Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks

The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 71; no. 1; pp. 42 - 55.e8
Main Authors Clarke, Ryan, Heler, Robert, MacDougall, Matthew S., Yeo, Nan Cher, Chavez, Alejandro, Regan, Maureen, Hanakahi, Leslyn, Church, George M., Marraffini, Luciano A., Merrill, Bradley J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing. [Display omitted] •Persistent Cas9 binding blocks DNA repair proteins from accessing Cas9-generated breaks•RNA polymerase can dislodge Cas9 from DNA breaks in a highly strand-biased manner•Dislodging Cas9 with RNA polymerase generates multi-turnover nuclease activity•Targeting of Cas9 to phage genome is strand biased toward multi-turnover activities Clarke et al. show that persistent Cas9 binding to double-strand DNA breaks (DSBs) blocks DNA break repair. The Cas9-DSB complex can be disrupted by translocating RNA polymerases in a strand-biased manner, increasing genome editing frequencies and enhancing bacterial immunity to phages through multi-turnover Cas9 cleavage of phage genomes.
AbstractList The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing. [Display omitted] •Persistent Cas9 binding blocks DNA repair proteins from accessing Cas9-generated breaks•RNA polymerase can dislodge Cas9 from DNA breaks in a highly strand-biased manner•Dislodging Cas9 with RNA polymerase generates multi-turnover nuclease activity•Targeting of Cas9 to phage genome is strand biased toward multi-turnover activities Clarke et al. show that persistent Cas9 binding to double-strand DNA breaks (DSBs) blocks DNA break repair. The Cas9-DSB complex can be disrupted by translocating RNA polymerases in a strand-biased manner, increasing genome editing frequencies and enhancing bacterial immunity to phages through multi-turnover Cas9 cleavage of phage genomes.
The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing.
The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double strand break n(DSB), Cas9 remains stably bound to the DNA. Here we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction towards the Cas9-DSB complex. By exploiting these RNA polymerase-Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of PAM sequences and a simple method of improving selection of highly active sgRNA for genome editing. Clarke et al show that persistent DNA binding of Cas9 precludes repair of DNA breaks. Translocating RNA polymerases can dislodge Cas9 from DNA, but only in a highly strand-biased manner. This effect is suggested to mediate strand-biased increases in genome editing efficiency in mammalian cells and CRISPR immunity bacteria.
Author Heler, Robert
Yeo, Nan Cher
Merrill, Bradley J.
Clarke, Ryan
Hanakahi, Leslyn
Regan, Maureen
Church, George M.
Chavez, Alejandro
Marraffini, Luciano A.
MacDougall, Matthew S.
AuthorAffiliation 2 Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065
3 Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
5 Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Rockford Health Science Campus, Rockford, IL 61107
1 Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
4 Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
– name: 2 Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065
– name: 4 Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607
– name: 5 Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Rockford Health Science Campus, Rockford, IL 61107
– name: 3 Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
Author_xml – sequence: 1
  givenname: Ryan
  surname: Clarke
  fullname: Clarke, Ryan
  organization: Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
– sequence: 2
  givenname: Robert
  surname: Heler
  fullname: Heler, Robert
  organization: Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
– sequence: 3
  givenname: Matthew S.
  surname: MacDougall
  fullname: MacDougall, Matthew S.
  organization: Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
– sequence: 4
  givenname: Nan Cher
  surname: Yeo
  fullname: Yeo, Nan Cher
  organization: Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
– sequence: 5
  givenname: Alejandro
  surname: Chavez
  fullname: Chavez, Alejandro
  organization: Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
– sequence: 6
  givenname: Maureen
  surname: Regan
  fullname: Regan, Maureen
  organization: Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
– sequence: 7
  givenname: Leslyn
  surname: Hanakahi
  fullname: Hanakahi, Leslyn
  organization: Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Rockford Health Science Campus, Rockford, IL 61107, USA
– sequence: 8
  givenname: George M.
  surname: Church
  fullname: Church, George M.
  organization: Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
– sequence: 9
  givenname: Luciano A.
  surname: Marraffini
  fullname: Marraffini, Luciano A.
  organization: Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
– sequence: 10
  givenname: Bradley J.
  surname: Merrill
  fullname: Merrill, Bradley J.
  email: merrillb@uic.edu
  organization: Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29979968$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhiNURC_wBgh5ySbBdmwn3iBNZ4ZSqS2Iy9pynJOph9hu7WSkeQDem0QzFNiwsiX_5zvn-DvPTnzwkGWvCS4IJuLdtnChN9AXFJO6wKLAmD_LzgiWVc6IYCfHO60EP83OU9piTBiv5YvslEpZSSnqs-zn2t9rb6BFl9oMEK3u0bVzo7fDHmnfolvtnO6t9ugKfHCA1q0drN-gndXoy90i_xz6vYOoE-S30Fo9TKyVTX1oN3MsdGipk0RdDA6twtj0kH8d4oxe3S3QZQT9I73Mnne6T_DqeF5k3z-svy0_5jefrq6Xi5vccCqH3IgSOi2bTjaUs5p0tCvLkvOm5iUjVBhWdUKykglmKK8FNF3JSwADomWcs_Iie3_gPoyNg9aAnybp1UO0Tse9Ctqqf1-8vVebsFMCi5JTOgHeHgExPI6QBuVsmiT02kMYk6JYCFbTipMpyg5RE0NKEbqnNgSr2aDaqoNBNRtUWKjJ4FT25u8Rn4p-K_uzA0wftbMQVTIWZoU2ghlUG-z_O_wCxa-xrA
CitedBy_id crossref_primary_10_1371_journal_pone_0241253
crossref_primary_10_1093_nar_gkaa603
crossref_primary_10_1016_j_phymed_2021_153830
crossref_primary_10_1093_nar_gkad116
crossref_primary_10_1371_journal_ppat_1009117
crossref_primary_10_1089_crispr_2023_0033
crossref_primary_10_1134_S0006297919090104
crossref_primary_10_1186_s13287_020_01964_5
crossref_primary_10_1016_j_omtn_2023_04_012
crossref_primary_10_1038_s41467_021_21884_z
crossref_primary_10_1186_s12920_023_01694_6
crossref_primary_10_1134_S0026893319010059
crossref_primary_10_1007_s11103_018_00819_1
crossref_primary_10_3389_fbioe_2022_924914
crossref_primary_10_1038_s41594_019_0258_2
crossref_primary_10_1038_s41467_020_16542_9
crossref_primary_10_1002_bies_202000047
crossref_primary_10_1038_s41467_022_30598_9
crossref_primary_10_1093_nar_gkaa294
crossref_primary_10_1007_s42764_022_00066_1
crossref_primary_10_1038_s41388_021_02032_9
crossref_primary_10_1016_j_genrep_2023_101834
crossref_primary_10_1093_nar_gkz1058
crossref_primary_10_1093_nar_gkaa897
crossref_primary_10_1038_s41592_024_02216_7
crossref_primary_10_1186_s12935_019_0726_0
crossref_primary_10_1093_nar_gkab1072
crossref_primary_10_1016_j_bbadis_2023_166872
crossref_primary_10_1021_acs_analchem_2c02617
crossref_primary_10_1242_jcs_251728
crossref_primary_10_1038_s41467_021_27004_1
crossref_primary_10_1002_jgm_3377
crossref_primary_10_1016_j_stem_2019_04_015
crossref_primary_10_1038_s41598_021_93685_9
crossref_primary_10_1016_j_biochi_2019_09_003
crossref_primary_10_1146_annurev_genet_022120_112523
crossref_primary_10_7554_eLife_75415
crossref_primary_10_1007_s00299_019_02378_1
crossref_primary_10_1038_s41598_019_49837_z
crossref_primary_10_1038_s41556_022_00975_z
crossref_primary_10_1126_science_aav9023
crossref_primary_10_1038_s41556_019_0425_z
crossref_primary_10_1016_j_gendis_2023_03_017
crossref_primary_10_1016_j_tig_2021_02_008
crossref_primary_10_1021_acssynbio_0c00149
crossref_primary_10_1186_s13059_022_02736_5
crossref_primary_10_3390_ijms23158636
crossref_primary_10_1094_MPMI_05_23_0072_SC
crossref_primary_10_1016_j_dnarep_2019_102686
crossref_primary_10_2174_1389202924666230823094608
crossref_primary_10_1093_nar_gkz475
crossref_primary_10_1016_j_molcel_2020_07_016
crossref_primary_10_1016_j_molcel_2020_06_014
crossref_primary_10_1016_j_jaip_2018_12_017
crossref_primary_10_1021_acssynbio_2c00689
crossref_primary_10_1186_s13059_021_02495_9
crossref_primary_10_1016_j_celrep_2024_114420
crossref_primary_10_3389_fgene_2019_00190
crossref_primary_10_1021_acssynbio_9b00440
crossref_primary_10_1038_s41598_019_43141_6
crossref_primary_10_1371_journal_pone_0273979
crossref_primary_10_1016_j_biotechadv_2019_107452
crossref_primary_10_1038_s41594_018_0173_y
crossref_primary_10_1631_jzus_B2000282
crossref_primary_10_1002_wnan_1855
crossref_primary_10_1261_rna_071613_119
crossref_primary_10_1021_acscentsci_2c01467
crossref_primary_10_1021_acssynbio_0c00193
crossref_primary_10_3390_pharmaceutics14091837
crossref_primary_10_1126_sciadv_aaw9807
crossref_primary_10_1016_j_molcel_2020_12_003
crossref_primary_10_1186_s13287_021_02281_1
crossref_primary_10_1016_j_lfs_2020_118525
crossref_primary_10_1021_acssynbio_2c00375
crossref_primary_10_1039_C8SC03426E
crossref_primary_10_1038_s41467_022_32011_x
crossref_primary_10_1038_s41594_022_00864_x
crossref_primary_10_1080_19768354_2024_2322054
crossref_primary_10_1016_j_copbio_2018_07_005
crossref_primary_10_3389_fgene_2020_594576
crossref_primary_10_1093_nar_gkad233
crossref_primary_10_1016_j_molcel_2021_02_007
crossref_primary_10_1016_j_cellimm_2021_104436
Cites_doi 10.1038/nmeth.3473
10.1098/rstb.2013.0540
10.7554/eLife.12677
10.1038/nature24268
10.1038/nature09886
10.1038/nature09523
10.1016/j.celrep.2014.05.037
10.1073/pnas.0501140102
10.1126/science.aad5227
10.1016/j.cell.2017.10.025
10.1016/bs.mie.2015.02.008
10.1016/j.molcel.2014.03.011
10.1038/nmeth.3871
10.1126/science.1231143
10.1038/ncomms2440
10.1038/nature14245
10.1038/nbt.3659
10.1126/science.1138140
10.1038/nature13637
10.1186/1471-2164-15-793
10.1016/j.cell.2014.02.001
10.1126/science.1225829
10.1038/nature16526
10.1038/nmeth.3580
10.1126/science.aac6572
10.1038/nbt.3583
10.7554/eLife.00471
10.1038/nmeth.3312
10.1126/science.1247997
10.1371/journal.pgen.1003312
10.1126/science.aah7084
10.1128/AEM.02371-07
10.1093/bioinformatics/btq033
10.1038/nbt.3481
10.1093/oxfordjournals.molbev.a025626
10.1093/nar/gkw685
10.1126/science.1232033
10.1038/srep43438
10.1073/pnas.1700557114
10.1016/j.pep.2006.10.002
10.1038/nbt.2647
10.1038/nature14592
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.molcel.2018.06.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 55.e8
ExternalDocumentID 10_1016_j_molcel_2018_06_005
29979968
S1097276518304477
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR002003
– fundername: NICHD NIH HHS
  grantid: R01 HD081534
– fundername: NHGRI NIH HHS
  grantid: RM1 HG008525
– fundername: NICHD NIH HHS
  grantid: F30 HD090938
– fundername: NIAID NIH HHS
  grantid: DP2 AI104556
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
0SF
AAEDT
AAHBH
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.55
.GJ
29M
3O-
53G
5VS
AAIKJ
AAQFI
AAQXK
AAYXX
ACRPL
ADMUD
ADNMO
AGHFR
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
7X8
5PM
ID FETCH-LOGICAL-c529t-c63efa9bf9b25481f2f33355b8534126c47f6943464c2586ebf353eece6d45543
IEDL.DBID ABVKL
ISSN 1097-2765
IngestDate Tue Sep 17 21:21:02 EDT 2024
Fri Oct 25 05:53:45 EDT 2024
Fri Dec 06 03:24:23 EST 2024
Sat Sep 28 08:30:33 EDT 2024
Fri Feb 23 02:49:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CRISPR
genome editing
strand bias
phage biology
transcription
Cas9
RNA polymerase
DNA repair
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-c63efa9bf9b25481f2f33355b8534126c47f6943464c2586ebf353eece6d45543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276518304477
PMID 29979968
PQID 2066482751
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063522
proquest_miscellaneous_2066482751
crossref_primary_10_1016_j_molcel_2018_06_005
pubmed_primary_29979968
elsevier_sciencedirect_doi_10_1016_j_molcel_2018_06_005
PublicationCentury 2000
PublicationDate 2018-07-05
PublicationDateYYYYMMDD 2018-07-05
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kwan, Liu, DuBow, Gros, Pelletier (bib29) 2005; 102
Jinek, Jiang, Taylor, Sternberg, Kaya, Ma, Anders, Hauer, Zhou, Lin (bib22) 2014; 343
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib20) 2012; 337
Knight, Xie, Deng, Guglielmi, Witkowsky, Bosanac, Zhang, El Beheiry, Masson, Dahan (bib28) 2015; 350
Hsu, Scott, Weinstein, Ran, Konermann, Agarwala, Li, Fine, Wu, Shalem (bib18) 2013; 31
Quinlan, Hall (bib37) 2010; 26
Kleinstiver, Prew, Tsai, Topkar, Nguyen, Zheng, Gonzales, Li, Peterson, Yeh (bib26) 2015; 523
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bib11) 2013; 339
Garneau, Dupuis, Villion, Romero, Barrangou, Boyaval, Fremaux, Horvath, Magadán, Moineau (bib13) 2010; 468
Boyle, Andreasson, Chircus, Sternberg, Wu, Guegler, Doudna, Greenleaf (bib6) 2017; 114
Chari, Mali, Moosburner, Church (bib7) 2015; 12
Kleinstiver, Pattanayak, Prew, Tsai, Nguyen, Zheng, Joung (bib27) 2016; 529
Achigar, Magadán, Tremblay, Julia Pianzzola, Moineau (bib1) 2017; 7
Slaymaker, Gao, Zetsche, Scott, Yan, Zhang (bib40) 2016; 351
Deltcheva, Chylinski, Sharma, Gonzales, Chao, Pirzada, Eckert, Vogel, Charpentier (bib12) 2011; 471
Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Norville, Church (bib33) 2013; 339
Levin, Moineau, Bushman, Barrangou (bib30) 2013; 9
Yang, Kalkan, Morissroe, Marks, Stunnenberg, Smith, Sharrocks (bib42) 2014; 7
Chavez, Tuttle, Pruitt, Ewen-Campen, Chari, Ter-Ovanesyan, Haque, Cecchi, Kowal, Buchthal (bib9) 2016; 13
Barrangou, Doudna (bib3) 2016; 34
Kalkan, Smith (bib24) 2014; 369
Kiani, Chavez, Tuttle, Hall, Chari, Ter-Ovanesyan, Qian, Pruitt, Beal, Vora (bib25) 2015; 12
Anders, Niewoehner, Jinek (bib2) 2015; 558
Horlbeck, Witkowsky, Guglielmi, Replogle, Gilbert, Villalta, Torigoe, Tjian, Weissman (bib17) 2016; 5
Paez-Espino, Morovic, Sun, Thomas, Ueda, Stahl, Barrangou, Banfield (bib35) 2013; 4
Barrangou, Marraffini (bib4) 2014; 54
Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae, Ishitani, Zhang, Nureki (bib34) 2014; 156
Goldberg, Jiang, Bikard, Marraffini (bib14) 2014; 514
Jinek, East, Cheng, Lin, Ma, Doudna (bib21) 2013; 2
Hanakahi (bib15) 2007; 52
Lobry (bib32) 1996; 13
Chen, Dagdas, Kleinstiver, Welch, Sousa, Harrington, Sternberg, Joung, Yildiz, Doudna (bib10) 2017; 550
Jones, Leroy, Unoson, Fange, Ćurić, Lawson, Elf (bib23) 2017; 357
Liao, Hatanaka, Araoka, Reddy, Wu, Sui, Yamauchi, Sakurai, O’Keefe, Nunez-Delicado (bib31) 2017; 171
Chavez, Scheiman, Vora, Pruitt, Tuttle, P R Iyer, Lin, Kiani, Guzman, Wiegand (bib8) 2015; 12
Heler, Samai, Modell, Weiner, Goldberg, Bikard, Marraffini (bib16) 2015; 519
Jin, Li, Wang, Wang, Chen, Huang, Zhang, Li, Wang, Wang, Zhao (bib19) 2014; 15
Shy, MacDougall, Clarke, Merrill (bib39) 2016; 44
Richardson, Ray, DeWitt, Curie, Corn (bib38) 2016; 34
Barrangou, Fremaux, Deveau, Richards, Boyaval, Moineau, Romero, Horvath (bib5) 2007; 315
Pinello, Canver, Hoban, Orkin, Kohn, Bauer, Yuan (bib36) 2016; 34
Uchiyama, Rashel, Takemura, Wakiguchi, Matsuzaki (bib41) 2008; 74
Heler (10.1016/j.molcel.2018.06.005_bib16) 2015; 519
Horlbeck (10.1016/j.molcel.2018.06.005_bib17) 2016; 5
Kiani (10.1016/j.molcel.2018.06.005_bib25) 2015; 12
Cong (10.1016/j.molcel.2018.06.005_bib11) 2013; 339
Deltcheva (10.1016/j.molcel.2018.06.005_bib12) 2011; 471
Hanakahi (10.1016/j.molcel.2018.06.005_bib15) 2007; 52
Kleinstiver (10.1016/j.molcel.2018.06.005_bib27) 2016; 529
Paez-Espino (10.1016/j.molcel.2018.06.005_bib35) 2013; 4
Chari (10.1016/j.molcel.2018.06.005_bib7) 2015; 12
Yang (10.1016/j.molcel.2018.06.005_bib42) 2014; 7
Lobry (10.1016/j.molcel.2018.06.005_bib32) 1996; 13
Levin (10.1016/j.molcel.2018.06.005_bib30) 2013; 9
Slaymaker (10.1016/j.molcel.2018.06.005_bib40) 2016; 351
Nishimasu (10.1016/j.molcel.2018.06.005_bib34) 2014; 156
Quinlan (10.1016/j.molcel.2018.06.005_bib37) 2010; 26
Liao (10.1016/j.molcel.2018.06.005_bib31) 2017; 171
Chavez (10.1016/j.molcel.2018.06.005_bib8) 2015; 12
Goldberg (10.1016/j.molcel.2018.06.005_bib14) 2014; 514
Anders (10.1016/j.molcel.2018.06.005_bib2) 2015; 558
Garneau (10.1016/j.molcel.2018.06.005_bib13) 2010; 468
Achigar (10.1016/j.molcel.2018.06.005_bib1) 2017; 7
Barrangou (10.1016/j.molcel.2018.06.005_bib3) 2016; 34
Jin (10.1016/j.molcel.2018.06.005_bib19) 2014; 15
Kleinstiver (10.1016/j.molcel.2018.06.005_bib26) 2015; 523
Pinello (10.1016/j.molcel.2018.06.005_bib36) 2016; 34
Kalkan (10.1016/j.molcel.2018.06.005_bib24) 2014; 369
Uchiyama (10.1016/j.molcel.2018.06.005_bib41) 2008; 74
Hsu (10.1016/j.molcel.2018.06.005_bib18) 2013; 31
Chavez (10.1016/j.molcel.2018.06.005_bib9) 2016; 13
Jinek (10.1016/j.molcel.2018.06.005_bib21) 2013; 2
Barrangou (10.1016/j.molcel.2018.06.005_bib5) 2007; 315
Barrangou (10.1016/j.molcel.2018.06.005_bib4) 2014; 54
Chen (10.1016/j.molcel.2018.06.005_bib10) 2017; 550
Richardson (10.1016/j.molcel.2018.06.005_bib38) 2016; 34
Jinek (10.1016/j.molcel.2018.06.005_bib20) 2012; 337
Shy (10.1016/j.molcel.2018.06.005_bib39) 2016; 44
Boyle (10.1016/j.molcel.2018.06.005_bib6) 2017; 114
Knight (10.1016/j.molcel.2018.06.005_bib28) 2015; 350
Jinek (10.1016/j.molcel.2018.06.005_bib22) 2014; 343
Jones (10.1016/j.molcel.2018.06.005_bib23) 2017; 357
Kwan (10.1016/j.molcel.2018.06.005_bib29) 2005; 102
Mali (10.1016/j.molcel.2018.06.005_bib33) 2013; 339
References_xml – volume: 54
  start-page: 234
  year: 2014
  end-page: 244
  ident: bib4
  article-title: CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity
  publication-title: Mol. Cell
  contributor:
    fullname: Marraffini
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  ident: bib5
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  contributor:
    fullname: Horvath
– volume: 5
  start-page: 5
  year: 2016
  ident: bib17
  article-title: Nucleosomes impede Cas9 access to DNA in vivo and in vitro
  publication-title: eLife
  contributor:
    fullname: Weissman
– volume: 369
  start-page: 20130540
  year: 2014
  ident: bib24
  article-title: Mapping the route from naive pluripotency to lineage specification
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  contributor:
    fullname: Smith
– volume: 351
  start-page: 84
  year: 2016
  end-page: 88
  ident: bib40
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science
  contributor:
    fullname: Zhang
– volume: 34
  start-page: 339
  year: 2016
  end-page: 344
  ident: bib38
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Corn
– volume: 171
  start-page: 1495
  year: 2017
  end-page: 1507
  ident: bib31
  article-title: In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation
  publication-title: Cell
  contributor:
    fullname: Nunez-Delicado
– volume: 12
  start-page: 1051
  year: 2015
  end-page: 1054
  ident: bib25
  article-title: Cas9 gRNA engineering for genome editing, activation and repression
  publication-title: Nat. Methods
  contributor:
    fullname: Vora
– volume: 74
  start-page: 4149
  year: 2008
  end-page: 4163
  ident: bib41
  article-title: In silico and in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of Enterococcus faecalis infections
  publication-title: Appl. Environ. Microbiol.
  contributor:
    fullname: Matsuzaki
– volume: 350
  start-page: 823
  year: 2015
  end-page: 826
  ident: bib28
  article-title: Dynamics of CRISPR-Cas9 genome interrogation in living cells
  publication-title: Science
  contributor:
    fullname: Dahan
– volume: 9
  start-page: e1003312
  year: 2013
  ident: bib30
  article-title: The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity
  publication-title: PLoS Genet.
  contributor:
    fullname: Barrangou
– volume: 31
  start-page: 827
  year: 2013
  end-page: 832
  ident: bib18
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Shalem
– volume: 529
  start-page: 490
  year: 2016
  end-page: 495
  ident: bib27
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
  contributor:
    fullname: Joung
– volume: 13
  start-page: 660
  year: 1996
  end-page: 665
  ident: bib32
  article-title: Asymmetric substitution patterns in the two DNA strands of bacteria
  publication-title: Mol. Biol. Evol.
  contributor:
    fullname: Lobry
– volume: 114
  start-page: 5461
  year: 2017
  end-page: 5466
  ident: bib6
  article-title: High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Greenleaf
– volume: 2
  start-page: e00471
  year: 2013
  ident: bib21
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
  contributor:
    fullname: Doudna
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: bib37
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  contributor:
    fullname: Hall
– volume: 15
  start-page: 793
  year: 2014
  ident: bib19
  article-title: Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages
  publication-title: BMC Genomics
  contributor:
    fullname: Zhao
– volume: 12
  start-page: 823
  year: 2015
  end-page: 826
  ident: bib7
  article-title: Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach
  publication-title: Nat. Methods
  contributor:
    fullname: Church
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib20
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  contributor:
    fullname: Charpentier
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bib33
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  contributor:
    fullname: Church
– volume: 34
  start-page: 933
  year: 2016
  end-page: 941
  ident: bib3
  article-title: Applications of CRISPR technologies in research and beyond
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Doudna
– volume: 357
  start-page: 1420
  year: 2017
  end-page: 1424
  ident: bib23
  article-title: Kinetics of dCas9 target search in
  publication-title: Science
  contributor:
    fullname: Elf
– volume: 12
  start-page: 326
  year: 2015
  end-page: 328
  ident: bib8
  article-title: Highly efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
  contributor:
    fullname: Wiegand
– volume: 102
  start-page: 5174
  year: 2005
  end-page: 5179
  ident: bib29
  article-title: The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Pelletier
– volume: 550
  start-page: 407
  year: 2017
  end-page: 410
  ident: bib10
  article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
  publication-title: Nature
  contributor:
    fullname: Doudna
– volume: 468
  start-page: 67
  year: 2010
  end-page: 71
  ident: bib13
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  contributor:
    fullname: Moineau
– volume: 156
  start-page: 935
  year: 2014
  end-page: 949
  ident: bib34
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
  contributor:
    fullname: Nureki
– volume: 7
  start-page: 43438
  year: 2017
  ident: bib1
  article-title: Phage-host interactions in Streptococcus thermophilus: Genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array
  publication-title: Sci. Rep.
  contributor:
    fullname: Moineau
– volume: 13
  start-page: 563
  year: 2016
  end-page: 567
  ident: bib9
  article-title: Comparison of Cas9 activators in multiple species
  publication-title: Nat. Methods
  contributor:
    fullname: Buchthal
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib11
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  contributor:
    fullname: Zhang
– volume: 34
  start-page: 695
  year: 2016
  end-page: 697
  ident: bib36
  article-title: Analyzing CRISPR genome-editing experiments with CRISPResso
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Yuan
– volume: 44
  start-page: 7997
  year: 2016
  end-page: 8010
  ident: bib39
  article-title: Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Merrill
– volume: 52
  start-page: 139
  year: 2007
  end-page: 145
  ident: bib15
  article-title: 2-Step purification of the Ku DNA repair protein expressed in Escherichia coli
  publication-title: Protein Expr. Purif.
  contributor:
    fullname: Hanakahi
– volume: 523
  start-page: 481
  year: 2015
  end-page: 485
  ident: bib26
  article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities
  publication-title: Nature
  contributor:
    fullname: Yeh
– volume: 343
  start-page: 1247997
  year: 2014
  ident: bib22
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science
  contributor:
    fullname: Lin
– volume: 558
  start-page: 515
  year: 2015
  end-page: 537
  ident: bib2
  article-title: In vitro reconstitution and crystallization of Cas9 endonuclease bound to a guide RNA and a DNA target
  publication-title: Methods Enzymol.
  contributor:
    fullname: Jinek
– volume: 471
  start-page: 602
  year: 2011
  end-page: 607
  ident: bib12
  article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
  publication-title: Nature
  contributor:
    fullname: Charpentier
– volume: 514
  start-page: 633
  year: 2014
  end-page: 637
  ident: bib14
  article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
  publication-title: Nature
  contributor:
    fullname: Marraffini
– volume: 519
  start-page: 199
  year: 2015
  end-page: 202
  ident: bib16
  article-title: Cas9 specifies functional viral targets during CRISPR-Cas adaptation
  publication-title: Nature
  contributor:
    fullname: Marraffini
– volume: 7
  start-page: 1968
  year: 2014
  end-page: 1981
  ident: bib42
  article-title: Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency
  publication-title: Cell Rep.
  contributor:
    fullname: Sharrocks
– volume: 4
  start-page: 1430
  year: 2013
  ident: bib35
  article-title: Strong bias in the bacterial CRISPR elements that confer immunity to phage
  publication-title: Nat. Commun.
  contributor:
    fullname: Banfield
– volume: 12
  start-page: 823
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib7
  article-title: Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3473
  contributor:
    fullname: Chari
– volume: 369
  start-page: 20130540
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib24
  article-title: Mapping the route from naive pluripotency to lineage specification
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2013.0540
  contributor:
    fullname: Kalkan
– volume: 5
  start-page: 5
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib17
  article-title: Nucleosomes impede Cas9 access to DNA in vivo and in vitro
  publication-title: eLife
  doi: 10.7554/eLife.12677
  contributor:
    fullname: Horlbeck
– volume: 550
  start-page: 407
  year: 2017
  ident: 10.1016/j.molcel.2018.06.005_bib10
  article-title: Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
  publication-title: Nature
  doi: 10.1038/nature24268
  contributor:
    fullname: Chen
– volume: 471
  start-page: 602
  year: 2011
  ident: 10.1016/j.molcel.2018.06.005_bib12
  article-title: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
  publication-title: Nature
  doi: 10.1038/nature09886
  contributor:
    fullname: Deltcheva
– volume: 468
  start-page: 67
  year: 2010
  ident: 10.1016/j.molcel.2018.06.005_bib13
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  doi: 10.1038/nature09523
  contributor:
    fullname: Garneau
– volume: 7
  start-page: 1968
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib42
  article-title: Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.037
  contributor:
    fullname: Yang
– volume: 102
  start-page: 5174
  year: 2005
  ident: 10.1016/j.molcel.2018.06.005_bib29
  article-title: The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0501140102
  contributor:
    fullname: Kwan
– volume: 351
  start-page: 84
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib40
  article-title: Rationally engineered Cas9 nucleases with improved specificity
  publication-title: Science
  doi: 10.1126/science.aad5227
  contributor:
    fullname: Slaymaker
– volume: 171
  start-page: 1495
  year: 2017
  ident: 10.1016/j.molcel.2018.06.005_bib31
  article-title: In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.025
  contributor:
    fullname: Liao
– volume: 558
  start-page: 515
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib2
  article-title: In vitro reconstitution and crystallization of Cas9 endonuclease bound to a guide RNA and a DNA target
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2015.02.008
  contributor:
    fullname: Anders
– volume: 54
  start-page: 234
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib4
  article-title: CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.011
  contributor:
    fullname: Barrangou
– volume: 13
  start-page: 563
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib9
  article-title: Comparison of Cas9 activators in multiple species
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3871
  contributor:
    fullname: Chavez
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.molcel.2018.06.005_bib11
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
  contributor:
    fullname: Cong
– volume: 4
  start-page: 1430
  year: 2013
  ident: 10.1016/j.molcel.2018.06.005_bib35
  article-title: Strong bias in the bacterial CRISPR elements that confer immunity to phage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2440
  contributor:
    fullname: Paez-Espino
– volume: 519
  start-page: 199
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib16
  article-title: Cas9 specifies functional viral targets during CRISPR-Cas adaptation
  publication-title: Nature
  doi: 10.1038/nature14245
  contributor:
    fullname: Heler
– volume: 34
  start-page: 933
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib3
  article-title: Applications of CRISPR technologies in research and beyond
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3659
  contributor:
    fullname: Barrangou
– volume: 315
  start-page: 1709
  year: 2007
  ident: 10.1016/j.molcel.2018.06.005_bib5
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1138140
  contributor:
    fullname: Barrangou
– volume: 514
  start-page: 633
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib14
  article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
  publication-title: Nature
  doi: 10.1038/nature13637
  contributor:
    fullname: Goldberg
– volume: 15
  start-page: 793
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib19
  article-title: Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-793
  contributor:
    fullname: Jin
– volume: 156
  start-page: 935
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib34
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
  contributor:
    fullname: Nishimasu
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.molcel.2018.06.005_bib20
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
  contributor:
    fullname: Jinek
– volume: 529
  start-page: 490
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib27
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
  doi: 10.1038/nature16526
  contributor:
    fullname: Kleinstiver
– volume: 12
  start-page: 1051
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib25
  article-title: Cas9 gRNA engineering for genome editing, activation and repression
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3580
  contributor:
    fullname: Kiani
– volume: 350
  start-page: 823
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib28
  article-title: Dynamics of CRISPR-Cas9 genome interrogation in living cells
  publication-title: Science
  doi: 10.1126/science.aac6572
  contributor:
    fullname: Knight
– volume: 34
  start-page: 695
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib36
  article-title: Analyzing CRISPR genome-editing experiments with CRISPResso
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3583
  contributor:
    fullname: Pinello
– volume: 2
  start-page: e00471
  year: 2013
  ident: 10.1016/j.molcel.2018.06.005_bib21
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
  doi: 10.7554/eLife.00471
  contributor:
    fullname: Jinek
– volume: 12
  start-page: 326
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib8
  article-title: Highly efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3312
  contributor:
    fullname: Chavez
– volume: 343
  start-page: 1247997
  year: 2014
  ident: 10.1016/j.molcel.2018.06.005_bib22
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science
  doi: 10.1126/science.1247997
  contributor:
    fullname: Jinek
– volume: 9
  start-page: e1003312
  year: 2013
  ident: 10.1016/j.molcel.2018.06.005_bib30
  article-title: The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003312
  contributor:
    fullname: Levin
– volume: 357
  start-page: 1420
  year: 2017
  ident: 10.1016/j.molcel.2018.06.005_bib23
  article-title: Kinetics of dCas9 target search in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.aah7084
  contributor:
    fullname: Jones
– volume: 74
  start-page: 4149
  year: 2008
  ident: 10.1016/j.molcel.2018.06.005_bib41
  article-title: In silico and in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of Enterococcus faecalis infections
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02371-07
  contributor:
    fullname: Uchiyama
– volume: 26
  start-page: 841
  year: 2010
  ident: 10.1016/j.molcel.2018.06.005_bib37
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
  contributor:
    fullname: Quinlan
– volume: 34
  start-page: 339
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib38
  article-title: Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3481
  contributor:
    fullname: Richardson
– volume: 13
  start-page: 660
  year: 1996
  ident: 10.1016/j.molcel.2018.06.005_bib32
  article-title: Asymmetric substitution patterns in the two DNA strands of bacteria
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a025626
  contributor:
    fullname: Lobry
– volume: 44
  start-page: 7997
  year: 2016
  ident: 10.1016/j.molcel.2018.06.005_bib39
  article-title: Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw685
  contributor:
    fullname: Shy
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.molcel.2018.06.005_bib33
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
  contributor:
    fullname: Mali
– volume: 7
  start-page: 43438
  year: 2017
  ident: 10.1016/j.molcel.2018.06.005_bib1
  article-title: Phage-host interactions in Streptococcus thermophilus: Genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array
  publication-title: Sci. Rep.
  doi: 10.1038/srep43438
  contributor:
    fullname: Achigar
– volume: 114
  start-page: 5461
  year: 2017
  ident: 10.1016/j.molcel.2018.06.005_bib6
  article-title: High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1700557114
  contributor:
    fullname: Boyle
– volume: 52
  start-page: 139
  year: 2007
  ident: 10.1016/j.molcel.2018.06.005_bib15
  article-title: 2-Step purification of the Ku DNA repair protein expressed in Escherichia coli
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2006.10.002
  contributor:
    fullname: Hanakahi
– volume: 31
  start-page: 827
  year: 2013
  ident: 10.1016/j.molcel.2018.06.005_bib18
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2647
  contributor:
    fullname: Hsu
– volume: 523
  start-page: 481
  year: 2015
  ident: 10.1016/j.molcel.2018.06.005_bib26
  article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities
  publication-title: Nature
  doi: 10.1038/nature14592
  contributor:
    fullname: Kleinstiver
SSID ssj0014589
Score 2.5933614
Snippet The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 42
SubjectTerms Animals
Bacteria - genetics
Bacteria - metabolism
Bacteria - virology
Bacteriophages - genetics
Bacteriophages - metabolism
Cas9
Cell Line
CRISPR
CRISPR-Associated Protein 9 - genetics
CRISPR-Associated Protein 9 - metabolism
DNA Breaks, Double-Stranded
DNA Repair
Gene Editing
genome editing
Mice
Mouse Embryonic Stem Cells - metabolism
phage biology
RNA polymerase
strand bias
transcription
Title Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks
URI https://dx.doi.org/10.1016/j.molcel.2018.06.005
https://www.ncbi.nlm.nih.gov/pubmed/29979968
https://search.proquest.com/docview/2066482751
https://pubmed.ncbi.nlm.nih.gov/PMC6063522
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf2ISReJr7pgMlIvFqtk9hJHtuu-wBaEDBU8RLZjq2Ftcm0dEj9A_i_uXOSagUkJB6d2I7lc3w_--5-R8gbnSdWcKcZHn_wtsowpXPJNFdCGZ0EKsdo5OlMnl1Eb-divkPGXSwMulW2e3-zp_vdun3Sb2ezf10U_c9oOw1iKWBRDqIojnfJPnKZw9LeH46-vnu_MSZEwmfCw_oMG3QRdN7Na1ktjEUbBG-IPDGP3d811J8I9HdHyjua6eQBOWghJR02o35Idmz5iNxrkkyuH5Ofk_LSm_npqGFmhrrnPipktaaqzOlULZf-toOe2rJaWjrJC3SGpj8KRT_NhuxjtVjj3VVt2dRn9oC-jot6UeWY4YhWjo5VnVKMVKEAyPXCMiS9ha6PZ0M6Alh6VT8hFyeTL-Mz1iZfYEYE6YoZGVqnUu1SDWfIhLvAhSGAEw36PeKBNFHsJJLLycgEIpFWu1CE1hor8wgwSviU7JVVaZ8TOhAGRC9T6ULAK4ZrZyw3JpYR1wPuTI-wbsKz64ZjI-ucz75njYAyFFDmffBEj8SdVLKttZKBGvhHy9edEDP4jdA2okpb3dYZstojI6rgPfKsEepmLKCxYzgWJvDdLXFvKiBF9_absrj0VN1wPESEe_jfI35B7mPJOwiLl2RvdXNrXwEMWumjdpkfkd3z-QhKs_H8w7dfsmwLUA
link.rule.ids 230,314,780,784,885,3506,27569,27924,27925,45663,45874
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSSuVuskdpJj2-3SwrZCsCv1ZtmOrQ20yYp2kfoD-N_MOElFAQmJa-w4lsfxfOOZ-YaQt6bInODeMDR_8LbKMm0KyQzXQluTRbrAbOT5Qk4vkvdLsTwi4y4XBsMq27O_OdPDad0-6ber2b8qy_5n9J1GqRSwKQdJkqY3yM1EZCkS6M-Wo70rAZ7lweWZpwy7d_lzIchrXa-sQw8Eb2g8sYrd3_XTn_jz9zDKX_TS6T1ytwWUdNjM-T45ctUDcqspMbl7SH5Mqsvg5KejhpcZ-s5CTsh2R3VV0Ller8NdB33nqnrt6KQoMRSafi81_bQYso_1aoc3VxvH5qGuB4x1Um5WdYH1jWjt6Vhvcop5KhTguFk5hpS3MPTJYkhHAEq_bh6Ri9PJ-XjK2tILzIoo3zIrY-d1bnxuwILMuI98HAM0MaDdEx5Jm6ReIrWcTGwkMumMj0XsnHWySAChxI_JcVVX7imhA2FB8DKXPga0Yrnx1nFrU5lwM-De9gjrFlxdNQwbqgs9-6IaASkUkAoReKJH0k4q6mCnKFAC_3jzTSdEBT8RekZ05errjUJOe-RDFbxHnjRC3c8F9HUKRmEG3z0Q974DEnQftlTlZSDqBuMQ8e2z_57xa3J7ej4_U2ezxYfn5A62hFBh8YIcb79du5cAiLbmVdjwPwGlNwpi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Bacterial+Immunity+and+Mammalian+Genome+Editing+via+RNA-Polymerase-Mediated+Dislodging+of+Cas9+from+Double-Strand+DNA+Breaks&rft.jtitle=Molecular+cell&rft.au=Clarke%2C+Ryan&rft.au=Heler%2C+Robert&rft.au=MacDougall%2C+Matthew+S.&rft.au=Yeo%2C+Nan+Cher&rft.date=2018-07-05&rft.issn=1097-2765&rft.volume=71&rft.issue=1&rft.spage=42&rft.epage=55.e8&rft_id=info:doi/10.1016%2Fj.molcel.2018.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2018_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon