Functional elements of the cis-regulatory lincRNA-p21
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood....
Saved in:
Published in | Cell reports (Cambridge) Vol. 39; no. 3; p. 110687 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.
[Display omitted]
•p53 regulates the neighboring p21 and lincRNA-p21 cooperatively•Production of nascent lincRNA-p21 promotes p21 expression in cis•Conserved elements in nascent lincRNA-p21 contribute to cis-activation•Transcription, processing, and accumulation of full-length lincRNA-p21 are dispensable
Winkler et al. analyze a series of genetic models to show that full-length production, splicing, and transcript accumulation of the long noncoding RNA lincRNA-p21 are dispensable for its role as a transcriptional activator of the neighboring gene p21. Instead, nascent transcription through conserved regions of lincRNA-p21 is sufficient for cis-activation. |
---|---|
AbstractList | The p53-induced long noncoding RNA (lncRNA)
lincRNA-p21
is proposed to act in
cis
to promote p53-dependent expression of the neighboring cell cycle gene,
Cdkn1a/p21
. The molecular mechanism through which the transcribed
lincRNA-p21
regulatory locus activates
p21
expression remains poorly understood. To elucidate the functional elements of
cis
-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of
lincRNA-p21
, or the accumulation of mature
lincRNA-p21
. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of
lincRNA-p21
are dispensable for the chromatin organization of the locus and for
cis
-regulation. Instead, we find that production of
lincRNA-p21
through conserved regions in exon 1 of
lincRNA-p21
promotes
cis
-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.
Winkler et al. analyze a series of genetic models to show that full-length production, splicing, and transcript accumulation of the long noncoding RNA
lincRNA-p21
are dispensable for its role as a transcriptional activator of the neighboring gene
p21
. Instead, nascent transcription through conserved regions of
lincRNA-p21
is sufficient for
cis
-activation. The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control. The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control. The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control. [Display omitted] •p53 regulates the neighboring p21 and lincRNA-p21 cooperatively•Production of nascent lincRNA-p21 promotes p21 expression in cis•Conserved elements in nascent lincRNA-p21 contribute to cis-activation•Transcription, processing, and accumulation of full-length lincRNA-p21 are dispensable Winkler et al. analyze a series of genetic models to show that full-length production, splicing, and transcript accumulation of the long noncoding RNA lincRNA-p21 are dispensable for its role as a transcriptional activator of the neighboring gene p21. Instead, nascent transcription through conserved regions of lincRNA-p21 is sufficient for cis-activation. |
ArticleNumber | 110687 |
Author | Williams, Adam Dimitrova, Nadya Zimmer, Joshua T. Simon, Matthew D. Jimenez, Maria Winkler, Lauren |
AuthorAffiliation | 5 Lead contact 4 The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA 1 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA 3 Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA 2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA – name: 3 Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA – name: 4 The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA – name: 2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA – name: 5 Lead contact |
Author_xml | – sequence: 1 givenname: Lauren surname: Winkler fullname: Winkler, Lauren organization: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA – sequence: 2 givenname: Maria surname: Jimenez fullname: Jimenez, Maria organization: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA – sequence: 3 givenname: Joshua T. surname: Zimmer fullname: Zimmer, Joshua T. organization: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA – sequence: 4 givenname: Adam surname: Williams fullname: Williams, Adam organization: The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA – sequence: 5 givenname: Matthew D. surname: Simon fullname: Simon, Matthew D. organization: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA – sequence: 6 givenname: Nadya surname: Dimitrova fullname: Dimitrova, Nadya email: nadya.dimitrova@yale.edu organization: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35443176$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFLHDEUhUNRqrX-gyLz6Mts5yaZTOKDIIvagiiIfQ4xc0ezZJM1mRH892bZVawPbV4SyHfOvZzzjeyEGJCQH9DMoAHxczGz6BOuZrShdAbQCNl9IfuUAtRAebfz4b1HDnNeNOWIBkDxr2SPtZwz6MQ-aS-mYEcXg_EVelxiGHMVh2p8xMq6XCd8mLwZY3qpvAv29vqsXlH4TnYH4zMebu8D8ufi_G7-q766ufw9P7uqbUvVWKOksjOKDSgNo9ziPVfYMGV6KYeuU61oB9lzTgGN6XrRDa2lRgnFqCo0YwfkdOO7mu6X2NuyXTJer5JbmvSio3H675_gHvVDfNYKQAKHYnC8NUjxacI86qXLJTpvAsYpaypaRoVUrSzo0cdZ70PesioA3wA2xZwTDu8INHrdil7oTSt63YretFJkJ59k1o1mHXnZ2Pn_ibcBYEn52WHS2ToMFnuX0I66j-7fBq-aRqld |
CitedBy_id | crossref_primary_10_1016_j_celrep_2022_111893 crossref_primary_10_7717_peerj_17933 crossref_primary_10_3390_ijms23116258 crossref_primary_10_3389_fcell_2023_1205540 crossref_primary_10_1080_19491034_2024_2350182 crossref_primary_10_1038_s41580_023_00694_9 crossref_primary_10_1002_jcp_31414 crossref_primary_10_3390_life12111770 crossref_primary_10_1016_j_fmre_2023_03_006 crossref_primary_10_1007_s00439_023_02604_7 crossref_primary_10_1038_s41417_023_00662_7 crossref_primary_10_1016_j_crstbi_2023_100099 crossref_primary_10_1016_j_indcrop_2024_118744 crossref_primary_10_1016_j_xgen_2022_100177 crossref_primary_10_1161_CIRCRESAHA_123_323356 crossref_primary_10_1002_iub_2690 crossref_primary_10_1016_j_gene_2024_148988 crossref_primary_10_1016_j_jep_2023_117547 crossref_primary_10_20517_jtgg_2024_24 crossref_primary_10_1007_s10753_023_01919_x crossref_primary_10_1007_s12031_024_02258_8 crossref_primary_10_1038_s41392_023_01347_1 crossref_primary_10_3390_cancers16152728 crossref_primary_10_1089_dna_2023_0202 crossref_primary_10_3390_genes15060758 |
Cites_doi | 10.7554/eLife.01749 10.1016/j.molcel.2012.06.027 10.1016/j.molcel.2019.12.029 10.1016/j.molcel.2013.11.004 10.1016/j.molcel.2019.12.011 10.1038/nature20128 10.1016/j.molcel.2014.04.025 10.1126/science.1228110 10.1038/s41467-017-01804-w 10.7554/eLife.02200 10.1016/j.molcel.2015.04.006 10.1016/j.cell.2010.06.040 10.1038/nature19346 10.1002/jcp.28714 10.1038/nprot.2007.243 10.1101/gad.3.7.1019 10.1038/nbt.3450 10.1126/science.aad3346 10.1016/j.celrep.2016.07.050 10.1016/j.cell.2017.09.001 10.1038/nature07672 10.1261/rna.053918.115 10.1016/j.ceb.2020.04.009 10.1016/j.molcel.2016.02.029 10.1016/j.cell.2018.01.011 10.1126/science.1163802 10.1038/nbt.3390 10.1038/nchembio.1386 10.1016/j.celrep.2019.02.059 10.1038/nature20149 10.1016/j.molcel.2013.07.010 10.1038/nmeth.4582 10.1016/j.ymeth.2012.07.022 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2022.110687 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 110687 |
ExternalDocumentID | PMC9118141 35443176 10_1016_j_celrep_2022_110687 S2211124722004454 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R37 CA230580 – fundername: NIGMS NIH HHS grantid: T32 GM007223 – fundername: NIGMS NIH HHS grantid: R01 GM137117 – fundername: NCI NIH HHS grantid: P50 CA196530 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-e8287a93fe8a324ceb49e039ad88f779565f8d4421eaa7d67f5c2a9693294ce33 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Thu Aug 21 13:26:23 EDT 2025 Fri Jul 11 07:22:13 EDT 2025 Mon Jul 21 06:01:06 EDT 2025 Tue Jul 01 02:59:26 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Tue Jul 25 20:58:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | long noncoding RNA cis-regulation CP: Molecular biology transcription lincRNA-p21 genetic models |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-e8287a93fe8a324ceb49e039ad88f779565f8d4421eaa7d67f5c2a9693294ce33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS L.W. and N.D. designed the study, performed experiments, analyzed data, generated figures, and prepared the manuscript. M.J. performed experiments and analyzed data. A.W. enabled the generation of the mouse models with input from L.W. and N.D. J.Z. and M.S. performed analysis of metabolically labeled RNA. All authors approved the final manuscript. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124722004454 |
PMID | 35443176 |
PQID | 2653268958 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9118141 proquest_miscellaneous_2653268958 pubmed_primary_35443176 crossref_primary_10_1016_j_celrep_2022_110687 crossref_citationtrail_10_1016_j_celrep_2022_110687 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110687 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-19 |
PublicationDateYYYYMMDD | 2022-04-19 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Korkmaz, Lopes, Ugalde, Nevedomskaya, Han, Myacheva, Zwart, Elkon, Agami (bib18) 2016; 34 Levitt, Briggs, Gil, Proudfoot (bib23) 1989; 3 Roth, Weinberg, Chen, Kim, Ames, Breaker (bib27) 2014; 10 Yoon, Abdelmohsen, Srikantan, Yang, Martindale, De, Huarte, Zhan, Becker, Gorospe (bib35) 2012; 47 Huarte, Guttman, Feldser, Garber, Koziol, Kenzelmann-Broz, Khalil, Zuk, Amit, Rabani (bib14) 2010; 142 Isoda, Moore, He, Chandra, Aida, Denholtz, Piet van Hamburg, Fisch, Chang, Fahl (bib15) 2017; 171 Ao, Jiang, Zhou, Liang, Xia, Chen (bib4) 2019; 41 Schofield, Duffy, Kiefer, Sullivan, Simon (bib29) 2018; 15 Blank-Giwojna, Postepska-Igielska, Grummt (bib5) 2019; 26 Dimitrova, Zamudio, Jong, Soukup, Resnick, Sarma, Ward, Raj, Lee, Sharp, Jacks (bib9) 2014; 54 Guttman, Amit, Garber, French, Lin, Feldser, Huarte, Zuk, Carey, Cassady (bib12) 2009; 458 Nagano, Mitchell, Sanz, Pauler, Ferguson-Smith, Feil, Fraser (bib24) 2008; 322 Chillón, Pyle (bib6) 2016; 44 Alexanian, Maric, Jenkinson, Mina, Friedman, Ting, Micheletti, Plaisance, Nemir, Maison (bib1) 2017; 8 Lee, Mendell (bib22) 2020; 77 Scruggs, Gilchrist, Nechaev, Muse, Burkholder, Fargo, Adelman (bib30) 2015; 58 Groff, Sanchez-Gomez, Soruco, Gerhardinger, Barutcu, Li, Elcavage, Plana, Sanchez, Lee (bib11) 2016; 16 Hagege, Klous, Braem, Splinter, Dekker, Cathala, de Laat, Forne (bib13) 2007; 2 Anderson, Anderson, McAnally, Shelton, Bassel-Duby, Olson (bib3) 2016; 539 Sauvageau, Goff, Lodato, Bonev, Groff, Gerhardinger, Sanchez-Gomez, Hacisuleyman, Li, Spence (bib28) 2013; 2 Yang, Zhang, Mei, Wu (bib34) 2014; 53 Davidovich, Cech (bib8) 2015; 21 Kaikkonen, Spann, Heinz, Romanoski, Allison, Stender, Chun, Tough, Prinjha, Benner, Glass (bib16) 2013; 51 Engreitz, Haines, Perez, Munson, Chen, Kane, McDonel, Guttman, Lander (bib10) 2016; 539 Lai, Damle, Ling, Rigo (bib20) 2020; 77 Dahlman, Abudayyeh, Joung, Gootenberg, Zhang, Konermann (bib7) 2015; 33 Latos, Pauler, Koerner, Senergin, Hudson, Stocsits, Allhoff, Stricker, Klement, Warczok (bib21) 2012; 338 Paralkar, Taborda, Huang, Yao, Kossenkov, Prasad, Luan, Davies, Hughes, Hardison (bib26) 2016; 62 Kopp, Mendell (bib17) 2018; 172 Naumova, Smith, Zhan, Dekker (bib25) 2012; 58 Kotzin, Spencer, McCright, Kumar, Collet, Mowel, Elliott, Uyar, Makiya, Dunagin (bib19) 2016; 537 Sigova, Abraham, Ji, Molinie, Hannett, Guo, Jangi, Giallourakis, Sharp, Young (bib31) 2015; 350 Allen, Andrysik, Dengler, Mellert, Guarnieri, Freeman, Sullivan, Galbraith, Luo, Kraus (bib2) 2014; 3 Strehle, Guttman (bib32) 2020; 64 Sun, Zeng, Chen, Zhang, Wei, Chen (bib33) 2019; 234 Korkmaz (10.1016/j.celrep.2022.110687_bib18) 2016; 34 Latos (10.1016/j.celrep.2022.110687_bib21) 2012; 338 Nagano (10.1016/j.celrep.2022.110687_bib24) 2008; 322 Paralkar (10.1016/j.celrep.2022.110687_bib26) 2016; 62 Davidovich (10.1016/j.celrep.2022.110687_bib8) 2015; 21 Scruggs (10.1016/j.celrep.2022.110687_bib30) 2015; 58 Naumova (10.1016/j.celrep.2022.110687_bib25) 2012; 58 Engreitz (10.1016/j.celrep.2022.110687_bib10) 2016; 539 Yoon (10.1016/j.celrep.2022.110687_bib35) 2012; 47 Ao (10.1016/j.celrep.2022.110687_bib4) 2019; 41 Sigova (10.1016/j.celrep.2022.110687_bib31) 2015; 350 Lai (10.1016/j.celrep.2022.110687_bib20) 2020; 77 Anderson (10.1016/j.celrep.2022.110687_bib3) 2016; 539 Blank-Giwojna (10.1016/j.celrep.2022.110687_bib5) 2019; 26 Lee (10.1016/j.celrep.2022.110687_bib22) 2020; 77 Roth (10.1016/j.celrep.2022.110687_bib27) 2014; 10 Yang (10.1016/j.celrep.2022.110687_bib34) 2014; 53 Kopp (10.1016/j.celrep.2022.110687_bib17) 2018; 172 Kaikkonen (10.1016/j.celrep.2022.110687_bib16) 2013; 51 Guttman (10.1016/j.celrep.2022.110687_bib12) 2009; 458 Sun (10.1016/j.celrep.2022.110687_bib33) 2019; 234 Levitt (10.1016/j.celrep.2022.110687_bib23) 1989; 3 Schofield (10.1016/j.celrep.2022.110687_bib29) 2018; 15 Huarte (10.1016/j.celrep.2022.110687_bib14) 2010; 142 Isoda (10.1016/j.celrep.2022.110687_bib15) 2017; 171 Strehle (10.1016/j.celrep.2022.110687_bib32) 2020; 64 Alexanian (10.1016/j.celrep.2022.110687_bib1) 2017; 8 Kotzin (10.1016/j.celrep.2022.110687_bib19) 2016; 537 Chillón (10.1016/j.celrep.2022.110687_bib6) 2016; 44 Hagege (10.1016/j.celrep.2022.110687_bib13) 2007; 2 Dahlman (10.1016/j.celrep.2022.110687_bib7) 2015; 33 Dimitrova (10.1016/j.celrep.2022.110687_bib9) 2014; 54 Groff (10.1016/j.celrep.2022.110687_bib11) 2016; 16 Allen (10.1016/j.celrep.2022.110687_bib2) 2014; 3 Sauvageau (10.1016/j.celrep.2022.110687_bib28) 2013; 2 |
References_xml | – volume: 10 start-page: 56 year: 2014 end-page: 60 ident: bib27 article-title: A widespread self-cleaving ribozyme class is revealed by bioinformatics publication-title: Nat. Chem. Biol. – volume: 51 start-page: 310 year: 2013 end-page: 325 ident: bib16 article-title: Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription publication-title: Mol. Cell – volume: 172 start-page: 393 year: 2018 end-page: 407 ident: bib17 article-title: Functional classification and experimental dissection of long noncoding RNAs publication-title: Cell – volume: 34 start-page: 192 year: 2016 end-page: 198 ident: bib18 article-title: Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 publication-title: Nat. Biotechnol. – volume: 539 start-page: 433 year: 2016 end-page: 436 ident: bib3 article-title: Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development publication-title: Nature – volume: 350 start-page: 978 year: 2015 end-page: 981 ident: bib31 article-title: Transcription factor trapping by RNA in gene regulatory elements publication-title: Science – volume: 77 start-page: 1032 year: 2020 end-page: 1043.e4 ident: bib20 article-title: Directed RNase H cleavage of nascent transcripts causes transcription termination publication-title: Mol. Cell – volume: 3 start-page: e02200 year: 2014 ident: bib2 article-title: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms publication-title: Elife – volume: 21 start-page: 2007 year: 2015 end-page: 2022 ident: bib8 article-title: The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2 publication-title: RNA – volume: 33 start-page: 1159 year: 2015 end-page: 1161 ident: bib7 article-title: Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease publication-title: Nat. Biotechnol. – volume: 41 start-page: 789 year: 2019 end-page: 800 ident: bib4 article-title: lincRNA-p21 inhibits the progression of non-small cell lung cancer via targeting miR-17-5p publication-title: Oncol. Rep. – volume: 338 start-page: 1469 year: 2012 end-page: 1472 ident: bib21 article-title: Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing publication-title: Science – volume: 47 start-page: 648 year: 2012 end-page: 655 ident: bib35 article-title: LincRNA-p21 suppresses target mRNA translation publication-title: Mol. Cell – volume: 44 start-page: 9462 year: 2016 end-page: 9471 ident: bib6 article-title: Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function publication-title: Nucleic Acids Res. – volume: 3 start-page: 1019 year: 1989 end-page: 1025 ident: bib23 article-title: Definition of an efficient synthetic poly(A) site publication-title: Genes Dev. – volume: 15 start-page: 221 year: 2018 end-page: 225 ident: bib29 article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding publication-title: Nat. Methods – volume: 234 start-page: 21113 year: 2019 end-page: 21125 ident: bib33 article-title: Long intergenic noncoding RNA p21 suppresses the apoptosis of hippocampus neurons in streptozotocin-diabetic mice by sponging microRNA-221 through upregulation of FOS publication-title: J. Cell Physiol. – volume: 2 start-page: e01749 year: 2013 ident: bib28 article-title: Multiple knockout mouse models reveal lincRNAs are required for life and brain development publication-title: Elife – volume: 539 start-page: 452 year: 2016 end-page: 455 ident: bib10 article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing publication-title: Nature – volume: 322 start-page: 1717 year: 2008 end-page: 1720 ident: bib24 article-title: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin publication-title: Science – volume: 2 start-page: 1722 year: 2007 end-page: 1733 ident: bib13 article-title: Quantitative analysis of chromosome conformation capture assays (3C-qPCR) publication-title: Nat. Protoc. – volume: 77 start-page: 1044 year: 2020 end-page: 1054.e3 ident: bib22 article-title: Antisense-mediated transcript knockdown triggers premature transcription termination publication-title: Mol. Cell – volume: 26 start-page: 2904 year: 2019 end-page: 2915.e4 ident: bib5 article-title: lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators publication-title: Cell Rep. – volume: 8 start-page: 1806 year: 2017 ident: bib1 article-title: A transcribed enhancer dictates mesendoderm specification in pluripotency publication-title: Nat. Commun. – volume: 62 start-page: 104 year: 2016 end-page: 110 ident: bib26 article-title: Unlinking an lncRNA from its associated cis element publication-title: Mol. Cell – volume: 171 start-page: 103 year: 2017 end-page: 119.e18 ident: bib15 article-title: Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate publication-title: Cell – volume: 16 start-page: 2178 year: 2016 end-page: 2186 ident: bib11 article-title: In vivo characterization of linc-p21 reveals functional cis-regulatory DNA elements publication-title: Cell Rep. – volume: 537 start-page: 239 year: 2016 end-page: 243 ident: bib19 article-title: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan publication-title: Nature – volume: 54 start-page: 777 year: 2014 end-page: 790 ident: bib9 article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint publication-title: Mol. Cell – volume: 458 start-page: 223 year: 2009 end-page: 227 ident: bib12 article-title: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals publication-title: Nature – volume: 58 start-page: 192 year: 2012 end-page: 203 ident: bib25 article-title: Analysis of long-range chromatin interactions using chromosome conformation capture publication-title: Methods – volume: 58 start-page: 1101 year: 2015 end-page: 1112 ident: bib30 article-title: Upstream anti-sense promoters are hubs of transcription factor binding and active histone modifications publication-title: Mol. Cell – volume: 142 start-page: 409 year: 2010 end-page: 419 ident: bib14 article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response publication-title: Cell – volume: 53 start-page: 88 year: 2014 end-page: 100 ident: bib34 article-title: Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect publication-title: Mol. Cell – volume: 64 start-page: 139 year: 2020 end-page: 147 ident: bib32 article-title: Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation publication-title: Curr. Opin. Cell Biol. – volume: 2 start-page: e01749 year: 2013 ident: 10.1016/j.celrep.2022.110687_bib28 article-title: Multiple knockout mouse models reveal lincRNAs are required for life and brain development publication-title: Elife doi: 10.7554/eLife.01749 – volume: 47 start-page: 648 year: 2012 ident: 10.1016/j.celrep.2022.110687_bib35 article-title: LincRNA-p21 suppresses target mRNA translation publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.027 – volume: 77 start-page: 1032 year: 2020 ident: 10.1016/j.celrep.2022.110687_bib20 article-title: Directed RNase H cleavage of nascent transcripts causes transcription termination publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.12.029 – volume: 53 start-page: 88 year: 2014 ident: 10.1016/j.celrep.2022.110687_bib34 article-title: Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.11.004 – volume: 77 start-page: 1044 year: 2020 ident: 10.1016/j.celrep.2022.110687_bib22 article-title: Antisense-mediated transcript knockdown triggers premature transcription termination publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.12.011 – volume: 539 start-page: 433 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib3 article-title: Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development publication-title: Nature doi: 10.1038/nature20128 – volume: 54 start-page: 777 year: 2014 ident: 10.1016/j.celrep.2022.110687_bib9 article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.025 – volume: 338 start-page: 1469 year: 2012 ident: 10.1016/j.celrep.2022.110687_bib21 article-title: Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing publication-title: Science doi: 10.1126/science.1228110 – volume: 8 start-page: 1806 year: 2017 ident: 10.1016/j.celrep.2022.110687_bib1 article-title: A transcribed enhancer dictates mesendoderm specification in pluripotency publication-title: Nat. Commun. doi: 10.1038/s41467-017-01804-w – volume: 44 start-page: 9462 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib6 article-title: Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function publication-title: Nucleic Acids Res. – volume: 3 start-page: e02200 year: 2014 ident: 10.1016/j.celrep.2022.110687_bib2 article-title: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms publication-title: Elife doi: 10.7554/eLife.02200 – volume: 58 start-page: 1101 year: 2015 ident: 10.1016/j.celrep.2022.110687_bib30 article-title: Upstream anti-sense promoters are hubs of transcription factor binding and active histone modifications publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.04.006 – volume: 142 start-page: 409 year: 2010 ident: 10.1016/j.celrep.2022.110687_bib14 article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response publication-title: Cell doi: 10.1016/j.cell.2010.06.040 – volume: 537 start-page: 239 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib19 article-title: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan publication-title: Nature doi: 10.1038/nature19346 – volume: 234 start-page: 21113 year: 2019 ident: 10.1016/j.celrep.2022.110687_bib33 article-title: Long intergenic noncoding RNA p21 suppresses the apoptosis of hippocampus neurons in streptozotocin-diabetic mice by sponging microRNA-221 through upregulation of FOS publication-title: J. Cell Physiol. doi: 10.1002/jcp.28714 – volume: 2 start-page: 1722 year: 2007 ident: 10.1016/j.celrep.2022.110687_bib13 article-title: Quantitative analysis of chromosome conformation capture assays (3C-qPCR) publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.243 – volume: 3 start-page: 1019 year: 1989 ident: 10.1016/j.celrep.2022.110687_bib23 article-title: Definition of an efficient synthetic poly(A) site publication-title: Genes Dev. doi: 10.1101/gad.3.7.1019 – volume: 34 start-page: 192 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib18 article-title: Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3450 – volume: 350 start-page: 978 year: 2015 ident: 10.1016/j.celrep.2022.110687_bib31 article-title: Transcription factor trapping by RNA in gene regulatory elements publication-title: Science doi: 10.1126/science.aad3346 – volume: 16 start-page: 2178 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib11 article-title: In vivo characterization of linc-p21 reveals functional cis-regulatory DNA elements publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.050 – volume: 171 start-page: 103 year: 2017 ident: 10.1016/j.celrep.2022.110687_bib15 article-title: Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate publication-title: Cell doi: 10.1016/j.cell.2017.09.001 – volume: 458 start-page: 223 year: 2009 ident: 10.1016/j.celrep.2022.110687_bib12 article-title: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals publication-title: Nature doi: 10.1038/nature07672 – volume: 21 start-page: 2007 year: 2015 ident: 10.1016/j.celrep.2022.110687_bib8 article-title: The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2 publication-title: RNA doi: 10.1261/rna.053918.115 – volume: 64 start-page: 139 year: 2020 ident: 10.1016/j.celrep.2022.110687_bib32 article-title: Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2020.04.009 – volume: 62 start-page: 104 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib26 article-title: Unlinking an lncRNA from its associated cis element publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.029 – volume: 172 start-page: 393 year: 2018 ident: 10.1016/j.celrep.2022.110687_bib17 article-title: Functional classification and experimental dissection of long noncoding RNAs publication-title: Cell doi: 10.1016/j.cell.2018.01.011 – volume: 322 start-page: 1717 year: 2008 ident: 10.1016/j.celrep.2022.110687_bib24 article-title: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin publication-title: Science doi: 10.1126/science.1163802 – volume: 33 start-page: 1159 year: 2015 ident: 10.1016/j.celrep.2022.110687_bib7 article-title: Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3390 – volume: 10 start-page: 56 year: 2014 ident: 10.1016/j.celrep.2022.110687_bib27 article-title: A widespread self-cleaving ribozyme class is revealed by bioinformatics publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1386 – volume: 26 start-page: 2904 year: 2019 ident: 10.1016/j.celrep.2022.110687_bib5 article-title: lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.059 – volume: 539 start-page: 452 year: 2016 ident: 10.1016/j.celrep.2022.110687_bib10 article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing publication-title: Nature doi: 10.1038/nature20149 – volume: 51 start-page: 310 year: 2013 ident: 10.1016/j.celrep.2022.110687_bib16 article-title: Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.07.010 – volume: 41 start-page: 789 year: 2019 ident: 10.1016/j.celrep.2022.110687_bib4 article-title: lincRNA-p21 inhibits the progression of non-small cell lung cancer via targeting miR-17-5p publication-title: Oncol. Rep. – volume: 15 start-page: 221 year: 2018 ident: 10.1016/j.celrep.2022.110687_bib29 article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding publication-title: Nat. Methods doi: 10.1038/nmeth.4582 – volume: 58 start-page: 192 year: 2012 ident: 10.1016/j.celrep.2022.110687_bib25 article-title: Analysis of long-range chromatin interactions using chromosome conformation capture publication-title: Methods doi: 10.1016/j.ymeth.2012.07.022 |
SSID | ssj0000601194 |
Score | 2.459513 |
Snippet | The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene,... The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110687 |
SubjectTerms | cis-regulation genetic models lincRNA-p21 long noncoding RNA RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism transcription Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
SummonAdditionalLinks | – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR364vKngNax5NmqOKiwjuwQfsLTRpiivSXfZx8N8707SLq4Lgse2Ehpl25ksy8w0hF4XUjjMHixxfCCqVLKkpWaDSOFZmQnCdYzXyw0Ddvcj7YTrskJu2FgbTKhvfH3167a2bO71Gm73JaNR74rB2geikORpapsgJKmRWF_ENr5f7LMg3wup-iChPcUBbQVenefnwPg1IXMk5psQrzK37PUL9RKDfEym_RKb-FtlsIGVyFWe9TTqh2iHrscnkxy5J-xC64o5fEmKy-CwZlwkgv8SPZnQau9GPpx8JQE7_OLiiE872yEv_9vnmjjbNEqhPuZnTgMz1uRFlyHIAST44acKlMHmRZaXWsAxKy6yQkrOQ57pQukw9z40C_GZAWoh9slaNq3BIEgdK8LBOckpLaS65U94DDgAkJR1E96JLRKsg6xsmcWxo8W7blLE3G9VqUa02qrVL6HLUJDJp_CGvW93blS_CgrP_Y-R5ayoLPwuegORVGC9mlqsU4Gpm0qxLDqLplnMRyATItIL3rhh1KYBE3KtPqtFrTchtsHpXsqN_z_iYbOAVnlIxc0LW5tNFOAWwM3dn9df8CTd9-wk priority: 102 providerName: Elsevier |
Title | Functional elements of the cis-regulatory lincRNA-p21 |
URI | https://dx.doi.org/10.1016/j.celrep.2022.110687 https://www.ncbi.nlm.nih.gov/pubmed/35443176 https://www.proquest.com/docview/2653268958 https://pubmed.ncbi.nlm.nih.gov/PMC9118141 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFD5MRfFFvDsvo4KvEZukTfMgouKYwnwQB3sLTZqiMjrtJrh_78nSzju-9KVJW85Jer6TnHwfwFHGhaahxiTHZIzwmOdE5qElXOowTxijInWnkbu3cafHb_pRvwG1ZmtlwNGvqZ3Tk-qVg-O3l8kZTvjTj1otYweldeyTlLq69jgRc7CAsUk4TYNuBfj9v9lxnPH6DN0fnZdhiTleuNAxkfwern7C0e9VlZ_CVHsVVip8GZz7AbEGDVusw6JXnJxsQNTGOOaX_wLrK8dHwTAPEAYG5nFESi9NPywnAeJPc3d7Tp5puAm99tX9ZYdUygnERFSOiXU09qlkuU1SREzGai7tCZNpliS5EJgTRXmScU5Dm6Yii0UeGZrKGMGcxNaMbcF8MSzsDgQa7WEwadKx4FyeUB0bg6AAYRXXGOqzJrDaQMpUtOJO3WKg6vqxJ-UtrJyFlbdwE8is17On1finvahtrypo4EO-woHwT8_D2lUKZ47bDkkLO3wdKRpHiF0TGSVN2Paum31L7X587xenzho4Vu6vd4rHhyk7t3RHeXm4--cz92DZfZ_bkgrlPsyPy1d7gMhmrFvTFQG8XvcvWtOB-w4i6PZP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQguiPIMUFgkOFqpvV57feBQHlFC2xyglXIza6-Xpqo2UZIK5XfxB5lZ70YEkCoh9bq2tdY39sw39ngG4E0ptRPcoZPjy5RJJStmKh6YNI5XeZoKXdBr5JOxGp7Jz5NssgM_u7cwFFbZ6v6o0xtt3X7pt2j259Np_6tA3wWtkxYkaJnJNrLyKKx_oN-2fDf6iEJ-K8Tg0-mHIWtLCzCfCbNigfK8FyatQl4gpfDBSRMOUlOUeV5pjU5DVuWllIKHotCl0lXmRWEUsh2DvekUFPX-LWQfmrTBaPJ-c7BDCU54U4CRJshoht2TvSauzIfLRaBMmUJQDL6iYL5_m8S_Ke-fkZu_mcLBfbjXctjkMMK0BzuhfgC3Y1XL9UPIBmgr4xFjEmJ0-jKZVQlSzcRPl2wRvlPNsNlinSDH9V_Gh2wu-CM4uxEIH8NuPavDU0gcguDRMXNKS2kOhFPeI_FA6iYd0omyB2kHkPVt6nKqoHFpuxi1CxthtQSrjbD2gG1GzWPqjmv66w57u7UELVqXa0a-7kRlcXfSlUtRh9nV0gqVIT_OTZb34EkU3WYuKaUe5Frhf7eEuulAmb-3W-rpeZMB3NBzYcmf_feMX8Gd4enJsT0ejY-ew11qoSsybl7A7mpxFfaRaa3cy2ZlJ_DtprfSL7bEOBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+elements+of+the+cis-regulatory+lincRNA-p21&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Winkler%2C+Lauren&rft.au=Jimenez%2C+Maria&rft.au=Zimmer%2C+Joshua+T&rft.au=Williams%2C+Adam&rft.date=2022-04-19&rft.eissn=2211-1247&rft.volume=39&rft.issue=3&rft.spage=110687&rft_id=info:doi/10.1016%2Fj.celrep.2022.110687&rft_id=info%3Apmid%2F35443176&rft.externalDocID=35443176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |