Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields
Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the pr...
Saved in:
Published in | Nature nanotechnology Vol. 9; no. 7; pp. 548 - 554 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin–orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co
20
Fe
60
B
20
/TaO
x
structures by spin–orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin–orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin–orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.
Spin–orbit torques in a geometrically asymmetric device made from a perpendicularly magnetized ferromagnet can switch its magnetization without the assistance of an applied magnetic field. |
---|---|
AbstractList | Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets. Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets. Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co sub(20)Fe sub(60)B sub(20)/TaO sub(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets. Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin–orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co 20 Fe 60 B 20 /TaO x structures by spin–orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin–orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin–orbit torque is out-of-plane, facilitating the switching of perpendicular magnets. Spin–orbit torques in a geometrically asymmetric device made from a perpendicularly magnetized ferromagnet can switch its magnetization without the assistance of an applied magnetic field. |
Author | Tserkovnyak, Yaroslav Lang, Murong Tang, Jianshi Yu, Guoqiang Takei, So Amiri, Pedram Khalili Bender, Scott A. Wong, Kin L. Wang, Yong Alzate, Juan G. Chang, Li-Te Jiang, Ying Jiang, Wanjun Wang, Kang L. Fan, Yabin Upadhyaya, Pramey |
Author_xml | – sequence: 1 givenname: Guoqiang surname: Yu fullname: Yu, Guoqiang email: guoqiangyu@ucla.edu organization: Department of Electrical Engineering, University of California – sequence: 2 givenname: Pramey surname: Upadhyaya fullname: Upadhyaya, Pramey organization: Department of Electrical Engineering, University of California – sequence: 3 givenname: Yabin surname: Fan fullname: Fan, Yabin organization: Department of Electrical Engineering, University of California – sequence: 4 givenname: Juan G. surname: Alzate fullname: Alzate, Juan G. organization: Department of Electrical Engineering, University of California – sequence: 5 givenname: Wanjun surname: Jiang fullname: Jiang, Wanjun organization: Department of Electrical Engineering, University of California – sequence: 6 givenname: Kin L. surname: Wong fullname: Wong, Kin L. organization: Department of Electrical Engineering, University of California – sequence: 7 givenname: So surname: Takei fullname: Takei, So organization: Department of Physics and Astronomy, University of California – sequence: 8 givenname: Scott A. surname: Bender fullname: Bender, Scott A. organization: Department of Physics and Astronomy, University of California – sequence: 9 givenname: Li-Te surname: Chang fullname: Chang, Li-Te organization: Department of Electrical Engineering, University of California – sequence: 10 givenname: Ying surname: Jiang fullname: Jiang, Ying organization: Department of Materials Science and Engineering, Center for Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang University – sequence: 11 givenname: Murong surname: Lang fullname: Lang, Murong organization: Department of Electrical Engineering, University of California – sequence: 12 givenname: Jianshi orcidid: 0000-0001-8369-0067 surname: Tang fullname: Tang, Jianshi organization: Department of Electrical Engineering, University of California – sequence: 13 givenname: Yong surname: Wang fullname: Wang, Yong organization: Department of Materials Science and Engineering, Center for Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang University – sequence: 14 givenname: Yaroslav surname: Tserkovnyak fullname: Tserkovnyak, Yaroslav organization: Department of Physics and Astronomy, University of California – sequence: 15 givenname: Pedram Khalili surname: Amiri fullname: Amiri, Pedram Khalili organization: Department of Electrical Engineering, University of California – sequence: 16 givenname: Kang L. surname: Wang fullname: Wang, Kang L. email: wang@seas.ucla.edu organization: Department of Electrical Engineering, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24813694$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URP9Ydosssekmg_8ydpaoolCpUhela8t2bqZuM3awHUFZ8Q68IU9CMtNBVQVide_iO0fn3nOI9kIMgNAJJQtKuHoXgglxwQgVi0a8QAdUClVx3tR7f3Yl99FhzneE1Kxh4hXaZ0JRvmzEAbq__uqLu_VhhWOHB0gDhNa7sTcJr80qQPHfTfExYPuA8-DDrx8_Y7K-4BLTlxEy9gGXW8DGZggOZhf4ViAF0-8MHO489G0-Ri8702d4_TiP0M35h89nn6rLq48XZ-8vKzflK5UzquG8XlInLaNOcU5qZQlQYMTSFhQ0khMreWuNEEZ2BngrOGtIyyUsJT9Cp1vfIcU5YtFrnx30vQkQx6yplIQLqqT4P1pPxooq0Uzo22foXRznMzcU42opCZuoN4_UaNfQ6iH5tUkPevfxCeBbwKWYc4JOO182Hy7J-F5Toude9aZXPfeqN6rqmWpn_C9-seXzxIUVpCdh_yr4DcnTtic |
CitedBy_id | crossref_primary_10_1038_s41563_024_02088_4 crossref_primary_10_1002_adfm_202100380 crossref_primary_10_1038_s41467_018_06059_7 crossref_primary_10_1088_1674_1056_ab9439 crossref_primary_10_1063_5_0231869 crossref_primary_10_1063_5_0196781 crossref_primary_10_1103_RevModPhys_91_035004 crossref_primary_10_1016_j_actamat_2023_118705 crossref_primary_10_1063_5_0001758 crossref_primary_10_1063_1_4936934 crossref_primary_10_1063_1_5043444 crossref_primary_10_1016_j_mtnano_2023_100408 crossref_primary_10_2139_ssrn_4021751 crossref_primary_10_1088_1674_1056_27_10_107201 crossref_primary_10_1007_s10948_018_4711_y crossref_primary_10_1088_1674_4926_38_6_062003 crossref_primary_10_1021_acs_nanolett_1c04786 crossref_primary_10_1103_PhysRevApplied_18_024075 crossref_primary_10_1021_acsnano_3c09041 crossref_primary_10_1109_TMAG_2022_3199589 crossref_primary_10_1021_acsnano_2c01930 crossref_primary_10_1063_1_4968785 crossref_primary_10_1063_1_5045850 crossref_primary_10_1038_srep18173 crossref_primary_10_1021_acsmaterialslett_3c01376 crossref_primary_10_1063_1_5031446 crossref_primary_10_1103_PhysRevB_110_134423 crossref_primary_10_1016_j_ssc_2021_114340 crossref_primary_10_1038_s41928_018_0105_1 crossref_primary_10_1063_1_5052194 crossref_primary_10_1016_j_fmre_2023_07_010 crossref_primary_10_1038_ncomms9958 crossref_primary_10_1109_TNANO_2023_3313313 crossref_primary_10_1103_PhysRevB_93_014426 crossref_primary_10_1103_PhysRevB_109_L060405 crossref_primary_10_1109_LMAG_2018_2801834 crossref_primary_10_1016_j_jmmm_2023_170594 crossref_primary_10_1557_s43579_024_00673_x crossref_primary_10_1063_5_0039926 crossref_primary_10_1103_PhysRevApplied_9_064026 crossref_primary_10_1021_acsnano_0c07163 crossref_primary_10_1103_PhysRevB_110_134415 crossref_primary_10_1002_adom_201901381 crossref_primary_10_1038_s42005_019_0143_7 crossref_primary_10_1109_TVLSI_2019_2926984 crossref_primary_10_1063_1_4919108 crossref_primary_10_1103_PhysRevB_93_014414 crossref_primary_10_1002_aelm_202000296 crossref_primary_10_1021_acsaelm_2c00672 crossref_primary_10_1002_aelm_202200987 crossref_primary_10_1002_adma_202406552 crossref_primary_10_1063_5_0135185 crossref_primary_10_1063_1_5066372 crossref_primary_10_1016_j_cap_2017_04_003 crossref_primary_10_1016_j_physleta_2024_129525 crossref_primary_10_1109_TMAG_2021_3069372 crossref_primary_10_1016_j_jmmm_2021_167823 crossref_primary_10_1063_1_5042317 crossref_primary_10_1103_PhysRevApplied_12_064046 crossref_primary_10_1103_PhysRevApplied_12_044032 crossref_primary_10_1016_j_matt_2024_05_045 crossref_primary_10_1063_1_4944343 crossref_primary_10_1038_nnano_2016_109 crossref_primary_10_1063_1_5135626 crossref_primary_10_1063_5_0022257 crossref_primary_10_1103_PhysRevApplied_10_034067 crossref_primary_10_1103_PhysRevB_109_184401 crossref_primary_10_1088_1361_6463_abf61d crossref_primary_10_1109_LMAG_2019_2914007 crossref_primary_10_1021_acs_nanolett_6b00398 crossref_primary_10_1063_5_0146095 crossref_primary_10_1088_1361_648X_ad3270 crossref_primary_10_1038_s41467_023_39649_1 crossref_primary_10_7567_APEX_9_063008 crossref_primary_10_1002_adma_202406772 crossref_primary_10_1038_s41928_018_0160_7 crossref_primary_10_1002_sstr_202400006 crossref_primary_10_1063_5_0164967 crossref_primary_10_1002_admi_202300632 crossref_primary_10_1103_PhysRevB_108_014432 crossref_primary_10_1002_aelm_201901131 crossref_primary_10_1103_PhysRevB_94_094429 crossref_primary_10_3390_mi14081581 crossref_primary_10_1016_j_scib_2023_04_033 crossref_primary_10_1063_5_0046650 crossref_primary_10_3389_fphy_2023_1140286 crossref_primary_10_1002_adma_202415480 crossref_primary_10_1103_PhysRevB_110_214427 crossref_primary_10_1038_srep23956 crossref_primary_10_1103_PhysRevApplied_7_024023 crossref_primary_10_1002_pssr_201900267 crossref_primary_10_1103_PhysRevB_98_014401 crossref_primary_10_1038_nnano_2015_332 crossref_primary_10_1103_PhysRevLett_133_186703 crossref_primary_10_1039_C7NR09513A crossref_primary_10_1038_s41563_018_0041_5 crossref_primary_10_1002_aelm_202300385 crossref_primary_10_1002_aelm_201901368 crossref_primary_10_1063_5_0002642 crossref_primary_10_1109_JPROC_2020_3029600 crossref_primary_10_1063_5_0070987 crossref_primary_10_1093_nsr_nwac154 crossref_primary_10_1021_acsami_4c10495 crossref_primary_10_1063_5_0049928 crossref_primary_10_1134_S1064226919100139 crossref_primary_10_1021_acsami_0c23127 crossref_primary_10_1063_5_0092513 crossref_primary_10_1103_PhysRevB_108_024419 crossref_primary_10_1002_adma_202414139 crossref_primary_10_1063_5_0005964 crossref_primary_10_1002_adma_201801318 crossref_primary_10_1063_1_5093795 crossref_primary_10_1021_acs_nanolett_4c05502 crossref_primary_10_1088_1361_6463_abfad3 crossref_primary_10_1142_S2010324716400014 crossref_primary_10_1039_C7NR01980G crossref_primary_10_1088_1361_6463_ac181a crossref_primary_10_1103_PhysRevB_104_064439 crossref_primary_10_1103_PhysRevLett_129_037202 crossref_primary_10_1016_j_scib_2023_10_008 crossref_primary_10_35848_1882_0786_abc6eb crossref_primary_10_7498_aps_67_20180216 crossref_primary_10_1002_smll_202302884 crossref_primary_10_1002_aelm_202300785 crossref_primary_10_1002_aelm_202200939 crossref_primary_10_1016_j_jmmm_2021_168311 crossref_primary_10_1103_PhysRevB_102_024405 crossref_primary_10_1109_TMAG_2023_3282626 crossref_primary_10_1103_PhysRevB_98_020405 crossref_primary_10_1063_1_5144537 crossref_primary_10_1063_5_0174343 crossref_primary_10_1103_PhysRevApplied_13_024052 crossref_primary_10_1063_1_5006449 crossref_primary_10_1103_PhysRevResearch_2_033401 crossref_primary_10_1103_PhysRevApplied_10_044060 crossref_primary_10_1103_PhysRevApplied_15_014017 crossref_primary_10_1038_s41565_020_00826_8 crossref_primary_10_1088_1674_1056_ab9292 crossref_primary_10_1109_TMAG_2021_3076010 crossref_primary_10_1038_s41467_023_40714_y crossref_primary_10_1021_acs_nanolett_3c01192 crossref_primary_10_1038_s44306_024_00044_1 crossref_primary_10_1038_nnano_2015_18 crossref_primary_10_1021_acsnano_4c04075 crossref_primary_10_1109_TMAG_2018_2827923 crossref_primary_10_1103_PhysRevApplied_10_034052 crossref_primary_10_7567_JJAP_56_100303 crossref_primary_10_1088_1361_6463_ac292a crossref_primary_10_1103_PhysRevApplied_15_024041 crossref_primary_10_35848_1882_0786_ad2d74 crossref_primary_10_1002_adfm_202417731 crossref_primary_10_1088_1367_2630_ab0449 crossref_primary_10_1002_adma_201907929 crossref_primary_10_1103_PhysRevB_102_104435 crossref_primary_10_1063_1_4902529 crossref_primary_10_1103_PhysRevApplied_15_054055 crossref_primary_10_1109_TNANO_2020_3012550 crossref_primary_10_1038_s41598_017_02208_y crossref_primary_10_1142_S2010324716400026 crossref_primary_10_1360_SSPMA_2022_0070 crossref_primary_10_1016_j_actamat_2022_117968 crossref_primary_10_1088_1361_648X_ace4b1 crossref_primary_10_1103_PhysRevApplied_10_034047 crossref_primary_10_1109_JEDS_2018_2793902 crossref_primary_10_1063_1_5007758 crossref_primary_10_1063_1_4913887 crossref_primary_10_1063_5_0168705 crossref_primary_10_1063_5_0025132 crossref_primary_10_1109_TED_2022_3166118 crossref_primary_10_1103_PhysRevApplied_10_044038 crossref_primary_10_1103_PhysRevApplied_9_064016 crossref_primary_10_1103_PhysRevApplied_3_064012 crossref_primary_10_1063_5_0100912 crossref_primary_10_1038_s41598_018_33554_0 crossref_primary_10_1103_PhysRevB_101_174441 crossref_primary_10_1038_s41535_020_0233_5 crossref_primary_10_1126_science_aau7913 crossref_primary_10_1103_PhysRevApplied_17_064041 crossref_primary_10_1002_adma_202300853 crossref_primary_10_1038_s41467_021_24854_7 crossref_primary_10_1002_adma_202300858 crossref_primary_10_1103_PhysRevLett_123_227203 crossref_primary_10_1002_adma_202208954 crossref_primary_10_1103_PhysRevB_102_014401 crossref_primary_10_1038_s41598_017_00962_7 crossref_primary_10_1016_j_pnsc_2017_03_008 crossref_primary_10_1103_PhysRevLett_115_266401 crossref_primary_10_1103_PhysRevApplied_13_014059 crossref_primary_10_1038_s41928_018_0164_3 crossref_primary_10_1103_PhysRevB_105_134401 crossref_primary_10_1103_PhysRevB_101_060405 crossref_primary_10_1038_s41928_023_01039_2 crossref_primary_10_1038_s41598_019_43597_6 crossref_primary_10_1103_PhysRevB_105_134404 crossref_primary_10_1016_j_actamat_2022_117759 crossref_primary_10_1016_j_apsusc_2025_162388 crossref_primary_10_1109_JXCDC_2017_2762699 crossref_primary_10_1103_PhysRevResearch_3_013042 crossref_primary_10_1103_PhysRevB_95_144405 crossref_primary_10_1002_aelm_201800224 crossref_primary_10_7498_aps_70_20210004 crossref_primary_10_1109_TED_2024_3379161 crossref_primary_10_1021_acs_nanolett_7b00439 crossref_primary_10_1103_PhysRevB_101_094405 crossref_primary_10_1021_acsaelm_1c00248 crossref_primary_10_1016_j_jmmm_2022_169890 crossref_primary_10_1103_PhysRevApplied_13_044078 crossref_primary_10_1126_science_aaa1442 crossref_primary_10_1103_PhysRevB_105_224426 crossref_primary_10_1002_adma_201901681 crossref_primary_10_1021_acs_nanolett_4c01788 crossref_primary_10_1002_aelm_202400554 crossref_primary_10_1103_PhysRevApplied_7_054016 crossref_primary_10_1038_s41467_021_26453_y crossref_primary_10_1103_PhysRevLett_118_257201 crossref_primary_10_1103_PhysRevApplied_13_044074 crossref_primary_10_1038_s41598_018_29601_5 crossref_primary_10_1063_5_0052544 crossref_primary_10_1016_j_jmmm_2021_168270 crossref_primary_10_1088_0256_307X_39_3_037303 crossref_primary_10_1016_j_jallcom_2024_176382 crossref_primary_10_1038_s41467_018_05057_z crossref_primary_10_1063_5_0157986 crossref_primary_10_1016_j_physb_2023_415362 crossref_primary_10_1038_s44306_024_00038_z crossref_primary_10_1063_5_0246672 crossref_primary_10_1103_PhysRevApplied_13_034041 crossref_primary_10_1063_1_4958295 crossref_primary_10_1063_5_0029522 crossref_primary_10_1103_PhysRevResearch_2_013177 crossref_primary_10_1063_5_0222239 crossref_primary_10_1063_5_0052553 crossref_primary_10_1007_s10825_020_01648_6 crossref_primary_10_1002_advs_202100481 crossref_primary_10_1021_acsami_2c09941 crossref_primary_10_35848_1882_0786_ad8f0f crossref_primary_10_1109_ACCESS_2020_3033023 crossref_primary_10_1088_1402_4896_ad02ca crossref_primary_10_1021_acsnano_4c09004 crossref_primary_10_1109_TMAG_2024_3396334 crossref_primary_10_1088_1361_6463_ab7511 crossref_primary_10_1002_aelm_201600219 crossref_primary_10_1038_s41928_022_00735_9 crossref_primary_10_1103_PhysRevB_101_064412 crossref_primary_10_1007_s10948_019_5005_8 crossref_primary_10_1002_adfm_202200328 crossref_primary_10_1063_5_0053896 crossref_primary_10_1021_acs_nanolett_3c03085 crossref_primary_10_1063_1_5026423 crossref_primary_10_1039_D1NR04632B crossref_primary_10_1021_acsaelm_3c00429 crossref_primary_10_1021_acs_chemrev_1c00370 crossref_primary_10_1103_PhysRevApplied_16_014016 crossref_primary_10_1103_PhysRevApplied_13_044069 crossref_primary_10_1016_j_xcrp_2023_101757 crossref_primary_10_1103_PhysRevB_99_094414 crossref_primary_10_1063_1_4952771 crossref_primary_10_1063_5_0020925 crossref_primary_10_1016_j_jmmm_2022_169879 crossref_primary_10_1103_PhysRevB_96_104412 crossref_primary_10_1016_j_surfin_2023_103043 crossref_primary_10_1016_j_jmmm_2016_09_116 crossref_primary_10_1103_PhysRevLett_123_207205 crossref_primary_10_1021_acsnano_0c04403 crossref_primary_10_1103_PhysRevB_95_174408 crossref_primary_10_1007_s11432_021_3270_8 crossref_primary_10_1088_1361_6528_acbeb3 crossref_primary_10_1103_PhysRevB_102_195146 crossref_primary_10_1038_nphys3883 crossref_primary_10_1088_1674_1056_ac0908 crossref_primary_10_1038_s41598_017_14240_z crossref_primary_10_1103_PhysRevB_91_104406 crossref_primary_10_3389_fmats_2024_1444769 crossref_primary_10_1063_1_5129889 crossref_primary_10_1063_1_4951674 crossref_primary_10_1021_acsnano_2c11132 crossref_primary_10_1063_5_0102823 crossref_primary_10_1002_aelm_201600210 crossref_primary_10_1126_sciadv_adk8669 crossref_primary_10_1021_acs_nanolett_0c02060 crossref_primary_10_1109_TNANO_2017_2754406 crossref_primary_10_1002_aelm_202000793 crossref_primary_10_1063_5_0189347 crossref_primary_10_1063_5_0250645 crossref_primary_10_1021_acsnano_2c03756 crossref_primary_10_1088_1361_6528_ab2831 crossref_primary_10_1038_s41598_018_31642_9 crossref_primary_10_1103_PhysRevB_104_134408 crossref_primary_10_1109_LED_2024_3369616 crossref_primary_10_1002_adfm_202416570 crossref_primary_10_1103_PhysRevLett_120_117703 crossref_primary_10_1063_5_0059171 crossref_primary_10_1088_1674_1056_ad4a3a crossref_primary_10_1039_C7CP08352A crossref_primary_10_1088_1361_6463_ab6626 crossref_primary_10_1039_C9NR08800H crossref_primary_10_1103_PhysRevB_108_054417 crossref_primary_10_1103_PhysRevB_94_214413 crossref_primary_10_1088_1674_1056_27_9_097506 crossref_primary_10_1103_PhysRevB_94_214417 crossref_primary_10_1038_s41565_021_00850_2 crossref_primary_10_1021_acs_nanolett_4c02227 crossref_primary_10_1103_RevModPhys_89_025008 crossref_primary_10_1063_1_4958036 crossref_primary_10_1103_PhysRevB_97_214403 crossref_primary_10_1103_PhysRevApplied_15_054013 crossref_primary_10_1088_1361_6463_ab93f3 crossref_primary_10_1103_PhysRevB_107_104429 crossref_primary_10_1002_adma_202103672 crossref_primary_10_1021_acsami_1c11675 crossref_primary_10_1103_PhysRevApplied_9_011002 crossref_primary_10_1063_5_0156241 crossref_primary_10_1016_j_jmmm_2022_169499 crossref_primary_10_1063_5_0035815 crossref_primary_10_1063_1_4978965 crossref_primary_10_1063_5_0174903 crossref_primary_10_1002_adma_201907148 crossref_primary_10_1021_acs_nanolett_3c00639 crossref_primary_10_1063_1_4963235 crossref_primary_10_3389_fnano_2021_732916 crossref_primary_10_1103_PhysRevB_95_184401 crossref_primary_10_1063_5_0004089 crossref_primary_10_1016_j_xcrp_2023_101334 crossref_primary_10_1063_1_4995292 crossref_primary_10_1088_1361_6463_ab2693 crossref_primary_10_1038_s41563_022_01275_5 crossref_primary_10_1103_PhysRevMaterials_7_094406 crossref_primary_10_1007_s12598_024_02713_w crossref_primary_10_1021_acs_nanolett_4c01712 crossref_primary_10_1109_TVLSI_2024_3471528 crossref_primary_10_1002_aelm_202400721 crossref_primary_10_1063_5_0069820 crossref_primary_10_1016_j_sse_2019_03_010 crossref_primary_10_1103_PhysRevApplied_11_061004 crossref_primary_10_1103_PhysRevApplied_11_061005 crossref_primary_10_1109_LED_2021_3121800 crossref_primary_10_1038_s41598_017_01079_7 crossref_primary_10_1021_acs_nanolett_5b04205 crossref_primary_10_1021_acsami_9b13622 crossref_primary_10_1038_s41598_021_02185_3 crossref_primary_10_1002_adfm_202205144 crossref_primary_10_1063_5_0035835 crossref_primary_10_1088_0022_3727_49_4_045004 crossref_primary_10_1016_j_actamat_2016_03_071 crossref_primary_10_1088_1361_6641_ac6d70 crossref_primary_10_1103_PhysRevB_100_220401 crossref_primary_10_1103_PhysRevB_108_064419 crossref_primary_10_1021_acs_nanolett_0c03972 crossref_primary_10_1103_PhysRevB_93_144409 crossref_primary_10_1557_mrs_2018_298 crossref_primary_10_1021_acsami_9b09146 crossref_primary_10_1063_5_0016040 crossref_primary_10_1021_acsami_9b16904 crossref_primary_10_1088_1674_1056_abe3f4 crossref_primary_10_1103_PhysRevResearch_2_013127 crossref_primary_10_1126_sciadv_aar3899 crossref_primary_10_1063_5_0079400 crossref_primary_10_1016_j_physrep_2017_08_001 crossref_primary_10_1016_j_sse_2021_108075 crossref_primary_10_1088_1674_1056_ab425e crossref_primary_10_1063_5_0077465 crossref_primary_10_1063_1_4978510 crossref_primary_10_1103_PhysRevB_108_094431 crossref_primary_10_1103_PhysRevB_104_174407 crossref_primary_10_1063_5_0029347 crossref_primary_10_1002_adma_202312008 crossref_primary_10_1038_s41427_020_0232_9 crossref_primary_10_7567_APEX_7_103001 crossref_primary_10_1016_j_jmmm_2022_169692 crossref_primary_10_1038_s41467_023_38550_1 crossref_primary_10_1016_j_sse_2019_107730 crossref_primary_10_3389_fnano_2021_680468 crossref_primary_10_1039_D4MH01628A crossref_primary_10_1063_5_0159557 crossref_primary_10_1016_j_pmatsci_2020_100761 crossref_primary_10_1063_1_4944514 crossref_primary_10_1016_j_isci_2020_101614 crossref_primary_10_35848_1347_4065_aba793 crossref_primary_10_1063_5_0039147 crossref_primary_10_1109_JXCDC_2019_2951837 crossref_primary_10_1126_sciadv_abq6833 crossref_primary_10_1063_1_4976517 crossref_primary_10_1063_5_0249063 crossref_primary_10_1103_PhysRevB_99_060408 crossref_primary_10_1007_s11433_019_9433_4 crossref_primary_10_1016_j_jmmm_2023_170977 crossref_primary_10_1063_5_0024950 crossref_primary_10_1016_j_physb_2019_411743 crossref_primary_10_1016_j_jmmm_2019_165739 crossref_primary_10_1038_s41598_020_58669_1 crossref_primary_10_1063_5_0219647 crossref_primary_10_35848_1882_0786_acb311 crossref_primary_10_1021_acsami_9b00129 crossref_primary_10_1038_s41598_018_37586_4 crossref_primary_10_1063_5_0104618 crossref_primary_10_1073_pnas_1507474112 crossref_primary_10_1063_5_0130902 crossref_primary_10_1039_D4TC03759F crossref_primary_10_1088_1361_6463_aac7cc crossref_primary_10_1063_5_0076579 crossref_primary_10_1063_5_0078514 crossref_primary_10_1103_PhysRevApplied_18_034019 crossref_primary_10_1103_PhysRevApplied_13_044029 crossref_primary_10_1103_PhysRevApplied_18_054079 crossref_primary_10_1063_5_0138869 crossref_primary_10_1063_1_5007270 crossref_primary_10_1063_5_0231755 crossref_primary_10_1002_aelm_201900435 crossref_primary_10_1088_1361_6463_aac04a crossref_primary_10_1109_TED_2023_3237654 crossref_primary_10_1016_j_cap_2025_01_009 crossref_primary_10_1038_s41467_021_26893_6 crossref_primary_10_1103_PhysRevB_100_104441 crossref_primary_10_1103_RevModPhys_90_015005 crossref_primary_10_1103_PhysRevResearch_2_032053 crossref_primary_10_1134_S1063783419060283 crossref_primary_10_1063_1_4895735 crossref_primary_10_1360_TB_2023_1250 crossref_primary_10_1063_5_0091944 crossref_primary_10_1016_j_jmmm_2023_171575 crossref_primary_10_1038_s41467_022_32179_2 crossref_primary_10_1038_s44306_024_00041_4 crossref_primary_10_1021_acs_nanolett_0c00647 crossref_primary_10_1109_TMAG_2015_2509910 crossref_primary_10_7498_aps_71_20220699 crossref_primary_10_1021_acs_nanolett_8b00773 crossref_primary_10_1002_adma_201907661 crossref_primary_10_1038_s41586_024_07125_5 crossref_primary_10_1103_PhysRevB_91_214434 crossref_primary_10_1103_PhysRevB_107_155436 crossref_primary_10_1103_PhysRevB_91_214416 crossref_primary_10_1016_j_jmmm_2023_171582 crossref_primary_10_1038_s41467_023_41568_0 crossref_primary_10_1038_s41578_024_00706_w crossref_primary_10_1021_acsami_3c02079 crossref_primary_10_1088_1674_1056_abcf9d crossref_primary_10_1038_s41467_017_00967_w crossref_primary_10_1063_5_0094631 crossref_primary_10_3390_mi12040443 crossref_primary_10_1021_acs_nanolett_5b05257 crossref_primary_10_1063_1_4944897 crossref_primary_10_1103_PhysRevB_103_134405 crossref_primary_10_1088_1361_6528_abeb9b crossref_primary_10_1063_5_0035681 crossref_primary_10_1103_PhysRevB_103_214408 crossref_primary_10_1063_5_0011433 crossref_primary_10_1038_s41598_018_26586_z crossref_primary_10_1038_nnano_2015_252 crossref_primary_10_1088_0022_3727_48_38_385001 crossref_primary_10_1063_5_0158131 crossref_primary_10_1038_s41565_019_0534_7 crossref_primary_10_1109_TCSI_2020_3020137 crossref_primary_10_1038_nmat4566 crossref_primary_10_1038_s44306_025_00071_6 crossref_primary_10_1016_j_jmmm_2023_171567 crossref_primary_10_1021_acsami_2c02621 crossref_primary_10_1021_acsami_1c00608 crossref_primary_10_1063_5_0204360 crossref_primary_10_1109_LMAG_2021_3110485 crossref_primary_10_1002_qute_202100111 crossref_primary_10_1063_9_0000011 crossref_primary_10_1038_nnano_2016_84 crossref_primary_10_1063_5_0035857 crossref_primary_10_1103_PhysRevB_103_134421 crossref_primary_10_1063_5_0216796 crossref_primary_10_1103_PhysRevMaterials_8_064407 crossref_primary_10_1126_sciadv_aaw8904 crossref_primary_10_1007_s12517_021_09218_1 crossref_primary_10_1109_TNANO_2016_2640338 crossref_primary_10_1016_j_physrep_2023_01_002 crossref_primary_10_1063_5_0048926 crossref_primary_10_1002_adfm_202007485 crossref_primary_10_1146_annurev_matsci_080222_030535 crossref_primary_10_1063_5_0041062 crossref_primary_10_1063_5_0185559 crossref_primary_10_1103_PhysRevB_94_104420 crossref_primary_10_1038_s41467_018_08181_y crossref_primary_10_1126_sciadv_aar2250 crossref_primary_10_1088_1361_6463_ad40bd crossref_primary_10_1063_5_0046766 crossref_primary_10_1021_acs_nanolett_6b03300 crossref_primary_10_1088_1361_6528_aaa812 crossref_primary_10_1002_adma_202418663 crossref_primary_10_1021_acs_nanolett_3c02104 crossref_primary_10_1063_5_0191182 crossref_primary_10_1038_s41467_023_41163_3 crossref_primary_10_1109_TED_2021_3088079 crossref_primary_10_1063_5_0015842 crossref_primary_10_1016_j_jmmm_2017_06_008 crossref_primary_10_1063_5_0032368 crossref_primary_10_1002_aelm_202300253 crossref_primary_10_1088_1402_4896_ab8d58 crossref_primary_10_35848_1882_0786_ab8347 crossref_primary_10_1002_aelm_202200845 crossref_primary_10_1038_srep20325 crossref_primary_10_1109_TMAG_2023_3283034 crossref_primary_10_1063_5_0041081 crossref_primary_10_1063_1_5008512 crossref_primary_10_1103_PhysRevB_93_140404 crossref_primary_10_1134_S1063783420090322 crossref_primary_10_1038_s41598_018_24877_z crossref_primary_10_1088_1361_648X_acc711 crossref_primary_10_1021_acsami_0c10184 crossref_primary_10_1063_5_0226588 crossref_primary_10_1063_5_0196404 crossref_primary_10_1109_TED_2021_3137764 crossref_primary_10_1016_j_actamat_2016_03_044 crossref_primary_10_1109_JXCDC_2020_2999270 crossref_primary_10_1063_1_5041793 crossref_primary_10_1063_5_0248107 crossref_primary_10_1109_LED_2021_3069391 crossref_primary_10_1103_PhysRevB_111_094420 crossref_primary_10_1002_adfm_202401018 crossref_primary_10_1021_acsami_1c17653 crossref_primary_10_1063_5_0256651 crossref_primary_10_1088_1361_6463_ac33d9 crossref_primary_10_1088_2752_5724_ac6577 crossref_primary_10_1002_qute_201800052 crossref_primary_10_1109_TMAG_2016_2515025 crossref_primary_10_1002_mmce_22333 crossref_primary_10_1103_PhysRevB_92_014402 crossref_primary_10_1063_5_0050641 crossref_primary_10_1002_aelm_202300665 crossref_primary_10_1038_s41563_023_01522_3 crossref_primary_10_1109_TCAD_2015_2481793 crossref_primary_10_1126_sciadv_adg9819 crossref_primary_10_1002_adfm_201909092 crossref_primary_10_1038_s41467_021_27459_2 crossref_primary_10_1038_s41467_024_53884_0 crossref_primary_10_1109_LED_2019_2907063 crossref_primary_10_1063_5_0139212 crossref_primary_10_1088_0022_3727_48_10_105001 crossref_primary_10_1038_s41467_021_22819_4 crossref_primary_10_1088_1361_6463_aae80f crossref_primary_10_1088_0022_3727_48_6_065001 crossref_primary_10_1063_5_0211072 crossref_primary_10_1038_s41467_024_46113_1 crossref_primary_10_1038_s41524_020_0347_0 crossref_primary_10_1103_PhysRevB_100_094413 crossref_primary_10_3390_nano12111887 crossref_primary_10_1039_D1NR00254F crossref_primary_10_1016_j_jmmm_2020_166554 crossref_primary_10_1103_PhysRevLett_117_217206 crossref_primary_10_1063_1_5130050 crossref_primary_10_1002_advs_202417621 crossref_primary_10_1126_sciadv_adj3955 crossref_primary_10_7498_aps_66_027501 crossref_primary_10_1109_TMAG_2021_3078583 crossref_primary_10_1063_5_0045091 crossref_primary_10_1038_s41427_018_0069_7 crossref_primary_10_1002_aelm_201800782 crossref_primary_10_1002_aelm_202400270 crossref_primary_10_1038_s41598_018_31201_2 crossref_primary_10_1063_5_0023242 crossref_primary_10_1039_D1NR07730A crossref_primary_10_1103_PhysRevB_92_024428 crossref_primary_10_1016_j_fmre_2022_03_016 crossref_primary_10_1002_adfm_202413491 crossref_primary_10_1002_metm_24 crossref_primary_10_1103_PhysRevB_94_054415 crossref_primary_10_1002_aelm_202400027 crossref_primary_10_1002_adfm_202312746 crossref_primary_10_1103_PhysRevApplied_19_024034 crossref_primary_10_1063_1_5133792 crossref_primary_10_1109_TMAG_2019_2940581 crossref_primary_10_1063_5_0014771 crossref_primary_10_1063_5_0052850 crossref_primary_10_1103_PhysRevB_101_214432 crossref_primary_10_1002_adma_202412037 crossref_primary_10_1088_1674_1056_ad1a88 crossref_primary_10_1063_5_0131540 crossref_primary_10_1103_PhysRevApplied_16_054001 crossref_primary_10_1109_TMAG_2015_2444437 crossref_primary_10_1016_j_jmmm_2024_172748 crossref_primary_10_1002_adfm_201808104 crossref_primary_10_1021_acsnano_2c11875 crossref_primary_10_1002_aelm_202300627 crossref_primary_10_1103_PhysRevB_102_174442 crossref_primary_10_1109_LED_2020_3043293 crossref_primary_10_1063_5_0201222 crossref_primary_10_7567_1882_0786_ab1a66 crossref_primary_10_1063_5_0144622 crossref_primary_10_1038_s41598_024_60492_x crossref_primary_10_1021_acsanm_4c04046 crossref_primary_10_1038_s41467_025_56157_6 crossref_primary_10_1038_s41467_018_04712_9 crossref_primary_10_1038_ncomms10808 crossref_primary_10_1103_PhysRevB_100_214438 crossref_primary_10_3390_ma11010047 crossref_primary_10_1002_adma_202207988 crossref_primary_10_1103_PhysRevB_101_214418 crossref_primary_10_1109_LED_2019_2932479 crossref_primary_10_1007_s40042_021_00378_7 crossref_primary_10_1109_TCSI_2018_2866932 crossref_primary_10_1021_acsami_3c12061 crossref_primary_10_1002_admi_202201317 crossref_primary_10_1002_adfm_202109455 crossref_primary_10_1038_nnano_2016_29 crossref_primary_10_1063_5_0149290 crossref_primary_10_1063_1_4980108 crossref_primary_10_1002_adma_201705699 crossref_primary_10_1016_j_jmst_2017_04_008 crossref_primary_10_1002_adfm_202308219 crossref_primary_10_1038_srep45669 crossref_primary_10_1088_2631_7990_ad87cb crossref_primary_10_1007_s10854_022_07842_5 crossref_primary_10_1063_1_5040876 crossref_primary_10_1016_j_physb_2019_08_020 crossref_primary_10_1109_JPROC_2021_3084997 crossref_primary_10_1103_PhysRevApplied_20_024032 crossref_primary_10_1038_s44306_024_00054_z crossref_primary_10_1088_0957_4484_27_43_43LT01 crossref_primary_10_1016_j_jmmm_2021_167757 crossref_primary_10_1134_S1063776118120105 crossref_primary_10_1002_adfm_201505138 crossref_primary_10_1103_PhysRevResearch_3_013177 crossref_primary_10_1063_1_4978270 crossref_primary_10_1021_acsaelm_4c01538 crossref_primary_10_1063_5_0035496 crossref_primary_10_1063_1_4897359 crossref_primary_10_1038_srep31966 crossref_primary_10_1007_s11432_020_3246_8 crossref_primary_10_1007_s10854_020_04831_4 crossref_primary_10_1063_1_4999948 crossref_primary_10_1088_2752_5724_ace3af crossref_primary_10_1109_TMAG_2018_2843439 crossref_primary_10_1038_s41598_019_56714_2 crossref_primary_10_1109_TCSI_2018_2881982 crossref_primary_10_1103_PhysRevB_105_144434 crossref_primary_10_1088_1674_1056_aba605 crossref_primary_10_35848_1882_0786_abdcd5 crossref_primary_10_1002_adfm_202200660 crossref_primary_10_1016_j_jsamd_2023_100649 crossref_primary_10_1063_5_0143459 crossref_primary_10_1109_LMAG_2022_3221050 crossref_primary_10_1038_s41928_018_0131_z crossref_primary_10_1109_TED_2016_2604215 crossref_primary_10_1016_j_jmmm_2019_166112 crossref_primary_10_1063_5_0063317 crossref_primary_10_1038_srep38375 crossref_primary_10_1063_5_0041310 crossref_primary_10_1016_j_jmmm_2020_166700 crossref_primary_10_1063_1_4948342 crossref_primary_10_1109_TMAG_2020_3032099 crossref_primary_10_1103_PhysRevB_107_094422 crossref_primary_10_1103_PhysRevB_101_224407 crossref_primary_10_1016_j_jmmm_2022_169753 crossref_primary_10_1021_acs_nanolett_4c02773 crossref_primary_10_1063_5_0028549 crossref_primary_10_1088_1674_4926_40_8_081508 crossref_primary_10_1002_aelm_202300726 crossref_primary_10_1103_PhysRevB_110_L100409 crossref_primary_10_1088_1367_2630_aaa113 crossref_primary_10_1103_PhysRevApplied_12_014006 crossref_primary_10_1103_PhysRevB_101_144412 crossref_primary_10_1088_1674_1056_ac8927 crossref_primary_10_1103_PhysRevB_107_094410 crossref_primary_10_1016_j_matt_2024_101940 crossref_primary_10_1038_s44287_024_00107_9 crossref_primary_10_1088_1674_1056_ac891d crossref_primary_10_1016_j_mtquan_2024_100008 crossref_primary_10_1002_wcms_1313 crossref_primary_10_1063_1_5118217 crossref_primary_10_1038_s41467_024_47375_5 crossref_primary_10_1103_PhysRevB_108_134431 crossref_primary_10_1016_j_jmmm_2021_168125 crossref_primary_10_1038_srep18719 crossref_primary_10_1021_acsami_1c22061 crossref_primary_10_1038_s41467_024_52834_0 crossref_primary_10_1063_5_0163034 crossref_primary_10_1002_aelm_201800812 crossref_primary_10_1039_C8NR04628J crossref_primary_10_1016_j_jmmm_2024_172221 crossref_primary_10_1038_s42005_021_00521_7 crossref_primary_10_1038_s44306_024_00048_x crossref_primary_10_1063_5_0117198 crossref_primary_10_1103_PhysRevB_105_054421 crossref_primary_10_1109_LED_2021_3058697 crossref_primary_10_1021_acs_nanolett_8b02114 crossref_primary_10_1103_PhysRevApplied_12_051002 crossref_primary_10_1038_s41467_022_31167_w crossref_primary_10_1007_s10948_022_06385_4 crossref_primary_10_1016_j_jmmm_2019_165474 crossref_primary_10_1002_adfm_202105359 crossref_primary_10_1038_s41598_018_29397_4 crossref_primary_10_1103_PhysRevApplied_10_031001 crossref_primary_10_1103_PhysRevApplied_17_044034 crossref_primary_10_1038_srep26180 crossref_primary_10_1063_1_5034380 crossref_primary_10_1063_1_4973749 crossref_primary_10_1002_adfm_202404679 crossref_primary_10_1103_PhysRevApplied_23_014071 crossref_primary_10_1002_aelm_202201268 crossref_primary_10_7498_aps_72_20222219 crossref_primary_10_7567_APEX_11_030101 crossref_primary_10_1063_1_5063423 crossref_primary_10_1002_advs_202406924 crossref_primary_10_1016_j_physb_2019_06_048 crossref_primary_10_1088_1361_6528_aad65d crossref_primary_10_1016_j_actamat_2020_09_032 crossref_primary_10_7567_JJAP_56_0802A1 crossref_primary_10_35848_1882_0786_ab7bcb crossref_primary_10_1109_TC_2022_3188206 crossref_primary_10_1063_5_0050483 crossref_primary_10_1021_acs_nanolett_7b04993 crossref_primary_10_1109_JEDS_2021_3066679 crossref_primary_10_1103_PhysRevB_101_134417 crossref_primary_10_1002_adma_202000513 crossref_primary_10_1063_5_0097526 crossref_primary_10_1063_1_5138242 crossref_primary_10_1016_j_pmatsci_2017_02_002 crossref_primary_10_1016_j_xcrp_2023_101468 crossref_primary_10_1063_1_4998216 crossref_primary_10_1063_5_0006138 crossref_primary_10_1038_s41467_024_49214_z crossref_primary_10_1038_nphys3954 crossref_primary_10_1063_5_0039061 crossref_primary_10_7567_1347_4065_aaf877 crossref_primary_10_1038_s41535_018_0100_9 crossref_primary_10_1063_1_4903041 crossref_primary_10_1063_5_0039069 crossref_primary_10_1038_s41467_024_47577_x crossref_primary_10_1103_PhysRevB_99_184403 crossref_primary_10_1016_j_jsamd_2022_100508 crossref_primary_10_1016_j_ssc_2017_03_004 crossref_primary_10_1021_acsami_3c19468 crossref_primary_10_1103_PhysRevResearch_3_L042033 crossref_primary_10_1103_PhysRevB_94_174434 crossref_primary_10_1109_TED_2019_2951684 crossref_primary_10_1002_aelm_201900134 crossref_primary_10_1016_j_physb_2019_411662 crossref_primary_10_1103_PhysRevApplied_12_034022 crossref_primary_10_3390_mi6081023 crossref_primary_10_1038_s41467_021_26478_3 crossref_primary_10_1002_adma_202002117 crossref_primary_10_1002_adfm_202307612 crossref_primary_10_1002_advs_202400967 crossref_primary_10_1088_1361_648X_adb192 crossref_primary_10_1038_s41598_022_12555_0 crossref_primary_10_1063_1_5019193 crossref_primary_10_1007_s11432_021_3371_4 crossref_primary_10_1063_1_4893617 crossref_primary_10_1103_PhysRevB_106_104431 crossref_primary_10_1002_pssr_202000177 crossref_primary_10_1038_s41598_019_56082_x crossref_primary_10_1038_s41598_018_22122_1 crossref_primary_10_1063_1_4990994 crossref_primary_10_1109_TMAG_2019_2893819 crossref_primary_10_1103_PhysRevB_95_241305 crossref_primary_10_1063_5_0042252 crossref_primary_10_1109_JXCDC_2022_3224832 crossref_primary_10_1002_aelm_202000229 crossref_primary_10_1038_s41467_021_23414_3 crossref_primary_10_1587_elex_22_20250084 crossref_primary_10_1063_5_0092945 crossref_primary_10_1002_adfm_202211953 crossref_primary_10_1109_LMAG_2017_2721925 crossref_primary_10_1038_s41928_018_0026_z crossref_primary_10_1126_sciadv_aax4278 crossref_primary_10_1002_adma_201603031 crossref_primary_10_1063_1_4976693 crossref_primary_10_1103_PhysRevApplied_19_054051 crossref_primary_10_1109_JXCDC_2019_2951767 crossref_primary_10_1038_s41928_018_0135_8 crossref_primary_10_1134_S1064226920080136 crossref_primary_10_3390_ma17215214 crossref_primary_10_1002_pssr_201409340 crossref_primary_10_1016_j_mseb_2021_115367 crossref_primary_10_1063_1_4994050 crossref_primary_10_1109_LMAG_2021_3063081 crossref_primary_10_1002_adfm_202105992 crossref_primary_10_1021_acs_nanolett_3c03829 crossref_primary_10_1103_PhysRevB_93_094402 crossref_primary_10_1002_adma_202006924 crossref_primary_10_1063_1_4906352 crossref_primary_10_1021_acsnano_4c02154 crossref_primary_10_1088_1674_1056_aca7e9 crossref_primary_10_1088_1674_1056_ac2808 crossref_primary_10_1002_inf2_12095 crossref_primary_10_1002_aelm_202001133 crossref_primary_10_1088_0256_307X_37_11_117501 crossref_primary_10_1088_1674_4926_42_2_024102 crossref_primary_10_1063_1_4974211 crossref_primary_10_1063_1_5012763 crossref_primary_10_1063_9_0000903 crossref_primary_10_1016_j_actamat_2021_116708 crossref_primary_10_1063_5_0077515 crossref_primary_10_1103_PhysRevB_110_035423 crossref_primary_10_1515_psr_2019_0072 crossref_primary_10_1002_adma_202302350 crossref_primary_10_1063_1_5046503 crossref_primary_10_1088_1361_6463_ad1a66 crossref_primary_10_1038_s42005_025_02024_1 crossref_primary_10_1038_nphys3933 crossref_primary_10_1063_5_0041362 crossref_primary_10_1103_PhysRevB_96_054407 crossref_primary_10_1038_s41598_018_19927_5 crossref_primary_10_1103_PhysRevB_92_134411 crossref_primary_10_1038_s41563_019_0370_z crossref_primary_10_1002_aisy_202000182 crossref_primary_10_1103_PhysRevB_107_064411 crossref_primary_10_1103_PhysRevB_94_161108 crossref_primary_10_1016_j_jmmm_2016_12_113 crossref_primary_10_1063_5_0145497 crossref_primary_10_1109_JPROC_2016_2573836 crossref_primary_10_1063_5_0033745 crossref_primary_10_1002_adfm_202209693 crossref_primary_10_1038_nmat4886 crossref_primary_10_1063_5_0034837 crossref_primary_10_1063_5_0156392 crossref_primary_10_1038_s41578_019_0159_3 crossref_primary_10_1038_nnano_2014_134 crossref_primary_10_7498_aps_73_20240541 crossref_primary_10_1109_LMAG_2023_3293407 crossref_primary_10_1109_JEDS_2020_3039544 crossref_primary_10_1103_PhysRevB_96_054414 crossref_primary_10_1103_PhysRevB_98_214429 crossref_primary_10_1103_PhysRevApplied_17_024031 crossref_primary_10_1103_PhysRevB_95_104434 |
Cites_doi | 10.1038/nmat1595 10.1038/nnano.2013.145 10.1103/PhysRevLett.83.1834 10.1038/nmat3522 10.1103/PhysRevB.88.085423 10.1063/1.2969711 10.1038/nnano.2013.102 10.1038/nmat3553 10.1038/nmat2804 10.1063/1.3502596 10.1038/nmat3675 10.1016/0375-9601(71)90196-4 10.1063/1.4753947 10.1126/science.1218197 10.1103/PhysRevLett.85.393 10.1038/nmat2613 10.1038/nature10309 10.1088/0022-3727/46/7/074003 10.1109/IEDM.2012.6479132 10.1103/PhysRevB.89.024418 10.1103/PhysRevB.84.054401 10.1103/PhysRevB.87.020402 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group Jul 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group Jul 2014 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/nnano.2014.94 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student Solid State and Superconductivity Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 554 |
ExternalDocumentID | 3360112481 24813694 10_1038_nnano_2014_94 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Los Angeles California United States--US California |
GeographicLocations_xml | – name: Los Angeles California – name: United States--US – name: California |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c529t-ca8933561c7b21c833058b0e1e20b1de8e9730b73dba44a7fae3d43290d37e673 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Mon Jul 21 11:50:54 EDT 2025 Fri Jul 11 12:16:59 EDT 2025 Sat Aug 23 13:05:03 EDT 2025 Mon Jul 21 05:55:05 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Tue Jul 01 01:56:24 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-ca8933561c7b21c833058b0e1e20b1de8e9730b73dba44a7fae3d43290d37e673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8369-0067 0000000183690067 |
PMID | 24813694 |
PQID | 1542386702 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1770341874 proquest_miscellaneous_1543281849 proquest_journals_1542386702 pubmed_primary_24813694 crossref_citationtrail_10_1038_nnano_2014_94 crossref_primary_10_1038_nnano_2014_94 springer_journals_10_1038_nnano_2014_94 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Dyakonov, Perel (CR17) 1971; 35A Pai, Liu, Li, Tseng, Ralph, Buhrman (CR7) 2012; 101 Manchon, Ducruet, Lombard, Auffret, Rodmacq, Dieny, Pizzini, Vogel, Uhlíř, Hochstrasser, Panaccione (CR24) 2008; 104 CR15 CR14 Kim (CR5) 2013; 12 CR11 Pi, Won Kim, Bae, Lee, Cho, Kim, Seo (CR28) 2010; 97 CR30 Mangin (CR12) 2006; 5 Miron (CR1) 2010; 9 Garello (CR13) 2013; 8 Haazen (CR10) 2013; 12 CR3 Hirsch (CR18) 1999; 83 CR6 Ryu, Thomas, Yang, Parkin (CR8) 2013; 8 CR29 Ikeda (CR23) 2010; 9 CR27 Hals, Brataas (CR21) 2013; 88 CR26 Emori, Bauer, Ahn, Martinez, Beach (CR9) 2013; 12 Zhang (CR19) 2000; 85 CR25 Miron (CR2) 2011; 476 CR22 CR20 Liu (CR4) 2012; 336 Bychkov, Rashba (CR16) 1984; 39 Chi-Feng Pai (BFnnano201494_CR7) 2012; 101 BFnnano201494_CR3 J Kim (BFnnano201494_CR5) 2013; 12 K Garello (BFnnano201494_CR13) 2013; 8 KS Ryu (BFnnano201494_CR8) 2013; 8 IM Miron (BFnnano201494_CR1) 2010; 9 BFnnano201494_CR30 S Mangin (BFnnano201494_CR12) 2006; 5 BFnnano201494_CR11 MI Dyakonov (BFnnano201494_CR17) 1971; 35A BFnnano201494_CR14 YA Bychkov (BFnnano201494_CR16) 1984; 39 S Ikeda (BFnnano201494_CR23) 2010; 9 A. Manchon (BFnnano201494_CR24) 2008; 104 Ung Hwan Pi (BFnnano201494_CR28) 2010; 97 LQ Liu (BFnnano201494_CR4) 2012; 336 BFnnano201494_CR15 SF Zhang (BFnnano201494_CR19) 2000; 85 BFnnano201494_CR20 BFnnano201494_CR22 KMD Hals (BFnnano201494_CR21) 2013; 88 BFnnano201494_CR25 BFnnano201494_CR26 BFnnano201494_CR27 S Emori (BFnnano201494_CR9) 2013; 12 JE Hirsch (BFnnano201494_CR18) 1999; 83 BFnnano201494_CR29 PPJ Haazen (BFnnano201494_CR10) 2013; 12 IM Miron (BFnnano201494_CR2) 2011; 476 BFnnano201494_CR6 21804568 - Nature. 2011 Aug 11;476(7359):189-93 10991291 - Phys Rev Lett. 2000 Jul 10;85(2):393-6 15089695 - Phys Rev Lett. 2004 Mar 26;92(12):126603 20622862 - Nat Mater. 2010 Sep;9(9):721-4 20062047 - Nat Mater. 2010 Mar;9(3):230-4 22556245 - Science. 2012 May 4;336(6081):555-8 22540504 - Phys Rev Lett. 2012 Mar 16;108(11):117201 23002867 - Phys Rev Lett. 2012 Aug 31;109(9):096602 23653211 - Nat Commun. 2013;4:1799 23770808 - Nat Nanotechnol. 2013 Jul;8(7):527-33 22617287 - Nat Commun. 2012 May 22;3:847 24990213 - Nat Nanotechnol. 2014 Jul;9(7):502-3 23377291 - Nat Mater. 2013 Apr;12(4):299-303 23770726 - Nat Mater. 2013 Jul;12(7):611-6 23892985 - Nat Nanotechnol. 2013 Aug;8(8):587-93 23263641 - Nat Mater. 2013 Mar;12(3):240-5 |
References_xml | – ident: CR22 – volume: 5 start-page: 210 year: 2006 end-page: 215 ident: CR12 article-title: Current-induced magnetization reversal in nanopillars with perpendicular anisotropy publication-title: Nature Mater. doi: 10.1038/nmat1595 – volume: 8 start-page: 587 year: 2013 end-page: 593 ident: CR13 article-title: Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures publication-title: Nature Nanotech. doi: 10.1038/nnano.2013.145 – volume: 83 start-page: 1834 year: 1999 end-page: 1837 ident: CR18 article-title: Spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1834 – ident: CR14 – volume: 12 start-page: 240 year: 2013 end-page: 245 ident: CR5 article-title: Layer thickness dependence of the current-induced effective field vector in Ta vertical bar CoFeB vertical bar MgO publication-title: Nature Mater. doi: 10.1038/nmat3522 – ident: CR30 – volume: 88 start-page: 085423 year: 2013 ident: CR21 article-title: Phenomenology of current-induced spin–orbit torques publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085423 – volume: 104 start-page: 043914 issue: 4 year: 2008 ident: CR24 article-title: Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers publication-title: Journal of Applied Physics doi: 10.1063/1.2969711 – ident: CR6 – ident: CR29 – volume: 8 start-page: 527 year: 2013 end-page: 533 ident: CR8 article-title: Chiral spin torque at magnetic domain walls publication-title: Nature Nanotech. doi: 10.1038/nnano.2013.102 – volume: 12 start-page: 299 year: 2013 end-page: 303 ident: CR10 article-title: Domain wall depinning governed by the spin Hall effect publication-title: Nature Mater. doi: 10.1038/nmat3553 – volume: 9 start-page: 721 year: 2010 end-page: 724 ident: CR23 article-title: A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction publication-title: Nature Mater. doi: 10.1038/nmat2804 – ident: CR25 – ident: CR27 – volume: 97 start-page: 162507 issue: 16 year: 2010 ident: CR28 article-title: Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer publication-title: Applied Physics Letters doi: 10.1063/1.3502596 – volume: 12 start-page: 611 year: 2013 end-page: 616 ident: CR9 article-title: Current-driven dynamics of chiral ferromagnetic domain walls publication-title: Nature Mater. doi: 10.1038/nmat3675 – volume: 35A, start-page: 459 year: 1971 end-page: 460 ident: CR17 article-title: Current-induced spin orientation of electrons in semiconductors publication-title: Phys. Lett. A doi: 10.1016/0375-9601(71)90196-4 – volume: 101 start-page: 122404 issue: 12 year: 2012 ident: CR7 article-title: Spin transfer torque devices utilizing the giant spin Hall effect of tungsten publication-title: Applied Physics Letters doi: 10.1063/1.4753947 – volume: 336 start-page: 555 year: 2012 end-page: 558 ident: CR4 article-title: Spin-torque switching with the giant spin Hall effect of tantalum publication-title: Science doi: 10.1126/science.1218197 – volume: 39 start-page: 78 year: 1984 end-page: 81 ident: CR16 article-title: Properties of a 2 electron-gas with lifted spectral degeneracy publication-title: JETP Lett. – ident: CR3 – ident: CR15 – ident: CR11 – volume: 85 start-page: 393 year: 2000 end-page: 396 ident: CR19 article-title: Spin Hall effect in the presence of spin diffusion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.393 – ident: CR26 – volume: 9 start-page: 230 year: 2010 end-page: 234 ident: CR1 article-title: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer publication-title: Nature Mater. doi: 10.1038/nmat2613 – volume: 476 start-page: 189 year: 2011 end-page: 193 ident: CR2 article-title: Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection publication-title: Nature doi: 10.1038/nature10309 – ident: CR20 – volume: 12 start-page: 240 year: 2013 ident: BFnnano201494_CR5 publication-title: Nature Mater. doi: 10.1038/nmat3522 – volume: 83 start-page: 1834 year: 1999 ident: BFnnano201494_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1834 – ident: BFnnano201494_CR11 doi: 10.1088/0022-3727/46/7/074003 – volume: 5 start-page: 210 year: 2006 ident: BFnnano201494_CR12 publication-title: Nature Mater. doi: 10.1038/nmat1595 – ident: BFnnano201494_CR22 – ident: BFnnano201494_CR14 – ident: BFnnano201494_CR20 – ident: BFnnano201494_CR30 doi: 10.1109/IEDM.2012.6479132 – volume: 476 start-page: 189 year: 2011 ident: BFnnano201494_CR2 publication-title: Nature doi: 10.1038/nature10309 – ident: BFnnano201494_CR6 – volume: 85 start-page: 393 year: 2000 ident: BFnnano201494_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.393 – volume: 104 start-page: 043914 issue: 4 year: 2008 ident: BFnnano201494_CR24 publication-title: Journal of Applied Physics doi: 10.1063/1.2969711 – ident: BFnnano201494_CR27 doi: 10.1103/PhysRevB.89.024418 – volume: 9 start-page: 721 year: 2010 ident: BFnnano201494_CR23 publication-title: Nature Mater. doi: 10.1038/nmat2804 – volume: 88 start-page: 085423 year: 2013 ident: BFnnano201494_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085423 – volume: 9 start-page: 230 year: 2010 ident: BFnnano201494_CR1 publication-title: Nature Mater. doi: 10.1038/nmat2613 – volume: 336 start-page: 555 year: 2012 ident: BFnnano201494_CR4 publication-title: Science doi: 10.1126/science.1218197 – volume: 8 start-page: 587 year: 2013 ident: BFnnano201494_CR13 publication-title: Nature Nanotech. doi: 10.1038/nnano.2013.145 – volume: 8 start-page: 527 year: 2013 ident: BFnnano201494_CR8 publication-title: Nature Nanotech. doi: 10.1038/nnano.2013.102 – volume: 12 start-page: 611 year: 2013 ident: BFnnano201494_CR9 publication-title: Nature Mater. doi: 10.1038/nmat3675 – volume: 12 start-page: 299 year: 2013 ident: BFnnano201494_CR10 publication-title: Nature Mater. doi: 10.1038/nmat3553 – ident: BFnnano201494_CR26 doi: 10.1103/PhysRevB.84.054401 – ident: BFnnano201494_CR3 – volume: 35A, start-page: 459 year: 1971 ident: BFnnano201494_CR17 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(71)90196-4 – ident: BFnnano201494_CR15 – volume: 97 start-page: 162507 issue: 16 year: 2010 ident: BFnnano201494_CR28 publication-title: Applied Physics Letters doi: 10.1063/1.3502596 – ident: BFnnano201494_CR25 – volume: 101 start-page: 122404 issue: 12 year: 2012 ident: BFnnano201494_CR7 publication-title: Applied Physics Letters doi: 10.1063/1.4753947 – ident: BFnnano201494_CR29 doi: 10.1103/PhysRevB.87.020402 – volume: 39 start-page: 78 year: 1984 ident: BFnnano201494_CR16 publication-title: JETP Lett. – reference: 23653211 - Nat Commun. 2013;4:1799 – reference: 22556245 - Science. 2012 May 4;336(6081):555-8 – reference: 23770808 - Nat Nanotechnol. 2013 Jul;8(7):527-33 – reference: 24990213 - Nat Nanotechnol. 2014 Jul;9(7):502-3 – reference: 23263641 - Nat Mater. 2013 Mar;12(3):240-5 – reference: 22540504 - Phys Rev Lett. 2012 Mar 16;108(11):117201 – reference: 23377291 - Nat Mater. 2013 Apr;12(4):299-303 – reference: 20622862 - Nat Mater. 2010 Sep;9(9):721-4 – reference: 23002867 - Phys Rev Lett. 2012 Aug 31;109(9):096602 – reference: 23770726 - Nat Mater. 2013 Jul;12(7):611-6 – reference: 23892985 - Nat Nanotechnol. 2013 Aug;8(8):587-93 – reference: 10991291 - Phys Rev Lett. 2000 Jul 10;85(2):393-6 – reference: 20062047 - Nat Mater. 2010 Mar;9(3):230-4 – reference: 15089695 - Phys Rev Lett. 2004 Mar 26;92(12):126603 – reference: 22617287 - Nat Commun. 2012 May 22;3:847 – reference: 21804568 - Nature. 2011 Aug 11;476(7359):189-93 |
SSID | ssj0052924 |
Score | 2.641104 |
Snippet | Magnetization switching by current-induced spin–orbit torques is of great interest due to its potential applications in ultralow-power memory and logic... Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 548 |
SubjectTerms | 140/146 142/126 147/143 639/766/119/1001 Asymmetry Electrons Ferromagnetism Magnetic fields Magnetization Materials Science Memory devices Nanotechnology Nanotechnology and Microengineering Oxidation Random access memory Switching Symmetry Torque |
Title | Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields |
URI | https://link.springer.com/article/10.1038/nnano.2014.94 https://www.ncbi.nlm.nih.gov/pubmed/24813694 https://www.proquest.com/docview/1542386702 https://www.proquest.com/docview/1543281849 https://www.proquest.com/docview/1770341874 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcGvIyHaewDbgMUJMReVmib3KV5QgxxQ0igaRvSvVVJmkOVIHejRdP--9lpejDBeOlLncp14tiOnZ8Bdg2GVZUlRTJKJGLoTKJyWSUabZdLp1JbQ4Hi-cXo9FKcTYaTeODWxLLKfk8MG3U1s3RGfoCmHq3LSKb54fxXQl2jKLsaW2gswQpBl9GqlpNFwDXMVdfUVooiwVBMRozNlBcH3mtPd_8ysa_EvzbpkaP5KEkabM_4NbyKTiM76mZ5DV44_wZWH0AJvoX6x--6DXWRbDZlc3dLvW3rUGTKbvSVd228cMnMH9bMa48_Z-qWYchNbLDaM3QFmTYNqTp9o8eH7odbFqrdmndwOT75eXyaxDYKiUUJtInV6JNw9JOsNHlmC44qXpjUZS5PTVa5wilUcyN5ZbQQWk6145XguUorLt1I8vew7GfebQBTAkdSJm2IlDy3ekr4XxVGmZwynnYAn3tBljZijFOri-sy5Lp5UQa5lyT3UokB7C3I5x24xv8IN_tZKaOONeX9ihjAzuI1agelPLR3s7tAwwnvSqhnaCTueoJ6Ew5gvZvxBTe5KDI-IgY-9UvgAQNPsfrheVY_wksi7Ap-N2G5vb1zW-jWtGY7rF18FuOv27Dy5eTi2_e_4bL5Tw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATgg3iwUMBKPC6GJ7azjA0IIWLb0caGVegu240WRWu_SpKr6U3wjM06yFBV66zljazSeZ-YF8MJiWFU5EiSrZSJzbxPNVZUYtF0-nSnjLAWK2zvj6Z78up_vr8CvoReGyioHnRgVdTV39I98HU09WpexSvn7xc-EtkZRdnVYodGxxaY_PcGQrXm38Qnf9yXnk8-7H6dJv1UgcTnXbeIMbZhHt8EpyzNXYECfFzb1meepzSpfeI1cb5WorJHSqJnxopKC67QSyo-VwHuvwFUp0JJTZ_rky6D58fpuia6SRYKhn-pneqaiWA_BBOo1zORbLf-2gecc23NJ2WjrJrfgZu-ksg8dV92GFR_uwI0zowvvQv3tpG5jHSabz9jCH9Eu3ToWtbJD8yP4tm_wZPaUNYs6IDFt3TIM8QkNVgeGricztiHVQncM86iH447F6rrmHuxdCoHvw2qYB_8QmJZ4kjJ3OUIK7syM5o1VGNUKyrC6EbwZCFm6fqY5rdY4KGNuXRRlpHtJdC-1HMGrJfiiG-bxP8C14VXKXqab8g8HjuD58jNKI6VYTPDz4wgjaL6W1BfAKNSyknYhjuBB9-JLbLgsMjEmBF4PLHAGgX-h-uhiVJ_Btenu9la5tbGz-Riu06Gu2HgNVtujY_8EXarWPo18zOD7ZQvOb6aqMxI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTULsAfG9gw2CxMcL5dokvbQPEwK208bgNAGT9tYlaYoqQe5YO0371_bXze7HMTTY257rtJZjx_7Vjg3wwiCsyi0ZkkllIGNngpSrPNDou1xYKG0NAcUv0_H2vvx0EB8swVl_F4bKKvszsTmo85mlf-QjdPXoXcYq5KOiK4vY25y8m_8OaIIUZVr7cRqtiuy60xOEb9XGzibu9UvOJ1vfP24H3YSBwMY8rQOrado8hhBWGR7ZBMF9nJjQRY6HJspd4lK0AKNEbrSUWhXaiVwKnoa5UG6sBL73BiwrQkUDWP6wNd372vsB_EA7UlfJJEAgqLoOn6FIRt5rTzcPI_k2lX97xEth7qUUbeP5Jnfgdheysvetjt2FJefvwcqFRob3ofx2UtZNVSabFWzujmiybtmUuLJf-od3dXfdk5lTVs1Lj-I0Zc0Q8BMbrPQMA1GmTUUHDb2j707dL7esqbWrHsD-tYj4IQz8zLtVYKnElZTHi5FScKsL6j6WI8YVlG-1Q3jTCzKzXYdzGrTxM2sy7SLJGrlnJPcslUN4tSCft609_ke41u9K1ll4lf3RxyE8XzxG26SEi_ZudtzQCOq2JdMraBSeuZImIw7hUbvjC264TCIxJgZe9ypwgYF_sfr4alafwU00muzzznT3CdyiNW3l8RoM6qNjt47xVW2edorM4PC6beccCoU4pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+of+perpendicular+magnetization+by+spin%E2%80%93orbit+torques+in+the+absence+of+external+magnetic+fields&rft.jtitle=Nature+nanotechnology&rft.au=Yu%2C+Guoqiang&rft.au=Upadhyaya%2C+Pramey&rft.au=Fan%2C+Yabin&rft.au=Alzate%2C+Juan+G.&rft.date=2014-07-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=9&rft.issue=7&rft.spage=548&rft.epage=554&rft_id=info:doi/10.1038%2Fnnano.2014.94&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nnano_2014_94 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |