A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling

The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfre...

Full description

Saved in:
Bibliographic Details
Published inAdvanced modeling and simulation in engineering sciences Vol. 9; no. 1; pp. 1 - 35
Main Authors Baek, Jonghyuk, Schlinkman, Ryan T., Beckwith, Frank N., Chen, Jiun-Shyan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 30.09.2022
Springer Nature B.V
Springer
Springer Science + Business Media
SpringerOpen
SeriesRecent Advances in hypercomplex disaster simulations
Subjects
Online AccessGet full text
ISSN2213-7467
2213-7467
DOI10.1186/s40323-022-00233-9

Cover

Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed u – p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
AbstractList Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed u – p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed u–p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling.
ArticleNumber 20
Author Schlinkman, Ryan T.
Chen, Jiun-Shyan
Beckwith, Frank N.
Baek, Jonghyuk
Author_xml – sequence: 1
  givenname: Jonghyuk
  surname: Baek
  fullname: Baek, Jonghyuk
  organization: Department of Structural Engineering, University of California San Diego
– sequence: 2
  givenname: Ryan T.
  surname: Schlinkman
  fullname: Schlinkman, Ryan T.
  organization: Department of Structural Engineering, University of California San Diego
– sequence: 3
  givenname: Frank N.
  surname: Beckwith
  fullname: Beckwith, Frank N.
  organization: Sandia National Laboratories
– sequence: 4
  givenname: Jiun-Shyan
  orcidid: 0000-0002-6871-8815
  surname: Chen
  fullname: Chen, Jiun-Shyan
  email: js-chen@ucsd.edu
  organization: Department of Structural Engineering, University of California San Diego
BackLink https://hal.science/hal-04456074$$DView record in HAL
https://www.osti.gov/biblio/1890517$$D View this record in Osti.gov
BookMark eNp9kUFv3CAQha0olZIm-QM9We2pBzeAsTHHVdQ0kVbqpT0jzIy9rDBswRsp_754HTVtD-ECjN77Bua9L8598FgUHyj5QmnX3iZOalZXhLGKEFbXlTwrLhmjdSV4K87_Ol8UNyntCSG0rTkV7WXxtCkBhxAnPdvgK8ADekA_lyYcDw6h3Ooxaj9a7W8TTrZ6vZcTpt0QEcvdM8Qwodlpb4125cI7uhNxOZdOe0jOApZTAHTWj9fFu0G7hDcv-1Xx8_7rj7uHavv92-PdZluZhsm5AtowkLTPqwUOupcCYKDdIHAQHJD00BPeaY5omOl1l-cxcC4Nx1ZoaOqr4nHlQtB7dYh20vFZBW3VqRDiqHScrXGouqZlRgpBGs45UtAgakFpJgtCBKGZ9XFlhTRblYyd849N8B7NrGgnSUNFFn1eRTvt_un3sNmqpUY4b1oi-NMC_LRqDzH8OmKa1T4co8_zUExQ2eafSZZVbFWZGFKKOPzBUqKW_NWav8r5q1P-SmZT958pP_cUyBy1dW9b69Wach8_Ynx91Ruu3xg9x3U
CitedBy_id crossref_primary_10_1007_s00466_023_02410_y
crossref_primary_10_1007_s00366_024_02015_w
crossref_primary_10_1177_10567895231193053
crossref_primary_10_1109_ACCESS_2024_3414648
crossref_primary_10_3390_app14031072
crossref_primary_10_1007_s00466_023_02393_w
crossref_primary_10_21595_vp_2024_24307
crossref_primary_10_3390_buildings14020445
crossref_primary_10_1002_nme_7584
Cites_doi 10.1007/s00466-014-1088-z
10.1016/j.cma.2022.114660
10.1002/fld.1650200824
10.1016/j.enggeo.2008.10.004
10.1006/jcph.2000.6439
10.1016/j.enggeo.2020.105870
10.1016/j.enggeo.2009.02.011
10.1007/s10346-021-01699-1
10.1016/j.mechmat.2009.01.030
10.3208/jgs.9.687
10.1002/nag.601
10.1016/j.cma.2019.04.024
10.1111/j.1365-246X.2007.03631.x
10.1016/j.ijrmms.2008.07.010
10.1002/nme.4512
10.1002/nme.2181
10.1016/j.enggeo.2012.08.006
10.1002/nag.2428
10.1002/nme.1326
10.1139/cgj-2014-0152
10.1016/j.compgeo.2010.10.010
10.5194/nhess-3-523-2003
10.1007/s11440-016-0488-y
10.1098/rsta.2004.1428
10.1016/j.compgeo.2014.09.009
10.1615/IntJMultCompEng.2018026133
10.1002/nag.2161
10.1016/j.compgeo.2021.104060
10.1007/s004660050170
10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P
10.1016/0045-7825(91)90151-U
10.1007/s00466-003-0434-3
10.1016/0045-7825(86)90056-3
10.1002/nme.5539
10.1002/nag.705
10.2172/1592852
10.2495/DEB060051
10.1016/j.enggeo.2015.08.022
10.1115/1.2787241
10.1002/nme.1620381005
10.1139/cgj-2018-0250
10.1016/j.cma.2003.12.057
10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
10.1016/j.cma.2018.07.043
10.1016/j.cma.2021.113827
10.1016/j.compfluid.2015.11.002
10.1007/s10346-019-01164-0
10.1016/j.ijimpeng.2015.07.009
10.1137/S0036142905444482
10.1007/978-3-540-46222-4_4
10.1002/nag.1084
10.1007/s004660050361
10.1002/nag.3016
10.2136/sssaj1980.03615995004400050002x
10.1002/nme.5183
10.1002/nme.841
10.1016/S0045-7825(96)01083-3
10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
10.1007/s10346-014-0484-y
10.1029/2019JC015873
10.1002/nag.2214
10.1680/jgeot.15.LM.005
10.1007/s004660050474
10.1016/j.ijimpeng.2011.08.001
10.1002/nag.2722
10.1080/1023697X.2018.1462106
10.1007/s12205-013-0550-3
10.1002/nag.1610190203
10.1007/BF00364080
10.1002/nme.4728
10.1016/j.cma.2021.114179
10.1016/j.cma.2008.05.015
10.1115/1.2787240
10.1007/978-1-4612-3172-1
10.1002/nme.5319
10.1002/nag.688
10.1002/nag.2544
10.1002/nme.6588
10.1006/jcph.1995.1010
10.1061/(ASCE)EM.1943-7889.0001729
10.1098/rspa.1990.0062
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
1XC
VOOES
OTOTI
DOA
DOI 10.1186/s40323-022-00233-9
DatabaseName Springer Nature Link OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-7467
EndPage 35
ExternalDocumentID oai_doaj_org_article_8562c97705444e1dad73711eec700701
1890517
oai_HAL_hal_04456074v1
10_1186_s40323_022_00233_9
GrantInformation_xml – fundername: Sandia National Laboratories
  grantid: 1655264
  funderid: http://dx.doi.org/10.13039/100006234
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
M~E
OK1
P62
PIMPY
PROAC
PTHSS
RSV
SOJ
TUS
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
PUEGO
VOOES
AHBXF
OTOTI
ID FETCH-LOGICAL-c529t-d152d91bbbb6d4dab97ddf18f7ef74de0bdb048a4eec2cba8118f449c4e67ad53
IEDL.DBID DOA
ISSN 2213-7467
IngestDate Wed Aug 27 01:05:59 EDT 2025
Thu May 18 22:29:18 EDT 2023
Fri Sep 12 12:37:49 EDT 2025
Fri Jul 25 11:08:28 EDT 2025
Tue Jul 01 02:30:34 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Fri Feb 21 02:44:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lagrangian semi-Lagrangian coupling
Landslide
Meshfree modeling
Reproducing kernel particle method
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-d152d91bbbb6d4dab97ddf18f7ef74de0bdb048a4eec2cba8118f449c4e67ad53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
1655264
ORCID 0000-0002-6871-8815
0000000268718815
OpenAccessLink https://doaj.org/article/8562c97705444e1dad73711eec700701
PQID 2719604892
PQPubID 2034555
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_8562c97705444e1dad73711eec700701
osti_scitechconnect_1890517
hal_primary_oai_HAL_hal_04456074v1
proquest_journals_2719604892
crossref_primary_10_1186_s40323_022_00233_9
crossref_citationtrail_10_1186_s40323_022_00233_9
springer_journals_10_1186_s40323_022_00233_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
– name: Netherlands
PublicationSeriesTitle Recent Advances in hypercomplex disaster simulations
PublicationTitle Advanced modeling and simulation in engineering sciences
PublicationTitleAbbrev Adv. Model. and Simul. in Eng. Sci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Springer
Springer Science + Business Media
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
– name: Springer Science + Business Media
– name: SpringerOpen
References Wei, Chen (CR52) 2018; 16
Salazar, Irazábal, Larese, Oñate (CR20) 2016; 40
Chen, Pan, Wu (CR50) 1997; 19
Bardenhagen, Kober (CR27) 2004; 5
Chen, Wu, Yoon, You (CR78) 2001; 50
Hillman, Chen (CR82) 2016; 107
Sherburn, Roth, Chen, Hillman (CR54) 2015; 86
Chen, Wu, Pan (CR66) 1996; 63
Chen, Chi, Lee, Lin, Marodon, Roth, Slawson (CR58) 2011
Guan, Chi, Chen, Slawson, Roth (CR53) 2011; 38
Luo, Zhang, Zhang (CR10) 2019; 16
Wei, Chen, Beckwith, Baek (CR59) 2020; 146
Soga, Alonso, Yerro, Kumar, Bandara (CR24) 2016; 66
Sun, Ostien, Salinger (CR74) 2013; 37
CR75
Konuk, Yu, Evgin (CR7) 2006; 90
Cremonesi, Ferri, Perego (CR13) 2017; 41
Chi, Lee, Chen, Guan (CR49) 2015; 102
Soares (CR86) 2014; 38
Zhang, Maeda, Saito, Li, Huang (CR38) 2016; 11
Belytschko, Organ, Krongauz (CR63) 1995; 17
Bochev, Dohrmann, Gunzburger (CR72) 2006; 44
Pasetto, Baek, Chen, Wei, Sherburn, Roth (CR62) 2021; 381
Jin, Yuan, Yin, Cheng (CR16) 2020; 44
White, Borja (CR73) 2008; 197
Bui, Fukagawa, Sako, Ohno (CR87) 2008; 32
Guan, Chen, Wu, Teng, Gaidos, Hofstetter, Alsaleh (CR57) 2009; 41
Liu, Chang, Chen, Belytschko (CR11) 1988; 68
Bandara, Soga (CR23) 2015; 63
Chen, Zhang, Belytschko (CR85) 2004; 193
CR88
Sizkow, Usama (CR34) 2021; 134
Bui, Fukagawa (CR37) 2013; 37
Zhang, Krabbenhoft, Sheng, Li (CR22) 2015; 55
Liang, Zhang, Liu (CR25) 2019; 352
Pastor, Haddad, Sorbino, Cuomo, Drempetic (CR35) 2009; 33
Liu, Chen, Belytschko, Zhang (CR12) 1991; 93
Cleary, Prakash (CR28) 2004; 362
Khoei, Mohammadnejad (CR91) 2011; 38
Crosta, Imposimato, Roddeman (CR5) 2009; 109
Mulligan, Franci, Celigueta, Take (CR21) 2020
Chen, Hu, Puso, Wu, Zhang (CR80) 2007
Jun, Im (CR45) 2000; 25
Liu, Jun, Zhang (CR42) 1995; 20
Wu, Hu, Wang, Lu (CR48) 2015; 2015
Islam, Hawlader, Wang, Soga (CR2) 2019; 56
Jin, Yin (CR14) 2022; 392
Tang, Hu, Lin, Angelier, Lu, Chan, Chu (CR31) 2009; 106
Liu, Jun, Li, Adee, Belytschko (CR43) 1995; 38
Li, Li, Dai, Lee (CR33) 2012; 149
Yreux, Chen (CR76) 2017; 109
Lin, Lin (CR32) 2015; 197
Reedlunn, Moutsanidis, Baek, Huang, Koester, Matteo, He, Taneja, Wei, Bazilevs, Chen, Mitchell, Lander, Dewers (CR61) 2019
Chen, Li, Tang, Liu (CR3) 2021; 18
Wei, Chen, Hillman (CR67) 2016; 141
van Genuchten (CR71) 1980; 44
Zienkiewicz, Xie, Schrefler, Ledesma, Biĉaniĉ (CR68) 1990; 429
Crosta, Imposimato, Roddeman (CR4) 2003; 3
Rabczuk, Belytschko (CR47) 2005; 63
Li, Liu (CR83) 1999; 45
Swegle, Hicks, Attaway (CR39) 1995; 116
Chen, Pan, Wu, Liu (CR44) 1996; 139
Chen, Pan (CR65) 1996; 63
Brezzi, Fortin (CR64) 1991
Chen, Hillman, Rüter (CR79) 2013; 95
Jin, Yin, Yuan (CR17) 2020; 279
Kwok, Guan, Cheng, Sun (CR60) 2015; 19
Mori (CR89) 2008
Quecedo, Pastor, Herreros, Fernández Merodo (CR1) 2004; 59
You, Chen, Lu (CR46) 2003; 31
Wilson, Wüchner, Fernando (CR26) 2021; 122
Meroi, Schrefler, Zienkiewicz (CR70) 1995; 19
Jin, Yin, Zhou, Liu (CR18) 2021; 387
Chen, Wu (CR56) 2007
Puso, Chen, Zywicz, Elmer (CR81) 2008; 74
Zhang, Sheng, Sloan, Bleyer (CR15) 2017; 112
Wu, Lin, Chen (CR30) 2009; 46
Zhang, Oñate, Torres, Bleyer, Krabbenhoft (CR19) 2019; 343
Staron (CR29) 2008; 172
Cheung, Yiu, Lam, Sze (CR9) 2018; 25
Li, Liu (CR84) 1999; 45
Di, Yang, Sato (CR6) 2007; 31
Zienkiewicz, Chan, Pastor, Schrefler, Shiomi (CR69) 1999
Pastor, Blanc, Haddad, Petrone, Sanchez Morles, Drempetic, Issler, Crosta, Cascini, Sorbino, Cuomo (CR36) 2014; 11
Yreux (CR55) 2015
Mori, Fukuhara, Hattori, Kuwano, Soga, Saito, Sasaki (CR90) 2014; 9
Kwan, Koo, Ng (CR8) 2015; 52
Chen, Pan, Roque, Wang (CR51) 1998; 22
Libersky, Randles (CR40) 1996; 139
Siriaksorn, Chi, Foster, Mahdavi (CR77) 2018; 42
Monaghan (CR41) 2000; 159
T Belytschko (233_CR63) 1995; 17
HH Bui (233_CR37) 2013; 37
MA Puso (233_CR81) 2008; 74
S Li (233_CR83) 1999; 45
J-S Chen (233_CR66) 1996; 63
PB Bochev (233_CR72) 2006; 44
WK Liu (233_CR11) 1988; 68
J-S Chen (233_CR50) 1997; 19
GB Crosta (233_CR4) 2003; 3
SF Sizkow (233_CR34) 2021; 134
233_CR88
GB Crosta (233_CR5) 2009; 109
HY Luo (233_CR10) 2019; 16
C-H Lin (233_CR32) 2015; 197
WK Liu (233_CR12) 1991; 93
OC Zienkiewicz (233_CR68) 1990; 429
WK Liu (233_CR43) 1995; 38
PW Cleary (233_CR28) 2004; 362
Y-F Jin (233_CR14) 2022; 392
P Wilson (233_CR26) 2021; 122
J-S Chen (233_CR51) 1998; 22
M Pastor (233_CR36) 2014; 11
WK Liu (233_CR42) 1995; 20
J-S Chen (233_CR78) 2001; 50
H Mori (233_CR90) 2014; 9
N Islam (233_CR2) 2019; 56
J-S Chen (233_CR85) 2004; 193
233_CR75
AR Khoei (233_CR91) 2011; 38
JA White (233_CR73) 2008; 197
Y Di (233_CR6) 2007; 31
H Wei (233_CR67) 2016; 141
Y-F Jin (233_CR18) 2021; 387
K Soga (233_CR24) 2016; 66
W Zhang (233_CR38) 2016; 11
T Rabczuk (233_CR47) 2005; 63
H Mori (233_CR89) 2008
H Wei (233_CR52) 2018; 16
J-S Chen (233_CR44) 1996; 139
X Zhang (233_CR22) 2015; 55
HH Bui (233_CR87) 2008; 32
C-L Tang (233_CR31) 2009; 106
OC Zienkiewicz (233_CR69) 1999
Y Jin (233_CR16) 2020; 44
P-C Guan (233_CR53) 2011; 38
JA Sherburn (233_CR54) 2015; 86
M Pastor (233_CR35) 2009; 33
I Konuk (233_CR7) 2006; 90
B Reedlunn (233_CR61) 2019
L Libersky (233_CR40) 1996; 139
X Zhang (233_CR15) 2017; 112
J-S Chen (233_CR79) 2013; 95
JJ Monaghan (233_CR41) 2000; 159
EA Meroi (233_CR70) 1995; 19
S-W Chi (233_CR49) 2015; 102
E Yreux (233_CR76) 2017; 109
MT van Genuchten (233_CR71) 1980; 44
J-S Chen (233_CR80) 2007
C-T Wu (233_CR48) 2015; 2015
AK Cheung (233_CR9) 2018; 25
X Zhang (233_CR19) 2019; 343
Y You (233_CR46) 2003; 31
D Soares Jr (233_CR86) 2014; 38
JS Kwan (233_CR8) 2015; 52
T Siriaksorn (233_CR77) 2018; 42
X Chen (233_CR3) 2021; 18
SG Bardenhagen (233_CR27) 2004; 5
J-H Wu (233_CR30) 2009; 46
F Salazar (233_CR20) 2016; 40
J-S Chen (233_CR65) 1996; 63
J-S Chen (233_CR56) 2007
O-LA Kwok (233_CR60) 2015; 19
M Pasetto (233_CR62) 2021; 381
F Brezzi (233_CR64) 1991
L Staron (233_CR29) 2008; 172
M Quecedo (233_CR1) 2004; 59
RP Mulligan (233_CR21) 2020
WC Li (233_CR33) 2012; 149
W Sun (233_CR74) 2013; 37
S Bandara (233_CR23) 2015; 63
M Hillman (233_CR82) 2016; 107
Y-F Jin (233_CR17) 2020; 279
JW Swegle (233_CR39) 1995; 116
E Yreux (233_CR55) 2015
M Cremonesi (233_CR13) 2017; 41
PC Guan (233_CR57) 2009; 41
S Li (233_CR84) 1999; 45
Y Liang (233_CR25) 2019; 352
J-S Chen (233_CR58) 2011
H Wei (233_CR59) 2020; 146
S Jun (233_CR45) 2000; 25
References_xml – volume: 55
  start-page: 167
  issue: 1
  year: 2015
  end-page: 177
  ident: CR22
  article-title: Numerical simulation of a flow-like landslide using the particle finite element method
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1088-z
– volume: 392
  year: 2022
  ident: CR14
  article-title: Two-phase PFEM with stable nodal integration for large deformation hydromechanical coupled geotechnical problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114660
– year: 2011
  ident: CR58
  publication-title: A multiscale meshfree approach for modeling fragment penetration into ultra high-strength concrete
– volume: 20
  start-page: 1081
  issue: 8–9
  year: 1995
  end-page: 1106
  ident: CR42
  article-title: Reproducing kernel particle methods
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650200824
– volume: 109
  start-page: 135
  issue: 1–2
  year: 2009
  end-page: 145
  ident: CR5
  article-title: Numerical modelling of entrainment/deposition in rock and debris-avalanches
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.10.004
– volume: 159
  start-page: 290
  issue: 2
  year: 2000
  end-page: 311
  ident: CR41
  article-title: SPH without a tensile instability
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6439
– year: 2007
  ident: CR56
  article-title: Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics
  publication-title: Computational methods in applied sciences
– volume: 279
  year: 2020
  ident: CR17
  article-title: Simulating retrogressive slope failure using two different smoothed particle finite element methods: a comparative study
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105870
– volume: 106
  start-page: 1
  issue: 1–2
  year: 2009
  end-page: 19
  ident: CR31
  article-title: The Tsaoling landslide triggered by the Chi–Chi earthquake, Taiwan: insights from a discrete element simulation
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2009.02.011
– volume: 18
  start-page: 3149
  issue: 9
  year: 2021
  end-page: 3162
  ident: CR3
  article-title: A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil
  publication-title: Landslides
  doi: 10.1007/s10346-021-01699-1
– volume: 2015
  year: 2015
  ident: CR48
  article-title: A robust numerical procedure for the thermomechanical flow simulation of friction stir welding process using an adaptive element-free Galerkin method
  publication-title: Math Probl Eng
– volume: 41
  start-page: 670
  issue: 6
  year: 2009
  end-page: 683
  ident: CR57
  article-title: Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2009.01.030
– volume: 9
  start-page: 687
  issue: 4
  year: 2014
  end-page: 696
  ident: CR90
  article-title: The SPH method for simulating the progressive sliding failure of a River Levee
  publication-title: Jpn Geotech J
  doi: 10.3208/jgs.9.687
– volume: 31
  start-page: 1375
  issue: 12
  year: 2007
  end-page: 1399
  ident: CR6
  article-title: An operator-split ALE model for large deformation analysis of geomaterials
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.601
– volume: 352
  start-page: 85
  year: 2019
  end-page: 109
  ident: CR25
  article-title: An efficient staggered grid material point method
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.04.024
– volume: 172
  start-page: 455
  issue: 1
  year: 2008
  end-page: 463
  ident: CR29
  article-title: Mobility of long-runout rock flows: a discrete numerical investigation
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2007.03631.x
– volume: 46
  start-page: 397
  issue: 2
  year: 2009
  end-page: 407
  ident: CR30
  article-title: Dynamic discrete analysis of an earthquake-induced large-scale landslide
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.07.010
– volume: 95
  start-page: 387
  issue: 5
  year: 2013
  end-page: 418
  ident: CR79
  article-title: An arbitrary order variationally consistent integration for Galerkin meshfree methods
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4512
– volume: 74
  start-page: 416
  issue: 3
  year: 2008
  end-page: 446
  ident: CR81
  article-title: Meshfree and finite element nodal integration methods
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2181
– volume: 149
  start-page: 22
  year: 2012
  end-page: 34
  ident: CR33
  article-title: Discrete element modeling of a rainfall-induced flowslide
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2012.08.006
– volume: 40
  start-page: 809
  issue: 6
  year: 2016
  end-page: 826
  ident: CR20
  article-title: Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2428
– volume: 63
  start-page: 1559
  issue: 11
  year: 2005
  end-page: 1582
  ident: CR47
  article-title: Adaptivity for structured meshfree particle methods in 2D and 3D
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1326
– volume: 429
  start-page: 311
  issue: 1877
  year: 1990
  end-page: 321
  ident: CR68
  article-title: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems
  publication-title: Proc R Soc Lond A Math Phys Sci
– volume: 52
  start-page: 1345
  issue: 9
  year: 2015
  end-page: 1359
  ident: CR8
  article-title: Landslide mobility analysis for design of multiple debris-resisting barriers
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2014-0152
– volume: 38
  start-page: 142
  issue: 2
  year: 2011
  end-page: 166
  ident: CR91
  article-title: Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.10.010
– volume: 3
  start-page: 523
  issue: 6
  year: 2003
  end-page: 538
  ident: CR4
  article-title: Numerical modelling of large landslides stability and runout
  publication-title: Nat Hazard
  doi: 10.5194/nhess-3-523-2003
– ident: CR75
– volume: 11
  start-page: 1401
  issue: 6
  year: 2016
  end-page: 1418
  ident: CR38
  article-title: Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model
  publication-title: Acta Geotech
  doi: 10.1007/s11440-016-0488-y
– ident: CR88
– volume: 362
  start-page: 2003
  issue: 1822
  year: 2004
  end-page: 2030
  ident: CR28
  article-title: Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences
  publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci
  doi: 10.1098/rsta.2004.1428
– volume: 63
  start-page: 199
  year: 2015
  end-page: 214
  ident: CR23
  article-title: Coupling of soil deformation and pore fluid flow using material point method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.09.009
– volume: 16
  start-page: 303
  issue: 4
  year: 2018
  end-page: 324
  ident: CR52
  article-title: A damage particle method for smeared modeling of brittle fracture
  publication-title: Int J Multiscale Comput Eng
  doi: 10.1615/IntJMultCompEng.2018026133
– volume: 37
  start-page: 2755
  issue: 16
  year: 2013
  end-page: 2788
  ident: CR74
  article-title: A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2161
– volume: 134
  year: 2021
  ident: CR34
  article-title: SPH-DEM simulations of saturated granular soils liquefaction incorporating particles of irregular shape
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2021.104060
– volume: 19
  start-page: 211
  issue: 3
  year: 1997
  end-page: 227
  ident: CR50
  article-title: Large deformation analysis of rubber based on a reproducing kernel particle method
  publication-title: Comput Mech
  doi: 10.1007/s004660050170
– volume: 45
  start-page: 289
  issue: 3
  year: 1999
  end-page: 317
  ident: CR84
  article-title: Reproducing kernel hierarchical partition of unity, part II—applications
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P
– volume: 93
  start-page: 189
  issue: 2
  year: 1991
  end-page: 216
  ident: CR12
  article-title: Adaptive ALE finite elements with particular reference to external work rate on frictional interface
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(91)90151-U
– volume: 31
  start-page: 316
  issue: 3
  year: 2003
  end-page: 326
  ident: CR46
  article-title: Filters, reproducing kernel, and adaptive meshfree method
  publication-title: Comput Mech
  doi: 10.1007/s00466-003-0434-3
– volume: 68
  start-page: 259
  issue: 3
  year: 1988
  end-page: 310
  ident: CR11
  article-title: Arbitrary Lagrangian–Eulerian Petrov–Galerkin finite elements for nonlinear continua
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(86)90056-3
– volume: 112
  start-page: 963
  issue: 8
  year: 2017
  end-page: 989
  ident: CR15
  article-title: Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5539
– volume: 33
  start-page: 143
  issue: 2
  year: 2009
  end-page: 172
  ident: CR35
  article-title: A depth-integrated, coupled SPH model for flow-like landslides and related phenomena
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.705
– year: 2019
  ident: CR61
  publication-title: Initial simulations of empty room collapse and reconsolidation at the waste isolation pilot plant
  doi: 10.2172/1592852
– volume: 90
  start-page: 47
  year: 2006
  end-page: 57
  ident: CR7
  article-title: Application of the ALE FE method to debris flows
  publication-title: WIT Trans Ecol Environ
  doi: 10.2495/DEB060051
– volume: 197
  start-page: 172
  year: 2015
  end-page: 187
  ident: CR32
  article-title: Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.08.022
– volume: 63
  start-page: 869
  issue: 4
  year: 1996
  end-page: 876
  ident: CR66
  article-title: A pressure projection method for nearly incompressible rubber hyperelasticity, part II: applications
  publication-title: J Appl Mech
  doi: 10.1115/1.2787241
– volume: 38
  start-page: 1655
  issue: 10
  year: 1995
  end-page: 1679
  ident: CR43
  article-title: Reproducing kernel particle methods for structural dynamics
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620381005
– volume: 56
  start-page: 1003
  issue: 7
  year: 2019
  end-page: 1018
  ident: CR2
  article-title: Large-deformation finite-element modelling of earthquake-induced landslides considering strain-softening behaviour of sensitive clay
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2018-0250
– volume: 146
  start-page: 04020012
  issue: 4
  year: 2020
  ident: CR59
  article-title: A naturally stabilized semi-Lagrangian meshfree formulation for multiphase porous media with application to landslide modeling
  publication-title: J Eng Mech
– volume: 193
  start-page: 2827
  issue: 27–29
  year: 2004
  end-page: 2844
  ident: CR85
  article-title: An implicit gradient model by a reproducing kernel strain regularization in strain localization problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.057
– volume: 45
  start-page: 251
  issue: 3
  year: 1999
  end-page: 288
  ident: CR83
  article-title: Reproducing kernel hierarchical partition of unity, part I—formulation and theory
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
– volume: 343
  start-page: 314
  year: 2019
  end-page: 338
  ident: CR19
  article-title: A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.07.043
– volume: 381
  year: 2021
  ident: CR62
  article-title: A Lagrangian/semi-Lagrangian coupling approach for accelerated meshfree modelling of extreme deformation problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.113827
– volume: 141
  start-page: 105
  year: 2016
  end-page: 115
  ident: CR67
  article-title: A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2015.11.002
– volume: 16
  start-page: 1327
  issue: 7
  year: 2019
  end-page: 1340
  ident: CR10
  article-title: Progressive failure of buildings under landslide impact
  publication-title: Landslides
  doi: 10.1007/s10346-019-01164-0
– year: 2015
  ident: CR55
  publication-title: Generalized reproducing kernel particle method for fragment-impact and fracture modeling
– volume: 86
  start-page: 96
  year: 2015
  end-page: 110
  ident: CR54
  article-title: Meshfree modeling of concrete slab perforation using a reproducing kernel particle impact and penetration formulation
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.07.009
– volume: 44
  start-page: 82
  issue: 1
  year: 2006
  end-page: 101
  ident: CR72
  article-title: Stabilization of low-order mixed finite elements for the stokes equations
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S0036142905444482
– year: 2008
  ident: CR89
  publication-title: The SPH method to simulate river levee failures
– start-page: 57
  year: 2007
  end-page: 76
  ident: CR80
  article-title: Strain smoothing for stabilization and regularization of Galerkin meshfree method
  publication-title: Meshfree methods for partial differential equations III
  doi: 10.1007/978-3-540-46222-4_4
– volume: 139
  start-page: 375
  issue: 1
  year: 1996
  end-page: 408
  ident: CR40
  article-title: Smoothed particle hydrodynamics: some recent improvements and applications
  publication-title: Comput Methods Appl Mech Eng
– volume: 37
  start-page: 31
  issue: 1
  year: 2013
  end-page: 50
  ident: CR37
  article-title: An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.1084
– volume: 22
  start-page: 289
  issue: 3
  year: 1998
  end-page: 307
  ident: CR51
  article-title: A Lagrangian reproducing kernel particle method for metal forming analysis
  publication-title: Comput Mech
  doi: 10.1007/s004660050361
– volume: 44
  start-page: 923
  issue: 7
  year: 2020
  end-page: 941
  ident: CR16
  article-title: An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.3016
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  end-page: 898
  ident: CR71
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 107
  start-page: 603
  issue: 7
  year: 2016
  end-page: 630
  ident: CR82
  article-title: An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5183
– volume: 59
  start-page: 755
  issue: 6
  year: 2004
  end-page: 794
  ident: CR1
  article-title: Numerical modelling of the propagation of fast landslides using the finite element method
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.841
– volume: 139
  start-page: 195
  issue: 1–4
  year: 1996
  end-page: 227
  ident: CR44
  article-title: Reproducing kernel particle methods for large deformation analysis of nonlinear structures
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01083-3
– volume: 50
  start-page: 435
  issue: 1
  year: 2001
  end-page: 466
  ident: CR78
  article-title: A stabilized conforming nodal integration for Galerkin mesh-free methods
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– volume: 11
  start-page: 793
  issue: 5
  year: 2014
  end-page: 812
  ident: CR36
  article-title: Application of a SPH depth-integrated model to landslide run-out analysis
  publication-title: Landslides
  doi: 10.1007/s10346-014-0484-y
– year: 2020
  ident: CR21
  article-title: Simulations of landslide wave generation and propagation using the particle finite element method
  publication-title: J Geophys Res Oceans
  doi: 10.1029/2019JC015873
– volume: 38
  start-page: 391
  issue: 4
  year: 2014
  end-page: 405
  ident: CR86
  article-title: Iterative analysis of pore-dynamic models discretized by finite elements
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2214
– volume: 66
  start-page: 248
  issue: 3
  year: 2016
  end-page: 273
  ident: CR24
  article-title: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method
  publication-title: Géotechnique
  doi: 10.1680/jgeot.15.LM.005
– volume: 25
  start-page: 257
  issue: 2
  year: 2000
  end-page: 266
  ident: CR45
  article-title: Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation
  publication-title: Comput Mech
  doi: 10.1007/s004660050474
– volume: 38
  start-page: 1033
  issue: 12
  year: 2011
  end-page: 1047
  ident: CR53
  article-title: Semi-Lagrangian reproducing kernel particle method for fragment-impact problems
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.08.001
– volume: 42
  start-page: 231
  issue: 2
  year: 2018
  end-page: 255
  ident: CR77
  article-title: u-p semi-Lagrangian reproducing formulation for landslide modeling
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2722
– volume: 5
  start-page: 477
  issue: 6
  year: 2004
  end-page: 496
  ident: CR27
  article-title: The generalized interpolation material point method
  publication-title: Comput Model Eng Sci
– volume: 25
  start-page: 76
  issue: 2
  year: 2018
  end-page: 89
  ident: CR9
  article-title: Advanced numerical analysis of landslide debris mobility and barrier interaction
  publication-title: HKIE Trans
  doi: 10.1080/1023697X.2018.1462106
– volume: 19
  start-page: 107
  issue: 1
  year: 2015
  end-page: 115
  ident: CR60
  article-title: Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-013-0550-3
– volume: 19
  start-page: 81
  issue: 2
  year: 1995
  end-page: 106
  ident: CR70
  article-title: Large strain static and dynamic semisaturated soil behaviour
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.1610190203
– volume: 17
  start-page: 186
  issue: 3
  year: 1995
  end-page: 195
  ident: CR63
  article-title: A coupled finite element-element-free Galerkin method
  publication-title: Comput Mech
  doi: 10.1007/BF00364080
– volume: 102
  start-page: 839
  issue: 3–4
  year: 2015
  end-page: 866
  ident: CR49
  article-title: A level set enhanced natural kernel contact algorithm for impact and penetration modeling
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4728
– volume: 387
  year: 2021
  ident: CR18
  article-title: A stable node-based smoothed PFEM for solving geotechnical large deformation 2D problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114179
– volume: 197
  start-page: 4353
  issue: 49–50
  year: 2008
  end-page: 4366
  ident: CR73
  article-title: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.05.015
– volume: 63
  start-page: 862
  issue: 4
  year: 1996
  end-page: 868
  ident: CR65
  article-title: A pressure projection method for nearly incompressible rubber hyperelasticity, part I: theory
  publication-title: J Appl Mech
  doi: 10.1115/1.2787240
– year: 1999
  ident: CR69
  publication-title: Computational geomechanics
– year: 1991
  ident: CR64
  publication-title: Mixed and hybrid finite element methods
  doi: 10.1007/978-1-4612-3172-1
– volume: 109
  start-page: 1045
  issue: 7
  year: 2017
  end-page: 1064
  ident: CR76
  article-title: A quasi-linear reproducing kernel particle method
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5319
– volume: 32
  start-page: 1537
  issue: 12
  year: 2008
  end-page: 1570
  ident: CR87
  article-title: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.688
– volume: 41
  start-page: 30
  issue: 1
  year: 2017
  end-page: 53
  ident: CR13
  article-title: A basal slip model for Lagrangian finite element simulations of 3D landslides
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2544
– volume: 122
  start-page: 1513
  issue: 6
  year: 2021
  end-page: 1537
  ident: CR26
  article-title: Distillation of the material point method cell crossing error leading to a novel quadrature-based C0 remedy
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6588
– volume: 116
  start-page: 123
  issue: 1
  year: 1995
  end-page: 134
  ident: CR39
  article-title: Smoothed particle hydrodynamics stability analysis
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1010
– volume: 52
  start-page: 1345
  issue: 9
  year: 2015
  ident: 233_CR8
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2014-0152
– volume: 66
  start-page: 248
  issue: 3
  year: 2016
  ident: 233_CR24
  publication-title: Géotechnique
  doi: 10.1680/jgeot.15.LM.005
– volume: 112
  start-page: 963
  issue: 8
  year: 2017
  ident: 233_CR15
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5539
– volume-title: Initial simulations of empty room collapse and reconsolidation at the waste isolation pilot plant
  year: 2019
  ident: 233_CR61
  doi: 10.2172/1592852
– volume: 352
  start-page: 85
  year: 2019
  ident: 233_CR25
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.04.024
– volume-title: Computational methods in applied sciences
  year: 2007
  ident: 233_CR56
– volume: 107
  start-page: 603
  issue: 7
  year: 2016
  ident: 233_CR82
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5183
– volume: 41
  start-page: 30
  issue: 1
  year: 2017
  ident: 233_CR13
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2544
– volume: 19
  start-page: 211
  issue: 3
  year: 1997
  ident: 233_CR50
  publication-title: Comput Mech
  doi: 10.1007/s004660050170
– volume: 74
  start-page: 416
  issue: 3
  year: 2008
  ident: 233_CR81
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2181
– volume: 17
  start-page: 186
  issue: 3
  year: 1995
  ident: 233_CR63
  publication-title: Comput Mech
  doi: 10.1007/BF00364080
– volume: 32
  start-page: 1537
  issue: 12
  year: 2008
  ident: 233_CR87
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.688
– volume: 86
  start-page: 96
  year: 2015
  ident: 233_CR54
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.07.009
– volume: 31
  start-page: 1375
  issue: 12
  year: 2007
  ident: 233_CR6
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.601
– volume: 197
  start-page: 4353
  issue: 49–50
  year: 2008
  ident: 233_CR73
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.05.015
– volume: 109
  start-page: 135
  issue: 1–2
  year: 2009
  ident: 233_CR5
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.10.004
– volume: 31
  start-page: 316
  issue: 3
  year: 2003
  ident: 233_CR46
  publication-title: Comput Mech
  doi: 10.1007/s00466-003-0434-3
– volume: 387
  year: 2021
  ident: 233_CR18
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114179
– volume: 55
  start-page: 167
  issue: 1
  year: 2015
  ident: 233_CR22
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1088-z
– volume: 139
  start-page: 375
  issue: 1
  year: 1996
  ident: 233_CR40
  publication-title: Comput Methods Appl Mech Eng
– volume: 38
  start-page: 1655
  issue: 10
  year: 1995
  ident: 233_CR43
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620381005
– volume: 63
  start-page: 869
  issue: 4
  year: 1996
  ident: 233_CR66
  publication-title: J Appl Mech
  doi: 10.1115/1.2787241
– year: 2020
  ident: 233_CR21
  publication-title: J Geophys Res Oceans
  doi: 10.1029/2019JC015873
– volume: 102
  start-page: 839
  issue: 3–4
  year: 2015
  ident: 233_CR49
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4728
– volume: 116
  start-page: 123
  issue: 1
  year: 1995
  ident: 233_CR39
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1010
– volume: 159
  start-page: 290
  issue: 2
  year: 2000
  ident: 233_CR41
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6439
– volume: 37
  start-page: 2755
  issue: 16
  year: 2013
  ident: 233_CR74
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2161
– volume: 45
  start-page: 289
  issue: 3
  year: 1999
  ident: 233_CR84
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P
– volume-title: A multiscale meshfree approach for modeling fragment penetration into ultra high-strength concrete
  year: 2011
  ident: 233_CR58
– volume: 50
  start-page: 435
  issue: 1
  year: 2001
  ident: 233_CR78
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– volume: 33
  start-page: 143
  issue: 2
  year: 2009
  ident: 233_CR35
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.705
– volume: 38
  start-page: 391
  issue: 4
  year: 2014
  ident: 233_CR86
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2214
– volume: 37
  start-page: 31
  issue: 1
  year: 2013
  ident: 233_CR37
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.1084
– volume: 19
  start-page: 81
  issue: 2
  year: 1995
  ident: 233_CR70
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.1610190203
– volume: 279
  year: 2020
  ident: 233_CR17
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105870
– volume: 63
  start-page: 199
  year: 2015
  ident: 233_CR23
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.09.009
– volume: 122
  start-page: 1513
  issue: 6
  year: 2021
  ident: 233_CR26
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6588
– volume: 392
  year: 2022
  ident: 233_CR14
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114660
– volume: 38
  start-page: 142
  issue: 2
  year: 2011
  ident: 233_CR91
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.10.010
– volume: 141
  start-page: 105
  year: 2016
  ident: 233_CR67
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2015.11.002
– volume: 197
  start-page: 172
  year: 2015
  ident: 233_CR32
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.08.022
– volume-title: Computational geomechanics
  year: 1999
  ident: 233_CR69
– volume: 44
  start-page: 923
  issue: 7
  year: 2020
  ident: 233_CR16
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.3016
– volume: 45
  start-page: 251
  issue: 3
  year: 1999
  ident: 233_CR83
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
– volume: 95
  start-page: 387
  issue: 5
  year: 2013
  ident: 233_CR79
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4512
– volume-title: Mixed and hybrid finite element methods
  year: 1991
  ident: 233_CR64
  doi: 10.1007/978-1-4612-3172-1
– start-page: 57
  volume-title: Meshfree methods for partial differential equations III
  year: 2007
  ident: 233_CR80
  doi: 10.1007/978-3-540-46222-4_4
– volume: 193
  start-page: 2827
  issue: 27–29
  year: 2004
  ident: 233_CR85
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.057
– ident: 233_CR75
– volume: 109
  start-page: 1045
  issue: 7
  year: 2017
  ident: 233_CR76
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5319
– volume: 149
  start-page: 22
  year: 2012
  ident: 233_CR33
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2012.08.006
– volume: 90
  start-page: 47
  year: 2006
  ident: 233_CR7
  publication-title: WIT Trans Ecol Environ
  doi: 10.2495/DEB060051
– volume: 42
  start-page: 231
  issue: 2
  year: 2018
  ident: 233_CR77
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2722
– volume: 3
  start-page: 523
  issue: 6
  year: 2003
  ident: 233_CR4
  publication-title: Nat Hazard
  doi: 10.5194/nhess-3-523-2003
– volume: 11
  start-page: 793
  issue: 5
  year: 2014
  ident: 233_CR36
  publication-title: Landslides
  doi: 10.1007/s10346-014-0484-y
– volume: 146
  start-page: 04020012
  issue: 4
  year: 2020
  ident: 233_CR59
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001729
– volume: 139
  start-page: 195
  issue: 1–4
  year: 1996
  ident: 233_CR44
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01083-3
– volume: 38
  start-page: 1033
  issue: 12
  year: 2011
  ident: 233_CR53
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.08.001
– volume: 40
  start-page: 809
  issue: 6
  year: 2016
  ident: 233_CR20
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2428
– volume: 2015
  year: 2015
  ident: 233_CR48
  publication-title: Math Probl Eng
– volume: 19
  start-page: 107
  issue: 1
  year: 2015
  ident: 233_CR60
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-013-0550-3
– ident: 233_CR88
– volume: 63
  start-page: 862
  issue: 4
  year: 1996
  ident: 233_CR65
  publication-title: J Appl Mech
  doi: 10.1115/1.2787240
– volume: 429
  start-page: 311
  issue: 1877
  year: 1990
  ident: 233_CR68
  publication-title: Proc R Soc Lond A Math Phys Sci
  doi: 10.1098/rspa.1990.0062
– volume: 44
  start-page: 82
  issue: 1
  year: 2006
  ident: 233_CR72
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S0036142905444482
– volume: 172
  start-page: 455
  issue: 1
  year: 2008
  ident: 233_CR29
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2007.03631.x
– volume: 20
  start-page: 1081
  issue: 8–9
  year: 1995
  ident: 233_CR42
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650200824
– volume: 63
  start-page: 1559
  issue: 11
  year: 2005
  ident: 233_CR47
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1326
– volume: 381
  year: 2021
  ident: 233_CR62
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.113827
– volume: 343
  start-page: 314
  year: 2019
  ident: 233_CR19
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.07.043
– volume: 59
  start-page: 755
  issue: 6
  year: 2004
  ident: 233_CR1
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.841
– volume: 9
  start-page: 687
  issue: 4
  year: 2014
  ident: 233_CR90
  publication-title: Jpn Geotech J
  doi: 10.3208/jgs.9.687
– volume-title: The SPH method to simulate river levee failures
  year: 2008
  ident: 233_CR89
– volume: 134
  year: 2021
  ident: 233_CR34
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2021.104060
– volume: 11
  start-page: 1401
  issue: 6
  year: 2016
  ident: 233_CR38
  publication-title: Acta Geotech
  doi: 10.1007/s11440-016-0488-y
– volume: 68
  start-page: 259
  issue: 3
  year: 1988
  ident: 233_CR11
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(86)90056-3
– volume: 93
  start-page: 189
  issue: 2
  year: 1991
  ident: 233_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(91)90151-U
– volume-title: Generalized reproducing kernel particle method for fragment-impact and fracture modeling
  year: 2015
  ident: 233_CR55
– volume: 46
  start-page: 397
  issue: 2
  year: 2009
  ident: 233_CR30
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.07.010
– volume: 22
  start-page: 289
  issue: 3
  year: 1998
  ident: 233_CR51
  publication-title: Comput Mech
  doi: 10.1007/s004660050361
– volume: 41
  start-page: 670
  issue: 6
  year: 2009
  ident: 233_CR57
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2009.01.030
– volume: 18
  start-page: 3149
  issue: 9
  year: 2021
  ident: 233_CR3
  publication-title: Landslides
  doi: 10.1007/s10346-021-01699-1
– volume: 16
  start-page: 1327
  issue: 7
  year: 2019
  ident: 233_CR10
  publication-title: Landslides
  doi: 10.1007/s10346-019-01164-0
– volume: 16
  start-page: 303
  issue: 4
  year: 2018
  ident: 233_CR52
  publication-title: Int J Multiscale Comput Eng
  doi: 10.1615/IntJMultCompEng.2018026133
– volume: 25
  start-page: 257
  issue: 2
  year: 2000
  ident: 233_CR45
  publication-title: Comput Mech
  doi: 10.1007/s004660050474
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 233_CR71
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 106
  start-page: 1
  issue: 1–2
  year: 2009
  ident: 233_CR31
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2009.02.011
– volume: 56
  start-page: 1003
  issue: 7
  year: 2019
  ident: 233_CR2
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2018-0250
– volume: 5
  start-page: 477
  issue: 6
  year: 2004
  ident: 233_CR27
  publication-title: Comput Model Eng Sci
– volume: 362
  start-page: 2003
  issue: 1822
  year: 2004
  ident: 233_CR28
  publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci
  doi: 10.1098/rsta.2004.1428
– volume: 25
  start-page: 76
  issue: 2
  year: 2018
  ident: 233_CR9
  publication-title: HKIE Trans
  doi: 10.1080/1023697X.2018.1462106
SSID ssj0001634176
Score 2.262768
Snippet The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element...
Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite...
Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite...
SourceID doaj
osti
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Continuum Physics
Computational Science and Engineering
Deformation
Engineering
Engineering Sciences
Finite element method
Kernels
Lagrangian semi-Lagrangian coupling
Landslide
Landslides
Landslides & mudslides
Mathematical analysis
Mathematical models
Meshfree modeling
Meshless methods
Natural disasters
Particle methods (mathematics)
Plastic deformation
Ramp functions
Recent Advances in hypercomplex disaster simulations
Reproducing kernel particle method
Research Article
Seepage
Shape functions
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZG9wIPiJ-ibCAL8QZWa8dJnAeEOrSpQlOFEJP2Ztk-p53UtaUNk_jvuXOTliKxPrWu48i-892X-O47xt6rAABZVQvvpRHkcoWXwYvK-cKDz530Kcp3Uoyv9Nfr_PqITbpcGAqr7GxiMtSwDPSOfKBKSTwiplKfVz8FVY2i09WuhIZrSyvAp0Qx9oAdo0k2qPfHZ-eTb9_3b10KtNpl0WXPmGKw0cNM0VGmEuS_MlEdeKhE5I9-Z0Zhkr0lbrsDKPrP6WlyShdP2OMWTfLRVvxP2VFcPGOP_uIYfM7uRhziLkVRdEVvG45TWc0j8Es3RX81RTUZbOLtjdj_5rdxM6vXMfLZ70RrQFnCJFRO47V1v-g7TwnD8xuIPFXWwRu_YFcX5z--jEVbbEGEXFWNAHTkUEmPnwI0OF-VALU0dRnrUkMcouRw-Z2OMajgncHVq7Wugo5F6SDPXrLeYrmIrxiv8TpfBKliDVpG7YzxYECZvK4BEVCfyW6BbWiZyKkgxtymJxJT2K1QLArFJqHYqs8-7K5ZbXk47u19RnLb9SQO7dSwXE9tuyWtQegXEP4iaNU6SnBQZqWUOL-SSJBkn71DqR-MMR5dWmobasSdCL7usNMJKYVFvEKku4Gik0JjpSHes7LPTjtdsa1t2Ni9JvfZx05_9n__f1av7x_thD1USY0pmOWU9Zr1r_gGEVPj37bb4A9AuhUO
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagvMAD4qcIG8hCvIG12nFs57FMTBWaeGLS3qzYZ6-TunZas0n899y5absiQCJPiWM7su8u9yX2fcfYRxUBoG6zCEE6QS5XBBmDaLtgAoSmk6Hs8v1upmf623lzPtDkUCzM_fV76czRSo9rRSuNSpB7qUX7kD1qZG3Kwqw53v1PMfg-tmYTF_PHpnu-p1D0o0eZ0QbI0RINag9k_rYuWtzNyTP2dMCJfLIW7HP2IC1esCf32ANfsrsJh7QNPhSbdLY9j8vb63kCftpdoCe6QAU4WqWrS7G75ldpNcs3KfHZz0JYQPG_JC5O_Q0Zveicl1Dg-SUkXnLm4INfsbOTrz-Op2JIoyBio9peALpoaGXAw4CGLrQWIEuXbcpWQxqjTNCOO51SVDF0Dmcva91GnYztoKlfs9FiuUhvGM_YLpgoVcqgZdKdcwEcKNfkDIhtKiY3E-zjwDFOqS7mvnxrOOPXQvEoFF-E4tuKfdq2uV4zbPyz9heS27YmsWOXAlQaPxibdwjqIgJbhKNaJwkd2NpKieOzRG8kK_YBpb7Xx3Ry6qlsrBFRIqy6w0oHpBQekQjR6UbadxR7Lx0xmtmKHW50xQ9Wv_LKSuK6ca2q2OeN_uxu_31Ub_-v-gF7rIpa07aVQzbqb27TO8RGfXhfjOIX6-8HMQ
  priority: 102
  providerName: Springer Nature
Title A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling
URI https://link.springer.com/article/10.1186/s40323-022-00233-9
https://www.proquest.com/docview/2719604892
https://hal.science/hal-04456074
https://www.osti.gov/biblio/1890517
https://doaj.org/article/8562c97705444e1dad73711eec700701
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegvMAD4lNkG1WEeAOrteMkzmNWrVTVNCFg0t6s2Oesk7p2WrNJ_PfcOUnXIgEv5CEfjuMkvnPu5_j8O8Y-SgcASVFza4XmZHK5Fc7yorKZBZtWwgYv37Nsdq7mF-nFTqgv8glr6YHbihtpNNAOQQpCC6W8gAryJBfCe5cTVU3o-IyL8U5nKvxdyfDrnGf9LBmdjTZqnEgaspSc7FTCiz1LFAj70b4syB1ysMbmtQc5fxslDcZn-oI971BjXLZP-5I98qtX7NkOl-Brdl_G4LdTEXkf3LaJ3fruZukhPq0u0S5dojqMNv76ij8cx9d-s6hvvY8XPwN9Ac0GJuHFVF4X34v24zAxeHkFPg4RdPDGb9j59OTHZMa7oArcpbJoOKDBhkJYXDJQUNkiB6iFrnNf5wr8GCWErbpSWMPS2Upj7dVKFU75LK8gTd6ywWq98u9YXON1NnNC-hqU8KrS2oIGqdO6BkQ6ERN9BRvXMY5T4IulCT0PnZlWKAaFYoJQTBGxT9trblq-jb_mPia5bXMSV3ZIQA0ynQaZf2lQxD6g1PfKmJWnhtLGCvElgqx7zHRISmEQlxC5riMvJNcYoYnfLI_YUa8rpvsGbIzMBTHf6EJG7HOvPw-n__xWB__jrQ7ZUxmUnVxbjtigub3z7xE_NXbIHuvplyF7Upbz73PcHp-cff2GqROpaJ1NhqEx_QJOehsy
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAcEE8RWsBCcAIrsdfZ9R4QCo-Q0tBTK_Vm1h5vUilNQpK26p_iNzLj7CYEid66p314vY-Z8Xy7npmPsTfKA0CSl8I5aQS5XOGkdyIvXOrAdQrpYpTvUdo_0d9PO6c77HedC0NhlfWYGAdqmHr6R95SmaQ6IiZXH2e_BLFG0exqTaGxUovDcH2Fn2yLDwdfUL5vlep9Pf7cFxWrgPAdlS8FoMeCXDpcUtBQuDwDKKUps1BmGkIbbxGvU-gQvPKuMAjBS61zr0OaFUAsETjk7-okyYkqwvS-bf7ppOgTsrTOzTFpa6HbiaKJUiXIOyYi3_J_kSYAvdqIgjAbUzTqLaD7z9xsdHm9B-x-hVV5d6VcD9lOmDxi9_6qYPiYXXY5hHUCpKgpdZfcTy9m4wB8UAzRGw5RCVuLcH4mNtv8PCxG5TwEPrqORRMoB5lUhlN_FasYrfOYjjw-g8Ajbw9e-Ak7uZWX_pQ1JtNJeMZ4iee51EsVStAy6MIYBwaU6ZQlIL5qMlm_YOurOudEtzG28XvHpHYlFItCsVEoNm-yd-tzZqsqHze2_kRyW7ekCt1xx3Q-tJXBW4PA0iO4RkisdZBQQJZkUuLzZVRiSTbZa5T6Vh_97sDSvrZGVIvQ7hIb7ZFSWERDVNLXU-yTX1ppqKpa1mT7ta7YauRZ2I2dNNn7Wn82h___VM9v7u0Vu9M__jGwg4Ojwz12V0WVprCZfdZYzi_CC8RmS_cyGgRnP2_bAv8AlT9Ohw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegSAgeEJ9a2YAI8QZW68RxnMcyqApUEw9M2psV--x2UtdWbTaJ_547J2lXBEjkKR92Ivvucr_Ed79j7F3qACArA7dWaE4ul1vhLC8rqyzYvBI2Rvmeqcm5_HqRX9zK4o_R7t2SZJPTQCxNy3qwhtCYuFaDrRxmKa0_ppycTsbLu-yeJNdHy7XqdP-XReFbulBdtswfux54pEjcj35mTmGRvRWa2QH0_G21NDqh8WP2qEWPyagR9xN2xy-fsoe3OAWfsZtRAn6Xksi7Ird14lbX64WHZFrN0D_NUC0GW391yffHyZXfzsPG-2T-M9IYUFYwCTGh-7V1vmg_iQnCi0vwSaykgw9-zs7Hn3-cTnhbXIG7PC1rDui4oRQWNwUSKlsWAEHoUPhQSPBDlBRadyW9d6mzlcbZC1KWTnpVVJBnL1hvuVr6I5YE7GeVE6kPIIWXldYWNKQ6DwEQ8fSZ6CbYuJZ5nApgLEz8AtHKNEIxKBQThWLKPnu_67NueDf-2fojyW3Xkjiz44nVZmZaEzQaoZ5DuIsgVUovoIIiK4TA8RVEeiT67C1K_eAek9HU0LmhRJyJYOsGGx2TUhjEJ0Sy6ygaydVGaOI5K_rspNMV074LtiYtBDHg6DLtsw-d_uwv_31UL_-v-Rt2__unsZl-Oft2zB6kUcMpruWE9erNtX-F4Km2r6N9_ALJxxJl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deformation-dependent+coupled+Lagrangian%2Fsemi-Lagrangian+meshfree+hydromechanical+formulation+for+landslide+modeling&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Jonghyuk+Baek&rft.au=Ryan+T.+Schlinkman&rft.au=Frank+N.+Beckwith&rft.au=Jiun-Shyan+Chen&rft.date=2022-09-30&rft.pub=SpringerOpen&rft.eissn=2213-7467&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1186%2Fs40323-022-00233-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8562c97705444e1dad73711eec700701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon