Functional elements of the cis-regulatory lincRNA-p21

The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood....

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 39; no. 3; p. 110687
Main Authors Winkler, Lauren, Jimenez, Maria, Zimmer, Joshua T., Williams, Adam, Simon, Matthew D., Dimitrova, Nadya
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control. [Display omitted] •p53 regulates the neighboring p21 and lincRNA-p21 cooperatively•Production of nascent lincRNA-p21 promotes p21 expression in cis•Conserved elements in nascent lincRNA-p21 contribute to cis-activation•Transcription, processing, and accumulation of full-length lincRNA-p21 are dispensable Winkler et al. analyze a series of genetic models to show that full-length production, splicing, and transcript accumulation of the long noncoding RNA lincRNA-p21 are dispensable for its role as a transcriptional activator of the neighboring gene p21. Instead, nascent transcription through conserved regions of lincRNA-p21 is sufficient for cis-activation.
AbstractList The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21 . The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis -regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21 , or the accumulation of mature lincRNA-p21 . Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis -regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis -activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control. Winkler et al. analyze a series of genetic models to show that full-length production, splicing, and transcript accumulation of the long noncoding RNA lincRNA-p21 are dispensable for its role as a transcriptional activator of the neighboring gene p21 . Instead, nascent transcription through conserved regions of lincRNA-p21 is sufficient for cis -activation.
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control. [Display omitted] •p53 regulates the neighboring p21 and lincRNA-p21 cooperatively•Production of nascent lincRNA-p21 promotes p21 expression in cis•Conserved elements in nascent lincRNA-p21 contribute to cis-activation•Transcription, processing, and accumulation of full-length lincRNA-p21 are dispensable Winkler et al. analyze a series of genetic models to show that full-length production, splicing, and transcript accumulation of the long noncoding RNA lincRNA-p21 are dispensable for its role as a transcriptional activator of the neighboring gene p21. Instead, nascent transcription through conserved regions of lincRNA-p21 is sufficient for cis-activation.
ArticleNumber 110687
Author Williams, Adam
Dimitrova, Nadya
Zimmer, Joshua T.
Simon, Matthew D.
Jimenez, Maria
Winkler, Lauren
AuthorAffiliation 5 Lead contact
4 The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
1 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
3 Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
AuthorAffiliation_xml – name: 1 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
– name: 3 Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
– name: 4 The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
– name: 2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
– name: 5 Lead contact
Author_xml – sequence: 1
  givenname: Lauren
  surname: Winkler
  fullname: Winkler, Lauren
  organization: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
– sequence: 2
  givenname: Maria
  surname: Jimenez
  fullname: Jimenez, Maria
  organization: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
– sequence: 3
  givenname: Joshua T.
  surname: Zimmer
  fullname: Zimmer, Joshua T.
  organization: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
– sequence: 4
  givenname: Adam
  surname: Williams
  fullname: Williams, Adam
  organization: The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
– sequence: 5
  givenname: Matthew D.
  surname: Simon
  fullname: Simon, Matthew D.
  organization: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
– sequence: 6
  givenname: Nadya
  surname: Dimitrova
  fullname: Dimitrova, Nadya
  email: nadya.dimitrova@yale.edu
  organization: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35443176$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFLHDEUhUNRqrX-gyLz6Mts5yaZTOKDIIvagiiIfQ4xc0ezZJM1mRH892bZVawPbV4SyHfOvZzzjeyEGJCQH9DMoAHxczGz6BOuZrShdAbQCNl9IfuUAtRAebfz4b1HDnNeNOWIBkDxr2SPtZwz6MQ-aS-mYEcXg_EVelxiGHMVh2p8xMq6XCd8mLwZY3qpvAv29vqsXlH4TnYH4zMebu8D8ufi_G7-q766ufw9P7uqbUvVWKOksjOKDSgNo9ziPVfYMGV6KYeuU61oB9lzTgGN6XrRDa2lRgnFqCo0YwfkdOO7mu6X2NuyXTJer5JbmvSio3H675_gHvVDfNYKQAKHYnC8NUjxacI86qXLJTpvAsYpaypaRoVUrSzo0cdZ70PesioA3wA2xZwTDu8INHrdil7oTSt63YretFJkJ59k1o1mHXnZ2Pn_ibcBYEn52WHS2ToMFnuX0I66j-7fBq-aRqld
CitedBy_id crossref_primary_10_1016_j_celrep_2022_111893
crossref_primary_10_7717_peerj_17933
crossref_primary_10_3390_ijms23116258
crossref_primary_10_3389_fcell_2023_1205540
crossref_primary_10_1080_19491034_2024_2350182
crossref_primary_10_1038_s41580_023_00694_9
crossref_primary_10_1002_jcp_31414
crossref_primary_10_3390_life12111770
crossref_primary_10_1016_j_fmre_2023_03_006
crossref_primary_10_1007_s00439_023_02604_7
crossref_primary_10_1038_s41417_023_00662_7
crossref_primary_10_1016_j_crstbi_2023_100099
crossref_primary_10_1016_j_indcrop_2024_118744
crossref_primary_10_1016_j_xgen_2022_100177
crossref_primary_10_1161_CIRCRESAHA_123_323356
crossref_primary_10_1002_iub_2690
crossref_primary_10_1016_j_gene_2024_148988
crossref_primary_10_1016_j_jep_2023_117547
crossref_primary_10_20517_jtgg_2024_24
crossref_primary_10_1007_s10753_023_01919_x
crossref_primary_10_1007_s12031_024_02258_8
crossref_primary_10_1038_s41392_023_01347_1
crossref_primary_10_3390_cancers16152728
crossref_primary_10_1089_dna_2023_0202
crossref_primary_10_3390_genes15060758
Cites_doi 10.7554/eLife.01749
10.1016/j.molcel.2012.06.027
10.1016/j.molcel.2019.12.029
10.1016/j.molcel.2013.11.004
10.1016/j.molcel.2019.12.011
10.1038/nature20128
10.1016/j.molcel.2014.04.025
10.1126/science.1228110
10.1038/s41467-017-01804-w
10.7554/eLife.02200
10.1016/j.molcel.2015.04.006
10.1016/j.cell.2010.06.040
10.1038/nature19346
10.1002/jcp.28714
10.1038/nprot.2007.243
10.1101/gad.3.7.1019
10.1038/nbt.3450
10.1126/science.aad3346
10.1016/j.celrep.2016.07.050
10.1016/j.cell.2017.09.001
10.1038/nature07672
10.1261/rna.053918.115
10.1016/j.ceb.2020.04.009
10.1016/j.molcel.2016.02.029
10.1016/j.cell.2018.01.011
10.1126/science.1163802
10.1038/nbt.3390
10.1038/nchembio.1386
10.1016/j.celrep.2019.02.059
10.1038/nature20149
10.1016/j.molcel.2013.07.010
10.1038/nmeth.4582
10.1016/j.ymeth.2012.07.022
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2022.110687
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 110687
ExternalDocumentID PMC9118141
35443176
10_1016_j_celrep_2022_110687
S2211124722004454
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R37 CA230580
– fundername: NIGMS NIH HHS
  grantid: T32 GM007223
– fundername: NIGMS NIH HHS
  grantid: R01 GM137117
– fundername: NCI NIH HHS
  grantid: P50 CA196530
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-e8287a93fe8a324ceb49e039ad88f779565f8d4421eaa7d67f5c2a9693294ce33
IEDL.DBID M48
ISSN 2211-1247
IngestDate Thu Aug 21 13:26:23 EDT 2025
Fri Jul 11 07:22:13 EDT 2025
Mon Jul 21 06:01:06 EDT 2025
Tue Jul 01 02:59:26 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Tue Jul 25 20:58:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords long noncoding RNA
cis-regulation
CP: Molecular biology
transcription
lincRNA-p21
genetic models
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-e8287a93fe8a324ceb49e039ad88f779565f8d4421eaa7d67f5c2a9693294ce33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
L.W. and N.D. designed the study, performed experiments, analyzed data, generated figures, and prepared the manuscript. M.J. performed experiments and analyzed data. A.W. enabled the generation of the mouse models with input from L.W. and N.D. J.Z. and M.S. performed analysis of metabolically labeled RNA. All authors approved the final manuscript.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124722004454
PMID 35443176
PQID 2653268958
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9118141
proquest_miscellaneous_2653268958
pubmed_primary_35443176
crossref_primary_10_1016_j_celrep_2022_110687
crossref_citationtrail_10_1016_j_celrep_2022_110687
elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-19
PublicationDateYYYYMMDD 2022-04-19
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Korkmaz, Lopes, Ugalde, Nevedomskaya, Han, Myacheva, Zwart, Elkon, Agami (bib18) 2016; 34
Levitt, Briggs, Gil, Proudfoot (bib23) 1989; 3
Roth, Weinberg, Chen, Kim, Ames, Breaker (bib27) 2014; 10
Yoon, Abdelmohsen, Srikantan, Yang, Martindale, De, Huarte, Zhan, Becker, Gorospe (bib35) 2012; 47
Huarte, Guttman, Feldser, Garber, Koziol, Kenzelmann-Broz, Khalil, Zuk, Amit, Rabani (bib14) 2010; 142
Isoda, Moore, He, Chandra, Aida, Denholtz, Piet van Hamburg, Fisch, Chang, Fahl (bib15) 2017; 171
Ao, Jiang, Zhou, Liang, Xia, Chen (bib4) 2019; 41
Schofield, Duffy, Kiefer, Sullivan, Simon (bib29) 2018; 15
Blank-Giwojna, Postepska-Igielska, Grummt (bib5) 2019; 26
Dimitrova, Zamudio, Jong, Soukup, Resnick, Sarma, Ward, Raj, Lee, Sharp, Jacks (bib9) 2014; 54
Guttman, Amit, Garber, French, Lin, Feldser, Huarte, Zuk, Carey, Cassady (bib12) 2009; 458
Nagano, Mitchell, Sanz, Pauler, Ferguson-Smith, Feil, Fraser (bib24) 2008; 322
Chillón, Pyle (bib6) 2016; 44
Alexanian, Maric, Jenkinson, Mina, Friedman, Ting, Micheletti, Plaisance, Nemir, Maison (bib1) 2017; 8
Lee, Mendell (bib22) 2020; 77
Scruggs, Gilchrist, Nechaev, Muse, Burkholder, Fargo, Adelman (bib30) 2015; 58
Groff, Sanchez-Gomez, Soruco, Gerhardinger, Barutcu, Li, Elcavage, Plana, Sanchez, Lee (bib11) 2016; 16
Hagege, Klous, Braem, Splinter, Dekker, Cathala, de Laat, Forne (bib13) 2007; 2
Anderson, Anderson, McAnally, Shelton, Bassel-Duby, Olson (bib3) 2016; 539
Sauvageau, Goff, Lodato, Bonev, Groff, Gerhardinger, Sanchez-Gomez, Hacisuleyman, Li, Spence (bib28) 2013; 2
Yang, Zhang, Mei, Wu (bib34) 2014; 53
Davidovich, Cech (bib8) 2015; 21
Kaikkonen, Spann, Heinz, Romanoski, Allison, Stender, Chun, Tough, Prinjha, Benner, Glass (bib16) 2013; 51
Engreitz, Haines, Perez, Munson, Chen, Kane, McDonel, Guttman, Lander (bib10) 2016; 539
Lai, Damle, Ling, Rigo (bib20) 2020; 77
Dahlman, Abudayyeh, Joung, Gootenberg, Zhang, Konermann (bib7) 2015; 33
Latos, Pauler, Koerner, Senergin, Hudson, Stocsits, Allhoff, Stricker, Klement, Warczok (bib21) 2012; 338
Paralkar, Taborda, Huang, Yao, Kossenkov, Prasad, Luan, Davies, Hughes, Hardison (bib26) 2016; 62
Kopp, Mendell (bib17) 2018; 172
Naumova, Smith, Zhan, Dekker (bib25) 2012; 58
Kotzin, Spencer, McCright, Kumar, Collet, Mowel, Elliott, Uyar, Makiya, Dunagin (bib19) 2016; 537
Sigova, Abraham, Ji, Molinie, Hannett, Guo, Jangi, Giallourakis, Sharp, Young (bib31) 2015; 350
Allen, Andrysik, Dengler, Mellert, Guarnieri, Freeman, Sullivan, Galbraith, Luo, Kraus (bib2) 2014; 3
Strehle, Guttman (bib32) 2020; 64
Sun, Zeng, Chen, Zhang, Wei, Chen (bib33) 2019; 234
Korkmaz (10.1016/j.celrep.2022.110687_bib18) 2016; 34
Latos (10.1016/j.celrep.2022.110687_bib21) 2012; 338
Nagano (10.1016/j.celrep.2022.110687_bib24) 2008; 322
Paralkar (10.1016/j.celrep.2022.110687_bib26) 2016; 62
Davidovich (10.1016/j.celrep.2022.110687_bib8) 2015; 21
Scruggs (10.1016/j.celrep.2022.110687_bib30) 2015; 58
Naumova (10.1016/j.celrep.2022.110687_bib25) 2012; 58
Engreitz (10.1016/j.celrep.2022.110687_bib10) 2016; 539
Yoon (10.1016/j.celrep.2022.110687_bib35) 2012; 47
Ao (10.1016/j.celrep.2022.110687_bib4) 2019; 41
Sigova (10.1016/j.celrep.2022.110687_bib31) 2015; 350
Lai (10.1016/j.celrep.2022.110687_bib20) 2020; 77
Anderson (10.1016/j.celrep.2022.110687_bib3) 2016; 539
Blank-Giwojna (10.1016/j.celrep.2022.110687_bib5) 2019; 26
Lee (10.1016/j.celrep.2022.110687_bib22) 2020; 77
Roth (10.1016/j.celrep.2022.110687_bib27) 2014; 10
Yang (10.1016/j.celrep.2022.110687_bib34) 2014; 53
Kopp (10.1016/j.celrep.2022.110687_bib17) 2018; 172
Kaikkonen (10.1016/j.celrep.2022.110687_bib16) 2013; 51
Guttman (10.1016/j.celrep.2022.110687_bib12) 2009; 458
Sun (10.1016/j.celrep.2022.110687_bib33) 2019; 234
Levitt (10.1016/j.celrep.2022.110687_bib23) 1989; 3
Schofield (10.1016/j.celrep.2022.110687_bib29) 2018; 15
Huarte (10.1016/j.celrep.2022.110687_bib14) 2010; 142
Isoda (10.1016/j.celrep.2022.110687_bib15) 2017; 171
Strehle (10.1016/j.celrep.2022.110687_bib32) 2020; 64
Alexanian (10.1016/j.celrep.2022.110687_bib1) 2017; 8
Kotzin (10.1016/j.celrep.2022.110687_bib19) 2016; 537
Chillón (10.1016/j.celrep.2022.110687_bib6) 2016; 44
Hagege (10.1016/j.celrep.2022.110687_bib13) 2007; 2
Dahlman (10.1016/j.celrep.2022.110687_bib7) 2015; 33
Dimitrova (10.1016/j.celrep.2022.110687_bib9) 2014; 54
Groff (10.1016/j.celrep.2022.110687_bib11) 2016; 16
Allen (10.1016/j.celrep.2022.110687_bib2) 2014; 3
Sauvageau (10.1016/j.celrep.2022.110687_bib28) 2013; 2
References_xml – volume: 10
  start-page: 56
  year: 2014
  end-page: 60
  ident: bib27
  article-title: A widespread self-cleaving ribozyme class is revealed by bioinformatics
  publication-title: Nat. Chem. Biol.
– volume: 51
  start-page: 310
  year: 2013
  end-page: 325
  ident: bib16
  article-title: Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription
  publication-title: Mol. Cell
– volume: 172
  start-page: 393
  year: 2018
  end-page: 407
  ident: bib17
  article-title: Functional classification and experimental dissection of long noncoding RNAs
  publication-title: Cell
– volume: 34
  start-page: 192
  year: 2016
  end-page: 198
  ident: bib18
  article-title: Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9
  publication-title: Nat. Biotechnol.
– volume: 539
  start-page: 433
  year: 2016
  end-page: 436
  ident: bib3
  article-title: Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development
  publication-title: Nature
– volume: 350
  start-page: 978
  year: 2015
  end-page: 981
  ident: bib31
  article-title: Transcription factor trapping by RNA in gene regulatory elements
  publication-title: Science
– volume: 77
  start-page: 1032
  year: 2020
  end-page: 1043.e4
  ident: bib20
  article-title: Directed RNase H cleavage of nascent transcripts causes transcription termination
  publication-title: Mol. Cell
– volume: 3
  start-page: e02200
  year: 2014
  ident: bib2
  article-title: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms
  publication-title: Elife
– volume: 21
  start-page: 2007
  year: 2015
  end-page: 2022
  ident: bib8
  article-title: The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2
  publication-title: RNA
– volume: 33
  start-page: 1159
  year: 2015
  end-page: 1161
  ident: bib7
  article-title: Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
  publication-title: Nat. Biotechnol.
– volume: 41
  start-page: 789
  year: 2019
  end-page: 800
  ident: bib4
  article-title: lincRNA-p21 inhibits the progression of non-small cell lung cancer via targeting miR-17-5p
  publication-title: Oncol. Rep.
– volume: 338
  start-page: 1469
  year: 2012
  end-page: 1472
  ident: bib21
  article-title: Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing
  publication-title: Science
– volume: 47
  start-page: 648
  year: 2012
  end-page: 655
  ident: bib35
  article-title: LincRNA-p21 suppresses target mRNA translation
  publication-title: Mol. Cell
– volume: 44
  start-page: 9462
  year: 2016
  end-page: 9471
  ident: bib6
  article-title: Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 1019
  year: 1989
  end-page: 1025
  ident: bib23
  article-title: Definition of an efficient synthetic poly(A) site
  publication-title: Genes Dev.
– volume: 15
  start-page: 221
  year: 2018
  end-page: 225
  ident: bib29
  article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding
  publication-title: Nat. Methods
– volume: 234
  start-page: 21113
  year: 2019
  end-page: 21125
  ident: bib33
  article-title: Long intergenic noncoding RNA p21 suppresses the apoptosis of hippocampus neurons in streptozotocin-diabetic mice by sponging microRNA-221 through upregulation of FOS
  publication-title: J. Cell Physiol.
– volume: 2
  start-page: e01749
  year: 2013
  ident: bib28
  article-title: Multiple knockout mouse models reveal lincRNAs are required for life and brain development
  publication-title: Elife
– volume: 539
  start-page: 452
  year: 2016
  end-page: 455
  ident: bib10
  article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing
  publication-title: Nature
– volume: 322
  start-page: 1717
  year: 2008
  end-page: 1720
  ident: bib24
  article-title: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin
  publication-title: Science
– volume: 2
  start-page: 1722
  year: 2007
  end-page: 1733
  ident: bib13
  article-title: Quantitative analysis of chromosome conformation capture assays (3C-qPCR)
  publication-title: Nat. Protoc.
– volume: 77
  start-page: 1044
  year: 2020
  end-page: 1054.e3
  ident: bib22
  article-title: Antisense-mediated transcript knockdown triggers premature transcription termination
  publication-title: Mol. Cell
– volume: 26
  start-page: 2904
  year: 2019
  end-page: 2915.e4
  ident: bib5
  article-title: lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators
  publication-title: Cell Rep.
– volume: 8
  start-page: 1806
  year: 2017
  ident: bib1
  article-title: A transcribed enhancer dictates mesendoderm specification in pluripotency
  publication-title: Nat. Commun.
– volume: 62
  start-page: 104
  year: 2016
  end-page: 110
  ident: bib26
  article-title: Unlinking an lncRNA from its associated cis element
  publication-title: Mol. Cell
– volume: 171
  start-page: 103
  year: 2017
  end-page: 119.e18
  ident: bib15
  article-title: Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate
  publication-title: Cell
– volume: 16
  start-page: 2178
  year: 2016
  end-page: 2186
  ident: bib11
  article-title: In vivo characterization of linc-p21 reveals functional cis-regulatory DNA elements
  publication-title: Cell Rep.
– volume: 537
  start-page: 239
  year: 2016
  end-page: 243
  ident: bib19
  article-title: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan
  publication-title: Nature
– volume: 54
  start-page: 777
  year: 2014
  end-page: 790
  ident: bib9
  article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint
  publication-title: Mol. Cell
– volume: 458
  start-page: 223
  year: 2009
  end-page: 227
  ident: bib12
  article-title: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
  publication-title: Nature
– volume: 58
  start-page: 192
  year: 2012
  end-page: 203
  ident: bib25
  article-title: Analysis of long-range chromatin interactions using chromosome conformation capture
  publication-title: Methods
– volume: 58
  start-page: 1101
  year: 2015
  end-page: 1112
  ident: bib30
  article-title: Upstream anti-sense promoters are hubs of transcription factor binding and active histone modifications
  publication-title: Mol. Cell
– volume: 142
  start-page: 409
  year: 2010
  end-page: 419
  ident: bib14
  article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
  publication-title: Cell
– volume: 53
  start-page: 88
  year: 2014
  end-page: 100
  ident: bib34
  article-title: Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect
  publication-title: Mol. Cell
– volume: 64
  start-page: 139
  year: 2020
  end-page: 147
  ident: bib32
  article-title: Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation
  publication-title: Curr. Opin. Cell Biol.
– volume: 2
  start-page: e01749
  year: 2013
  ident: 10.1016/j.celrep.2022.110687_bib28
  article-title: Multiple knockout mouse models reveal lincRNAs are required for life and brain development
  publication-title: Elife
  doi: 10.7554/eLife.01749
– volume: 47
  start-page: 648
  year: 2012
  ident: 10.1016/j.celrep.2022.110687_bib35
  article-title: LincRNA-p21 suppresses target mRNA translation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.027
– volume: 77
  start-page: 1032
  year: 2020
  ident: 10.1016/j.celrep.2022.110687_bib20
  article-title: Directed RNase H cleavage of nascent transcripts causes transcription termination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.12.029
– volume: 53
  start-page: 88
  year: 2014
  ident: 10.1016/j.celrep.2022.110687_bib34
  article-title: Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.11.004
– volume: 77
  start-page: 1044
  year: 2020
  ident: 10.1016/j.celrep.2022.110687_bib22
  article-title: Antisense-mediated transcript knockdown triggers premature transcription termination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.12.011
– volume: 539
  start-page: 433
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib3
  article-title: Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development
  publication-title: Nature
  doi: 10.1038/nature20128
– volume: 54
  start-page: 777
  year: 2014
  ident: 10.1016/j.celrep.2022.110687_bib9
  article-title: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.025
– volume: 338
  start-page: 1469
  year: 2012
  ident: 10.1016/j.celrep.2022.110687_bib21
  article-title: Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing
  publication-title: Science
  doi: 10.1126/science.1228110
– volume: 8
  start-page: 1806
  year: 2017
  ident: 10.1016/j.celrep.2022.110687_bib1
  article-title: A transcribed enhancer dictates mesendoderm specification in pluripotency
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01804-w
– volume: 44
  start-page: 9462
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib6
  article-title: Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: e02200
  year: 2014
  ident: 10.1016/j.celrep.2022.110687_bib2
  article-title: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms
  publication-title: Elife
  doi: 10.7554/eLife.02200
– volume: 58
  start-page: 1101
  year: 2015
  ident: 10.1016/j.celrep.2022.110687_bib30
  article-title: Upstream anti-sense promoters are hubs of transcription factor binding and active histone modifications
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.04.006
– volume: 142
  start-page: 409
  year: 2010
  ident: 10.1016/j.celrep.2022.110687_bib14
  article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.040
– volume: 537
  start-page: 239
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib19
  article-title: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan
  publication-title: Nature
  doi: 10.1038/nature19346
– volume: 234
  start-page: 21113
  year: 2019
  ident: 10.1016/j.celrep.2022.110687_bib33
  article-title: Long intergenic noncoding RNA p21 suppresses the apoptosis of hippocampus neurons in streptozotocin-diabetic mice by sponging microRNA-221 through upregulation of FOS
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.28714
– volume: 2
  start-page: 1722
  year: 2007
  ident: 10.1016/j.celrep.2022.110687_bib13
  article-title: Quantitative analysis of chromosome conformation capture assays (3C-qPCR)
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.243
– volume: 3
  start-page: 1019
  year: 1989
  ident: 10.1016/j.celrep.2022.110687_bib23
  article-title: Definition of an efficient synthetic poly(A) site
  publication-title: Genes Dev.
  doi: 10.1101/gad.3.7.1019
– volume: 34
  start-page: 192
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib18
  article-title: Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3450
– volume: 350
  start-page: 978
  year: 2015
  ident: 10.1016/j.celrep.2022.110687_bib31
  article-title: Transcription factor trapping by RNA in gene regulatory elements
  publication-title: Science
  doi: 10.1126/science.aad3346
– volume: 16
  start-page: 2178
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib11
  article-title: In vivo characterization of linc-p21 reveals functional cis-regulatory DNA elements
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.050
– volume: 171
  start-page: 103
  year: 2017
  ident: 10.1016/j.celrep.2022.110687_bib15
  article-title: Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.001
– volume: 458
  start-page: 223
  year: 2009
  ident: 10.1016/j.celrep.2022.110687_bib12
  article-title: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
  publication-title: Nature
  doi: 10.1038/nature07672
– volume: 21
  start-page: 2007
  year: 2015
  ident: 10.1016/j.celrep.2022.110687_bib8
  article-title: The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2
  publication-title: RNA
  doi: 10.1261/rna.053918.115
– volume: 64
  start-page: 139
  year: 2020
  ident: 10.1016/j.celrep.2022.110687_bib32
  article-title: Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2020.04.009
– volume: 62
  start-page: 104
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib26
  article-title: Unlinking an lncRNA from its associated cis element
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.02.029
– volume: 172
  start-page: 393
  year: 2018
  ident: 10.1016/j.celrep.2022.110687_bib17
  article-title: Functional classification and experimental dissection of long noncoding RNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.011
– volume: 322
  start-page: 1717
  year: 2008
  ident: 10.1016/j.celrep.2022.110687_bib24
  article-title: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin
  publication-title: Science
  doi: 10.1126/science.1163802
– volume: 33
  start-page: 1159
  year: 2015
  ident: 10.1016/j.celrep.2022.110687_bib7
  article-title: Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3390
– volume: 10
  start-page: 56
  year: 2014
  ident: 10.1016/j.celrep.2022.110687_bib27
  article-title: A widespread self-cleaving ribozyme class is revealed by bioinformatics
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1386
– volume: 26
  start-page: 2904
  year: 2019
  ident: 10.1016/j.celrep.2022.110687_bib5
  article-title: lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.02.059
– volume: 539
  start-page: 452
  year: 2016
  ident: 10.1016/j.celrep.2022.110687_bib10
  article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing
  publication-title: Nature
  doi: 10.1038/nature20149
– volume: 51
  start-page: 310
  year: 2013
  ident: 10.1016/j.celrep.2022.110687_bib16
  article-title: Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.07.010
– volume: 41
  start-page: 789
  year: 2019
  ident: 10.1016/j.celrep.2022.110687_bib4
  article-title: lincRNA-p21 inhibits the progression of non-small cell lung cancer via targeting miR-17-5p
  publication-title: Oncol. Rep.
– volume: 15
  start-page: 221
  year: 2018
  ident: 10.1016/j.celrep.2022.110687_bib29
  article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4582
– volume: 58
  start-page: 192
  year: 2012
  ident: 10.1016/j.celrep.2022.110687_bib25
  article-title: Analysis of long-range chromatin interactions using chromosome conformation capture
  publication-title: Methods
  doi: 10.1016/j.ymeth.2012.07.022
SSID ssj0000601194
Score 2.459513
Snippet The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene,...
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110687
SubjectTerms cis-regulation
genetic models
lincRNA-p21
long noncoding RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
transcription
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR364vKngNax5NmqOKiwjuwQfsLTRpiivSXfZx8N8707SLq4Lgse2Ehpl25ksy8w0hF4XUjjMHixxfCCqVLKkpWaDSOFZmQnCdYzXyw0Ddvcj7YTrskJu2FgbTKhvfH3167a2bO71Gm73JaNR74rB2geikORpapsgJKmRWF_ENr5f7LMg3wup-iChPcUBbQVenefnwPg1IXMk5psQrzK37PUL9RKDfEym_RKb-FtlsIGVyFWe9TTqh2iHrscnkxy5J-xC64o5fEmKy-CwZlwkgv8SPZnQau9GPpx8JQE7_OLiiE872yEv_9vnmjjbNEqhPuZnTgMz1uRFlyHIAST44acKlMHmRZaXWsAxKy6yQkrOQ57pQukw9z40C_GZAWoh9slaNq3BIEgdK8LBOckpLaS65U94DDgAkJR1E96JLRKsg6xsmcWxo8W7blLE3G9VqUa02qrVL6HLUJDJp_CGvW93blS_CgrP_Y-R5ayoLPwuegORVGC9mlqsU4Gpm0qxLDqLplnMRyATItIL3rhh1KYBE3KtPqtFrTchtsHpXsqN_z_iYbOAVnlIxc0LW5tNFOAWwM3dn9df8CTd9-wk
  priority: 102
  providerName: Elsevier
Title Functional elements of the cis-regulatory lincRNA-p21
URI https://dx.doi.org/10.1016/j.celrep.2022.110687
https://www.ncbi.nlm.nih.gov/pubmed/35443176
https://www.proquest.com/docview/2653268958
https://pubmed.ncbi.nlm.nih.gov/PMC9118141
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFD5MRfFFvDsvo4KvEZukTfMgouKYwnwQB3sLTZqiMjrtJrh_78nSzju-9KVJW85Jer6TnHwfwFHGhaahxiTHZIzwmOdE5qElXOowTxijInWnkbu3cafHb_pRvwG1ZmtlwNGvqZ3Tk-qVg-O3l8kZTvjTj1otYweldeyTlLq69jgRc7CAsUk4TYNuBfj9v9lxnPH6DN0fnZdhiTleuNAxkfwern7C0e9VlZ_CVHsVVip8GZz7AbEGDVusw6JXnJxsQNTGOOaX_wLrK8dHwTAPEAYG5nFESi9NPywnAeJPc3d7Tp5puAm99tX9ZYdUygnERFSOiXU09qlkuU1SREzGai7tCZNpliS5EJgTRXmScU5Dm6Yii0UeGZrKGMGcxNaMbcF8MSzsDgQa7WEwadKx4FyeUB0bg6AAYRXXGOqzJrDaQMpUtOJO3WKg6vqxJ-UtrJyFlbdwE8is17On1finvahtrypo4EO-woHwT8_D2lUKZ47bDkkLO3wdKRpHiF0TGSVN2Paum31L7X587xenzho4Vu6vd4rHhyk7t3RHeXm4--cz92DZfZ_bkgrlPsyPy1d7gMhmrFvTFQG8XvcvWtOB-w4i6PZP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQguiPIMUFgkOFqpvV57feBQHlFC2xyglXIza6-Xpqo2UZIK5XfxB5lZ70YEkCoh9bq2tdY39sw39ngG4E0ptRPcoZPjy5RJJStmKh6YNI5XeZoKXdBr5JOxGp7Jz5NssgM_u7cwFFbZ6v6o0xtt3X7pt2j259Np_6tA3wWtkxYkaJnJNrLyKKx_oN-2fDf6iEJ-K8Tg0-mHIWtLCzCfCbNigfK8FyatQl4gpfDBSRMOUlOUeV5pjU5DVuWllIKHotCl0lXmRWEUsh2DvekUFPX-LWQfmrTBaPJ-c7BDCU54U4CRJshoht2TvSauzIfLRaBMmUJQDL6iYL5_m8S_Ke-fkZu_mcLBfbjXctjkMMK0BzuhfgC3Y1XL9UPIBmgr4xFjEmJ0-jKZVQlSzcRPl2wRvlPNsNlinSDH9V_Gh2wu-CM4uxEIH8NuPavDU0gcguDRMXNKS2kOhFPeI_FA6iYd0omyB2kHkPVt6nKqoHFpuxi1CxthtQSrjbD2gG1GzWPqjmv66w57u7UELVqXa0a-7kRlcXfSlUtRh9nV0gqVIT_OTZb34EkU3WYuKaUe5Frhf7eEuulAmb-3W-rpeZMB3NBzYcmf_feMX8Gd4enJsT0ejY-ew11qoSsybl7A7mpxFfaRaa3cy2ZlJ_DtprfSL7bEOBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+elements+of+the+cis-regulatory+lincRNA-p21&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Winkler%2C+Lauren&rft.au=Jimenez%2C+Maria&rft.au=Zimmer%2C+Joshua+T&rft.au=Williams%2C+Adam&rft.date=2022-04-19&rft.eissn=2211-1247&rft.volume=39&rft.issue=3&rft.spage=110687&rft_id=info:doi/10.1016%2Fj.celrep.2022.110687&rft_id=info%3Apmid%2F35443176&rft.externalDocID=35443176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon