220-z
– volume: 122
  start-page: 897
  year: 1993
  ident: 10.1016/j.celrep.2018.12.093_bib23
  article-title: Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.122.4.897
– volume: 277
  start-page: 45361
  year: 2002
  ident: 10.1016/j.celrep.2018.12.093_bib53
  article-title: Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202447200
– volume: 207
  start-page: 1173
  year: 2010
  ident: 10.1016/j.celrep.2018.12.093_bib50
  article-title: Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091318
– volume: 167
  start-page: 1296
  year: 2016
  ident: 10.1016/j.celrep.2018.12.093_bib9
  article-title: Hematopoietic stem cells count and remember self-renewal divisions
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.022
– volume: 469
  start-page: 311
  year: 2004
  ident: 10.1016/j.celrep.2018.12.093_bib49
  article-title: Neural stem and progenitor cells in nestin-GFP transgenic mice
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10964
– volume: 135
  start-page: 1118
  year: 2008
  ident: 10.1016/j.celrep.2018.12.093_bib76
  article-title: Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.048
– volume: 538
  start-page: 397
  year: 2016
  ident: 10.1016/j.celrep.2018.12.093_bib60
  article-title: The epichaperome is an integrated chaperome network that facilitates tumour survival
  publication-title: Nature
  doi: 10.1038/nature19807
– volume: 507
  start-page: 323
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib40
  article-title: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone
  publication-title: Nature
  doi: 10.1038/nature13145
– volume: 37
  start-page: 1116
  year: 2012
  ident: 10.1016/j.celrep.2018.12.093_bib30
  article-title: Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.08.025
– volume: 526
  start-page: 126
  year: 2015
  ident: 10.1016/j.celrep.2018.12.093_bib1
  article-title: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
  publication-title: Nature
  doi: 10.1038/nature15250
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.celrep.2018.12.093_bib2
  article-title: HTSeq—a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 561
  start-page: 455
  year: 2018
  ident: 10.1016/j.celrep.2018.12.093_bib64
  article-title: Clear up this stem-cell mess
  publication-title: Nature
  doi: 10.1038/d41586-018-06756-9
– volume: 502
  start-page: 637
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib39
  article-title: Arteriolar niches maintain haematopoietic stem cell quiescence
  publication-title: Nature
  doi: 10.1038/nature12612
– volume: 4
  start-page: 7
  year: 1978
  ident: 10.1016/j.celrep.2018.12.093_bib63
  article-title: The relationship between the spleen colony-forming cell and the haemopoietic stem cell
  publication-title: Blood Cells
– volume: 87
  start-page: 8736
  year: 1990
  ident: 10.1016/j.celrep.2018.12.093_bib68
  article-title: Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.22.8736
– volume: 27
  start-page: 84
  year: 2008
  ident: 10.1016/j.celrep.2018.12.093_bib26
  article-title: Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1517
– volume: 14
  start-page: R36
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib36
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 17
  start-page: 573
  year: 2017
  ident: 10.1016/j.celrep.2018.12.093_bib17
  article-title: Adult haematopoietic stem cell niches
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.53
– volume: 7
  start-page: 649
  year: 2006
  ident: 10.1016/j.celrep.2018.12.093_bib78
  article-title: Fgf21 is essential for haematopoiesis in zebrafish
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400685
– volume: 425
  start-page: 836
  year: 2003
  ident: 10.1016/j.celrep.2018.12.093_bib83
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
  doi: 10.1038/nature02041
– volume: 24
  start-page: 1266
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib80
  article-title: Osteogenic fate of hypertrophic chondrocytes
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.111
– volume: 48
  start-page: 632
  year: 2018
  ident: 10.1016/j.celrep.2018.12.093_bib74
  article-title: Niches for hematopoietic stem cells and their progeny
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.024
– volume: 457
  start-page: 490
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib13
  article-title: Endochondral ossification is required for haematopoietic stem-cell niche formation
  publication-title: Nature
  doi: 10.1038/nature07547
– volume: 124
  start-page: 161
  year: 2006
  ident: 10.1016/j.celrep.2018.12.093_bib25
  article-title: Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.034
– volume: 7
  start-page: 5334
  year: 2017
  ident: 10.1016/j.celrep.2018.12.093_bib37
  article-title: CCL11, a novel mediator of inflammatory bone resorption
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05654-w
– volume: 211
  start-page: 1315
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib28
  article-title: Fgd5 identifies hematopoietic stem cells in the murine bone marrow
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20130428
– volume: 7
  start-page: 42487
  year: 2017
  ident: 10.1016/j.celrep.2018.12.093_bib42
  article-title: Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-β1
  publication-title: Sci. Rep.
  doi: 10.1038/srep42487
– volume: 150
  start-page: 351
  year: 2012
  ident: 10.1016/j.celrep.2018.12.093_bib66
  article-title: Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.041
– volume: 481
  start-page: 457
  year: 2012
  ident: 10.1016/j.celrep.2018.12.093_bib20
  article-title: Endothelial and perivascular cells maintain haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature10783
– volume: 2
  start-page: 274
  year: 2008
  ident: 10.1016/j.celrep.2018.12.093_bib24
  article-title: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.003
– volume: 505
  start-page: 327
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib51
  article-title: The bone marrow niche for haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature12984
– volume: 100
  start-page: 157
  year: 2000
  ident: 10.1016/j.celrep.2018.12.093_bib75
  article-title: Stem cells: Units of development, units of regeneration, and units in evolution
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81692-X
– volume: 1
  start-page: 639
  year: 2002
  ident: 10.1016/j.celrep.2018.12.093_bib27
  article-title: The role of the cyclin-dependent kinase inhibitor p21 in apoptosis
  publication-title: Mol. Cancer Ther.
– volume: 25
  start-page: 1463
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib55
  article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp184
– volume: 15
  start-page: 341
  year: 2009
  ident: 10.1016/j.celrep.2018.12.093_bib62
  article-title: JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.02.016
– volume: 20
  start-page: 1321
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib84
  article-title: Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.3706
– volume: 495
  start-page: 231
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib19
  article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
  publication-title: Nature
  doi: 10.1038/nature11885
– volume: 6
  start-page: 48
  year: 2010
  ident: 10.1016/j.celrep.2018.12.093_bib7
  article-title: Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.11.014
– volume: 530
  start-page: 223
  year: 2016
  ident: 10.1016/j.celrep.2018.12.093_bib15
  article-title: Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
  publication-title: Nature
  doi: 10.1038/nature16943
– volume: 147
  start-page: 1146
  year: 2011
  ident: 10.1016/j.celrep.2018.12.093_bib79
  article-title: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.053
– volume: 97
  start-page: 2293
  year: 2001
  ident: 10.1016/j.celrep.2018.12.093_bib52
  article-title: Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches
  publication-title: Blood
  doi: 10.1182/blood.V97.8.2293
– volume: 25
  start-page: 977
  year: 2006
  ident: 10.1016/j.celrep.2018.12.093_bib67
  article-title: Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.10.016
– volume: 465
  start-page: 793
  year: 2010
  ident: 10.1016/j.celrep.2018.12.093_bib5
  article-title: Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection
  publication-title: Nature
  doi: 10.1038/nature09135
– volume: 425
  start-page: 841
  year: 2003
  ident: 10.1016/j.celrep.2018.12.093_bib12
  article-title: Osteoblastic cells regulate the haematopoietic stem cell niche
  publication-title: Nature
  doi: 10.1038/nature02040
– volume: 15
  start-page: 37
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib6
  article-title: Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.04.016
– volume: 28
  start-page: 511
  year: 2010
  ident: 10.1016/j.celrep.2018.12.093_bib70
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1621
– volume: 24
  start-page: 1087
  year: 2005
  ident: 10.1016/j.celrep.2018.12.093_bib72
  article-title: Differential expression of {alpha}2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1loc-kit+Sca-1+ hematopoietic stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0396
– volume: 532
  start-page: 323
  year: 2016
  ident: 10.1016/j.celrep.2018.12.093_bib33
  article-title: Distinct bone marrow blood vessels differentially regulate haematopoiesis
  publication-title: Nature
  doi: 10.1038/nature17624
– volume: 157
  start-page: 1279
  year: 2014
  ident: 10.1016/j.celrep.2018.12.093_bib58
  article-title: Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.065
– volume: 18
  start-page: 114
  year: 1990
  ident: 10.1016/j.celrep.2018.12.093_bib43
  article-title: 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation
  publication-title: Exp. Hematol.
– volume: 327
  start-page: 542
  year: 2010
  ident: 10.1016/j.celrep.2018.12.093_bib44
  article-title: Coexistence of quiescent and active adult stem cells in mammals
  publication-title: Science
  doi: 10.1126/science.1180794
– volume: 175
  start-page: 43
  year: 2018
  ident: 10.1016/j.celrep.2018.12.093_bib14
  article-title: Identification of the human skeletal stem cell
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.029
– volume: 16
  start-page: 239
  year: 2015
  ident: 10.1016/j.celrep.2018.12.093_bib35
  article-title: Mesenchymal cell contributions to the stem cell niche
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.02.019
– volume: 21
  start-page: 605
  year: 2005
  ident: 10.1016/j.celrep.2018.12.093_bib45
  article-title: Stem cell niche: Structure and function
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.21.012704.131525
– volume: 116
  start-page: 1202
  year: 2006
  ident: 10.1016/j.celrep.2018.12.093_bib38
  article-title: Regulation of bone mass by Wnt signaling
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI28551
– volume: 12
  start-page: 377
  year: 2007
  ident: 10.1016/j.celrep.2018.12.093_bib4
  article-title: MEF2C transcription factor controls chondrocyte hypertrophy and bone development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.02.004
– volume: 12
  start-page: 49
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib69
  article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.10.011
– volume: 10
  start-page: 273
  year: 2012
  ident: 10.1016/j.celrep.2018.12.093_bib8
  article-title: Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.02.007
– volume: 500
  start-page: 345
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib71
  article-title: Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence
  publication-title: Nature
  doi: 10.1038/nature12303
– volume: 7
  start-page: 101
  year: 2013
  ident: 10.1016/j.celrep.2018.12.093_bib82
  article-title: Laminin isoforms in endothelial and perivascular basement membranes
  publication-title: Cell Adh. Migr
  doi: 10.4161/cam.22680
– volume: 287
  start-page: 1804
  year: 2000
  ident: 10.1016/j.celrep.2018.12.093_bib16
  article-title: Hematopoietic stem cell quiescence maintained by p21cip1/waf1
  publication-title: Science
  doi: 10.1126/science.287.5459.1804
– reference: 30849365 - Cell Stem Cell. 2019 Mar 7;24(3):355-356
SSID ssj0000601194
Score 2.5430396
Snippet Regulation of hematopoietic stem cells (HSCs) by bone marrow (BM) niches has been extensively studied; however, whether and how HSC subpopulations are...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 652
SubjectTerms Cadherins - metabolism
endosteum
Hematopoietic Stem Cells - physiology
Humans
MSC
N-cadherin
niche
reserve stem cell
Stem Cells - metabolism
stress response
Stromal Cells - metabolism
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9wwzJTCYC9j37vuAw_2ai6248R5XI-WY9Ay6Ar3ZuxEWTOuyZFex_rvKznJsdsYhT3aloKxZElW9MHYp5AGLX0lhVQAIlWJF0H7HIe1lrWFUgH5Ic_Os-Vl-mVlVgdsMeXCUFjlKPsHmR6l9TgzH09zvmma-YXCtwtqp5yYElmJkvh0amMS3-p452eheiMy9kMkeEEIUwZdDPMqYd0DFa6UNvoFC_0vDfW3BfpnIOVvmun0KXsympT887DrZ-wA2ufs0dBk8u4FuzoXC1_FND9x8muIe22_8-OuBe7bip_FMoz8Ytt31_iZr32HPIX3vOcLWK9vcL1pyX_AKUiv_wl8SWVeu03XUP4j4sH1APmSXZ6efFssxdhfQZRGFVsBRV3ZKlh8XFeVqXLQae1TUEigOsjaV5BlNjGJwlktU5P4BPnOBG-9CviM0q_YYYubfcO4LIOxofB5kDoNEIpaeZX7DO1N4wtTzpieztSVY_Fx6oGxdlOU2Q83UMIRJZxUDikxY2KHtRmKbzwAn0_kcntM5FA_PID5caKuw_tFP018C93tjVMksdDKU3bGXg_U3u1Fk32rDa7ke3ywA6Da3fsrbXMVa3hntkh0bo_-e8dv2WMcUaybkOYdO9z2t_Ae7aNt-BAvwD17AxGM
  priority: 102
  providerName: Elsevier
Title N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells
URI https://dx.doi.org/10.1016/j.celrep.2018.12.093
https://www.ncbi.nlm.nih.gov/pubmed/30650358
https://www.proquest.com/docview/2179417228
https://pubmed.ncbi.nlm.nih.gov/PMC6890378
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-O36cVTwNdIkTZM-iHjLHauwh6AL-xaSJvX26LVnd0_u_ntnmnb11OPwpZAmKWlmJvklmfyGkDcuc4JZzyjjIdCMp5Y6YRUkK8EqHUoecB9yfpTPFtmnpVzukDFm69CB638u7TCe1KKr3158v3wPBv_ul69WGeouIPsk0_3mXiFukdswNymMaTAfAH8cm5HjDI-aOUdfLp6p8T7dNR-6br76G4_-6Vb52zx1eJ_cGwBm8iFqxAOyE5qH5E4MOXn5iBwf0an1_aU_enARvWCbb8l-24TENj6Z96SMyZdN157CZz53LWgYWH2XTENdryF_1eBuQoIue92PkMyQ9LU9a1d4GxLqhdNY8jFZHB58nc7oEG2BlpIXGxqKymvvNCy1vZdeBZFVNgscxFU5Vlkf8lynMuXwVrBMpjYFLZTOassdLKrEE7LbQGOfkYSVTmpXWOWYyFxwRcUtVzYH9CltIcsJEWOfmnKgIseIGLUZfc5OTJSEQUkYxg1IYkLottZZpOK4obwaxWUGOBFhggHluaHm61G6BqwNj1BsE9rzteE4foFacT0hT6O0t20RiHaFhBx1RQ-2BZDJ-2pOszruGb1zXaRC6ef_-YcvyF1Iob8bZfIl2d105-EVYKSN2-v3FuD5cbm_15vAT-RHFCU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ra9swUHQdY_tS9l721GBfRSzJsuWPa2hJtyYM2kK-CcmSW4_UDm46tn_fOz9CszIK-2ifzgjdU-d7EPLFxU5y6znjIgQWi8gyJ20Kj4XkhQ65CBiHnM2T6Vn8baEWO2Qy1MJgWmWv-zud3mrr_s24P83xqizHJwLuLmCdUmRKYKXsAXkI3kCK0nm02N8EWrDhCG8HIiICQ4yhhK7N88rDsgnYuZLrNjCYyX-ZqLsu6N-ZlLdM0-FTstf7lPRrt-1nZCdUz8mjbsrknxfkYs4m1rd1fuzgd5f4Wp3T_boK1Faezto-jPRk3dSX8JkfTQ1MBYLe0ElYLq8AXlYYQKCYpdf8CnSKfV7rVV1iASTghctu5UtydnhwOpmyfsACy5XI1ixkhdfeabhde698GmRc2DgIoFDheGF9SBIdqUjAW8ljFdkIGE85q61wcI-Sr8huBZt9QyjPndIus6njMnbBZYWwIrUJOJzKZiofETmcqcn77uM4BGNphjSzn6ajhEFKGC4MUGJE2AZr1XXfuGd9OpDLbHGRAQNxD-bngboGBAz_mtgq1NdXRqDKAjdP6BF53VF7sxeJDq5UAEm3-GCzAJt3b0Oq8qJt4p3oLJKpfvvfO_5EHk9PZ8fm-Gj-_R15AhBMfGNcvSe76-Y6fABnae0-tsJwAziFFKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Cadherin-Expressing+Bone+and+Marrow+Stromal+Progenitor+Cells+Maintain+Reserve+Hematopoietic+Stem+Cells&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Zhao%2C+Meng&rft.au=Tao%2C+Fang&rft.au=Venkatraman%2C+Aparna&rft.au=Li%2C+Zhenrui&rft.date=2019-01-15&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=26&rft.issue=3&rft.spage=652&rft.epage=669.e6&rft_id=info:doi/10.1016%2Fj.celrep.2018.12.093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2018_12_093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon