A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling
The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfre...
Saved in:
Published in | Advanced modeling and simulation in engineering sciences Vol. 9; no. 1; pp. 1 - 35 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
30.09.2022
Springer Nature B.V Springer Springer Science + Business Media SpringerOpen |
Series | Recent Advances in hypercomplex disaster simulations |
Subjects | |
Online Access | Get full text |
ISSN | 2213-7467 2213-7467 |
DOI | 10.1186/s40323-022-00233-9 |
Cover
Abstract | The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed
u
–
p
formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. |
---|---|
AbstractList | Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed u – p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed u–p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element method (FEM) due to the presence of numerically challenging phenomena such as severe material deformation and fragmentation. In contrast, meshfree methods such as the reproducing kernel particle method (RKPM) possess unique features conducive to modelling extreme events such as the absence of a structured mesh and the ease of adaptive refinement, among others. While the semi-Lagrangian reproducing kernel (SL-RK) shape functions of RKPM defined in the current configuration have proven to be effective in extreme event modelling, the computational cost for the re-evaluation of the shape functions at every time step is costly. In this work, a deformation-dependent coupling of the Lagrangian reproducing kernel (L-RK) and SL-RK approximations is proposed for the solution of a hydro-mechanical formulation for effective simulations of landslides. The ramp function is constructed based on an equivalent plastic strain as a deformation-dependent transition from L-RK shape functions to SL-RK ones as the deformation progresses. The particular focus of the paper will be on modelling seepage-induced landslides with a mixed $$u$$ u – $$p$$ p formulation to couple the solid and fluid phases. Examples are presented to examine the effectiveness of this coupled Lagrangian/semi-Lagrangian reproducing kernel (L–SL RK) formulation and to highlight its performance in landslide modelling. |
ArticleNumber | 20 |
Author | Schlinkman, Ryan T. Chen, Jiun-Shyan Beckwith, Frank N. Baek, Jonghyuk |
Author_xml | – sequence: 1 givenname: Jonghyuk surname: Baek fullname: Baek, Jonghyuk organization: Department of Structural Engineering, University of California San Diego – sequence: 2 givenname: Ryan T. surname: Schlinkman fullname: Schlinkman, Ryan T. organization: Department of Structural Engineering, University of California San Diego – sequence: 3 givenname: Frank N. surname: Beckwith fullname: Beckwith, Frank N. organization: Sandia National Laboratories – sequence: 4 givenname: Jiun-Shyan orcidid: 0000-0002-6871-8815 surname: Chen fullname: Chen, Jiun-Shyan email: js-chen@ucsd.edu organization: Department of Structural Engineering, University of California San Diego |
BackLink | https://hal.science/hal-04456074$$DView record in HAL https://www.osti.gov/biblio/1890517$$D View this record in Osti.gov |
BookMark | eNp9kUFv3CAQha0olZIm-QM9We2pBzeAsTHHVdQ0kVbqpT0jzIy9rDBswRsp_754HTVtD-ECjN77Bua9L8598FgUHyj5QmnX3iZOalZXhLGKEFbXlTwrLhmjdSV4K87_Ol8UNyntCSG0rTkV7WXxtCkBhxAnPdvgK8ADekA_lyYcDw6h3Ooxaj9a7W8TTrZ6vZcTpt0QEcvdM8Qwodlpb4125cI7uhNxOZdOe0jOApZTAHTWj9fFu0G7hDcv-1Xx8_7rj7uHavv92-PdZluZhsm5AtowkLTPqwUOupcCYKDdIHAQHJD00BPeaY5omOl1l-cxcC4Nx1ZoaOqr4nHlQtB7dYh20vFZBW3VqRDiqHScrXGouqZlRgpBGs45UtAgakFpJgtCBKGZ9XFlhTRblYyd849N8B7NrGgnSUNFFn1eRTvt_un3sNmqpUY4b1oi-NMC_LRqDzH8OmKa1T4co8_zUExQ2eafSZZVbFWZGFKKOPzBUqKW_NWav8r5q1P-SmZT958pP_cUyBy1dW9b69Wach8_Ynx91Ruu3xg9x3U |
CitedBy_id | crossref_primary_10_1007_s00466_023_02410_y crossref_primary_10_1007_s00366_024_02015_w crossref_primary_10_1177_10567895231193053 crossref_primary_10_1109_ACCESS_2024_3414648 crossref_primary_10_3390_app14031072 crossref_primary_10_1007_s00466_023_02393_w crossref_primary_10_21595_vp_2024_24307 crossref_primary_10_3390_buildings14020445 crossref_primary_10_1002_nme_7584 |
Cites_doi | 10.1007/s00466-014-1088-z 10.1016/j.cma.2022.114660 10.1002/fld.1650200824 10.1016/j.enggeo.2008.10.004 10.1006/jcph.2000.6439 10.1016/j.enggeo.2020.105870 10.1016/j.enggeo.2009.02.011 10.1007/s10346-021-01699-1 10.1016/j.mechmat.2009.01.030 10.3208/jgs.9.687 10.1002/nag.601 10.1016/j.cma.2019.04.024 10.1111/j.1365-246X.2007.03631.x 10.1016/j.ijrmms.2008.07.010 10.1002/nme.4512 10.1002/nme.2181 10.1016/j.enggeo.2012.08.006 10.1002/nag.2428 10.1002/nme.1326 10.1139/cgj-2014-0152 10.1016/j.compgeo.2010.10.010 10.5194/nhess-3-523-2003 10.1007/s11440-016-0488-y 10.1098/rsta.2004.1428 10.1016/j.compgeo.2014.09.009 10.1615/IntJMultCompEng.2018026133 10.1002/nag.2161 10.1016/j.compgeo.2021.104060 10.1007/s004660050170 10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P 10.1016/0045-7825(91)90151-U 10.1007/s00466-003-0434-3 10.1016/0045-7825(86)90056-3 10.1002/nme.5539 10.1002/nag.705 10.2172/1592852 10.2495/DEB060051 10.1016/j.enggeo.2015.08.022 10.1115/1.2787241 10.1002/nme.1620381005 10.1139/cgj-2018-0250 10.1016/j.cma.2003.12.057 10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I 10.1016/j.cma.2018.07.043 10.1016/j.cma.2021.113827 10.1016/j.compfluid.2015.11.002 10.1007/s10346-019-01164-0 10.1016/j.ijimpeng.2015.07.009 10.1137/S0036142905444482 10.1007/978-3-540-46222-4_4 10.1002/nag.1084 10.1007/s004660050361 10.1002/nag.3016 10.2136/sssaj1980.03615995004400050002x 10.1002/nme.5183 10.1002/nme.841 10.1016/S0045-7825(96)01083-3 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A 10.1007/s10346-014-0484-y 10.1029/2019JC015873 10.1002/nag.2214 10.1680/jgeot.15.LM.005 10.1007/s004660050474 10.1016/j.ijimpeng.2011.08.001 10.1002/nag.2722 10.1080/1023697X.2018.1462106 10.1007/s12205-013-0550-3 10.1002/nag.1610190203 10.1007/BF00364080 10.1002/nme.4728 10.1016/j.cma.2021.114179 10.1016/j.cma.2008.05.015 10.1115/1.2787240 10.1007/978-1-4612-3172-1 10.1002/nme.5319 10.1002/nag.688 10.1002/nag.2544 10.1002/nme.6588 10.1006/jcph.1995.1010 10.1061/(ASCE)EM.1943-7889.0001729 10.1098/rspa.1990.0062 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 1XC VOOES OTOTI DOA |
DOI | 10.1186/s40323-022-00233-9 |
DatabaseName | Springer Nature Link OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2213-7467 |
EndPage | 35 |
ExternalDocumentID | oai_doaj_org_article_8562c97705444e1dad73711eec700701 1890517 oai_HAL_hal_04456074v1 10_1186_s40323_022_00233_9 |
GrantInformation_xml | – fundername: Sandia National Laboratories grantid: 1655264 funderid: http://dx.doi.org/10.13039/100006234 |
GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S M~E OK1 P62 PIMPY PROAC PTHSS RSV SOJ TUS AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI 1XC PUEGO VOOES AHBXF OTOTI |
ID | FETCH-LOGICAL-c529t-d152d91bbbb6d4dab97ddf18f7ef74de0bdb048a4eec2cba8118f449c4e67ad53 |
IEDL.DBID | DOA |
ISSN | 2213-7467 |
IngestDate | Wed Aug 27 01:05:59 EDT 2025 Thu May 18 22:29:18 EDT 2023 Fri Sep 12 12:37:49 EDT 2025 Fri Jul 25 11:08:28 EDT 2025 Tue Jul 01 02:30:34 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Fri Feb 21 02:44:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lagrangian semi-Lagrangian coupling Landslide Meshfree modeling Reproducing kernel particle method |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-d152d91bbbb6d4dab97ddf18f7ef74de0bdb048a4eec2cba8118f449c4e67ad53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE 1655264 |
ORCID | 0000-0002-6871-8815 0000000268718815 |
OpenAccessLink | https://doaj.org/article/8562c97705444e1dad73711eec700701 |
PQID | 2719604892 |
PQPubID | 2034555 |
PageCount | 35 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8562c97705444e1dad73711eec700701 osti_scitechconnect_1890517 hal_primary_oai_HAL_hal_04456074v1 proquest_journals_2719604892 crossref_primary_10_1186_s40323_022_00233_9 crossref_citationtrail_10_1186_s40323_022_00233_9 springer_journals_10_1186_s40323_022_00233_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-30 |
PublicationDateYYYYMMDD | 2022-09-30 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg – name: Netherlands |
PublicationSeriesTitle | Recent Advances in hypercomplex disaster simulations |
PublicationTitle | Advanced modeling and simulation in engineering sciences |
PublicationTitleAbbrev | Adv. Model. and Simul. in Eng. Sci |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V Springer Springer Science + Business Media SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer – name: Springer Science + Business Media – name: SpringerOpen |
References | Wei, Chen (CR52) 2018; 16 Salazar, Irazábal, Larese, Oñate (CR20) 2016; 40 Chen, Pan, Wu (CR50) 1997; 19 Bardenhagen, Kober (CR27) 2004; 5 Chen, Wu, Yoon, You (CR78) 2001; 50 Hillman, Chen (CR82) 2016; 107 Sherburn, Roth, Chen, Hillman (CR54) 2015; 86 Chen, Wu, Pan (CR66) 1996; 63 Chen, Chi, Lee, Lin, Marodon, Roth, Slawson (CR58) 2011 Guan, Chi, Chen, Slawson, Roth (CR53) 2011; 38 Luo, Zhang, Zhang (CR10) 2019; 16 Wei, Chen, Beckwith, Baek (CR59) 2020; 146 Soga, Alonso, Yerro, Kumar, Bandara (CR24) 2016; 66 Sun, Ostien, Salinger (CR74) 2013; 37 CR75 Konuk, Yu, Evgin (CR7) 2006; 90 Cremonesi, Ferri, Perego (CR13) 2017; 41 Chi, Lee, Chen, Guan (CR49) 2015; 102 Soares (CR86) 2014; 38 Zhang, Maeda, Saito, Li, Huang (CR38) 2016; 11 Belytschko, Organ, Krongauz (CR63) 1995; 17 Bochev, Dohrmann, Gunzburger (CR72) 2006; 44 Pasetto, Baek, Chen, Wei, Sherburn, Roth (CR62) 2021; 381 Jin, Yuan, Yin, Cheng (CR16) 2020; 44 White, Borja (CR73) 2008; 197 Bui, Fukagawa, Sako, Ohno (CR87) 2008; 32 Guan, Chen, Wu, Teng, Gaidos, Hofstetter, Alsaleh (CR57) 2009; 41 Liu, Chang, Chen, Belytschko (CR11) 1988; 68 Bandara, Soga (CR23) 2015; 63 Chen, Zhang, Belytschko (CR85) 2004; 193 CR88 Sizkow, Usama (CR34) 2021; 134 Bui, Fukagawa (CR37) 2013; 37 Zhang, Krabbenhoft, Sheng, Li (CR22) 2015; 55 Liang, Zhang, Liu (CR25) 2019; 352 Pastor, Haddad, Sorbino, Cuomo, Drempetic (CR35) 2009; 33 Liu, Chen, Belytschko, Zhang (CR12) 1991; 93 Cleary, Prakash (CR28) 2004; 362 Khoei, Mohammadnejad (CR91) 2011; 38 Crosta, Imposimato, Roddeman (CR5) 2009; 109 Mulligan, Franci, Celigueta, Take (CR21) 2020 Chen, Hu, Puso, Wu, Zhang (CR80) 2007 Jun, Im (CR45) 2000; 25 Liu, Jun, Zhang (CR42) 1995; 20 Wu, Hu, Wang, Lu (CR48) 2015; 2015 Islam, Hawlader, Wang, Soga (CR2) 2019; 56 Jin, Yin (CR14) 2022; 392 Tang, Hu, Lin, Angelier, Lu, Chan, Chu (CR31) 2009; 106 Liu, Jun, Li, Adee, Belytschko (CR43) 1995; 38 Li, Li, Dai, Lee (CR33) 2012; 149 Yreux, Chen (CR76) 2017; 109 Lin, Lin (CR32) 2015; 197 Reedlunn, Moutsanidis, Baek, Huang, Koester, Matteo, He, Taneja, Wei, Bazilevs, Chen, Mitchell, Lander, Dewers (CR61) 2019 Chen, Li, Tang, Liu (CR3) 2021; 18 Wei, Chen, Hillman (CR67) 2016; 141 van Genuchten (CR71) 1980; 44 Zienkiewicz, Xie, Schrefler, Ledesma, Biĉaniĉ (CR68) 1990; 429 Crosta, Imposimato, Roddeman (CR4) 2003; 3 Rabczuk, Belytschko (CR47) 2005; 63 Li, Liu (CR83) 1999; 45 Swegle, Hicks, Attaway (CR39) 1995; 116 Chen, Pan, Wu, Liu (CR44) 1996; 139 Chen, Pan (CR65) 1996; 63 Brezzi, Fortin (CR64) 1991 Chen, Hillman, Rüter (CR79) 2013; 95 Jin, Yin, Yuan (CR17) 2020; 279 Kwok, Guan, Cheng, Sun (CR60) 2015; 19 Mori (CR89) 2008 Quecedo, Pastor, Herreros, Fernández Merodo (CR1) 2004; 59 You, Chen, Lu (CR46) 2003; 31 Wilson, Wüchner, Fernando (CR26) 2021; 122 Meroi, Schrefler, Zienkiewicz (CR70) 1995; 19 Jin, Yin, Zhou, Liu (CR18) 2021; 387 Chen, Wu (CR56) 2007 Puso, Chen, Zywicz, Elmer (CR81) 2008; 74 Zhang, Sheng, Sloan, Bleyer (CR15) 2017; 112 Wu, Lin, Chen (CR30) 2009; 46 Zhang, Oñate, Torres, Bleyer, Krabbenhoft (CR19) 2019; 343 Staron (CR29) 2008; 172 Cheung, Yiu, Lam, Sze (CR9) 2018; 25 Li, Liu (CR84) 1999; 45 Di, Yang, Sato (CR6) 2007; 31 Zienkiewicz, Chan, Pastor, Schrefler, Shiomi (CR69) 1999 Pastor, Blanc, Haddad, Petrone, Sanchez Morles, Drempetic, Issler, Crosta, Cascini, Sorbino, Cuomo (CR36) 2014; 11 Yreux (CR55) 2015 Mori, Fukuhara, Hattori, Kuwano, Soga, Saito, Sasaki (CR90) 2014; 9 Kwan, Koo, Ng (CR8) 2015; 52 Chen, Pan, Roque, Wang (CR51) 1998; 22 Libersky, Randles (CR40) 1996; 139 Siriaksorn, Chi, Foster, Mahdavi (CR77) 2018; 42 Monaghan (CR41) 2000; 159 T Belytschko (233_CR63) 1995; 17 HH Bui (233_CR37) 2013; 37 MA Puso (233_CR81) 2008; 74 S Li (233_CR83) 1999; 45 J-S Chen (233_CR66) 1996; 63 PB Bochev (233_CR72) 2006; 44 WK Liu (233_CR11) 1988; 68 J-S Chen (233_CR50) 1997; 19 GB Crosta (233_CR4) 2003; 3 SF Sizkow (233_CR34) 2021; 134 233_CR88 GB Crosta (233_CR5) 2009; 109 HY Luo (233_CR10) 2019; 16 C-H Lin (233_CR32) 2015; 197 WK Liu (233_CR12) 1991; 93 OC Zienkiewicz (233_CR68) 1990; 429 WK Liu (233_CR43) 1995; 38 PW Cleary (233_CR28) 2004; 362 Y-F Jin (233_CR14) 2022; 392 P Wilson (233_CR26) 2021; 122 J-S Chen (233_CR51) 1998; 22 M Pastor (233_CR36) 2014; 11 WK Liu (233_CR42) 1995; 20 J-S Chen (233_CR78) 2001; 50 H Mori (233_CR90) 2014; 9 N Islam (233_CR2) 2019; 56 J-S Chen (233_CR85) 2004; 193 233_CR75 AR Khoei (233_CR91) 2011; 38 JA White (233_CR73) 2008; 197 Y Di (233_CR6) 2007; 31 H Wei (233_CR67) 2016; 141 Y-F Jin (233_CR18) 2021; 387 K Soga (233_CR24) 2016; 66 W Zhang (233_CR38) 2016; 11 T Rabczuk (233_CR47) 2005; 63 H Mori (233_CR89) 2008 H Wei (233_CR52) 2018; 16 J-S Chen (233_CR44) 1996; 139 X Zhang (233_CR22) 2015; 55 HH Bui (233_CR87) 2008; 32 C-L Tang (233_CR31) 2009; 106 OC Zienkiewicz (233_CR69) 1999 Y Jin (233_CR16) 2020; 44 P-C Guan (233_CR53) 2011; 38 JA Sherburn (233_CR54) 2015; 86 M Pastor (233_CR35) 2009; 33 I Konuk (233_CR7) 2006; 90 B Reedlunn (233_CR61) 2019 L Libersky (233_CR40) 1996; 139 X Zhang (233_CR15) 2017; 112 J-S Chen (233_CR79) 2013; 95 JJ Monaghan (233_CR41) 2000; 159 EA Meroi (233_CR70) 1995; 19 S-W Chi (233_CR49) 2015; 102 E Yreux (233_CR76) 2017; 109 MT van Genuchten (233_CR71) 1980; 44 J-S Chen (233_CR80) 2007 C-T Wu (233_CR48) 2015; 2015 AK Cheung (233_CR9) 2018; 25 X Zhang (233_CR19) 2019; 343 Y You (233_CR46) 2003; 31 D Soares Jr (233_CR86) 2014; 38 JS Kwan (233_CR8) 2015; 52 T Siriaksorn (233_CR77) 2018; 42 X Chen (233_CR3) 2021; 18 SG Bardenhagen (233_CR27) 2004; 5 J-H Wu (233_CR30) 2009; 46 F Salazar (233_CR20) 2016; 40 J-S Chen (233_CR65) 1996; 63 J-S Chen (233_CR56) 2007 O-LA Kwok (233_CR60) 2015; 19 M Pasetto (233_CR62) 2021; 381 F Brezzi (233_CR64) 1991 L Staron (233_CR29) 2008; 172 M Quecedo (233_CR1) 2004; 59 RP Mulligan (233_CR21) 2020 WC Li (233_CR33) 2012; 149 W Sun (233_CR74) 2013; 37 S Bandara (233_CR23) 2015; 63 M Hillman (233_CR82) 2016; 107 Y-F Jin (233_CR17) 2020; 279 JW Swegle (233_CR39) 1995; 116 E Yreux (233_CR55) 2015 M Cremonesi (233_CR13) 2017; 41 PC Guan (233_CR57) 2009; 41 S Li (233_CR84) 1999; 45 Y Liang (233_CR25) 2019; 352 J-S Chen (233_CR58) 2011 H Wei (233_CR59) 2020; 146 S Jun (233_CR45) 2000; 25 |
References_xml | – volume: 55 start-page: 167 issue: 1 year: 2015 end-page: 177 ident: CR22 article-title: Numerical simulation of a flow-like landslide using the particle finite element method publication-title: Comput Mech doi: 10.1007/s00466-014-1088-z – volume: 392 year: 2022 ident: CR14 article-title: Two-phase PFEM with stable nodal integration for large deformation hydromechanical coupled geotechnical problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114660 – year: 2011 ident: CR58 publication-title: A multiscale meshfree approach for modeling fragment penetration into ultra high-strength concrete – volume: 20 start-page: 1081 issue: 8–9 year: 1995 end-page: 1106 ident: CR42 article-title: Reproducing kernel particle methods publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1650200824 – volume: 109 start-page: 135 issue: 1–2 year: 2009 end-page: 145 ident: CR5 article-title: Numerical modelling of entrainment/deposition in rock and debris-avalanches publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.10.004 – volume: 159 start-page: 290 issue: 2 year: 2000 end-page: 311 ident: CR41 article-title: SPH without a tensile instability publication-title: J Comput Phys doi: 10.1006/jcph.2000.6439 – year: 2007 ident: CR56 article-title: Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics publication-title: Computational methods in applied sciences – volume: 279 year: 2020 ident: CR17 article-title: Simulating retrogressive slope failure using two different smoothed particle finite element methods: a comparative study publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105870 – volume: 106 start-page: 1 issue: 1–2 year: 2009 end-page: 19 ident: CR31 article-title: The Tsaoling landslide triggered by the Chi–Chi earthquake, Taiwan: insights from a discrete element simulation publication-title: Eng Geol doi: 10.1016/j.enggeo.2009.02.011 – volume: 18 start-page: 3149 issue: 9 year: 2021 end-page: 3162 ident: CR3 article-title: A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil publication-title: Landslides doi: 10.1007/s10346-021-01699-1 – volume: 2015 year: 2015 ident: CR48 article-title: A robust numerical procedure for the thermomechanical flow simulation of friction stir welding process using an adaptive element-free Galerkin method publication-title: Math Probl Eng – volume: 41 start-page: 670 issue: 6 year: 2009 end-page: 683 ident: CR57 article-title: Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations publication-title: Mech Mater doi: 10.1016/j.mechmat.2009.01.030 – volume: 9 start-page: 687 issue: 4 year: 2014 end-page: 696 ident: CR90 article-title: The SPH method for simulating the progressive sliding failure of a River Levee publication-title: Jpn Geotech J doi: 10.3208/jgs.9.687 – volume: 31 start-page: 1375 issue: 12 year: 2007 end-page: 1399 ident: CR6 article-title: An operator-split ALE model for large deformation analysis of geomaterials publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.601 – volume: 352 start-page: 85 year: 2019 end-page: 109 ident: CR25 article-title: An efficient staggered grid material point method publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.04.024 – volume: 172 start-page: 455 issue: 1 year: 2008 end-page: 463 ident: CR29 article-title: Mobility of long-runout rock flows: a discrete numerical investigation publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2007.03631.x – volume: 46 start-page: 397 issue: 2 year: 2009 end-page: 407 ident: CR30 article-title: Dynamic discrete analysis of an earthquake-induced large-scale landslide publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.07.010 – volume: 95 start-page: 387 issue: 5 year: 2013 end-page: 418 ident: CR79 article-title: An arbitrary order variationally consistent integration for Galerkin meshfree methods publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4512 – volume: 74 start-page: 416 issue: 3 year: 2008 end-page: 446 ident: CR81 article-title: Meshfree and finite element nodal integration methods publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2181 – volume: 149 start-page: 22 year: 2012 end-page: 34 ident: CR33 article-title: Discrete element modeling of a rainfall-induced flowslide publication-title: Eng Geol doi: 10.1016/j.enggeo.2012.08.006 – volume: 40 start-page: 809 issue: 6 year: 2016 end-page: 826 ident: CR20 article-title: Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2428 – volume: 63 start-page: 1559 issue: 11 year: 2005 end-page: 1582 ident: CR47 article-title: Adaptivity for structured meshfree particle methods in 2D and 3D publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1326 – volume: 429 start-page: 311 issue: 1877 year: 1990 end-page: 321 ident: CR68 article-title: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems publication-title: Proc R Soc Lond A Math Phys Sci – volume: 52 start-page: 1345 issue: 9 year: 2015 end-page: 1359 ident: CR8 article-title: Landslide mobility analysis for design of multiple debris-resisting barriers publication-title: Can Geotech J doi: 10.1139/cgj-2014-0152 – volume: 38 start-page: 142 issue: 2 year: 2011 end-page: 166 ident: CR91 article-title: Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.10.010 – volume: 3 start-page: 523 issue: 6 year: 2003 end-page: 538 ident: CR4 article-title: Numerical modelling of large landslides stability and runout publication-title: Nat Hazard doi: 10.5194/nhess-3-523-2003 – ident: CR75 – volume: 11 start-page: 1401 issue: 6 year: 2016 end-page: 1418 ident: CR38 article-title: Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model publication-title: Acta Geotech doi: 10.1007/s11440-016-0488-y – ident: CR88 – volume: 362 start-page: 2003 issue: 1822 year: 2004 end-page: 2030 ident: CR28 article-title: Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci doi: 10.1098/rsta.2004.1428 – volume: 63 start-page: 199 year: 2015 end-page: 214 ident: CR23 article-title: Coupling of soil deformation and pore fluid flow using material point method publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.09.009 – volume: 16 start-page: 303 issue: 4 year: 2018 end-page: 324 ident: CR52 article-title: A damage particle method for smeared modeling of brittle fracture publication-title: Int J Multiscale Comput Eng doi: 10.1615/IntJMultCompEng.2018026133 – volume: 37 start-page: 2755 issue: 16 year: 2013 end-page: 2788 ident: CR74 article-title: A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2161 – volume: 134 year: 2021 ident: CR34 article-title: SPH-DEM simulations of saturated granular soils liquefaction incorporating particles of irregular shape publication-title: Comput Geotech doi: 10.1016/j.compgeo.2021.104060 – volume: 19 start-page: 211 issue: 3 year: 1997 end-page: 227 ident: CR50 article-title: Large deformation analysis of rubber based on a reproducing kernel particle method publication-title: Comput Mech doi: 10.1007/s004660050170 – volume: 45 start-page: 289 issue: 3 year: 1999 end-page: 317 ident: CR84 article-title: Reproducing kernel hierarchical partition of unity, part II—applications publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P – volume: 93 start-page: 189 issue: 2 year: 1991 end-page: 216 ident: CR12 article-title: Adaptive ALE finite elements with particular reference to external work rate on frictional interface publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(91)90151-U – volume: 31 start-page: 316 issue: 3 year: 2003 end-page: 326 ident: CR46 article-title: Filters, reproducing kernel, and adaptive meshfree method publication-title: Comput Mech doi: 10.1007/s00466-003-0434-3 – volume: 68 start-page: 259 issue: 3 year: 1988 end-page: 310 ident: CR11 article-title: Arbitrary Lagrangian–Eulerian Petrov–Galerkin finite elements for nonlinear continua publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(86)90056-3 – volume: 112 start-page: 963 issue: 8 year: 2017 end-page: 989 ident: CR15 article-title: Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5539 – volume: 33 start-page: 143 issue: 2 year: 2009 end-page: 172 ident: CR35 article-title: A depth-integrated, coupled SPH model for flow-like landslides and related phenomena publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.705 – year: 2019 ident: CR61 publication-title: Initial simulations of empty room collapse and reconsolidation at the waste isolation pilot plant doi: 10.2172/1592852 – volume: 90 start-page: 47 year: 2006 end-page: 57 ident: CR7 article-title: Application of the ALE FE method to debris flows publication-title: WIT Trans Ecol Environ doi: 10.2495/DEB060051 – volume: 197 start-page: 172 year: 2015 end-page: 187 ident: CR32 article-title: Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.08.022 – volume: 63 start-page: 869 issue: 4 year: 1996 end-page: 876 ident: CR66 article-title: A pressure projection method for nearly incompressible rubber hyperelasticity, part II: applications publication-title: J Appl Mech doi: 10.1115/1.2787241 – volume: 38 start-page: 1655 issue: 10 year: 1995 end-page: 1679 ident: CR43 article-title: Reproducing kernel particle methods for structural dynamics publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620381005 – volume: 56 start-page: 1003 issue: 7 year: 2019 end-page: 1018 ident: CR2 article-title: Large-deformation finite-element modelling of earthquake-induced landslides considering strain-softening behaviour of sensitive clay publication-title: Can Geotech J doi: 10.1139/cgj-2018-0250 – volume: 146 start-page: 04020012 issue: 4 year: 2020 ident: CR59 article-title: A naturally stabilized semi-Lagrangian meshfree formulation for multiphase porous media with application to landslide modeling publication-title: J Eng Mech – volume: 193 start-page: 2827 issue: 27–29 year: 2004 end-page: 2844 ident: CR85 article-title: An implicit gradient model by a reproducing kernel strain regularization in strain localization problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.057 – volume: 45 start-page: 251 issue: 3 year: 1999 end-page: 288 ident: CR83 article-title: Reproducing kernel hierarchical partition of unity, part I—formulation and theory publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I – volume: 343 start-page: 314 year: 2019 end-page: 338 ident: CR19 article-title: A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.07.043 – volume: 381 year: 2021 ident: CR62 article-title: A Lagrangian/semi-Lagrangian coupling approach for accelerated meshfree modelling of extreme deformation problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113827 – volume: 141 start-page: 105 year: 2016 end-page: 115 ident: CR67 article-title: A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media publication-title: Comput Fluids doi: 10.1016/j.compfluid.2015.11.002 – volume: 16 start-page: 1327 issue: 7 year: 2019 end-page: 1340 ident: CR10 article-title: Progressive failure of buildings under landslide impact publication-title: Landslides doi: 10.1007/s10346-019-01164-0 – year: 2015 ident: CR55 publication-title: Generalized reproducing kernel particle method for fragment-impact and fracture modeling – volume: 86 start-page: 96 year: 2015 end-page: 110 ident: CR54 article-title: Meshfree modeling of concrete slab perforation using a reproducing kernel particle impact and penetration formulation publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.07.009 – volume: 44 start-page: 82 issue: 1 year: 2006 end-page: 101 ident: CR72 article-title: Stabilization of low-order mixed finite elements for the stokes equations publication-title: SIAM J Numer Anal doi: 10.1137/S0036142905444482 – year: 2008 ident: CR89 publication-title: The SPH method to simulate river levee failures – start-page: 57 year: 2007 end-page: 76 ident: CR80 article-title: Strain smoothing for stabilization and regularization of Galerkin meshfree method publication-title: Meshfree methods for partial differential equations III doi: 10.1007/978-3-540-46222-4_4 – volume: 139 start-page: 375 issue: 1 year: 1996 end-page: 408 ident: CR40 article-title: Smoothed particle hydrodynamics: some recent improvements and applications publication-title: Comput Methods Appl Mech Eng – volume: 37 start-page: 31 issue: 1 year: 2013 end-page: 50 ident: CR37 article-title: An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.1084 – volume: 22 start-page: 289 issue: 3 year: 1998 end-page: 307 ident: CR51 article-title: A Lagrangian reproducing kernel particle method for metal forming analysis publication-title: Comput Mech doi: 10.1007/s004660050361 – volume: 44 start-page: 923 issue: 7 year: 2020 end-page: 941 ident: CR16 article-title: An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.3016 – volume: 44 start-page: 892 issue: 5 year: 1980 end-page: 898 ident: CR71 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1980.03615995004400050002x – volume: 107 start-page: 603 issue: 7 year: 2016 end-page: 630 ident: CR82 article-title: An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5183 – volume: 59 start-page: 755 issue: 6 year: 2004 end-page: 794 ident: CR1 article-title: Numerical modelling of the propagation of fast landslides using the finite element method publication-title: Int J Numer Methods Eng doi: 10.1002/nme.841 – volume: 139 start-page: 195 issue: 1–4 year: 1996 end-page: 227 ident: CR44 article-title: Reproducing kernel particle methods for large deformation analysis of nonlinear structures publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01083-3 – volume: 50 start-page: 435 issue: 1 year: 2001 end-page: 466 ident: CR78 article-title: A stabilized conforming nodal integration for Galerkin mesh-free methods publication-title: Int J Numer Methods Eng doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A – volume: 11 start-page: 793 issue: 5 year: 2014 end-page: 812 ident: CR36 article-title: Application of a SPH depth-integrated model to landslide run-out analysis publication-title: Landslides doi: 10.1007/s10346-014-0484-y – year: 2020 ident: CR21 article-title: Simulations of landslide wave generation and propagation using the particle finite element method publication-title: J Geophys Res Oceans doi: 10.1029/2019JC015873 – volume: 38 start-page: 391 issue: 4 year: 2014 end-page: 405 ident: CR86 article-title: Iterative analysis of pore-dynamic models discretized by finite elements publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2214 – volume: 66 start-page: 248 issue: 3 year: 2016 end-page: 273 ident: CR24 article-title: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method publication-title: Géotechnique doi: 10.1680/jgeot.15.LM.005 – volume: 25 start-page: 257 issue: 2 year: 2000 end-page: 266 ident: CR45 article-title: Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation publication-title: Comput Mech doi: 10.1007/s004660050474 – volume: 38 start-page: 1033 issue: 12 year: 2011 end-page: 1047 ident: CR53 article-title: Semi-Lagrangian reproducing kernel particle method for fragment-impact problems publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.08.001 – volume: 42 start-page: 231 issue: 2 year: 2018 end-page: 255 ident: CR77 article-title: u-p semi-Lagrangian reproducing formulation for landslide modeling publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2722 – volume: 5 start-page: 477 issue: 6 year: 2004 end-page: 496 ident: CR27 article-title: The generalized interpolation material point method publication-title: Comput Model Eng Sci – volume: 25 start-page: 76 issue: 2 year: 2018 end-page: 89 ident: CR9 article-title: Advanced numerical analysis of landslide debris mobility and barrier interaction publication-title: HKIE Trans doi: 10.1080/1023697X.2018.1462106 – volume: 19 start-page: 107 issue: 1 year: 2015 end-page: 115 ident: CR60 article-title: Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation publication-title: KSCE J Civ Eng doi: 10.1007/s12205-013-0550-3 – volume: 19 start-page: 81 issue: 2 year: 1995 end-page: 106 ident: CR70 article-title: Large strain static and dynamic semisaturated soil behaviour publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.1610190203 – volume: 17 start-page: 186 issue: 3 year: 1995 end-page: 195 ident: CR63 article-title: A coupled finite element-element-free Galerkin method publication-title: Comput Mech doi: 10.1007/BF00364080 – volume: 102 start-page: 839 issue: 3–4 year: 2015 end-page: 866 ident: CR49 article-title: A level set enhanced natural kernel contact algorithm for impact and penetration modeling publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4728 – volume: 387 year: 2021 ident: CR18 article-title: A stable node-based smoothed PFEM for solving geotechnical large deformation 2D problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114179 – volume: 197 start-page: 4353 issue: 49–50 year: 2008 end-page: 4366 ident: CR73 article-title: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.05.015 – volume: 63 start-page: 862 issue: 4 year: 1996 end-page: 868 ident: CR65 article-title: A pressure projection method for nearly incompressible rubber hyperelasticity, part I: theory publication-title: J Appl Mech doi: 10.1115/1.2787240 – year: 1999 ident: CR69 publication-title: Computational geomechanics – year: 1991 ident: CR64 publication-title: Mixed and hybrid finite element methods doi: 10.1007/978-1-4612-3172-1 – volume: 109 start-page: 1045 issue: 7 year: 2017 end-page: 1064 ident: CR76 article-title: A quasi-linear reproducing kernel particle method publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5319 – volume: 32 start-page: 1537 issue: 12 year: 2008 end-page: 1570 ident: CR87 article-title: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.688 – volume: 41 start-page: 30 issue: 1 year: 2017 end-page: 53 ident: CR13 article-title: A basal slip model for Lagrangian finite element simulations of 3D landslides publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2544 – volume: 122 start-page: 1513 issue: 6 year: 2021 end-page: 1537 ident: CR26 article-title: Distillation of the material point method cell crossing error leading to a novel quadrature-based C0 remedy publication-title: Int J Numer Methods Eng doi: 10.1002/nme.6588 – volume: 116 start-page: 123 issue: 1 year: 1995 end-page: 134 ident: CR39 article-title: Smoothed particle hydrodynamics stability analysis publication-title: J Comput Phys doi: 10.1006/jcph.1995.1010 – volume: 52 start-page: 1345 issue: 9 year: 2015 ident: 233_CR8 publication-title: Can Geotech J doi: 10.1139/cgj-2014-0152 – volume: 66 start-page: 248 issue: 3 year: 2016 ident: 233_CR24 publication-title: Géotechnique doi: 10.1680/jgeot.15.LM.005 – volume: 112 start-page: 963 issue: 8 year: 2017 ident: 233_CR15 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5539 – volume-title: Initial simulations of empty room collapse and reconsolidation at the waste isolation pilot plant year: 2019 ident: 233_CR61 doi: 10.2172/1592852 – volume: 352 start-page: 85 year: 2019 ident: 233_CR25 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.04.024 – volume-title: Computational methods in applied sciences year: 2007 ident: 233_CR56 – volume: 107 start-page: 603 issue: 7 year: 2016 ident: 233_CR82 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5183 – volume: 41 start-page: 30 issue: 1 year: 2017 ident: 233_CR13 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2544 – volume: 19 start-page: 211 issue: 3 year: 1997 ident: 233_CR50 publication-title: Comput Mech doi: 10.1007/s004660050170 – volume: 74 start-page: 416 issue: 3 year: 2008 ident: 233_CR81 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2181 – volume: 17 start-page: 186 issue: 3 year: 1995 ident: 233_CR63 publication-title: Comput Mech doi: 10.1007/BF00364080 – volume: 32 start-page: 1537 issue: 12 year: 2008 ident: 233_CR87 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.688 – volume: 86 start-page: 96 year: 2015 ident: 233_CR54 publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.07.009 – volume: 31 start-page: 1375 issue: 12 year: 2007 ident: 233_CR6 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.601 – volume: 197 start-page: 4353 issue: 49–50 year: 2008 ident: 233_CR73 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.05.015 – volume: 109 start-page: 135 issue: 1–2 year: 2009 ident: 233_CR5 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.10.004 – volume: 31 start-page: 316 issue: 3 year: 2003 ident: 233_CR46 publication-title: Comput Mech doi: 10.1007/s00466-003-0434-3 – volume: 387 year: 2021 ident: 233_CR18 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114179 – volume: 55 start-page: 167 issue: 1 year: 2015 ident: 233_CR22 publication-title: Comput Mech doi: 10.1007/s00466-014-1088-z – volume: 139 start-page: 375 issue: 1 year: 1996 ident: 233_CR40 publication-title: Comput Methods Appl Mech Eng – volume: 38 start-page: 1655 issue: 10 year: 1995 ident: 233_CR43 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620381005 – volume: 63 start-page: 869 issue: 4 year: 1996 ident: 233_CR66 publication-title: J Appl Mech doi: 10.1115/1.2787241 – year: 2020 ident: 233_CR21 publication-title: J Geophys Res Oceans doi: 10.1029/2019JC015873 – volume: 102 start-page: 839 issue: 3–4 year: 2015 ident: 233_CR49 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4728 – volume: 116 start-page: 123 issue: 1 year: 1995 ident: 233_CR39 publication-title: J Comput Phys doi: 10.1006/jcph.1995.1010 – volume: 159 start-page: 290 issue: 2 year: 2000 ident: 233_CR41 publication-title: J Comput Phys doi: 10.1006/jcph.2000.6439 – volume: 37 start-page: 2755 issue: 16 year: 2013 ident: 233_CR74 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2161 – volume: 45 start-page: 289 issue: 3 year: 1999 ident: 233_CR84 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P – volume-title: A multiscale meshfree approach for modeling fragment penetration into ultra high-strength concrete year: 2011 ident: 233_CR58 – volume: 50 start-page: 435 issue: 1 year: 2001 ident: 233_CR78 publication-title: Int J Numer Methods Eng doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A – volume: 33 start-page: 143 issue: 2 year: 2009 ident: 233_CR35 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.705 – volume: 38 start-page: 391 issue: 4 year: 2014 ident: 233_CR86 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2214 – volume: 37 start-page: 31 issue: 1 year: 2013 ident: 233_CR37 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.1084 – volume: 19 start-page: 81 issue: 2 year: 1995 ident: 233_CR70 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.1610190203 – volume: 279 year: 2020 ident: 233_CR17 publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105870 – volume: 63 start-page: 199 year: 2015 ident: 233_CR23 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.09.009 – volume: 122 start-page: 1513 issue: 6 year: 2021 ident: 233_CR26 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.6588 – volume: 392 year: 2022 ident: 233_CR14 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114660 – volume: 38 start-page: 142 issue: 2 year: 2011 ident: 233_CR91 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.10.010 – volume: 141 start-page: 105 year: 2016 ident: 233_CR67 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2015.11.002 – volume: 197 start-page: 172 year: 2015 ident: 233_CR32 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.08.022 – volume-title: Computational geomechanics year: 1999 ident: 233_CR69 – volume: 44 start-page: 923 issue: 7 year: 2020 ident: 233_CR16 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.3016 – volume: 45 start-page: 251 issue: 3 year: 1999 ident: 233_CR83 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I – volume: 95 start-page: 387 issue: 5 year: 2013 ident: 233_CR79 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4512 – volume-title: Mixed and hybrid finite element methods year: 1991 ident: 233_CR64 doi: 10.1007/978-1-4612-3172-1 – start-page: 57 volume-title: Meshfree methods for partial differential equations III year: 2007 ident: 233_CR80 doi: 10.1007/978-3-540-46222-4_4 – volume: 193 start-page: 2827 issue: 27–29 year: 2004 ident: 233_CR85 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.057 – ident: 233_CR75 – volume: 109 start-page: 1045 issue: 7 year: 2017 ident: 233_CR76 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5319 – volume: 149 start-page: 22 year: 2012 ident: 233_CR33 publication-title: Eng Geol doi: 10.1016/j.enggeo.2012.08.006 – volume: 90 start-page: 47 year: 2006 ident: 233_CR7 publication-title: WIT Trans Ecol Environ doi: 10.2495/DEB060051 – volume: 42 start-page: 231 issue: 2 year: 2018 ident: 233_CR77 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2722 – volume: 3 start-page: 523 issue: 6 year: 2003 ident: 233_CR4 publication-title: Nat Hazard doi: 10.5194/nhess-3-523-2003 – volume: 11 start-page: 793 issue: 5 year: 2014 ident: 233_CR36 publication-title: Landslides doi: 10.1007/s10346-014-0484-y – volume: 146 start-page: 04020012 issue: 4 year: 2020 ident: 233_CR59 publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0001729 – volume: 139 start-page: 195 issue: 1–4 year: 1996 ident: 233_CR44 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01083-3 – volume: 38 start-page: 1033 issue: 12 year: 2011 ident: 233_CR53 publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.08.001 – volume: 40 start-page: 809 issue: 6 year: 2016 ident: 233_CR20 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2428 – volume: 2015 year: 2015 ident: 233_CR48 publication-title: Math Probl Eng – volume: 19 start-page: 107 issue: 1 year: 2015 ident: 233_CR60 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-013-0550-3 – ident: 233_CR88 – volume: 63 start-page: 862 issue: 4 year: 1996 ident: 233_CR65 publication-title: J Appl Mech doi: 10.1115/1.2787240 – volume: 429 start-page: 311 issue: 1877 year: 1990 ident: 233_CR68 publication-title: Proc R Soc Lond A Math Phys Sci doi: 10.1098/rspa.1990.0062 – volume: 44 start-page: 82 issue: 1 year: 2006 ident: 233_CR72 publication-title: SIAM J Numer Anal doi: 10.1137/S0036142905444482 – volume: 172 start-page: 455 issue: 1 year: 2008 ident: 233_CR29 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2007.03631.x – volume: 20 start-page: 1081 issue: 8–9 year: 1995 ident: 233_CR42 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1650200824 – volume: 63 start-page: 1559 issue: 11 year: 2005 ident: 233_CR47 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1326 – volume: 381 year: 2021 ident: 233_CR62 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113827 – volume: 343 start-page: 314 year: 2019 ident: 233_CR19 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.07.043 – volume: 59 start-page: 755 issue: 6 year: 2004 ident: 233_CR1 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.841 – volume: 9 start-page: 687 issue: 4 year: 2014 ident: 233_CR90 publication-title: Jpn Geotech J doi: 10.3208/jgs.9.687 – volume-title: The SPH method to simulate river levee failures year: 2008 ident: 233_CR89 – volume: 134 year: 2021 ident: 233_CR34 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2021.104060 – volume: 11 start-page: 1401 issue: 6 year: 2016 ident: 233_CR38 publication-title: Acta Geotech doi: 10.1007/s11440-016-0488-y – volume: 68 start-page: 259 issue: 3 year: 1988 ident: 233_CR11 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(86)90056-3 – volume: 93 start-page: 189 issue: 2 year: 1991 ident: 233_CR12 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(91)90151-U – volume-title: Generalized reproducing kernel particle method for fragment-impact and fracture modeling year: 2015 ident: 233_CR55 – volume: 46 start-page: 397 issue: 2 year: 2009 ident: 233_CR30 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.07.010 – volume: 22 start-page: 289 issue: 3 year: 1998 ident: 233_CR51 publication-title: Comput Mech doi: 10.1007/s004660050361 – volume: 41 start-page: 670 issue: 6 year: 2009 ident: 233_CR57 publication-title: Mech Mater doi: 10.1016/j.mechmat.2009.01.030 – volume: 18 start-page: 3149 issue: 9 year: 2021 ident: 233_CR3 publication-title: Landslides doi: 10.1007/s10346-021-01699-1 – volume: 16 start-page: 1327 issue: 7 year: 2019 ident: 233_CR10 publication-title: Landslides doi: 10.1007/s10346-019-01164-0 – volume: 16 start-page: 303 issue: 4 year: 2018 ident: 233_CR52 publication-title: Int J Multiscale Comput Eng doi: 10.1615/IntJMultCompEng.2018026133 – volume: 25 start-page: 257 issue: 2 year: 2000 ident: 233_CR45 publication-title: Comput Mech doi: 10.1007/s004660050474 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 233_CR71 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1980.03615995004400050002x – volume: 106 start-page: 1 issue: 1–2 year: 2009 ident: 233_CR31 publication-title: Eng Geol doi: 10.1016/j.enggeo.2009.02.011 – volume: 56 start-page: 1003 issue: 7 year: 2019 ident: 233_CR2 publication-title: Can Geotech J doi: 10.1139/cgj-2018-0250 – volume: 5 start-page: 477 issue: 6 year: 2004 ident: 233_CR27 publication-title: Comput Model Eng Sci – volume: 362 start-page: 2003 issue: 1822 year: 2004 ident: 233_CR28 publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci doi: 10.1098/rsta.2004.1428 – volume: 25 start-page: 76 issue: 2 year: 2018 ident: 233_CR9 publication-title: HKIE Trans doi: 10.1080/1023697X.2018.1462106 |
SSID | ssj0001634176 |
Score | 2.262768 |
Snippet | The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite element... Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite... Abstract The numerical modelling of natural disasters such as landslides presents several challenges for conventional mesh-based methods such as the finite... |
SourceID | doaj osti hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Continuum Physics Computational Science and Engineering Deformation Engineering Engineering Sciences Finite element method Kernels Lagrangian semi-Lagrangian coupling Landslide Landslides Landslides & mudslides Mathematical analysis Mathematical models Meshfree modeling Meshless methods Natural disasters Particle methods (mathematics) Plastic deformation Ramp functions Recent Advances in hypercomplex disaster simulations Reproducing kernel particle method Research Article Seepage Shape functions Theoretical and Applied Mechanics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZG9wIPiJ-ibCAL8QZWa8dJnAeEOrSpQlOFEJP2Ztk-p53UtaUNk_jvuXOTliKxPrWu48i-892X-O47xt6rAABZVQvvpRHkcoWXwYvK-cKDz530Kcp3Uoyv9Nfr_PqITbpcGAqr7GxiMtSwDPSOfKBKSTwiplKfVz8FVY2i09WuhIZrSyvAp0Qx9oAdo0k2qPfHZ-eTb9_3b10KtNpl0WXPmGKw0cNM0VGmEuS_MlEdeKhE5I9-Z0Zhkr0lbrsDKPrP6WlyShdP2OMWTfLRVvxP2VFcPGOP_uIYfM7uRhziLkVRdEVvG45TWc0j8Es3RX81RTUZbOLtjdj_5rdxM6vXMfLZ70RrQFnCJFRO47V1v-g7TwnD8xuIPFXWwRu_YFcX5z--jEVbbEGEXFWNAHTkUEmPnwI0OF-VALU0dRnrUkMcouRw-Z2OMajgncHVq7Wugo5F6SDPXrLeYrmIrxiv8TpfBKliDVpG7YzxYECZvK4BEVCfyW6BbWiZyKkgxtymJxJT2K1QLArFJqHYqs8-7K5ZbXk47u19RnLb9SQO7dSwXE9tuyWtQegXEP4iaNU6SnBQZqWUOL-SSJBkn71DqR-MMR5dWmobasSdCL7usNMJKYVFvEKku4Gik0JjpSHes7LPTjtdsa1t2Ni9JvfZx05_9n__f1av7x_thD1USY0pmOWU9Zr1r_gGEVPj37bb4A9AuhUO priority: 102 providerName: ProQuest – databaseName: Springer Nature Link OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagvMAD4qcIG8hCvIG12nFs57FMTBWaeGLS3qzYZ6-TunZas0n899y5absiQCJPiWM7su8u9yX2fcfYRxUBoG6zCEE6QS5XBBmDaLtgAoSmk6Hs8v1upmf623lzPtDkUCzM_fV76czRSo9rRSuNSpB7qUX7kD1qZG3Kwqw53v1PMfg-tmYTF_PHpnu-p1D0o0eZ0QbI0RINag9k_rYuWtzNyTP2dMCJfLIW7HP2IC1esCf32ANfsrsJh7QNPhSbdLY9j8vb63kCftpdoCe6QAU4WqWrS7G75ldpNcs3KfHZz0JYQPG_JC5O_Q0Zveicl1Dg-SUkXnLm4INfsbOTrz-Op2JIoyBio9peALpoaGXAw4CGLrQWIEuXbcpWQxqjTNCOO51SVDF0Dmcva91GnYztoKlfs9FiuUhvGM_YLpgoVcqgZdKdcwEcKNfkDIhtKiY3E-zjwDFOqS7mvnxrOOPXQvEoFF-E4tuKfdq2uV4zbPyz9heS27YmsWOXAlQaPxibdwjqIgJbhKNaJwkd2NpKieOzRG8kK_YBpb7Xx3Ry6qlsrBFRIqy6w0oHpBQekQjR6UbadxR7Lx0xmtmKHW50xQ9Wv_LKSuK6ca2q2OeN_uxu_31Ub_-v-gF7rIpa07aVQzbqb27TO8RGfXhfjOIX6-8HMQ priority: 102 providerName: Springer Nature |
Title | A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling |
URI | https://link.springer.com/article/10.1186/s40323-022-00233-9 https://www.proquest.com/docview/2719604892 https://hal.science/hal-04456074 https://www.osti.gov/biblio/1890517 https://doaj.org/article/8562c97705444e1dad73711eec700701 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegvMAD4lNkG1WEeAOrteMkzmNWrVTVNCFg0t6s2Oesk7p2WrNJ_PfcOUnXIgEv5CEfjuMkvnPu5_j8O8Y-SgcASVFza4XmZHK5Fc7yorKZBZtWwgYv37Nsdq7mF-nFTqgv8glr6YHbihtpNNAOQQpCC6W8gAryJBfCe5cTVU3o-IyL8U5nKvxdyfDrnGf9LBmdjTZqnEgaspSc7FTCiz1LFAj70b4syB1ysMbmtQc5fxslDcZn-oI971BjXLZP-5I98qtX7NkOl-Brdl_G4LdTEXkf3LaJ3fruZukhPq0u0S5dojqMNv76ij8cx9d-s6hvvY8XPwN9Ac0GJuHFVF4X34v24zAxeHkFPg4RdPDGb9j59OTHZMa7oArcpbJoOKDBhkJYXDJQUNkiB6iFrnNf5wr8GCWErbpSWMPS2Upj7dVKFU75LK8gTd6ywWq98u9YXON1NnNC-hqU8KrS2oIGqdO6BkQ6ERN9BRvXMY5T4IulCT0PnZlWKAaFYoJQTBGxT9trblq-jb_mPia5bXMSV3ZIQA0ynQaZf2lQxD6g1PfKmJWnhtLGCvElgqx7zHRISmEQlxC5riMvJNcYoYnfLI_YUa8rpvsGbIzMBTHf6EJG7HOvPw-n__xWB__jrQ7ZUxmUnVxbjtigub3z7xE_NXbIHuvplyF7Upbz73PcHp-cff2GqROpaJ1NhqEx_QJOehsy |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAcEE8RWsBCcAIrsdfZ9R4QCo-Q0tBTK_Vm1h5vUilNQpK26p_iNzLj7CYEid66p314vY-Z8Xy7npmPsTfKA0CSl8I5aQS5XOGkdyIvXOrAdQrpYpTvUdo_0d9PO6c77HedC0NhlfWYGAdqmHr6R95SmaQ6IiZXH2e_BLFG0exqTaGxUovDcH2Fn2yLDwdfUL5vlep9Pf7cFxWrgPAdlS8FoMeCXDpcUtBQuDwDKKUps1BmGkIbbxGvU-gQvPKuMAjBS61zr0OaFUAsETjk7-okyYkqwvS-bf7ppOgTsrTOzTFpa6HbiaKJUiXIOyYi3_J_kSYAvdqIgjAbUzTqLaD7z9xsdHm9B-x-hVV5d6VcD9lOmDxi9_6qYPiYXXY5hHUCpKgpdZfcTy9m4wB8UAzRGw5RCVuLcH4mNtv8PCxG5TwEPrqORRMoB5lUhlN_FasYrfOYjjw-g8Ajbw9e-Ak7uZWX_pQ1JtNJeMZ4iee51EsVStAy6MIYBwaU6ZQlIL5qMlm_YOurOudEtzG28XvHpHYlFItCsVEoNm-yd-tzZqsqHze2_kRyW7ekCt1xx3Q-tJXBW4PA0iO4RkisdZBQQJZkUuLzZVRiSTbZa5T6Vh_97sDSvrZGVIvQ7hIb7ZFSWERDVNLXU-yTX1ppqKpa1mT7ta7YauRZ2I2dNNn7Wn82h___VM9v7u0Vu9M__jGwg4Ojwz12V0WVprCZfdZYzi_CC8RmS_cyGgRnP2_bAv8AlT9Ohw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegSAgeEJ9a2YAI8QZW68RxnMcyqApUEw9M2psV--x2UtdWbTaJ_547J2lXBEjkKR92Ivvucr_Ed79j7F3qACArA7dWaE4ul1vhLC8rqyzYvBI2Rvmeqcm5_HqRX9zK4o_R7t2SZJPTQCxNy3qwhtCYuFaDrRxmKa0_ppycTsbLu-yeJNdHy7XqdP-XReFbulBdtswfux54pEjcj35mTmGRvRWa2QH0_G21NDqh8WP2qEWPyagR9xN2xy-fsoe3OAWfsZtRAn6Xksi7Ird14lbX64WHZFrN0D_NUC0GW391yffHyZXfzsPG-2T-M9IYUFYwCTGh-7V1vmg_iQnCi0vwSaykgw9-zs7Hn3-cTnhbXIG7PC1rDui4oRQWNwUSKlsWAEHoUPhQSPBDlBRadyW9d6mzlcbZC1KWTnpVVJBnL1hvuVr6I5YE7GeVE6kPIIWXldYWNKQ6DwEQ8fSZ6CbYuJZ5nApgLEz8AtHKNEIxKBQThWLKPnu_67NueDf-2fojyW3Xkjiz44nVZmZaEzQaoZ5DuIsgVUovoIIiK4TA8RVEeiT67C1K_eAek9HU0LmhRJyJYOsGGx2TUhjEJ0Sy6ygaydVGaOI5K_rspNMV074LtiYtBDHg6DLtsw-d_uwv_31UL_-v-Rt2__unsZl-Oft2zB6kUcMpruWE9erNtX-F4Km2r6N9_ALJxxJl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deformation-dependent+coupled+Lagrangian%2Fsemi-Lagrangian+meshfree+hydromechanical+formulation+for+landslide+modeling&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Jonghyuk+Baek&rft.au=Ryan+T.+Schlinkman&rft.au=Frank+N.+Beckwith&rft.au=Jiun-Shyan+Chen&rft.date=2022-09-30&rft.pub=SpringerOpen&rft.eissn=2213-7467&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1186%2Fs40323-022-00233-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8562c97705444e1dad73711eec700701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon |