Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach

Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to mea...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 22; no. 9; pp. 2504 - 2517
Main Authors Chinnadurai, Raghavan, Rajan, Devi, Qayed, Muna, Arafat, Dalia, Garcia, Marco, Liu, Yifei, Kugathasan, Subra, Anderson, Larry J., Gibson, Greg, Galipeau, Jacques
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.02.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. [Display omitted] •T cell suppression by MSCs correlates with cytokine and morphogen expression•MSC and responder PBMC interactions are bidirectional•MSC potency affects the secretome and correlates with T cell suppression•The matrix response of MSCs to PBMCs is replicated by IFNγ stimulation Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency.
AbstractList Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency.
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. : Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency. Keywords: mesenchymal stromal cells, secretome, transcriptome, interferon-γ, PBMCs, assay matrix
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. [Display omitted] •T cell suppression by MSCs correlates with cytokine and morphogen expression•MSC and responder PBMC interactions are bidirectional•MSC potency affects the secretome and correlates with T cell suppression•The matrix response of MSCs to PBMCs is replicated by IFNγ stimulation Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency.
Author Arafat, Dalia
Kugathasan, Subra
Rajan, Devi
Garcia, Marco
Liu, Yifei
Gibson, Greg
Galipeau, Jacques
Chinnadurai, Raghavan
Anderson, Larry J.
Qayed, Muna
AuthorAffiliation 5 Department of Statistics, University of Wisconsin – Madison, Madison, WI 53706, USA
2 Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
1 Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA
4 School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
3 Emory Healthcare, Atlanta, GA 30322, USA
AuthorAffiliation_xml – name: 2 Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
– name: 1 Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA
– name: 3 Emory Healthcare, Atlanta, GA 30322, USA
– name: 4 School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
– name: 5 Department of Statistics, University of Wisconsin – Madison, Madison, WI 53706, USA
Author_xml – sequence: 1
  givenname: Raghavan
  surname: Chinnadurai
  fullname: Chinnadurai, Raghavan
  organization: Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA
– sequence: 2
  givenname: Devi
  surname: Rajan
  fullname: Rajan, Devi
  organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
– sequence: 3
  givenname: Muna
  surname: Qayed
  fullname: Qayed, Muna
  organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
– sequence: 4
  givenname: Dalia
  surname: Arafat
  fullname: Arafat, Dalia
  organization: School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 5
  givenname: Marco
  surname: Garcia
  fullname: Garcia, Marco
  organization: Emory Healthcare, Atlanta, GA 30322, USA
– sequence: 6
  givenname: Yifei
  surname: Liu
  fullname: Liu, Yifei
  organization: Department of Statistics, University of Wisconsin – Madison, Madison, WI 53706, USA
– sequence: 7
  givenname: Subra
  surname: Kugathasan
  fullname: Kugathasan, Subra
  organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
– sequence: 8
  givenname: Larry J.
  surname: Anderson
  fullname: Anderson, Larry J.
  organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
– sequence: 9
  givenname: Greg
  surname: Gibson
  fullname: Gibson, Greg
  organization: School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 10
  givenname: Jacques
  surname: Galipeau
  fullname: Galipeau, Jacques
  email: jgalipeau@wisc.edu
  organization: Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29490284$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_oP0AoRy4bPI4d2xyQVisolVqBBD1wshzH3vUqiYPtrci_x8tuUcsBfBlrPp5XmnnPi5PRj6YoXgGqAEHzdltp0wczVRgBrxCuENTPijOMARaACTt59D8tLmPcovwaBCDIi-IUCyIQ5uSs-P7FJzPquVyOqp-ji6W35a2JObeZB9WXX1Pw-7gyfR_Lu-jGdanKlR9aN6rkg8u1ZYxqLm9VCu5nuZym4JXevCyeW9VHc3mMF8Xdxw_fVp8WN5-vrlfLm4WmWKSFJkBojYE2FmpRW0Y458KY1ipmO8aUaBgwDpQKIWqkiQWE24YwrsDiVtUXxfWB23m1lVNwgwqz9MrJ3wkf1lKF5HRvJCG4aTqqaltTYoXhLWdUd03GUMCCZtb7A2vatYPptBlTUP0T6NPK6DZy7e8l5ZQCsAx4cwQE_2NnYpKDi_lUvRqN30WJERKUoRrttV4_1voj8nCb3PDu0KCDjzEYK7VLKjm_l3a9BCT3XpBbefCC3HtBIiyzF_Iw-Wv4gf-fseMCTL7YvTNBRu2yF0zngtEpr9T9G_AL3LjO0A
CitedBy_id crossref_primary_10_1002_sctm_18_0115
crossref_primary_10_3389_fimmu_2020_01338
crossref_primary_10_17352_sscrt_000015
crossref_primary_10_1016_j_celrep_2020_01_047
crossref_primary_10_3389_fbioe_2022_981061
crossref_primary_10_1186_s12967_019_02136_7
crossref_primary_10_17352_sscrt_000014
crossref_primary_10_1002_bit_27974
crossref_primary_10_1126_sciadv_aba6884
crossref_primary_10_3390_vaccines11111631
crossref_primary_10_1016_j_xphs_2020_07_002
crossref_primary_10_1186_s13287_020_02121_8
crossref_primary_10_1155_2018_3038565
crossref_primary_10_1016_j_jcyt_2021_08_002
crossref_primary_10_3389_fcell_2022_819726
crossref_primary_10_1016_j_jcyt_2023_08_006
crossref_primary_10_1016_j_autrev_2021_102755
crossref_primary_10_1186_s13287_020_01660_4
crossref_primary_10_1002_stem_3077
crossref_primary_10_1002_stem_3196
crossref_primary_10_1093_stmcls_sxae040
crossref_primary_10_1186_s13287_020_02107_6
crossref_primary_10_1016_j_stem_2021_09_006
crossref_primary_10_3389_fimmu_2023_1225047
crossref_primary_10_1016_j_jcyt_2025_01_009
crossref_primary_10_1016_j_jcyt_2020_11_007
crossref_primary_10_3389_fimmu_2022_917790
crossref_primary_10_1182_bloodadvances_2020001711
crossref_primary_10_1016_j_jcyt_2023_11_006
crossref_primary_10_1186_s40001_023_01008_7
crossref_primary_10_3389_fcell_2024_1400347
crossref_primary_10_1002_stem_3380
crossref_primary_10_1007_s12015_021_10244_5
crossref_primary_10_3389_fncel_2022_862673
crossref_primary_10_1016_j_jpba_2020_113101
crossref_primary_10_3390_cells9051145
crossref_primary_10_1002_stem_3028
crossref_primary_10_1016_j_jcyt_2019_08_002
crossref_primary_10_1007_s12178_019_09578_y
crossref_primary_10_3389_fbioe_2019_00075
crossref_primary_10_3390_ijms20122853
crossref_primary_10_1016_j_jcyt_2022_01_006
crossref_primary_10_1016_j_omtm_2019_05_004
crossref_primary_10_1016_j_jim_2021_113000
crossref_primary_10_1098_rsif_2019_0815
crossref_primary_10_3390_cells12060850
crossref_primary_10_1002_amp2_10106
crossref_primary_10_3390_cells11233738
crossref_primary_10_1186_s13287_021_02607_z
crossref_primary_10_1186_s13287_022_02876_2
crossref_primary_10_3390_cells11152263
crossref_primary_10_3389_fimmu_2022_959658
crossref_primary_10_1016_j_jcyt_2018_10_008
crossref_primary_10_1093_stcltm_szac050
crossref_primary_10_3390_cells11071210
crossref_primary_10_1002_adbi_202300094
crossref_primary_10_3390_pharmaceutics15071911
crossref_primary_10_1007_s40778_020_00176_0
crossref_primary_10_1038_s41598_021_91870_4
crossref_primary_10_3389_fcell_2021_648472
crossref_primary_10_3389_fimmu_2019_01645
crossref_primary_10_1177_09636897211039441
crossref_primary_10_3389_fimmu_2023_1214098
crossref_primary_10_1186_s13287_024_03786_1
crossref_primary_10_1016_j_actbio_2021_03_069
crossref_primary_10_1016_j_jcyt_2018_10_014
crossref_primary_10_1155_2022_9097530
crossref_primary_10_3390_ijms25179647
crossref_primary_10_1093_intbio_zyz014
crossref_primary_10_3389_fimmu_2021_626755
crossref_primary_10_1002_stem_3035
crossref_primary_10_1134_S2079086422080060
crossref_primary_10_1038_s41598_022_07569_7
crossref_primary_10_12688_f1000research_21862_1
crossref_primary_10_1186_s12929_021_00725_7
crossref_primary_10_1002_advs_202204786
crossref_primary_10_1186_s12967_021_02822_5
crossref_primary_10_3390_ijms24043376
crossref_primary_10_1093_stmcls_sxac064
crossref_primary_10_1002_adhm_202101995
crossref_primary_10_1093_stcltm_szab005
crossref_primary_10_3390_pharmaceutics14010011
crossref_primary_10_1038_s41598_021_85905_z
crossref_primary_10_1111_trf_15252
crossref_primary_10_1186_s12967_024_05179_7
crossref_primary_10_1016_j_omtm_2024_101316
crossref_primary_10_1021_acsbiomaterials_9b00008
crossref_primary_10_1007_s12015_019_09898_z
crossref_primary_10_1016_j_biomaterials_2022_121826
crossref_primary_10_1016_j_actbio_2021_07_075
crossref_primary_10_3389_fbioe_2022_942750
crossref_primary_10_1016_j_jcyt_2021_11_009
crossref_primary_10_3390_ijms24054435
crossref_primary_10_3390_biom9110717
crossref_primary_10_3389_fncel_2020_584277
crossref_primary_10_1007_s40778_022_00212_1
crossref_primary_10_3389_fimmu_2021_738312
crossref_primary_10_1155_2022_1613636
crossref_primary_10_3389_fimmu_2019_02474
crossref_primary_10_1016_j_stem_2018_05_004
crossref_primary_10_3389_fimmu_2023_1186224
crossref_primary_10_1016_S2665_9913_21_00326_X
crossref_primary_10_3389_fimmu_2023_1192636
crossref_primary_10_1007_s10439_019_02400_3
crossref_primary_10_1016_j_heliyon_2023_e15946
crossref_primary_10_1016_j_jcyt_2024_03_486
crossref_primary_10_1038_s41551_018_0325_8
crossref_primary_10_1016_j_ejphar_2024_176719
crossref_primary_10_1016_j_jcyt_2024_03_001
crossref_primary_10_3389_fonc_2020_01632
crossref_primary_10_3390_ijms21030708
crossref_primary_10_1016_j_reth_2020_10_004
crossref_primary_10_3390_ijms241713258
crossref_primary_10_1155_2020_8833725
crossref_primary_10_3389_fcell_2020_00316
crossref_primary_10_3389_fphys_2019_00412
crossref_primary_10_3390_bioengineering9120805
crossref_primary_10_1002_sctm_18_0183
crossref_primary_10_1186_s13287_023_03594_z
crossref_primary_10_3389_fimmu_2022_972095
crossref_primary_10_1093_stcltm_szad010
crossref_primary_10_3389_fcell_2022_867426
crossref_primary_10_1093_stmcls_sxad050
crossref_primary_10_3390_biology12050725
crossref_primary_10_3389_fcell_2020_600160
crossref_primary_10_1186_s13287_018_1059_y
crossref_primary_10_1016_j_coche_2018_11_003
crossref_primary_10_3390_cells13060484
crossref_primary_10_1007_s10616_022_00541_3
crossref_primary_10_1186_s13287_024_03677_5
Cites_doi 10.1016/j.stem.2014.01.013
10.1002/stem.1400
10.1016/j.it.2011.11.004
10.1038/mt.2015.67
10.1089/scd.2015.0329
10.1038/cmi.2012.40
10.1016/j.biomaterials.2013.06.050
10.1016/j.jcyt.2014.10.002
10.1016/j.jcyt.2015.07.010
10.1016/j.jcyt.2017.03.076
10.1016/j.bbmt.2015.01.014
10.1007/978-1-4939-3584-0_20
10.1111/apt.13717
10.1186/scrt214
10.1007/978-3-319-45457-3_7
10.1016/j.jcyt.2016.11.008
10.1002/stem.1654
10.1089/scd.2013.0591
10.1073/pnas.1522905113
10.1016/j.jcyt.2014.06.008
10.1002/stem.2415
10.1016/j.jcyt.2013.02.010
10.1016/j.jcyt.2015.07.008
10.1002/stem.2580
10.1186/scrt198
10.5966/sctm.2012-0099
10.1016/j.stem.2013.09.006
10.1080/14653240600855905
10.1007/978-1-4939-3584-0_19
10.1016/j.jcyt.2014.12.008
10.1016/j.jcyt.2015.08.008
10.3109/14653249.2011.623691
10.1073/pnas.1617933114
10.1111/trf.13569
10.1038/srep26463
10.1016/j.jcyt.2014.10.004
10.1002/stem.1729
10.1002/stem.2528
10.5966/sctm.2014-0268
10.1016/j.jcyt.2014.10.018
10.1016/j.jcyt.2017.04.005
10.1016/j.stem.2012.05.015
10.4049/jimmunol.1301828
10.1016/j.jcyt.2015.11.008
10.1016/j.jcyt.2016.10.007
10.1186/s13287-017-0512-7
10.1038/nm.3028
10.1371/journal.pone.0165466
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2018.02.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 2517
ExternalDocumentID oai_doaj_org_article_44266d5a3f354f9e8b875cd62ba51295
PMC5855117
29490284
10_1016_j_celrep_2018_02_013
S2211124718301815
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: KL2 TR000455
– fundername: NIDDK NIH HHS
  grantid: R01 DK109508
– fundername: NCATS NIH HHS
  grantid: KL2 TR002381
– fundername: NCATS NIH HHS
  grantid: UL1 TR002378
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-c414532156f1393f748889eebfa7fd77a96717815599930c4f102b6478a1f2ba3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Aug 21 13:37:38 EDT 2025
Fri Jul 11 16:58:23 EDT 2025
Thu Apr 03 07:06:12 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
Tue Jul 01 02:58:54 EDT 2025
Wed May 17 02:14:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords interferon-γ
assay matrix
secretome
PBMCs
transcriptome
mesenchymal stromal cells
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-c414532156f1393f748889eebfa7fd77a96717815599930c4f102b6478a1f2ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/44266d5a3f354f9e8b875cd62ba51295
PMID 29490284
PQID 2009570305
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_44266d5a3f354f9e8b875cd62ba51295
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5855117
proquest_miscellaneous_2009570305
pubmed_primary_29490284
crossref_citationtrail_10_1016_j_celrep_2018_02_013
crossref_primary_10_1016_j_celrep_2018_02_013
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-27
PublicationDateYYYYMMDD 2018-02-27
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bárcia, Santos, Teixeira, Filipe, Pereira, Ministro, Água-Doce, Carvalheiro, Gaspar, Miranda (bib1) 2017; 19
Shi, Su, Roberts, Shou, Rabson, Ren (bib45) 2012; 33
Loisel, Dulong, Ménard, Renoud, Meziere, Isabelle, Latour, Bescher, Pedeux, Bertheuil (bib30) 2017; 35
Krampera, Galipeau, Shi, Tarte, Sensebe (bib29) 2013; 15
Mendicino, Bailey, Wonnacott, Puri, Bauer (bib33) 2014; 14
Chinnadurai, Copland, Garcia, Petersen, Lewis, Waller, Kirk, Galipeau (bib9) 2016; 34
Ménard, Tarte (bib32) 2013; 4
Moll, Geißler, Catar, Ignatowicz, Hoogduijn, Strunk, Bieback, Ringdén (bib35) 2016; 951
Pollock, Sumstad, Kadidlo, McKenna, Hubel (bib38) 2015; 17
Quimby, Webb, Habenicht, Dow (bib40) 2013; 4
Kadekar, Rangole, Kale, Limaye (bib25) 2016; 11
Keating (bib26) 2012; 10
Deans (bib14) 2015; 17
Bianco, Cao, Frenette, Mao, Robey, Simmons, Wang (bib3) 2013; 19
Salem, Miner, Hensel, Battiwalla, Keyvanfar, Stroncek, Gee, Hanley, Bollard, Ito, Barrett (bib43) 2015; 17
Prockop (bib39) 2013; 31
Bernardo, Fibbe (bib2) 2013; 13
Galipeau, Krampera, Barrett, Dazzi, Deans, DeBruijn, Dominici, Fibbe, Gee, Gimble (bib21) 2016; 18
Radrizzani, Soncin, Lo Cicero, Andriolo, Bolis, Turchetto (bib42) 2016; 1416
Dhere, Copland, Garcia, Chiang, Chinnadurai, Prasad, Galipeau, Kugathasan (bib16) 2016; 44
Dominici, Le Blanc, Mueller, Slaper-Cortenbach, Marini, Krause, Deans, Keating, Prockop, Horwitz (bib17) 2006; 8
Nold, Hackstein, Riedlinger, Kasper, Neumann, Mernberger, Fölsch, Schmitt, Fuchs-Winkelmann, Barckhausen (bib36) 2015; 17
Pogozhykh, Pogozhykh, Prokopyuk, Kuleshova, Goltsev, Blasczyk, Mueller (bib37) 2017; 8
Bloom, Centanni, Bhatia, Emler, Drier, Leverson, McKenna, Gee, Lindblad, Hei, Hematti (bib4) 2015; 17
Ko, Lee, Jeong, Kim, Wee, Yoon, Choi, Prockop, Oh (bib28) 2016; 113
François, Copland, Yuan, Romieu-Mourez, Waller, Galipeau (bib19) 2012; 14
Yun, Park, Lee, Ko, Kim, Wee, Reger, Gregory, Choi, Fulcher (bib48) 2017; 19
Chinnadurai, Copland, Ng, Garcia, Prasad, Arafat, Gibson, Kugathasan, Galipeau (bib8) 2015; 23
Radrizzani, Soncin, Bolis, Lo Cicero, Andriolo, Turchetto (bib41) 2016; 1416
Hematti (bib23) 2016; 56
Viswanathan, Keating, Deans, Hematti, Prockop, Stroncek, Stacey, Weiss, Mason, Rao (bib47) 2014; 23
Gramlich, Burand, Brown, Deutsch, Kuehn, Ankrum (bib22) 2016; 6
Chabot, Tremblay, Paré, Bazin, Loubaki (bib6) 2017; 19
Galipeau, Krampera (bib20) 2015; 17
Copland, Garcia, Waller, Roback, Galipeau (bib10) 2013; 34
Fan, Zhao, Liu, Liu, Gong, Liu, Yang, Wang, Hou (bib18) 2012; 9
Moll, Alm, Davies, von Bahr, Heldring, Stenbeck-Funke, Hamad, Hinsch, Ignatowicz, Locke (bib34) 2014; 32
Chinnadurai, Copland, Patel, Galipeau (bib7) 2014; 192
Luetzkendorf, Nerger, Hering, Moegel, Hoffmann, Hoefers, Mueller-Tidow, Mueller (bib31) 2015; 17
Hoogduijn, de Witte, Luk, van den Hout-van Vroonhoven, Ignatowicz, Catar, Strini, Korevaar, van IJcken, Betjes (bib24) 2016; 25
Klinker, Marklein, Lo Surdo, Wei, Bauer (bib27) 2017; 114
Tanavde, Vaz, Rao, Vemuri, Pochampally (bib46) 2015; 17
Copland, Qayed, Garcia, Galipeau, Waller (bib11) 2015; 21
Cruz, Borg, Goodwin, Sokocevic, Wagner, McKenna, Rocco, Weiss (bib12) 2015; 4
Sepúlveda, Tomé, Fernández, Delgado, Campisi, Bernad, González (bib44) 2014; 32
Deskins, Bastakoty, Saraswati, Shinar, Holt, Young (bib15) 2013; 2
Burand, Gramlich, Brown, Ankrum (bib5) 2017; 35
de Wolf, van de Bovenkamp, Hoefnagel (bib13) 2017; 19
Krampera (10.1016/j.celrep.2018.02.013_bib29) 2013; 15
Viswanathan (10.1016/j.celrep.2018.02.013_bib47) 2014; 23
Yun (10.1016/j.celrep.2018.02.013_bib48) 2017; 19
Dhere (10.1016/j.celrep.2018.02.013_bib16) 2016; 44
Burand (10.1016/j.celrep.2018.02.013_bib5) 2017; 35
François (10.1016/j.celrep.2018.02.013_bib19) 2012; 14
Nold (10.1016/j.celrep.2018.02.013_bib36) 2015; 17
Bianco (10.1016/j.celrep.2018.02.013_bib3) 2013; 19
Radrizzani (10.1016/j.celrep.2018.02.013_bib41) 2016; 1416
Bernardo (10.1016/j.celrep.2018.02.013_bib2) 2013; 13
Cruz (10.1016/j.celrep.2018.02.013_bib12) 2015; 4
Radrizzani (10.1016/j.celrep.2018.02.013_bib42) 2016; 1416
Hoogduijn (10.1016/j.celrep.2018.02.013_bib24) 2016; 25
Klinker (10.1016/j.celrep.2018.02.013_bib27) 2017; 114
Hematti (10.1016/j.celrep.2018.02.013_bib23) 2016; 56
Chabot (10.1016/j.celrep.2018.02.013_bib6) 2017; 19
Copland (10.1016/j.celrep.2018.02.013_bib10) 2013; 34
Galipeau (10.1016/j.celrep.2018.02.013_bib20) 2015; 17
Shi (10.1016/j.celrep.2018.02.013_bib45) 2012; 33
Luetzkendorf (10.1016/j.celrep.2018.02.013_bib31) 2015; 17
Mendicino (10.1016/j.celrep.2018.02.013_bib33) 2014; 14
Gramlich (10.1016/j.celrep.2018.02.013_bib22) 2016; 6
Moll (10.1016/j.celrep.2018.02.013_bib34) 2014; 32
Galipeau (10.1016/j.celrep.2018.02.013_bib21) 2016; 18
Kadekar (10.1016/j.celrep.2018.02.013_bib25) 2016; 11
Sepúlveda (10.1016/j.celrep.2018.02.013_bib44) 2014; 32
Moll (10.1016/j.celrep.2018.02.013_bib35) 2016; 951
Prockop (10.1016/j.celrep.2018.02.013_bib39) 2013; 31
Ko (10.1016/j.celrep.2018.02.013_bib28) 2016; 113
Deskins (10.1016/j.celrep.2018.02.013_bib15) 2013; 2
de Wolf (10.1016/j.celrep.2018.02.013_bib13) 2017; 19
Pollock (10.1016/j.celrep.2018.02.013_bib38) 2015; 17
Pogozhykh (10.1016/j.celrep.2018.02.013_bib37) 2017; 8
Chinnadurai (10.1016/j.celrep.2018.02.013_bib9) 2016; 34
Chinnadurai (10.1016/j.celrep.2018.02.013_bib7) 2014; 192
Quimby (10.1016/j.celrep.2018.02.013_bib40) 2013; 4
Keating (10.1016/j.celrep.2018.02.013_bib26) 2012; 10
Bárcia (10.1016/j.celrep.2018.02.013_bib1) 2017; 19
Fan (10.1016/j.celrep.2018.02.013_bib18) 2012; 9
Dominici (10.1016/j.celrep.2018.02.013_bib17) 2006; 8
Salem (10.1016/j.celrep.2018.02.013_bib43) 2015; 17
Chinnadurai (10.1016/j.celrep.2018.02.013_bib8) 2015; 23
Loisel (10.1016/j.celrep.2018.02.013_bib30) 2017; 35
Bloom (10.1016/j.celrep.2018.02.013_bib4) 2015; 17
Copland (10.1016/j.celrep.2018.02.013_bib11) 2015; 21
Ménard (10.1016/j.celrep.2018.02.013_bib32) 2013; 4
Deans (10.1016/j.celrep.2018.02.013_bib14) 2015; 17
Tanavde (10.1016/j.celrep.2018.02.013_bib46) 2015; 17
References_xml – volume: 32
  start-page: 2430
  year: 2014
  end-page: 2442
  ident: bib34
  article-title: Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties?
  publication-title: Stem Cells
– volume: 10
  start-page: 709
  year: 2012
  end-page: 716
  ident: bib26
  article-title: Mesenchymal stromal cells: new directions
  publication-title: Cell Stem Cell
– volume: 1416
  start-page: 339
  year: 2016
  end-page: 356
  ident: bib41
  article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Validation Strategy
  publication-title: Methods Mol. Biol.
– volume: 34
  start-page: 7840
  year: 2013
  end-page: 7850
  ident: bib10
  article-title: The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy
  publication-title: Biomaterials
– volume: 17
  start-page: 38
  year: 2015
  end-page: 45
  ident: bib38
  article-title: Clinical mesenchymal stromal cell products undergo functional changes in response to freezing
  publication-title: Cytotherapy
– volume: 17
  start-page: 1675
  year: 2015
  end-page: 1686
  ident: bib43
  article-title: Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency
  publication-title: Cytotherapy
– volume: 19
  start-page: 28
  year: 2017
  end-page: 35
  ident: bib48
  article-title: Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury
  publication-title: Cytotherapy
– volume: 32
  start-page: 1865
  year: 2014
  end-page: 1877
  ident: bib44
  article-title: Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model
  publication-title: Stem Cells
– volume: 19
  start-page: 784
  year: 2017
  end-page: 797
  ident: bib13
  article-title: Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy
  publication-title: Cytotherapy
– volume: 21
  start-page: 934
  year: 2015
  end-page: 940
  ident: bib11
  article-title: Bone marrow mesenchymal stromal cells from patients with acute and chronic graft-versus-host disease deploy normal phenotype, differentiation plasticity, and immune-suppressive activity
  publication-title: Biol Blood Marrow Transplant.
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  ident: bib17
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– volume: 31
  start-page: 2042
  year: 2013
  end-page: 2046
  ident: bib39
  article-title: Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation
  publication-title: Stem Cells
– volume: 23
  start-page: 1157
  year: 2014
  end-page: 1167
  ident: bib47
  article-title: Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation
  publication-title: Stem Cells Dev.
– volume: 18
  start-page: 151
  year: 2016
  end-page: 159
  ident: bib21
  article-title: International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials
  publication-title: Cytotherapy
– volume: 114
  start-page: E2598
  year: 2017
  end-page: E2607
  ident: bib27
  article-title: Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 951
  start-page: 77
  year: 2016
  end-page: 98
  ident: bib35
  article-title: Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?
  publication-title: Adv. Exp. Med. Biol.
– volume: 11
  start-page: e0165466
  year: 2016
  ident: bib25
  article-title: Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells
  publication-title: PLoS ONE
– volume: 4
  start-page: 615
  year: 2015
  end-page: 624
  ident: bib12
  article-title: Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice
  publication-title: Stem Cells Transl. Med.
– volume: 17
  start-page: 125
  year: 2015
  end-page: 127
  ident: bib20
  article-title: The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria
  publication-title: Cytotherapy
– volume: 17
  start-page: 152
  year: 2015
  end-page: 162
  ident: bib36
  article-title: Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation
  publication-title: Cytotherapy
– volume: 13
  start-page: 392
  year: 2013
  end-page: 402
  ident: bib2
  article-title: Mesenchymal stromal cells: sensors and switchers of inflammation
  publication-title: Cell Stem Cell
– volume: 17
  start-page: 140
  year: 2015
  end-page: 151
  ident: bib4
  article-title: A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression
  publication-title: Cytotherapy
– volume: 19
  start-page: 978
  year: 2017
  end-page: 989
  ident: bib6
  article-title: Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality
  publication-title: Cytotherapy
– volume: 35
  start-page: 1437
  year: 2017
  end-page: 1439
  ident: bib5
  article-title: Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent
  publication-title: Stem Cells
– volume: 33
  start-page: 136
  year: 2012
  end-page: 143
  ident: bib45
  article-title: How mesenchymal stem cells interact with tissue immune responses
  publication-title: Trends Immunol.
– volume: 19
  start-page: 35
  year: 2013
  end-page: 42
  ident: bib3
  article-title: The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine
  publication-title: Nat. Med.
– volume: 15
  start-page: 1054
  year: 2013
  end-page: 1061
  ident: bib29
  article-title: Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal
  publication-title: Cytotherapy
– volume: 25
  start-page: 586
  year: 2016
  end-page: 597
  ident: bib24
  article-title: Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression
  publication-title: Stem Cells Dev.
– volume: 113
  start-page: 158
  year: 2016
  end-page: 163
  ident: bib28
  article-title: Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 360
  year: 2017
  end-page: 370
  ident: bib1
  article-title: Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing
  publication-title: Cytotherapy
– volume: 17
  start-page: 1167
  year: 2015
  end-page: 1168
  ident: bib14
  article-title: Towards the creation of a standard MSC line as a calibration tool
  publication-title: Cytotherapy
– volume: 1416
  start-page: 313
  year: 2016
  end-page: 337
  ident: bib42
  article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Methods for ATMP Release
  publication-title: Methods Mol. Biol.
– volume: 4
  start-page: 64
  year: 2013
  ident: bib32
  article-title: Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application
  publication-title: Stem Cell Res. Ther.
– volume: 17
  start-page: 1169
  year: 2015
  end-page: 1177
  ident: bib46
  article-title: Research using Mesenchymal Stem/Stromal Cells: quality metric towards developing a reference material
  publication-title: Cytotherapy
– volume: 14
  start-page: 141
  year: 2014
  end-page: 145
  ident: bib33
  article-title: MSC-based product characterization for clinical trials: an FDA perspective
  publication-title: Cell Stem Cell
– volume: 44
  start-page: 471
  year: 2016
  end-page: 481
  ident: bib16
  article-title: The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses
  publication-title: Aliment. Pharmacol. Ther.
– volume: 35
  start-page: 1431
  year: 2017
  end-page: 1436
  ident: bib30
  article-title: Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence
  publication-title: Stem Cells
– volume: 56
  start-page: 32S
  year: 2016
  end-page: 35S
  ident: bib23
  article-title: Characterization of mesenchymal stromal cells: potency assay development
  publication-title: Transfusion
– volume: 2
  start-page: 151
  year: 2013
  end-page: 158
  ident: bib15
  article-title: Human mesenchymal stromal cells: identifying assays to predict potency for therapeutic selection
  publication-title: Stem Cells Transl. Med.
– volume: 34
  start-page: 2429
  year: 2016
  end-page: 2442
  ident: bib9
  article-title: Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing
  publication-title: Stem Cells
– volume: 4
  start-page: 48
  year: 2013
  ident: bib40
  article-title: Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies
  publication-title: Stem Cell Res. Ther.
– volume: 17
  start-page: 186
  year: 2015
  end-page: 198
  ident: bib31
  article-title: Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation
  publication-title: Cytotherapy
– volume: 14
  start-page: 147
  year: 2012
  end-page: 152
  ident: bib19
  article-title: Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing
  publication-title: Cytotherapy
– volume: 6
  start-page: 26463
  year: 2016
  ident: bib22
  article-title: Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy
  publication-title: Sci. Rep.
– volume: 9
  start-page: 473
  year: 2012
  end-page: 481
  ident: bib18
  article-title: Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis
  publication-title: Cell. Mol. Immunol.
– volume: 192
  start-page: 1491
  year: 2014
  end-page: 1501
  ident: bib7
  article-title: IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells
  publication-title: J. Immunol.
– volume: 23
  start-page: 1248
  year: 2015
  end-page: 1261
  ident: bib8
  article-title: Mesenchymal stromal cells derived from Crohn’s patients deploy indoleamine 2,3-dioxygenase-mediated immune suppression, independent of autophagy
  publication-title: Mol Ther.
– volume: 8
  start-page: 66
  year: 2017
  ident: bib37
  article-title: Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells
  publication-title: Stem Cell Res. Ther.
– volume: 14
  start-page: 141
  year: 2014
  ident: 10.1016/j.celrep.2018.02.013_bib33
  article-title: MSC-based product characterization for clinical trials: an FDA perspective
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.013
– volume: 31
  start-page: 2042
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib39
  article-title: Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation
  publication-title: Stem Cells
  doi: 10.1002/stem.1400
– volume: 33
  start-page: 136
  year: 2012
  ident: 10.1016/j.celrep.2018.02.013_bib45
  article-title: How mesenchymal stem cells interact with tissue immune responses
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2011.11.004
– volume: 23
  start-page: 1248
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib8
  article-title: Mesenchymal stromal cells derived from Crohn’s patients deploy indoleamine 2,3-dioxygenase-mediated immune suppression, independent of autophagy
  publication-title: Mol Ther.
  doi: 10.1038/mt.2015.67
– volume: 25
  start-page: 586
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib24
  article-title: Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2015.0329
– volume: 9
  start-page: 473
  year: 2012
  ident: 10.1016/j.celrep.2018.02.013_bib18
  article-title: Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/cmi.2012.40
– volume: 34
  start-page: 7840
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib10
  article-title: The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.06.050
– volume: 17
  start-page: 140
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib4
  article-title: A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.10.002
– volume: 17
  start-page: 1167
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib14
  article-title: Towards the creation of a standard MSC line as a calibration tool
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2015.07.010
– volume: 19
  start-page: 784
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib13
  article-title: Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2017.03.076
– volume: 21
  start-page: 934
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib11
  article-title: Bone marrow mesenchymal stromal cells from patients with acute and chronic graft-versus-host disease deploy normal phenotype, differentiation plasticity, and immune-suppressive activity
  publication-title: Biol Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2015.01.014
– volume: 1416
  start-page: 339
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib41
  article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Validation Strategy
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3584-0_20
– volume: 44
  start-page: 471
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib16
  article-title: The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.13717
– volume: 4
  start-page: 64
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib32
  article-title: Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/scrt214
– volume: 951
  start-page: 77
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib35
  article-title: Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-45457-3_7
– volume: 19
  start-page: 360
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib1
  article-title: Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2016.11.008
– volume: 32
  start-page: 1865
  year: 2014
  ident: 10.1016/j.celrep.2018.02.013_bib44
  article-title: Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model
  publication-title: Stem Cells
  doi: 10.1002/stem.1654
– volume: 23
  start-page: 1157
  year: 2014
  ident: 10.1016/j.celrep.2018.02.013_bib47
  article-title: Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2013.0591
– volume: 113
  start-page: 158
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib28
  article-title: Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1522905113
– volume: 17
  start-page: 38
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib38
  article-title: Clinical mesenchymal stromal cell products undergo functional changes in response to freezing
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.06.008
– volume: 34
  start-page: 2429
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib9
  article-title: Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing
  publication-title: Stem Cells
  doi: 10.1002/stem.2415
– volume: 15
  start-page: 1054
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib29
  article-title: Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2013.02.010
– volume: 17
  start-page: 1169
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib46
  article-title: Research using Mesenchymal Stem/Stromal Cells: quality metric towards developing a reference material
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2015.07.008
– volume: 35
  start-page: 1431
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib30
  article-title: Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence
  publication-title: Stem Cells
  doi: 10.1002/stem.2580
– volume: 4
  start-page: 48
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib40
  article-title: Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/scrt198
– volume: 2
  start-page: 151
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib15
  article-title: Human mesenchymal stromal cells: identifying assays to predict potency for therapeutic selection
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2012-0099
– volume: 13
  start-page: 392
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib2
  article-title: Mesenchymal stromal cells: sensors and switchers of inflammation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.09.006
– volume: 8
  start-page: 315
  year: 2006
  ident: 10.1016/j.celrep.2018.02.013_bib17
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
  doi: 10.1080/14653240600855905
– volume: 1416
  start-page: 313
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib42
  article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Methods for ATMP Release
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3584-0_19
– volume: 17
  start-page: 125
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib20
  article-title: The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.12.008
– volume: 17
  start-page: 1675
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib43
  article-title: Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2015.08.008
– volume: 14
  start-page: 147
  year: 2012
  ident: 10.1016/j.celrep.2018.02.013_bib19
  article-title: Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing
  publication-title: Cytotherapy
  doi: 10.3109/14653249.2011.623691
– volume: 114
  start-page: E2598
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib27
  article-title: Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1617933114
– volume: 56
  start-page: 32S
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib23
  article-title: Characterization of mesenchymal stromal cells: potency assay development
  publication-title: Transfusion
  doi: 10.1111/trf.13569
– volume: 6
  start-page: 26463
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib22
  article-title: Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy
  publication-title: Sci. Rep.
  doi: 10.1038/srep26463
– volume: 17
  start-page: 152
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib36
  article-title: Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.10.004
– volume: 32
  start-page: 2430
  year: 2014
  ident: 10.1016/j.celrep.2018.02.013_bib34
  article-title: Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties?
  publication-title: Stem Cells
  doi: 10.1002/stem.1729
– volume: 35
  start-page: 1437
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib5
  article-title: Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent
  publication-title: Stem Cells
  doi: 10.1002/stem.2528
– volume: 4
  start-page: 615
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib12
  article-title: Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2014-0268
– volume: 17
  start-page: 186
  year: 2015
  ident: 10.1016/j.celrep.2018.02.013_bib31
  article-title: Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.10.018
– volume: 19
  start-page: 978
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib6
  article-title: Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2017.04.005
– volume: 10
  start-page: 709
  year: 2012
  ident: 10.1016/j.celrep.2018.02.013_bib26
  article-title: Mesenchymal stromal cells: new directions
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.015
– volume: 192
  start-page: 1491
  year: 2014
  ident: 10.1016/j.celrep.2018.02.013_bib7
  article-title: IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1301828
– volume: 18
  start-page: 151
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib21
  article-title: International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2015.11.008
– volume: 19
  start-page: 28
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib48
  article-title: Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2016.10.007
– volume: 8
  start-page: 66
  year: 2017
  ident: 10.1016/j.celrep.2018.02.013_bib37
  article-title: Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-017-0512-7
– volume: 19
  start-page: 35
  year: 2013
  ident: 10.1016/j.celrep.2018.02.013_bib3
  article-title: The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine
  publication-title: Nat. Med.
  doi: 10.1038/nm.3028
– volume: 11
  start-page: e0165466
  year: 2016
  ident: 10.1016/j.celrep.2018.02.013_bib25
  article-title: Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0165466
SSID ssj0000601194
Score 2.5480042
Snippet Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2504
SubjectTerms assay matrix
Cell Communication - drug effects
Cell Proliferation - drug effects
Coculture Techniques
Cytokines - metabolism
Humans
Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism
Interferon-gamma - pharmacology
interferon-γ
Leukocytes, Mononuclear - cytology
Leukocytes, Mononuclear - drug effects
Leukocytes, Mononuclear - metabolism
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
mesenchymal stromal cells
PBMCs
secretome
T-Lymphocytes - cytology
T-Lymphocytes - drug effects
transcriptome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA5FEPoiaqueWkmhr0t3N8nu5lGlIoUrhVawTyHJJnhy7sr9AO-_dybZPW714V76dHC3Py6ZSb5vyMw3hHxzJtXMGLAAkzoBhMgSzVKbeAchEECQrQRWI49_Fbd3_Oe9uN9o9YU5YVEeOE7cd44QUgvNPBPcS1cZYNi2LnKjEauCeilg3kYwFfdg1DLDI-U8x5ytnJd93VxI7rJuOnMoV5lVQbIzYwNcCvL9A3h6Tz_fZlFuwNLNPtnr-CS9jOM4IB9cc0h2Y4fJ1Sfy73eLpHhFe_ER2no6xooj-7B6ghv_LGYtfl676XROQwIB1RR2CYiYMR6f4MPnc72iYxTzf6GXnQj5Z3J38-Pv9W3SdVNIrMjlIrE844IBwhceWB_zJSzdSjpnvC59XZZaFhDaVXhMCZwltdwD9zBYiqozD7PNjshO0zbuhFAn0rqyXAhWS269NpLJ2ojK2NoXdZqOCOvnUtlOahw7XkxVn1P2qKIFFFpApbkCC4xIsr7rOUptbLn-Cs20vhaFssMX4D6qcx-1zX1GpOyNrDrOEbkEPGqy5fVfe59QsCTxnEU3rl3OsbOnFGEnHZHj6CPrP5lLjno5HN478J7BKIa_NJOHIPsNgR2w4_L0fwz7jHzEoYTa_PKc7CxmS_cF2NXCXISF9ApHdiAi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBalUNjL6NZtTdcVFfZqYluSbT22oaUUUgpdIXsSkiytLqkdkhSWf7872Q5191DoU4gj2bLvdPddfPcdIT-diTUzBiTApI7AQySRZrGNvIMQCFyQLQRWI09vsqt7fj0Tsx0y6WthMK2ys_2tTQ_Wujsy7p7meFFV47sUYhfwTmBcGbJOYaE540Uo4pudb_9nQb6RJPRDxPERTugr6EKal3XzpUPiyqQI5J0JG3ioQOQ_cFT_A9HX-ZQvHNTlPvnYIUt61i7-E9lx9Wey1_aa3ByQ37cNwuMN7WlIaOPpFGuP7MPmCSberZcNfk7cfL6iIZWAagr2AmJnjMwrPPlqpTd0irT-f-lZR0f-hdxfXvyaXEVdX4XIilSuI8sTLhj4-swD_mM-h01cSOeM17kv81zLDIK8Al9YAnqJLfeAQgwWperEp0azr2S3bmp3SKgTcVlYLgQrJbdeG8lkaURhbOmzMo5HhPXPUtmOdBx7X8xVn132qFoJKJSAilMFEhiRaDtr0ZJuvDH-HMW0HYuU2eFAs_yjOp1RHLFIKTTzTHAvXWEgVLNlBjeEoEeMSN4LWQ00EE5VvXH5014nFGxOfOOia9c8r7DHpxTBpo7It1ZHtotMJUfmHA7XHWjP4C6Gv9TVQyAAhxAPcHJ-9O4Vfycf8Fsozc-Pye56-ex-ALham5Owe_4Bnqsh2w
  priority: 102
  providerName: Elsevier
Title Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach
URI https://dx.doi.org/10.1016/j.celrep.2018.02.013
https://www.ncbi.nlm.nih.gov/pubmed/29490284
https://www.proquest.com/docview/2009570305
https://pubmed.ncbi.nlm.nih.gov/PMC5855117
https://doaj.org/article/44266d5a3f354f9e8b875cd62ba51295
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFA9jMvCLTDf1po4Ifu3oXZK2-SCyDccUTgR3cH4KSZq4k9pqe4P1v_e9tD3tNhn4pYW2adK-9_J-r837PULeOBNrZgxIgEkdgYeYRprFNvIOQiBwQTYTmI08_5ScL_jHpVhukaFma_8CmztDO6wntaiLo-tf7Tsw-Ld_1mpZV9QO2SenWWDgxDK2D8A3pWiq8x7wd3MzcpzxIYfuH42RIVhy5DXhI3cVWP1HXus2Kr25uPIvb3W2Sx71MJMed3rxmGy58gnZ6QpPtnvk6-cKsXJLB04SWnk6x0Qke9n-gIZf1nWF-1NXFA0N6wqopjB5QCCNYfoKb940uqVz5Pi_psc9N_k-WZy9vzg9j_oiC5EVM7mOLJ9ywcDxJx7AIPMpWHQmnTNepz5PUy0TiPgy_HsJUCa23AMkMZihqqd-ZjR7SrbLqnTPCXUizjPLhWC55NZrI5nMjciMzX2Sx_GEsOFdKtszkGMhjEINS82-q04YCoWh4pkCYUxItGn1s2PguOf6ExTT5lrkzw4Hqvqb6s1RcQQmudDMM8G9dJmBuM3mCTwQIiAxIekgZNVDkQ5iwK1W93T_etAJBZaKv1906aqrBgt-ShEm2Al51unIZpCDukG_I-0ZPcX4TLm6DGzgEO8BaE4P_rvlC_IQxx_y9NOXZHtdX7lXgLTW5jB8oYDth-XJYTCk31T-Kmw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELa6TtP6MnU_m63bPGmvKIBtwI9ttCrdmmpSWyl7smxjr1QpVEkqLf_97gxEY3uotCckwGC48913cPcdIZ-diTUzBiTApI7AQySRZrGNvIMQCFyQLQRWI8_Os-kV_zoX8x0y6WthMK2ys_2tTQ_Wutsz7t7m-K6qxhcpxC7gncC4MmSdEo_IY0ADOfZvOJ0fbz-0IOFIEhoi4oAIR_QldCHPy7rF0iFzZVIE9s6EDVxUYPIfeKp_kejfCZV_eKiTffKsg5b0qJ39c7Lj6hfkSdtscvOS_PjeID7e0J6HhDaezrD4yF5vbmHgxXrZ4HbiFosVDbkEVFMwGBA8Y2he4cVXK72hM-T1_0WPOj7yV-Tq5MvlZBp1jRUiK1K5jixPuGDg7DMPAJD5HFZxIZ0zXue-zHMtM4jyCvxjCfAlttwDDDFYlaoTnxrNXpPduqndAaFOxGVhuRCslNx6bSSTpRGFsaXPyjgeEda_S2U71nFsfrFQfXrZjWoloFACKk4VSGBEou2ou5Z144Hzj1FM23ORMzvsaJY_Vac0iiMYKYVmngnupSsMxGq2zOCBEPWIEcl7IauBCsKlqgdu_6nXCQWrE3-56No19yts8ilFMKoj8qbVke0kU8mROofDfQfaM3iK4ZG6ug4M4BDjAVDO3_73jD-Sp9PL2Zk6Oz3_9o7s4ZFQp58fkt318t69B6S1Nh_CSvoNKP8k-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potency+Analysis+of+Mesenchymal+Stromal+Cells+Using+a+Combinatorial+Assay+Matrix+Approach&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chinnadurai%2C+Raghavan&rft.au=Rajan%2C+Devi&rft.au=Qayed%2C+Muna&rft.au=Arafat%2C+Dalia&rft.date=2018-02-27&rft.eissn=2211-1247&rft.volume=22&rft.issue=9&rft.spage=2504&rft.epage=2517&rft_id=info:doi/10.1016%2Fj.celrep.2018.02.013&rft_id=info%3Apmid%2F29490284&rft.externalDocID=PMC5855117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon