Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields

Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the pr...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 9; no. 7; pp. 548 - 554
Main Authors Yu, Guoqiang, Upadhyaya, Pramey, Fan, Yabin, Alzate, Juan G., Jiang, Wanjun, Wong, Kin L., Takei, So, Bender, Scott A., Chang, Li-Te, Jiang, Ying, Lang, Murong, Tang, Jianshi, Wang, Yong, Tserkovnyak, Yaroslav, Amiri, Pedram Khalili, Wang, Kang L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin–orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co 20 Fe 60 B 20 /TaO x structures by spin–orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin–orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin–orbit torque is out-of-plane, facilitating the switching of perpendicular magnets. Spin–orbit torques in a geometrically asymmetric device made from a perpendicularly magnetized ferromagnet can switch its magnetization without the assistance of an applied magnetic field.
AbstractList Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.
Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.
Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co sub(20)Fe sub(60)B sub(20)/TaO sub(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.
Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin–orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co 20 Fe 60 B 20 /TaO x structures by spin–orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin–orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin–orbit torque is out-of-plane, facilitating the switching of perpendicular magnets. Spin–orbit torques in a geometrically asymmetric device made from a perpendicularly magnetized ferromagnet can switch its magnetization without the assistance of an applied magnetic field.
Author Tserkovnyak, Yaroslav
Lang, Murong
Tang, Jianshi
Yu, Guoqiang
Takei, So
Amiri, Pedram Khalili
Bender, Scott A.
Wong, Kin L.
Wang, Yong
Alzate, Juan G.
Chang, Li-Te
Jiang, Ying
Jiang, Wanjun
Wang, Kang L.
Fan, Yabin
Upadhyaya, Pramey
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Yu
  fullname: Yu, Guoqiang
  email: guoqiangyu@ucla.edu
  organization: Department of Electrical Engineering, University of California
– sequence: 2
  givenname: Pramey
  surname: Upadhyaya
  fullname: Upadhyaya, Pramey
  organization: Department of Electrical Engineering, University of California
– sequence: 3
  givenname: Yabin
  surname: Fan
  fullname: Fan, Yabin
  organization: Department of Electrical Engineering, University of California
– sequence: 4
  givenname: Juan G.
  surname: Alzate
  fullname: Alzate, Juan G.
  organization: Department of Electrical Engineering, University of California
– sequence: 5
  givenname: Wanjun
  surname: Jiang
  fullname: Jiang, Wanjun
  organization: Department of Electrical Engineering, University of California
– sequence: 6
  givenname: Kin L.
  surname: Wong
  fullname: Wong, Kin L.
  organization: Department of Electrical Engineering, University of California
– sequence: 7
  givenname: So
  surname: Takei
  fullname: Takei, So
  organization: Department of Physics and Astronomy, University of California
– sequence: 8
  givenname: Scott A.
  surname: Bender
  fullname: Bender, Scott A.
  organization: Department of Physics and Astronomy, University of California
– sequence: 9
  givenname: Li-Te
  surname: Chang
  fullname: Chang, Li-Te
  organization: Department of Electrical Engineering, University of California
– sequence: 10
  givenname: Ying
  surname: Jiang
  fullname: Jiang, Ying
  organization: Department of Materials Science and Engineering, Center for Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang University
– sequence: 11
  givenname: Murong
  surname: Lang
  fullname: Lang, Murong
  organization: Department of Electrical Engineering, University of California
– sequence: 12
  givenname: Jianshi
  orcidid: 0000-0001-8369-0067
  surname: Tang
  fullname: Tang, Jianshi
  organization: Department of Electrical Engineering, University of California
– sequence: 13
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Department of Materials Science and Engineering, Center for Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang University
– sequence: 14
  givenname: Yaroslav
  surname: Tserkovnyak
  fullname: Tserkovnyak, Yaroslav
  organization: Department of Physics and Astronomy, University of California
– sequence: 15
  givenname: Pedram Khalili
  surname: Amiri
  fullname: Amiri, Pedram Khalili
  organization: Department of Electrical Engineering, University of California
– sequence: 16
  givenname: Kang L.
  surname: Wang
  fullname: Wang, Kang L.
  email: wang@seas.ucla.edu
  organization: Department of Electrical Engineering, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24813694$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URP9Ydosssekmg_8ydpaoolCpUhela8t2bqZuM3awHUFZ8Q68IU9CMtNBVQVide_iO0fn3nOI9kIMgNAJJQtKuHoXgglxwQgVi0a8QAdUClVx3tR7f3Yl99FhzneE1Kxh4hXaZ0JRvmzEAbq__uqLu_VhhWOHB0gDhNa7sTcJr80qQPHfTfExYPuA8-DDrx8_Y7K-4BLTlxEy9gGXW8DGZggOZhf4ViAF0-8MHO489G0-Ri8702d4_TiP0M35h89nn6rLq48XZ-8vKzflK5UzquG8XlInLaNOcU5qZQlQYMTSFhQ0khMreWuNEEZ2BngrOGtIyyUsJT9Cp1vfIcU5YtFrnx30vQkQx6yplIQLqqT4P1pPxooq0Uzo22foXRznMzcU42opCZuoN4_UaNfQ6iH5tUkPevfxCeBbwKWYc4JOO182Hy7J-F5Toude9aZXPfeqN6rqmWpn_C9-seXzxIUVpCdh_yr4DcnTtic
CitedBy_id crossref_primary_10_1038_s41563_024_02088_4
crossref_primary_10_1002_adfm_202100380
crossref_primary_10_1038_s41467_018_06059_7
crossref_primary_10_1088_1674_1056_ab9439
crossref_primary_10_1063_5_0231869
crossref_primary_10_1063_5_0196781
crossref_primary_10_1103_RevModPhys_91_035004
crossref_primary_10_1016_j_actamat_2023_118705
crossref_primary_10_1063_5_0001758
crossref_primary_10_1063_1_4936934
crossref_primary_10_1063_1_5043444
crossref_primary_10_1016_j_mtnano_2023_100408
crossref_primary_10_2139_ssrn_4021751
crossref_primary_10_1088_1674_1056_27_10_107201
crossref_primary_10_1007_s10948_018_4711_y
crossref_primary_10_1088_1674_4926_38_6_062003
crossref_primary_10_1021_acs_nanolett_1c04786
crossref_primary_10_1103_PhysRevApplied_18_024075
crossref_primary_10_1021_acsnano_3c09041
crossref_primary_10_1109_TMAG_2022_3199589
crossref_primary_10_1021_acsnano_2c01930
crossref_primary_10_1063_1_4968785
crossref_primary_10_1063_1_5045850
crossref_primary_10_1038_srep18173
crossref_primary_10_1021_acsmaterialslett_3c01376
crossref_primary_10_1063_1_5031446
crossref_primary_10_1103_PhysRevB_110_134423
crossref_primary_10_1016_j_ssc_2021_114340
crossref_primary_10_1038_s41928_018_0105_1
crossref_primary_10_1063_1_5052194
crossref_primary_10_1016_j_fmre_2023_07_010
crossref_primary_10_1038_ncomms9958
crossref_primary_10_1109_TNANO_2023_3313313
crossref_primary_10_1103_PhysRevB_93_014426
crossref_primary_10_1103_PhysRevB_109_L060405
crossref_primary_10_1109_LMAG_2018_2801834
crossref_primary_10_1016_j_jmmm_2023_170594
crossref_primary_10_1557_s43579_024_00673_x
crossref_primary_10_1063_5_0039926
crossref_primary_10_1103_PhysRevApplied_9_064026
crossref_primary_10_1021_acsnano_0c07163
crossref_primary_10_1103_PhysRevB_110_134415
crossref_primary_10_1002_adom_201901381
crossref_primary_10_1038_s42005_019_0143_7
crossref_primary_10_1109_TVLSI_2019_2926984
crossref_primary_10_1063_1_4919108
crossref_primary_10_1103_PhysRevB_93_014414
crossref_primary_10_1002_aelm_202000296
crossref_primary_10_1021_acsaelm_2c00672
crossref_primary_10_1002_aelm_202200987
crossref_primary_10_1002_adma_202406552
crossref_primary_10_1063_5_0135185
crossref_primary_10_1063_1_5066372
crossref_primary_10_1016_j_cap_2017_04_003
crossref_primary_10_1016_j_physleta_2024_129525
crossref_primary_10_1109_TMAG_2021_3069372
crossref_primary_10_1016_j_jmmm_2021_167823
crossref_primary_10_1063_1_5042317
crossref_primary_10_1103_PhysRevApplied_12_064046
crossref_primary_10_1103_PhysRevApplied_12_044032
crossref_primary_10_1016_j_matt_2024_05_045
crossref_primary_10_1063_1_4944343
crossref_primary_10_1038_nnano_2016_109
crossref_primary_10_1063_1_5135626
crossref_primary_10_1063_5_0022257
crossref_primary_10_1103_PhysRevApplied_10_034067
crossref_primary_10_1103_PhysRevB_109_184401
crossref_primary_10_1088_1361_6463_abf61d
crossref_primary_10_1109_LMAG_2019_2914007
crossref_primary_10_1021_acs_nanolett_6b00398
crossref_primary_10_1063_5_0146095
crossref_primary_10_1088_1361_648X_ad3270
crossref_primary_10_1038_s41467_023_39649_1
crossref_primary_10_7567_APEX_9_063008
crossref_primary_10_1002_adma_202406772
crossref_primary_10_1038_s41928_018_0160_7
crossref_primary_10_1002_sstr_202400006
crossref_primary_10_1063_5_0164967
crossref_primary_10_1002_admi_202300632
crossref_primary_10_1103_PhysRevB_108_014432
crossref_primary_10_1002_aelm_201901131
crossref_primary_10_1103_PhysRevB_94_094429
crossref_primary_10_3390_mi14081581
crossref_primary_10_1016_j_scib_2023_04_033
crossref_primary_10_1063_5_0046650
crossref_primary_10_3389_fphy_2023_1140286
crossref_primary_10_1002_adma_202415480
crossref_primary_10_1103_PhysRevB_110_214427
crossref_primary_10_1038_srep23956
crossref_primary_10_1103_PhysRevApplied_7_024023
crossref_primary_10_1002_pssr_201900267
crossref_primary_10_1103_PhysRevB_98_014401
crossref_primary_10_1038_nnano_2015_332
crossref_primary_10_1103_PhysRevLett_133_186703
crossref_primary_10_1039_C7NR09513A
crossref_primary_10_1038_s41563_018_0041_5
crossref_primary_10_1002_aelm_202300385
crossref_primary_10_1002_aelm_201901368
crossref_primary_10_1063_5_0002642
crossref_primary_10_1109_JPROC_2020_3029600
crossref_primary_10_1063_5_0070987
crossref_primary_10_1093_nsr_nwac154
crossref_primary_10_1021_acsami_4c10495
crossref_primary_10_1063_5_0049928
crossref_primary_10_1134_S1064226919100139
crossref_primary_10_1021_acsami_0c23127
crossref_primary_10_1063_5_0092513
crossref_primary_10_1103_PhysRevB_108_024419
crossref_primary_10_1002_adma_202414139
crossref_primary_10_1063_5_0005964
crossref_primary_10_1002_adma_201801318
crossref_primary_10_1063_1_5093795
crossref_primary_10_1021_acs_nanolett_4c05502
crossref_primary_10_1088_1361_6463_abfad3
crossref_primary_10_1142_S2010324716400014
crossref_primary_10_1039_C7NR01980G
crossref_primary_10_1088_1361_6463_ac181a
crossref_primary_10_1103_PhysRevB_104_064439
crossref_primary_10_1103_PhysRevLett_129_037202
crossref_primary_10_1016_j_scib_2023_10_008
crossref_primary_10_35848_1882_0786_abc6eb
crossref_primary_10_7498_aps_67_20180216
crossref_primary_10_1002_smll_202302884
crossref_primary_10_1002_aelm_202300785
crossref_primary_10_1002_aelm_202200939
crossref_primary_10_1016_j_jmmm_2021_168311
crossref_primary_10_1103_PhysRevB_102_024405
crossref_primary_10_1109_TMAG_2023_3282626
crossref_primary_10_1103_PhysRevB_98_020405
crossref_primary_10_1063_1_5144537
crossref_primary_10_1063_5_0174343
crossref_primary_10_1103_PhysRevApplied_13_024052
crossref_primary_10_1063_1_5006449
crossref_primary_10_1103_PhysRevResearch_2_033401
crossref_primary_10_1103_PhysRevApplied_10_044060
crossref_primary_10_1103_PhysRevApplied_15_014017
crossref_primary_10_1038_s41565_020_00826_8
crossref_primary_10_1088_1674_1056_ab9292
crossref_primary_10_1109_TMAG_2021_3076010
crossref_primary_10_1038_s41467_023_40714_y
crossref_primary_10_1021_acs_nanolett_3c01192
crossref_primary_10_1038_s44306_024_00044_1
crossref_primary_10_1038_nnano_2015_18
crossref_primary_10_1021_acsnano_4c04075
crossref_primary_10_1109_TMAG_2018_2827923
crossref_primary_10_1103_PhysRevApplied_10_034052
crossref_primary_10_7567_JJAP_56_100303
crossref_primary_10_1088_1361_6463_ac292a
crossref_primary_10_1103_PhysRevApplied_15_024041
crossref_primary_10_35848_1882_0786_ad2d74
crossref_primary_10_1002_adfm_202417731
crossref_primary_10_1088_1367_2630_ab0449
crossref_primary_10_1002_adma_201907929
crossref_primary_10_1103_PhysRevB_102_104435
crossref_primary_10_1063_1_4902529
crossref_primary_10_1103_PhysRevApplied_15_054055
crossref_primary_10_1109_TNANO_2020_3012550
crossref_primary_10_1038_s41598_017_02208_y
crossref_primary_10_1142_S2010324716400026
crossref_primary_10_1360_SSPMA_2022_0070
crossref_primary_10_1016_j_actamat_2022_117968
crossref_primary_10_1088_1361_648X_ace4b1
crossref_primary_10_1103_PhysRevApplied_10_034047
crossref_primary_10_1109_JEDS_2018_2793902
crossref_primary_10_1063_1_5007758
crossref_primary_10_1063_1_4913887
crossref_primary_10_1063_5_0168705
crossref_primary_10_1063_5_0025132
crossref_primary_10_1109_TED_2022_3166118
crossref_primary_10_1103_PhysRevApplied_10_044038
crossref_primary_10_1103_PhysRevApplied_9_064016
crossref_primary_10_1103_PhysRevApplied_3_064012
crossref_primary_10_1063_5_0100912
crossref_primary_10_1038_s41598_018_33554_0
crossref_primary_10_1103_PhysRevB_101_174441
crossref_primary_10_1038_s41535_020_0233_5
crossref_primary_10_1126_science_aau7913
crossref_primary_10_1103_PhysRevApplied_17_064041
crossref_primary_10_1002_adma_202300853
crossref_primary_10_1038_s41467_021_24854_7
crossref_primary_10_1002_adma_202300858
crossref_primary_10_1103_PhysRevLett_123_227203
crossref_primary_10_1002_adma_202208954
crossref_primary_10_1103_PhysRevB_102_014401
crossref_primary_10_1038_s41598_017_00962_7
crossref_primary_10_1016_j_pnsc_2017_03_008
crossref_primary_10_1103_PhysRevLett_115_266401
crossref_primary_10_1103_PhysRevApplied_13_014059
crossref_primary_10_1038_s41928_018_0164_3
crossref_primary_10_1103_PhysRevB_105_134401
crossref_primary_10_1103_PhysRevB_101_060405
crossref_primary_10_1038_s41928_023_01039_2
crossref_primary_10_1038_s41598_019_43597_6
crossref_primary_10_1103_PhysRevB_105_134404
crossref_primary_10_1016_j_actamat_2022_117759
crossref_primary_10_1016_j_apsusc_2025_162388
crossref_primary_10_1109_JXCDC_2017_2762699
crossref_primary_10_1103_PhysRevResearch_3_013042
crossref_primary_10_1103_PhysRevB_95_144405
crossref_primary_10_1002_aelm_201800224
crossref_primary_10_7498_aps_70_20210004
crossref_primary_10_1109_TED_2024_3379161
crossref_primary_10_1021_acs_nanolett_7b00439
crossref_primary_10_1103_PhysRevB_101_094405
crossref_primary_10_1021_acsaelm_1c00248
crossref_primary_10_1016_j_jmmm_2022_169890
crossref_primary_10_1103_PhysRevApplied_13_044078
crossref_primary_10_1126_science_aaa1442
crossref_primary_10_1103_PhysRevB_105_224426
crossref_primary_10_1002_adma_201901681
crossref_primary_10_1021_acs_nanolett_4c01788
crossref_primary_10_1002_aelm_202400554
crossref_primary_10_1103_PhysRevApplied_7_054016
crossref_primary_10_1038_s41467_021_26453_y
crossref_primary_10_1103_PhysRevLett_118_257201
crossref_primary_10_1103_PhysRevApplied_13_044074
crossref_primary_10_1038_s41598_018_29601_5
crossref_primary_10_1063_5_0052544
crossref_primary_10_1016_j_jmmm_2021_168270
crossref_primary_10_1088_0256_307X_39_3_037303
crossref_primary_10_1016_j_jallcom_2024_176382
crossref_primary_10_1038_s41467_018_05057_z
crossref_primary_10_1063_5_0157986
crossref_primary_10_1016_j_physb_2023_415362
crossref_primary_10_1038_s44306_024_00038_z
crossref_primary_10_1063_5_0246672
crossref_primary_10_1103_PhysRevApplied_13_034041
crossref_primary_10_1063_1_4958295
crossref_primary_10_1063_5_0029522
crossref_primary_10_1103_PhysRevResearch_2_013177
crossref_primary_10_1063_5_0222239
crossref_primary_10_1063_5_0052553
crossref_primary_10_1007_s10825_020_01648_6
crossref_primary_10_1002_advs_202100481
crossref_primary_10_1021_acsami_2c09941
crossref_primary_10_35848_1882_0786_ad8f0f
crossref_primary_10_1109_ACCESS_2020_3033023
crossref_primary_10_1088_1402_4896_ad02ca
crossref_primary_10_1021_acsnano_4c09004
crossref_primary_10_1109_TMAG_2024_3396334
crossref_primary_10_1088_1361_6463_ab7511
crossref_primary_10_1002_aelm_201600219
crossref_primary_10_1038_s41928_022_00735_9
crossref_primary_10_1103_PhysRevB_101_064412
crossref_primary_10_1007_s10948_019_5005_8
crossref_primary_10_1002_adfm_202200328
crossref_primary_10_1063_5_0053896
crossref_primary_10_1021_acs_nanolett_3c03085
crossref_primary_10_1063_1_5026423
crossref_primary_10_1039_D1NR04632B
crossref_primary_10_1021_acsaelm_3c00429
crossref_primary_10_1021_acs_chemrev_1c00370
crossref_primary_10_1103_PhysRevApplied_16_014016
crossref_primary_10_1103_PhysRevApplied_13_044069
crossref_primary_10_1016_j_xcrp_2023_101757
crossref_primary_10_1103_PhysRevB_99_094414
crossref_primary_10_1063_1_4952771
crossref_primary_10_1063_5_0020925
crossref_primary_10_1016_j_jmmm_2022_169879
crossref_primary_10_1103_PhysRevB_96_104412
crossref_primary_10_1016_j_surfin_2023_103043
crossref_primary_10_1016_j_jmmm_2016_09_116
crossref_primary_10_1103_PhysRevLett_123_207205
crossref_primary_10_1021_acsnano_0c04403
crossref_primary_10_1103_PhysRevB_95_174408
crossref_primary_10_1007_s11432_021_3270_8
crossref_primary_10_1088_1361_6528_acbeb3
crossref_primary_10_1103_PhysRevB_102_195146
crossref_primary_10_1038_nphys3883
crossref_primary_10_1088_1674_1056_ac0908
crossref_primary_10_1038_s41598_017_14240_z
crossref_primary_10_1103_PhysRevB_91_104406
crossref_primary_10_3389_fmats_2024_1444769
crossref_primary_10_1063_1_5129889
crossref_primary_10_1063_1_4951674
crossref_primary_10_1021_acsnano_2c11132
crossref_primary_10_1063_5_0102823
crossref_primary_10_1002_aelm_201600210
crossref_primary_10_1126_sciadv_adk8669
crossref_primary_10_1021_acs_nanolett_0c02060
crossref_primary_10_1109_TNANO_2017_2754406
crossref_primary_10_1002_aelm_202000793
crossref_primary_10_1063_5_0189347
crossref_primary_10_1063_5_0250645
crossref_primary_10_1021_acsnano_2c03756
crossref_primary_10_1088_1361_6528_ab2831
crossref_primary_10_1038_s41598_018_31642_9
crossref_primary_10_1103_PhysRevB_104_134408
crossref_primary_10_1109_LED_2024_3369616
crossref_primary_10_1002_adfm_202416570
crossref_primary_10_1103_PhysRevLett_120_117703
crossref_primary_10_1063_5_0059171
crossref_primary_10_1088_1674_1056_ad4a3a
crossref_primary_10_1039_C7CP08352A
crossref_primary_10_1088_1361_6463_ab6626
crossref_primary_10_1039_C9NR08800H
crossref_primary_10_1103_PhysRevB_108_054417
crossref_primary_10_1103_PhysRevB_94_214413
crossref_primary_10_1088_1674_1056_27_9_097506
crossref_primary_10_1103_PhysRevB_94_214417
crossref_primary_10_1038_s41565_021_00850_2
crossref_primary_10_1021_acs_nanolett_4c02227
crossref_primary_10_1103_RevModPhys_89_025008
crossref_primary_10_1063_1_4958036
crossref_primary_10_1103_PhysRevB_97_214403
crossref_primary_10_1103_PhysRevApplied_15_054013
crossref_primary_10_1088_1361_6463_ab93f3
crossref_primary_10_1103_PhysRevB_107_104429
crossref_primary_10_1002_adma_202103672
crossref_primary_10_1021_acsami_1c11675
crossref_primary_10_1103_PhysRevApplied_9_011002
crossref_primary_10_1063_5_0156241
crossref_primary_10_1016_j_jmmm_2022_169499
crossref_primary_10_1063_5_0035815
crossref_primary_10_1063_1_4978965
crossref_primary_10_1063_5_0174903
crossref_primary_10_1002_adma_201907148
crossref_primary_10_1021_acs_nanolett_3c00639
crossref_primary_10_1063_1_4963235
crossref_primary_10_3389_fnano_2021_732916
crossref_primary_10_1103_PhysRevB_95_184401
crossref_primary_10_1063_5_0004089
crossref_primary_10_1016_j_xcrp_2023_101334
crossref_primary_10_1063_1_4995292
crossref_primary_10_1088_1361_6463_ab2693
crossref_primary_10_1038_s41563_022_01275_5
crossref_primary_10_1103_PhysRevMaterials_7_094406
crossref_primary_10_1007_s12598_024_02713_w
crossref_primary_10_1021_acs_nanolett_4c01712
crossref_primary_10_1109_TVLSI_2024_3471528
crossref_primary_10_1002_aelm_202400721
crossref_primary_10_1063_5_0069820
crossref_primary_10_1016_j_sse_2019_03_010
crossref_primary_10_1103_PhysRevApplied_11_061004
crossref_primary_10_1103_PhysRevApplied_11_061005
crossref_primary_10_1109_LED_2021_3121800
crossref_primary_10_1038_s41598_017_01079_7
crossref_primary_10_1021_acs_nanolett_5b04205
crossref_primary_10_1021_acsami_9b13622
crossref_primary_10_1038_s41598_021_02185_3
crossref_primary_10_1002_adfm_202205144
crossref_primary_10_1063_5_0035835
crossref_primary_10_1088_0022_3727_49_4_045004
crossref_primary_10_1016_j_actamat_2016_03_071
crossref_primary_10_1088_1361_6641_ac6d70
crossref_primary_10_1103_PhysRevB_100_220401
crossref_primary_10_1103_PhysRevB_108_064419
crossref_primary_10_1021_acs_nanolett_0c03972
crossref_primary_10_1103_PhysRevB_93_144409
crossref_primary_10_1557_mrs_2018_298
crossref_primary_10_1021_acsami_9b09146
crossref_primary_10_1063_5_0016040
crossref_primary_10_1021_acsami_9b16904
crossref_primary_10_1088_1674_1056_abe3f4
crossref_primary_10_1103_PhysRevResearch_2_013127
crossref_primary_10_1126_sciadv_aar3899
crossref_primary_10_1063_5_0079400
crossref_primary_10_1016_j_physrep_2017_08_001
crossref_primary_10_1016_j_sse_2021_108075
crossref_primary_10_1088_1674_1056_ab425e
crossref_primary_10_1063_5_0077465
crossref_primary_10_1063_1_4978510
crossref_primary_10_1103_PhysRevB_108_094431
crossref_primary_10_1103_PhysRevB_104_174407
crossref_primary_10_1063_5_0029347
crossref_primary_10_1002_adma_202312008
crossref_primary_10_1038_s41427_020_0232_9
crossref_primary_10_7567_APEX_7_103001
crossref_primary_10_1016_j_jmmm_2022_169692
crossref_primary_10_1038_s41467_023_38550_1
crossref_primary_10_1016_j_sse_2019_107730
crossref_primary_10_3389_fnano_2021_680468
crossref_primary_10_1039_D4MH01628A
crossref_primary_10_1063_5_0159557
crossref_primary_10_1016_j_pmatsci_2020_100761
crossref_primary_10_1063_1_4944514
crossref_primary_10_1016_j_isci_2020_101614
crossref_primary_10_35848_1347_4065_aba793
crossref_primary_10_1063_5_0039147
crossref_primary_10_1109_JXCDC_2019_2951837
crossref_primary_10_1126_sciadv_abq6833
crossref_primary_10_1063_1_4976517
crossref_primary_10_1063_5_0249063
crossref_primary_10_1103_PhysRevB_99_060408
crossref_primary_10_1007_s11433_019_9433_4
crossref_primary_10_1016_j_jmmm_2023_170977
crossref_primary_10_1063_5_0024950
crossref_primary_10_1016_j_physb_2019_411743
crossref_primary_10_1016_j_jmmm_2019_165739
crossref_primary_10_1038_s41598_020_58669_1
crossref_primary_10_1063_5_0219647
crossref_primary_10_35848_1882_0786_acb311
crossref_primary_10_1021_acsami_9b00129
crossref_primary_10_1038_s41598_018_37586_4
crossref_primary_10_1063_5_0104618
crossref_primary_10_1073_pnas_1507474112
crossref_primary_10_1063_5_0130902
crossref_primary_10_1039_D4TC03759F
crossref_primary_10_1088_1361_6463_aac7cc
crossref_primary_10_1063_5_0076579
crossref_primary_10_1063_5_0078514
crossref_primary_10_1103_PhysRevApplied_18_034019
crossref_primary_10_1103_PhysRevApplied_13_044029
crossref_primary_10_1103_PhysRevApplied_18_054079
crossref_primary_10_1063_5_0138869
crossref_primary_10_1063_1_5007270
crossref_primary_10_1063_5_0231755
crossref_primary_10_1002_aelm_201900435
crossref_primary_10_1088_1361_6463_aac04a
crossref_primary_10_1109_TED_2023_3237654
crossref_primary_10_1016_j_cap_2025_01_009
crossref_primary_10_1038_s41467_021_26893_6
crossref_primary_10_1103_PhysRevB_100_104441
crossref_primary_10_1103_RevModPhys_90_015005
crossref_primary_10_1103_PhysRevResearch_2_032053
crossref_primary_10_1134_S1063783419060283
crossref_primary_10_1063_1_4895735
crossref_primary_10_1360_TB_2023_1250
crossref_primary_10_1063_5_0091944
crossref_primary_10_1016_j_jmmm_2023_171575
crossref_primary_10_1038_s41467_022_32179_2
crossref_primary_10_1038_s44306_024_00041_4
crossref_primary_10_1021_acs_nanolett_0c00647
crossref_primary_10_1109_TMAG_2015_2509910
crossref_primary_10_7498_aps_71_20220699
crossref_primary_10_1021_acs_nanolett_8b00773
crossref_primary_10_1002_adma_201907661
crossref_primary_10_1038_s41586_024_07125_5
crossref_primary_10_1103_PhysRevB_91_214434
crossref_primary_10_1103_PhysRevB_107_155436
crossref_primary_10_1103_PhysRevB_91_214416
crossref_primary_10_1016_j_jmmm_2023_171582
crossref_primary_10_1038_s41467_023_41568_0
crossref_primary_10_1038_s41578_024_00706_w
crossref_primary_10_1021_acsami_3c02079
crossref_primary_10_1088_1674_1056_abcf9d
crossref_primary_10_1038_s41467_017_00967_w
crossref_primary_10_1063_5_0094631
crossref_primary_10_3390_mi12040443
crossref_primary_10_1021_acs_nanolett_5b05257
crossref_primary_10_1063_1_4944897
crossref_primary_10_1103_PhysRevB_103_134405
crossref_primary_10_1088_1361_6528_abeb9b
crossref_primary_10_1063_5_0035681
crossref_primary_10_1103_PhysRevB_103_214408
crossref_primary_10_1063_5_0011433
crossref_primary_10_1038_s41598_018_26586_z
crossref_primary_10_1038_nnano_2015_252
crossref_primary_10_1088_0022_3727_48_38_385001
crossref_primary_10_1063_5_0158131
crossref_primary_10_1038_s41565_019_0534_7
crossref_primary_10_1109_TCSI_2020_3020137
crossref_primary_10_1038_nmat4566
crossref_primary_10_1038_s44306_025_00071_6
crossref_primary_10_1016_j_jmmm_2023_171567
crossref_primary_10_1021_acsami_2c02621
crossref_primary_10_1021_acsami_1c00608
crossref_primary_10_1063_5_0204360
crossref_primary_10_1109_LMAG_2021_3110485
crossref_primary_10_1002_qute_202100111
crossref_primary_10_1063_9_0000011
crossref_primary_10_1038_nnano_2016_84
crossref_primary_10_1063_5_0035857
crossref_primary_10_1103_PhysRevB_103_134421
crossref_primary_10_1063_5_0216796
crossref_primary_10_1103_PhysRevMaterials_8_064407
crossref_primary_10_1126_sciadv_aaw8904
crossref_primary_10_1007_s12517_021_09218_1
crossref_primary_10_1109_TNANO_2016_2640338
crossref_primary_10_1016_j_physrep_2023_01_002
crossref_primary_10_1063_5_0048926
crossref_primary_10_1002_adfm_202007485
crossref_primary_10_1146_annurev_matsci_080222_030535
crossref_primary_10_1063_5_0041062
crossref_primary_10_1063_5_0185559
crossref_primary_10_1103_PhysRevB_94_104420
crossref_primary_10_1038_s41467_018_08181_y
crossref_primary_10_1126_sciadv_aar2250
crossref_primary_10_1088_1361_6463_ad40bd
crossref_primary_10_1063_5_0046766
crossref_primary_10_1021_acs_nanolett_6b03300
crossref_primary_10_1088_1361_6528_aaa812
crossref_primary_10_1002_adma_202418663
crossref_primary_10_1021_acs_nanolett_3c02104
crossref_primary_10_1063_5_0191182
crossref_primary_10_1038_s41467_023_41163_3
crossref_primary_10_1109_TED_2021_3088079
crossref_primary_10_1063_5_0015842
crossref_primary_10_1016_j_jmmm_2017_06_008
crossref_primary_10_1063_5_0032368
crossref_primary_10_1002_aelm_202300253
crossref_primary_10_1088_1402_4896_ab8d58
crossref_primary_10_35848_1882_0786_ab8347
crossref_primary_10_1002_aelm_202200845
crossref_primary_10_1038_srep20325
crossref_primary_10_1109_TMAG_2023_3283034
crossref_primary_10_1063_5_0041081
crossref_primary_10_1063_1_5008512
crossref_primary_10_1103_PhysRevB_93_140404
crossref_primary_10_1134_S1063783420090322
crossref_primary_10_1038_s41598_018_24877_z
crossref_primary_10_1088_1361_648X_acc711
crossref_primary_10_1021_acsami_0c10184
crossref_primary_10_1063_5_0226588
crossref_primary_10_1063_5_0196404
crossref_primary_10_1109_TED_2021_3137764
crossref_primary_10_1016_j_actamat_2016_03_044
crossref_primary_10_1109_JXCDC_2020_2999270
crossref_primary_10_1063_1_5041793
crossref_primary_10_1063_5_0248107
crossref_primary_10_1109_LED_2021_3069391
crossref_primary_10_1103_PhysRevB_111_094420
crossref_primary_10_1002_adfm_202401018
crossref_primary_10_1021_acsami_1c17653
crossref_primary_10_1063_5_0256651
crossref_primary_10_1088_1361_6463_ac33d9
crossref_primary_10_1088_2752_5724_ac6577
crossref_primary_10_1002_qute_201800052
crossref_primary_10_1109_TMAG_2016_2515025
crossref_primary_10_1002_mmce_22333
crossref_primary_10_1103_PhysRevB_92_014402
crossref_primary_10_1063_5_0050641
crossref_primary_10_1002_aelm_202300665
crossref_primary_10_1038_s41563_023_01522_3
crossref_primary_10_1109_TCAD_2015_2481793
crossref_primary_10_1126_sciadv_adg9819
crossref_primary_10_1002_adfm_201909092
crossref_primary_10_1038_s41467_021_27459_2
crossref_primary_10_1038_s41467_024_53884_0
crossref_primary_10_1109_LED_2019_2907063
crossref_primary_10_1063_5_0139212
crossref_primary_10_1088_0022_3727_48_10_105001
crossref_primary_10_1038_s41467_021_22819_4
crossref_primary_10_1088_1361_6463_aae80f
crossref_primary_10_1088_0022_3727_48_6_065001
crossref_primary_10_1063_5_0211072
crossref_primary_10_1038_s41467_024_46113_1
crossref_primary_10_1038_s41524_020_0347_0
crossref_primary_10_1103_PhysRevB_100_094413
crossref_primary_10_3390_nano12111887
crossref_primary_10_1039_D1NR00254F
crossref_primary_10_1016_j_jmmm_2020_166554
crossref_primary_10_1103_PhysRevLett_117_217206
crossref_primary_10_1063_1_5130050
crossref_primary_10_1002_advs_202417621
crossref_primary_10_1126_sciadv_adj3955
crossref_primary_10_7498_aps_66_027501
crossref_primary_10_1109_TMAG_2021_3078583
crossref_primary_10_1063_5_0045091
crossref_primary_10_1038_s41427_018_0069_7
crossref_primary_10_1002_aelm_201800782
crossref_primary_10_1002_aelm_202400270
crossref_primary_10_1038_s41598_018_31201_2
crossref_primary_10_1063_5_0023242
crossref_primary_10_1039_D1NR07730A
crossref_primary_10_1103_PhysRevB_92_024428
crossref_primary_10_1016_j_fmre_2022_03_016
crossref_primary_10_1002_adfm_202413491
crossref_primary_10_1002_metm_24
crossref_primary_10_1103_PhysRevB_94_054415
crossref_primary_10_1002_aelm_202400027
crossref_primary_10_1002_adfm_202312746
crossref_primary_10_1103_PhysRevApplied_19_024034
crossref_primary_10_1063_1_5133792
crossref_primary_10_1109_TMAG_2019_2940581
crossref_primary_10_1063_5_0014771
crossref_primary_10_1063_5_0052850
crossref_primary_10_1103_PhysRevB_101_214432
crossref_primary_10_1002_adma_202412037
crossref_primary_10_1088_1674_1056_ad1a88
crossref_primary_10_1063_5_0131540
crossref_primary_10_1103_PhysRevApplied_16_054001
crossref_primary_10_1109_TMAG_2015_2444437
crossref_primary_10_1016_j_jmmm_2024_172748
crossref_primary_10_1002_adfm_201808104
crossref_primary_10_1021_acsnano_2c11875
crossref_primary_10_1002_aelm_202300627
crossref_primary_10_1103_PhysRevB_102_174442
crossref_primary_10_1109_LED_2020_3043293
crossref_primary_10_1063_5_0201222
crossref_primary_10_7567_1882_0786_ab1a66
crossref_primary_10_1063_5_0144622
crossref_primary_10_1038_s41598_024_60492_x
crossref_primary_10_1021_acsanm_4c04046
crossref_primary_10_1038_s41467_025_56157_6
crossref_primary_10_1038_s41467_018_04712_9
crossref_primary_10_1038_ncomms10808
crossref_primary_10_1103_PhysRevB_100_214438
crossref_primary_10_3390_ma11010047
crossref_primary_10_1002_adma_202207988
crossref_primary_10_1103_PhysRevB_101_214418
crossref_primary_10_1109_LED_2019_2932479
crossref_primary_10_1007_s40042_021_00378_7
crossref_primary_10_1109_TCSI_2018_2866932
crossref_primary_10_1021_acsami_3c12061
crossref_primary_10_1002_admi_202201317
crossref_primary_10_1002_adfm_202109455
crossref_primary_10_1038_nnano_2016_29
crossref_primary_10_1063_5_0149290
crossref_primary_10_1063_1_4980108
crossref_primary_10_1002_adma_201705699
crossref_primary_10_1016_j_jmst_2017_04_008
crossref_primary_10_1002_adfm_202308219
crossref_primary_10_1038_srep45669
crossref_primary_10_1088_2631_7990_ad87cb
crossref_primary_10_1007_s10854_022_07842_5
crossref_primary_10_1063_1_5040876
crossref_primary_10_1016_j_physb_2019_08_020
crossref_primary_10_1109_JPROC_2021_3084997
crossref_primary_10_1103_PhysRevApplied_20_024032
crossref_primary_10_1038_s44306_024_00054_z
crossref_primary_10_1088_0957_4484_27_43_43LT01
crossref_primary_10_1016_j_jmmm_2021_167757
crossref_primary_10_1134_S1063776118120105
crossref_primary_10_1002_adfm_201505138
crossref_primary_10_1103_PhysRevResearch_3_013177
crossref_primary_10_1063_1_4978270
crossref_primary_10_1021_acsaelm_4c01538
crossref_primary_10_1063_5_0035496
crossref_primary_10_1063_1_4897359
crossref_primary_10_1038_srep31966
crossref_primary_10_1007_s11432_020_3246_8
crossref_primary_10_1007_s10854_020_04831_4
crossref_primary_10_1063_1_4999948
crossref_primary_10_1088_2752_5724_ace3af
crossref_primary_10_1109_TMAG_2018_2843439
crossref_primary_10_1038_s41598_019_56714_2
crossref_primary_10_1109_TCSI_2018_2881982
crossref_primary_10_1103_PhysRevB_105_144434
crossref_primary_10_1088_1674_1056_aba605
crossref_primary_10_35848_1882_0786_abdcd5
crossref_primary_10_1002_adfm_202200660
crossref_primary_10_1016_j_jsamd_2023_100649
crossref_primary_10_1063_5_0143459
crossref_primary_10_1109_LMAG_2022_3221050
crossref_primary_10_1038_s41928_018_0131_z
crossref_primary_10_1109_TED_2016_2604215
crossref_primary_10_1016_j_jmmm_2019_166112
crossref_primary_10_1063_5_0063317
crossref_primary_10_1038_srep38375
crossref_primary_10_1063_5_0041310
crossref_primary_10_1016_j_jmmm_2020_166700
crossref_primary_10_1063_1_4948342
crossref_primary_10_1109_TMAG_2020_3032099
crossref_primary_10_1103_PhysRevB_107_094422
crossref_primary_10_1103_PhysRevB_101_224407
crossref_primary_10_1016_j_jmmm_2022_169753
crossref_primary_10_1021_acs_nanolett_4c02773
crossref_primary_10_1063_5_0028549
crossref_primary_10_1088_1674_4926_40_8_081508
crossref_primary_10_1002_aelm_202300726
crossref_primary_10_1103_PhysRevB_110_L100409
crossref_primary_10_1088_1367_2630_aaa113
crossref_primary_10_1103_PhysRevApplied_12_014006
crossref_primary_10_1103_PhysRevB_101_144412
crossref_primary_10_1088_1674_1056_ac8927
crossref_primary_10_1103_PhysRevB_107_094410
crossref_primary_10_1016_j_matt_2024_101940
crossref_primary_10_1038_s44287_024_00107_9
crossref_primary_10_1088_1674_1056_ac891d
crossref_primary_10_1016_j_mtquan_2024_100008
crossref_primary_10_1002_wcms_1313
crossref_primary_10_1063_1_5118217
crossref_primary_10_1038_s41467_024_47375_5
crossref_primary_10_1103_PhysRevB_108_134431
crossref_primary_10_1016_j_jmmm_2021_168125
crossref_primary_10_1038_srep18719
crossref_primary_10_1021_acsami_1c22061
crossref_primary_10_1038_s41467_024_52834_0
crossref_primary_10_1063_5_0163034
crossref_primary_10_1002_aelm_201800812
crossref_primary_10_1039_C8NR04628J
crossref_primary_10_1016_j_jmmm_2024_172221
crossref_primary_10_1038_s42005_021_00521_7
crossref_primary_10_1038_s44306_024_00048_x
crossref_primary_10_1063_5_0117198
crossref_primary_10_1103_PhysRevB_105_054421
crossref_primary_10_1109_LED_2021_3058697
crossref_primary_10_1021_acs_nanolett_8b02114
crossref_primary_10_1103_PhysRevApplied_12_051002
crossref_primary_10_1038_s41467_022_31167_w
crossref_primary_10_1007_s10948_022_06385_4
crossref_primary_10_1016_j_jmmm_2019_165474
crossref_primary_10_1002_adfm_202105359
crossref_primary_10_1038_s41598_018_29397_4
crossref_primary_10_1103_PhysRevApplied_10_031001
crossref_primary_10_1103_PhysRevApplied_17_044034
crossref_primary_10_1038_srep26180
crossref_primary_10_1063_1_5034380
crossref_primary_10_1063_1_4973749
crossref_primary_10_1002_adfm_202404679
crossref_primary_10_1103_PhysRevApplied_23_014071
crossref_primary_10_1002_aelm_202201268
crossref_primary_10_7498_aps_72_20222219
crossref_primary_10_7567_APEX_11_030101
crossref_primary_10_1063_1_5063423
crossref_primary_10_1002_advs_202406924
crossref_primary_10_1016_j_physb_2019_06_048
crossref_primary_10_1088_1361_6528_aad65d
crossref_primary_10_1016_j_actamat_2020_09_032
crossref_primary_10_7567_JJAP_56_0802A1
crossref_primary_10_35848_1882_0786_ab7bcb
crossref_primary_10_1109_TC_2022_3188206
crossref_primary_10_1063_5_0050483
crossref_primary_10_1021_acs_nanolett_7b04993
crossref_primary_10_1109_JEDS_2021_3066679
crossref_primary_10_1103_PhysRevB_101_134417
crossref_primary_10_1002_adma_202000513
crossref_primary_10_1063_5_0097526
crossref_primary_10_1063_1_5138242
crossref_primary_10_1016_j_pmatsci_2017_02_002
crossref_primary_10_1016_j_xcrp_2023_101468
crossref_primary_10_1063_1_4998216
crossref_primary_10_1063_5_0006138
crossref_primary_10_1038_s41467_024_49214_z
crossref_primary_10_1038_nphys3954
crossref_primary_10_1063_5_0039061
crossref_primary_10_7567_1347_4065_aaf877
crossref_primary_10_1038_s41535_018_0100_9
crossref_primary_10_1063_1_4903041
crossref_primary_10_1063_5_0039069
crossref_primary_10_1038_s41467_024_47577_x
crossref_primary_10_1103_PhysRevB_99_184403
crossref_primary_10_1016_j_jsamd_2022_100508
crossref_primary_10_1016_j_ssc_2017_03_004
crossref_primary_10_1021_acsami_3c19468
crossref_primary_10_1103_PhysRevResearch_3_L042033
crossref_primary_10_1103_PhysRevB_94_174434
crossref_primary_10_1109_TED_2019_2951684
crossref_primary_10_1002_aelm_201900134
crossref_primary_10_1016_j_physb_2019_411662
crossref_primary_10_1103_PhysRevApplied_12_034022
crossref_primary_10_3390_mi6081023
crossref_primary_10_1038_s41467_021_26478_3
crossref_primary_10_1002_adma_202002117
crossref_primary_10_1002_adfm_202307612
crossref_primary_10_1002_advs_202400967
crossref_primary_10_1088_1361_648X_adb192
crossref_primary_10_1038_s41598_022_12555_0
crossref_primary_10_1063_1_5019193
crossref_primary_10_1007_s11432_021_3371_4
crossref_primary_10_1063_1_4893617
crossref_primary_10_1103_PhysRevB_106_104431
crossref_primary_10_1002_pssr_202000177
crossref_primary_10_1038_s41598_019_56082_x
crossref_primary_10_1038_s41598_018_22122_1
crossref_primary_10_1063_1_4990994
crossref_primary_10_1109_TMAG_2019_2893819
crossref_primary_10_1103_PhysRevB_95_241305
crossref_primary_10_1063_5_0042252
crossref_primary_10_1109_JXCDC_2022_3224832
crossref_primary_10_1002_aelm_202000229
crossref_primary_10_1038_s41467_021_23414_3
crossref_primary_10_1587_elex_22_20250084
crossref_primary_10_1063_5_0092945
crossref_primary_10_1002_adfm_202211953
crossref_primary_10_1109_LMAG_2017_2721925
crossref_primary_10_1038_s41928_018_0026_z
crossref_primary_10_1126_sciadv_aax4278
crossref_primary_10_1002_adma_201603031
crossref_primary_10_1063_1_4976693
crossref_primary_10_1103_PhysRevApplied_19_054051
crossref_primary_10_1109_JXCDC_2019_2951767
crossref_primary_10_1038_s41928_018_0135_8
crossref_primary_10_1134_S1064226920080136
crossref_primary_10_3390_ma17215214
crossref_primary_10_1002_pssr_201409340
crossref_primary_10_1016_j_mseb_2021_115367
crossref_primary_10_1063_1_4994050
crossref_primary_10_1109_LMAG_2021_3063081
crossref_primary_10_1002_adfm_202105992
crossref_primary_10_1021_acs_nanolett_3c03829
crossref_primary_10_1103_PhysRevB_93_094402
crossref_primary_10_1002_adma_202006924
crossref_primary_10_1063_1_4906352
crossref_primary_10_1021_acsnano_4c02154
crossref_primary_10_1088_1674_1056_aca7e9
crossref_primary_10_1088_1674_1056_ac2808
crossref_primary_10_1002_inf2_12095
crossref_primary_10_1002_aelm_202001133
crossref_primary_10_1088_0256_307X_37_11_117501
crossref_primary_10_1088_1674_4926_42_2_024102
crossref_primary_10_1063_1_4974211
crossref_primary_10_1063_1_5012763
crossref_primary_10_1063_9_0000903
crossref_primary_10_1016_j_actamat_2021_116708
crossref_primary_10_1063_5_0077515
crossref_primary_10_1103_PhysRevB_110_035423
crossref_primary_10_1515_psr_2019_0072
crossref_primary_10_1002_adma_202302350
crossref_primary_10_1063_1_5046503
crossref_primary_10_1088_1361_6463_ad1a66
crossref_primary_10_1038_s42005_025_02024_1
crossref_primary_10_1038_nphys3933
crossref_primary_10_1063_5_0041362
crossref_primary_10_1103_PhysRevB_96_054407
crossref_primary_10_1038_s41598_018_19927_5
crossref_primary_10_1103_PhysRevB_92_134411
crossref_primary_10_1038_s41563_019_0370_z
crossref_primary_10_1002_aisy_202000182
crossref_primary_10_1103_PhysRevB_107_064411
crossref_primary_10_1103_PhysRevB_94_161108
crossref_primary_10_1016_j_jmmm_2016_12_113
crossref_primary_10_1063_5_0145497
crossref_primary_10_1109_JPROC_2016_2573836
crossref_primary_10_1063_5_0033745
crossref_primary_10_1002_adfm_202209693
crossref_primary_10_1038_nmat4886
crossref_primary_10_1063_5_0034837
crossref_primary_10_1063_5_0156392
crossref_primary_10_1038_s41578_019_0159_3
crossref_primary_10_1038_nnano_2014_134
crossref_primary_10_7498_aps_73_20240541
crossref_primary_10_1109_LMAG_2023_3293407
crossref_primary_10_1109_JEDS_2020_3039544
crossref_primary_10_1103_PhysRevB_96_054414
crossref_primary_10_1103_PhysRevB_98_214429
crossref_primary_10_1103_PhysRevApplied_17_024031
crossref_primary_10_1103_PhysRevB_95_104434
Cites_doi 10.1038/nmat1595
10.1038/nnano.2013.145
10.1103/PhysRevLett.83.1834
10.1038/nmat3522
10.1103/PhysRevB.88.085423
10.1063/1.2969711
10.1038/nnano.2013.102
10.1038/nmat3553
10.1038/nmat2804
10.1063/1.3502596
10.1038/nmat3675
10.1016/0375-9601(71)90196-4
10.1063/1.4753947
10.1126/science.1218197
10.1103/PhysRevLett.85.393
10.1038/nmat2613
10.1038/nature10309
10.1088/0022-3727/46/7/074003
10.1109/IEDM.2012.6479132
10.1103/PhysRevB.89.024418
10.1103/PhysRevB.84.054401
10.1103/PhysRevB.87.020402
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group Jul 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group Jul 2014
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/nnano.2014.94
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
Solid State and Superconductivity Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 554
ExternalDocumentID 3360112481
24813694
10_1038_nnano_2014_94
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Los Angeles California
United States--US
California
GeographicLocations_xml – name: Los Angeles California
– name: United States--US
– name: California
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c529t-ca8933561c7b21c833058b0e1e20b1de8e9730b73dba44a7fae3d43290d37e673
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Mon Jul 21 11:50:54 EDT 2025
Fri Jul 11 12:16:59 EDT 2025
Sat Aug 23 13:05:03 EDT 2025
Mon Jul 21 05:55:05 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Tue Jul 01 01:56:24 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-ca8933561c7b21c833058b0e1e20b1de8e9730b73dba44a7fae3d43290d37e673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8369-0067
0000000183690067
PMID 24813694
PQID 1542386702
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_1770341874
proquest_miscellaneous_1543281849
proquest_journals_1542386702
pubmed_primary_24813694
crossref_citationtrail_10_1038_nnano_2014_94
crossref_primary_10_1038_nnano_2014_94
springer_journals_10_1038_nnano_2014_94
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Dyakonov, Perel (CR17) 1971; 35A
Pai, Liu, Li, Tseng, Ralph, Buhrman (CR7) 2012; 101
Manchon, Ducruet, Lombard, Auffret, Rodmacq, Dieny, Pizzini, Vogel, Uhlíř, Hochstrasser, Panaccione (CR24) 2008; 104
CR15
CR14
Kim (CR5) 2013; 12
CR11
Pi, Won Kim, Bae, Lee, Cho, Kim, Seo (CR28) 2010; 97
CR30
Mangin (CR12) 2006; 5
Miron (CR1) 2010; 9
Garello (CR13) 2013; 8
Haazen (CR10) 2013; 12
CR3
Hirsch (CR18) 1999; 83
CR6
Ryu, Thomas, Yang, Parkin (CR8) 2013; 8
CR29
Ikeda (CR23) 2010; 9
CR27
Hals, Brataas (CR21) 2013; 88
CR26
Emori, Bauer, Ahn, Martinez, Beach (CR9) 2013; 12
Zhang (CR19) 2000; 85
CR25
Miron (CR2) 2011; 476
CR22
CR20
Liu (CR4) 2012; 336
Bychkov, Rashba (CR16) 1984; 39
Chi-Feng Pai (BFnnano201494_CR7) 2012; 101
BFnnano201494_CR3
J Kim (BFnnano201494_CR5) 2013; 12
K Garello (BFnnano201494_CR13) 2013; 8
KS Ryu (BFnnano201494_CR8) 2013; 8
IM Miron (BFnnano201494_CR1) 2010; 9
BFnnano201494_CR30
S Mangin (BFnnano201494_CR12) 2006; 5
BFnnano201494_CR11
MI Dyakonov (BFnnano201494_CR17) 1971; 35A
BFnnano201494_CR14
YA Bychkov (BFnnano201494_CR16) 1984; 39
S Ikeda (BFnnano201494_CR23) 2010; 9
A. Manchon (BFnnano201494_CR24) 2008; 104
Ung Hwan Pi (BFnnano201494_CR28) 2010; 97
LQ Liu (BFnnano201494_CR4) 2012; 336
BFnnano201494_CR15
SF Zhang (BFnnano201494_CR19) 2000; 85
BFnnano201494_CR20
BFnnano201494_CR22
KMD Hals (BFnnano201494_CR21) 2013; 88
BFnnano201494_CR25
BFnnano201494_CR26
BFnnano201494_CR27
S Emori (BFnnano201494_CR9) 2013; 12
JE Hirsch (BFnnano201494_CR18) 1999; 83
BFnnano201494_CR29
PPJ Haazen (BFnnano201494_CR10) 2013; 12
IM Miron (BFnnano201494_CR2) 2011; 476
BFnnano201494_CR6
21804568 - Nature. 2011 Aug 11;476(7359):189-93
10991291 - Phys Rev Lett. 2000 Jul 10;85(2):393-6
15089695 - Phys Rev Lett. 2004 Mar 26;92(12):126603
20622862 - Nat Mater. 2010 Sep;9(9):721-4
20062047 - Nat Mater. 2010 Mar;9(3):230-4
22556245 - Science. 2012 May 4;336(6081):555-8
22540504 - Phys Rev Lett. 2012 Mar 16;108(11):117201
23002867 - Phys Rev Lett. 2012 Aug 31;109(9):096602
23653211 - Nat Commun. 2013;4:1799
23770808 - Nat Nanotechnol. 2013 Jul;8(7):527-33
22617287 - Nat Commun. 2012 May 22;3:847
24990213 - Nat Nanotechnol. 2014 Jul;9(7):502-3
23377291 - Nat Mater. 2013 Apr;12(4):299-303
23770726 - Nat Mater. 2013 Jul;12(7):611-6
23892985 - Nat Nanotechnol. 2013 Aug;8(8):587-93
23263641 - Nat Mater. 2013 Mar;12(3):240-5
References_xml – ident: CR22
– volume: 5
  start-page: 210
  year: 2006
  end-page: 215
  ident: CR12
  article-title: Current-induced magnetization reversal in nanopillars with perpendicular anisotropy
  publication-title: Nature Mater.
  doi: 10.1038/nmat1595
– volume: 8
  start-page: 587
  year: 2013
  end-page: 593
  ident: CR13
  article-title: Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2013.145
– volume: 83
  start-page: 1834
  year: 1999
  end-page: 1837
  ident: CR18
  article-title: Spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1834
– ident: CR14
– volume: 12
  start-page: 240
  year: 2013
  end-page: 245
  ident: CR5
  article-title: Layer thickness dependence of the current-induced effective field vector in Ta vertical bar CoFeB vertical bar MgO
  publication-title: Nature Mater.
  doi: 10.1038/nmat3522
– ident: CR30
– volume: 88
  start-page: 085423
  year: 2013
  ident: CR21
  article-title: Phenomenology of current-induced spin–orbit torques
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085423
– volume: 104
  start-page: 043914
  issue: 4
  year: 2008
  ident: CR24
  article-title: Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2969711
– ident: CR6
– ident: CR29
– volume: 8
  start-page: 527
  year: 2013
  end-page: 533
  ident: CR8
  article-title: Chiral spin torque at magnetic domain walls
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2013.102
– volume: 12
  start-page: 299
  year: 2013
  end-page: 303
  ident: CR10
  article-title: Domain wall depinning governed by the spin Hall effect
  publication-title: Nature Mater.
  doi: 10.1038/nmat3553
– volume: 9
  start-page: 721
  year: 2010
  end-page: 724
  ident: CR23
  article-title: A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction
  publication-title: Nature Mater.
  doi: 10.1038/nmat2804
– ident: CR25
– ident: CR27
– volume: 97
  start-page: 162507
  issue: 16
  year: 2010
  ident: CR28
  article-title: Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3502596
– volume: 12
  start-page: 611
  year: 2013
  end-page: 616
  ident: CR9
  article-title: Current-driven dynamics of chiral ferromagnetic domain walls
  publication-title: Nature Mater.
  doi: 10.1038/nmat3675
– volume: 35A,
  start-page: 459
  year: 1971
  end-page: 460
  ident: CR17
  article-title: Current-induced spin orientation of electrons in semiconductors
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(71)90196-4
– volume: 101
  start-page: 122404
  issue: 12
  year: 2012
  ident: CR7
  article-title: Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4753947
– volume: 336
  start-page: 555
  year: 2012
  end-page: 558
  ident: CR4
  article-title: Spin-torque switching with the giant spin Hall effect of tantalum
  publication-title: Science
  doi: 10.1126/science.1218197
– volume: 39
  start-page: 78
  year: 1984
  end-page: 81
  ident: CR16
  article-title: Properties of a 2 electron-gas with lifted spectral degeneracy
  publication-title: JETP Lett.
– ident: CR3
– ident: CR15
– ident: CR11
– volume: 85
  start-page: 393
  year: 2000
  end-page: 396
  ident: CR19
  article-title: Spin Hall effect in the presence of spin diffusion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.393
– ident: CR26
– volume: 9
  start-page: 230
  year: 2010
  end-page: 234
  ident: CR1
  article-title: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer
  publication-title: Nature Mater.
  doi: 10.1038/nmat2613
– volume: 476
  start-page: 189
  year: 2011
  end-page: 193
  ident: CR2
  article-title: Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
  publication-title: Nature
  doi: 10.1038/nature10309
– ident: CR20
– volume: 12
  start-page: 240
  year: 2013
  ident: BFnnano201494_CR5
  publication-title: Nature Mater.
  doi: 10.1038/nmat3522
– volume: 83
  start-page: 1834
  year: 1999
  ident: BFnnano201494_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1834
– ident: BFnnano201494_CR11
  doi: 10.1088/0022-3727/46/7/074003
– volume: 5
  start-page: 210
  year: 2006
  ident: BFnnano201494_CR12
  publication-title: Nature Mater.
  doi: 10.1038/nmat1595
– ident: BFnnano201494_CR22
– ident: BFnnano201494_CR14
– ident: BFnnano201494_CR20
– ident: BFnnano201494_CR30
  doi: 10.1109/IEDM.2012.6479132
– volume: 476
  start-page: 189
  year: 2011
  ident: BFnnano201494_CR2
  publication-title: Nature
  doi: 10.1038/nature10309
– ident: BFnnano201494_CR6
– volume: 85
  start-page: 393
  year: 2000
  ident: BFnnano201494_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.393
– volume: 104
  start-page: 043914
  issue: 4
  year: 2008
  ident: BFnnano201494_CR24
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2969711
– ident: BFnnano201494_CR27
  doi: 10.1103/PhysRevB.89.024418
– volume: 9
  start-page: 721
  year: 2010
  ident: BFnnano201494_CR23
  publication-title: Nature Mater.
  doi: 10.1038/nmat2804
– volume: 88
  start-page: 085423
  year: 2013
  ident: BFnnano201494_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085423
– volume: 9
  start-page: 230
  year: 2010
  ident: BFnnano201494_CR1
  publication-title: Nature Mater.
  doi: 10.1038/nmat2613
– volume: 336
  start-page: 555
  year: 2012
  ident: BFnnano201494_CR4
  publication-title: Science
  doi: 10.1126/science.1218197
– volume: 8
  start-page: 587
  year: 2013
  ident: BFnnano201494_CR13
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2013.145
– volume: 8
  start-page: 527
  year: 2013
  ident: BFnnano201494_CR8
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2013.102
– volume: 12
  start-page: 611
  year: 2013
  ident: BFnnano201494_CR9
  publication-title: Nature Mater.
  doi: 10.1038/nmat3675
– volume: 12
  start-page: 299
  year: 2013
  ident: BFnnano201494_CR10
  publication-title: Nature Mater.
  doi: 10.1038/nmat3553
– ident: BFnnano201494_CR26
  doi: 10.1103/PhysRevB.84.054401
– ident: BFnnano201494_CR3
– volume: 35A,
  start-page: 459
  year: 1971
  ident: BFnnano201494_CR17
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(71)90196-4
– ident: BFnnano201494_CR15
– volume: 97
  start-page: 162507
  issue: 16
  year: 2010
  ident: BFnnano201494_CR28
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3502596
– ident: BFnnano201494_CR25
– volume: 101
  start-page: 122404
  issue: 12
  year: 2012
  ident: BFnnano201494_CR7
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4753947
– ident: BFnnano201494_CR29
  doi: 10.1103/PhysRevB.87.020402
– volume: 39
  start-page: 78
  year: 1984
  ident: BFnnano201494_CR16
  publication-title: JETP Lett.
– reference: 23653211 - Nat Commun. 2013;4:1799
– reference: 22556245 - Science. 2012 May 4;336(6081):555-8
– reference: 23770808 - Nat Nanotechnol. 2013 Jul;8(7):527-33
– reference: 24990213 - Nat Nanotechnol. 2014 Jul;9(7):502-3
– reference: 23263641 - Nat Mater. 2013 Mar;12(3):240-5
– reference: 22540504 - Phys Rev Lett. 2012 Mar 16;108(11):117201
– reference: 23377291 - Nat Mater. 2013 Apr;12(4):299-303
– reference: 20622862 - Nat Mater. 2010 Sep;9(9):721-4
– reference: 23002867 - Phys Rev Lett. 2012 Aug 31;109(9):096602
– reference: 23770726 - Nat Mater. 2013 Jul;12(7):611-6
– reference: 23892985 - Nat Nanotechnol. 2013 Aug;8(8):587-93
– reference: 10991291 - Phys Rev Lett. 2000 Jul 10;85(2):393-6
– reference: 20062047 - Nat Mater. 2010 Mar;9(3):230-4
– reference: 15089695 - Phys Rev Lett. 2004 Mar 26;92(12):126603
– reference: 22617287 - Nat Commun. 2012 May 22;3:847
– reference: 21804568 - Nature. 2011 Aug 11;476(7359):189-93
SSID ssj0052924
Score 2.641104
Snippet Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic...
Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 548
SubjectTerms 140/146
142/126
147/143
639/766/119/1001
Asymmetry
Electrons
Ferromagnetism
Magnetic fields
Magnetization
Materials Science
Memory devices
Nanotechnology
Nanotechnology and Microengineering
Oxidation
Random access memory
Switching
Symmetry
Torque
Title Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields
URI https://link.springer.com/article/10.1038/nnano.2014.94
https://www.ncbi.nlm.nih.gov/pubmed/24813694
https://www.proquest.com/docview/1542386702
https://www.proquest.com/docview/1543281849
https://www.proquest.com/docview/1770341874
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcGvIyHaewDbgMUJMReVmib3KV5QgxxQ0igaRvSvVVJmkOVIHejRdP--9lpejDBeOlLncp14tiOnZ8Bdg2GVZUlRTJKJGLoTKJyWSUabZdLp1JbQ4Hi-cXo9FKcTYaTeODWxLLKfk8MG3U1s3RGfoCmHq3LSKb54fxXQl2jKLsaW2gswQpBl9GqlpNFwDXMVdfUVooiwVBMRozNlBcH3mtPd_8ysa_EvzbpkaP5KEkabM_4NbyKTiM76mZ5DV44_wZWH0AJvoX6x--6DXWRbDZlc3dLvW3rUGTKbvSVd228cMnMH9bMa48_Z-qWYchNbLDaM3QFmTYNqTp9o8eH7odbFqrdmndwOT75eXyaxDYKiUUJtInV6JNw9JOsNHlmC44qXpjUZS5PTVa5wilUcyN5ZbQQWk6145XguUorLt1I8vew7GfebQBTAkdSJm2IlDy3ekr4XxVGmZwynnYAn3tBljZijFOri-sy5Lp5UQa5lyT3UokB7C3I5x24xv8IN_tZKaOONeX9ihjAzuI1agelPLR3s7tAwwnvSqhnaCTueoJ6Ew5gvZvxBTe5KDI-IgY-9UvgAQNPsfrheVY_wksi7Ap-N2G5vb1zW-jWtGY7rF18FuOv27Dy5eTi2_e_4bL5Tw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATgg3iwUMBKPC6GJ7azjA0IIWLb0caGVegu240WRWu_SpKr6U3wjM06yFBV66zljazSeZ-YF8MJiWFU5EiSrZSJzbxPNVZUYtF0-nSnjLAWK2zvj6Z78up_vr8CvoReGyioHnRgVdTV39I98HU09WpexSvn7xc-EtkZRdnVYodGxxaY_PcGQrXm38Qnf9yXnk8-7H6dJv1UgcTnXbeIMbZhHt8EpyzNXYECfFzb1meepzSpfeI1cb5WorJHSqJnxopKC67QSyo-VwHuvwFUp0JJTZ_rky6D58fpuia6SRYKhn-pneqaiWA_BBOo1zORbLf-2gecc23NJ2WjrJrfgZu-ksg8dV92GFR_uwI0zowvvQv3tpG5jHSabz9jCH9Eu3ToWtbJD8yP4tm_wZPaUNYs6IDFt3TIM8QkNVgeGricztiHVQncM86iH447F6rrmHuxdCoHvw2qYB_8QmJZ4kjJ3OUIK7syM5o1VGNUKyrC6EbwZCFm6fqY5rdY4KGNuXRRlpHtJdC-1HMGrJfiiG-bxP8C14VXKXqab8g8HjuD58jNKI6VYTPDz4wgjaL6W1BfAKNSyknYhjuBB9-JLbLgsMjEmBF4PLHAGgX-h-uhiVJ_Btenu9la5tbGz-Riu06Gu2HgNVtujY_8EXarWPo18zOD7ZQvOb6aqMxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTULsAfG9gw2CxMcL5dokvbQPEwK208bgNAGT9tYlaYoqQe5YO0371_bXze7HMTTY257rtJZjx_7Vjg3wwiCsyi0ZkkllIGNngpSrPNDou1xYKG0NAcUv0_H2vvx0EB8swVl_F4bKKvszsTmo85mlf-QjdPXoXcYq5KOiK4vY25y8m_8OaIIUZVr7cRqtiuy60xOEb9XGzibu9UvOJ1vfP24H3YSBwMY8rQOrado8hhBWGR7ZBMF9nJjQRY6HJspd4lK0AKNEbrSUWhXaiVwKnoa5UG6sBL73BiwrQkUDWP6wNd372vsB_EA7UlfJJEAgqLoOn6FIRt5rTzcPI_k2lX97xEth7qUUbeP5Jnfgdheysvetjt2FJefvwcqFRob3ofx2UtZNVSabFWzujmiybtmUuLJf-od3dXfdk5lTVs1Lj-I0Zc0Q8BMbrPQMA1GmTUUHDb2j707dL7esqbWrHsD-tYj4IQz8zLtVYKnElZTHi5FScKsL6j6WI8YVlG-1Q3jTCzKzXYdzGrTxM2sy7SLJGrlnJPcslUN4tSCft609_ke41u9K1ll4lf3RxyE8XzxG26SEi_ZudtzQCOq2JdMraBSeuZImIw7hUbvjC264TCIxJgZe9ypwgYF_sfr4alafwU00muzzznT3CdyiNW3l8RoM6qNjt47xVW2edorM4PC6beccCoU4pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+of+perpendicular+magnetization+by+spin%E2%80%93orbit+torques+in+the+absence+of+external+magnetic+fields&rft.jtitle=Nature+nanotechnology&rft.au=Yu%2C+Guoqiang&rft.au=Upadhyaya%2C+Pramey&rft.au=Fan%2C+Yabin&rft.au=Alzate%2C+Juan+G.&rft.date=2014-07-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=9&rft.issue=7&rft.spage=548&rft.epage=554&rft_id=info:doi/10.1038%2Fnnano.2014.94&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nnano_2014_94
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon