Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to mea...
Saved in:
Published in | Cell reports (Cambridge) Vol. 22; no. 9; pp. 2504 - 2517 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.
[Display omitted]
•T cell suppression by MSCs correlates with cytokine and morphogen expression•MSC and responder PBMC interactions are bidirectional•MSC potency affects the secretome and correlates with T cell suppression•The matrix response of MSCs to PBMCs is replicated by IFNγ stimulation
Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency. |
---|---|
AbstractList | Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency. Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. : Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency. Keywords: mesenchymal stromal cells, secretome, transcriptome, interferon-γ, PBMCs, assay matrix Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis. [Display omitted] •T cell suppression by MSCs correlates with cytokine and morphogen expression•MSC and responder PBMC interactions are bidirectional•MSC potency affects the secretome and correlates with T cell suppression•The matrix response of MSCs to PBMCs is replicated by IFNγ stimulation Assays that inform on mesenchymal stromal cell (MSC) immune potency need to be defined in advanced clinical trials. Chinnadurai et al. tested an in vitro assay matrix approach combining molecular genetic and secretome analysis, elements of which could be deployed to define MSC immune modulatory potency. |
Author | Arafat, Dalia Kugathasan, Subra Rajan, Devi Garcia, Marco Liu, Yifei Gibson, Greg Galipeau, Jacques Chinnadurai, Raghavan Anderson, Larry J. Qayed, Muna |
AuthorAffiliation | 5 Department of Statistics, University of Wisconsin – Madison, Madison, WI 53706, USA 2 Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA 1 Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA 4 School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA 3 Emory Healthcare, Atlanta, GA 30322, USA |
AuthorAffiliation_xml | – name: 2 Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA – name: 1 Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA – name: 3 Emory Healthcare, Atlanta, GA 30322, USA – name: 4 School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA – name: 5 Department of Statistics, University of Wisconsin – Madison, Madison, WI 53706, USA |
Author_xml | – sequence: 1 givenname: Raghavan surname: Chinnadurai fullname: Chinnadurai, Raghavan organization: Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA – sequence: 2 givenname: Devi surname: Rajan fullname: Rajan, Devi organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA – sequence: 3 givenname: Muna surname: Qayed fullname: Qayed, Muna organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA – sequence: 4 givenname: Dalia surname: Arafat fullname: Arafat, Dalia organization: School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 5 givenname: Marco surname: Garcia fullname: Garcia, Marco organization: Emory Healthcare, Atlanta, GA 30322, USA – sequence: 6 givenname: Yifei surname: Liu fullname: Liu, Yifei organization: Department of Statistics, University of Wisconsin – Madison, Madison, WI 53706, USA – sequence: 7 givenname: Subra surname: Kugathasan fullname: Kugathasan, Subra organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA – sequence: 8 givenname: Larry J. surname: Anderson fullname: Anderson, Larry J. organization: Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA – sequence: 9 givenname: Greg surname: Gibson fullname: Gibson, Greg organization: School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 10 givenname: Jacques surname: Galipeau fullname: Galipeau, Jacques email: jgalipeau@wisc.edu organization: Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin – Madison, Madison, WI 53705, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29490284$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_oP0AoRy4bPI4d2xyQVisolVqBBD1wshzH3vUqiYPtrci_x8tuUcsBfBlrPp5XmnnPi5PRj6YoXgGqAEHzdltp0wczVRgBrxCuENTPijOMARaACTt59D8tLmPcovwaBCDIi-IUCyIQ5uSs-P7FJzPquVyOqp-ji6W35a2JObeZB9WXX1Pw-7gyfR_Lu-jGdanKlR9aN6rkg8u1ZYxqLm9VCu5nuZym4JXevCyeW9VHc3mMF8Xdxw_fVp8WN5-vrlfLm4WmWKSFJkBojYE2FmpRW0Y458KY1ipmO8aUaBgwDpQKIWqkiQWE24YwrsDiVtUXxfWB23m1lVNwgwqz9MrJ3wkf1lKF5HRvJCG4aTqqaltTYoXhLWdUd03GUMCCZtb7A2vatYPptBlTUP0T6NPK6DZy7e8l5ZQCsAx4cwQE_2NnYpKDi_lUvRqN30WJERKUoRrttV4_1voj8nCb3PDu0KCDjzEYK7VLKjm_l3a9BCT3XpBbefCC3HtBIiyzF_Iw-Wv4gf-fseMCTL7YvTNBRu2yF0zngtEpr9T9G_AL3LjO0A |
CitedBy_id | crossref_primary_10_1002_sctm_18_0115 crossref_primary_10_3389_fimmu_2020_01338 crossref_primary_10_17352_sscrt_000015 crossref_primary_10_1016_j_celrep_2020_01_047 crossref_primary_10_3389_fbioe_2022_981061 crossref_primary_10_1186_s12967_019_02136_7 crossref_primary_10_17352_sscrt_000014 crossref_primary_10_1002_bit_27974 crossref_primary_10_1126_sciadv_aba6884 crossref_primary_10_3390_vaccines11111631 crossref_primary_10_1016_j_xphs_2020_07_002 crossref_primary_10_1186_s13287_020_02121_8 crossref_primary_10_1155_2018_3038565 crossref_primary_10_1016_j_jcyt_2021_08_002 crossref_primary_10_3389_fcell_2022_819726 crossref_primary_10_1016_j_jcyt_2023_08_006 crossref_primary_10_1016_j_autrev_2021_102755 crossref_primary_10_1186_s13287_020_01660_4 crossref_primary_10_1002_stem_3077 crossref_primary_10_1002_stem_3196 crossref_primary_10_1093_stmcls_sxae040 crossref_primary_10_1186_s13287_020_02107_6 crossref_primary_10_1016_j_stem_2021_09_006 crossref_primary_10_3389_fimmu_2023_1225047 crossref_primary_10_1016_j_jcyt_2025_01_009 crossref_primary_10_1016_j_jcyt_2020_11_007 crossref_primary_10_3389_fimmu_2022_917790 crossref_primary_10_1182_bloodadvances_2020001711 crossref_primary_10_1016_j_jcyt_2023_11_006 crossref_primary_10_1186_s40001_023_01008_7 crossref_primary_10_3389_fcell_2024_1400347 crossref_primary_10_1002_stem_3380 crossref_primary_10_1007_s12015_021_10244_5 crossref_primary_10_3389_fncel_2022_862673 crossref_primary_10_1016_j_jpba_2020_113101 crossref_primary_10_3390_cells9051145 crossref_primary_10_1002_stem_3028 crossref_primary_10_1016_j_jcyt_2019_08_002 crossref_primary_10_1007_s12178_019_09578_y crossref_primary_10_3389_fbioe_2019_00075 crossref_primary_10_3390_ijms20122853 crossref_primary_10_1016_j_jcyt_2022_01_006 crossref_primary_10_1016_j_omtm_2019_05_004 crossref_primary_10_1016_j_jim_2021_113000 crossref_primary_10_1098_rsif_2019_0815 crossref_primary_10_3390_cells12060850 crossref_primary_10_1002_amp2_10106 crossref_primary_10_3390_cells11233738 crossref_primary_10_1186_s13287_021_02607_z crossref_primary_10_1186_s13287_022_02876_2 crossref_primary_10_3390_cells11152263 crossref_primary_10_3389_fimmu_2022_959658 crossref_primary_10_1016_j_jcyt_2018_10_008 crossref_primary_10_1093_stcltm_szac050 crossref_primary_10_3390_cells11071210 crossref_primary_10_1002_adbi_202300094 crossref_primary_10_3390_pharmaceutics15071911 crossref_primary_10_1007_s40778_020_00176_0 crossref_primary_10_1038_s41598_021_91870_4 crossref_primary_10_3389_fcell_2021_648472 crossref_primary_10_3389_fimmu_2019_01645 crossref_primary_10_1177_09636897211039441 crossref_primary_10_3389_fimmu_2023_1214098 crossref_primary_10_1186_s13287_024_03786_1 crossref_primary_10_1016_j_actbio_2021_03_069 crossref_primary_10_1016_j_jcyt_2018_10_014 crossref_primary_10_1155_2022_9097530 crossref_primary_10_3390_ijms25179647 crossref_primary_10_1093_intbio_zyz014 crossref_primary_10_3389_fimmu_2021_626755 crossref_primary_10_1002_stem_3035 crossref_primary_10_1134_S2079086422080060 crossref_primary_10_1038_s41598_022_07569_7 crossref_primary_10_12688_f1000research_21862_1 crossref_primary_10_1186_s12929_021_00725_7 crossref_primary_10_1002_advs_202204786 crossref_primary_10_1186_s12967_021_02822_5 crossref_primary_10_3390_ijms24043376 crossref_primary_10_1093_stmcls_sxac064 crossref_primary_10_1002_adhm_202101995 crossref_primary_10_1093_stcltm_szab005 crossref_primary_10_3390_pharmaceutics14010011 crossref_primary_10_1038_s41598_021_85905_z crossref_primary_10_1111_trf_15252 crossref_primary_10_1186_s12967_024_05179_7 crossref_primary_10_1016_j_omtm_2024_101316 crossref_primary_10_1021_acsbiomaterials_9b00008 crossref_primary_10_1007_s12015_019_09898_z crossref_primary_10_1016_j_biomaterials_2022_121826 crossref_primary_10_1016_j_actbio_2021_07_075 crossref_primary_10_3389_fbioe_2022_942750 crossref_primary_10_1016_j_jcyt_2021_11_009 crossref_primary_10_3390_ijms24054435 crossref_primary_10_3390_biom9110717 crossref_primary_10_3389_fncel_2020_584277 crossref_primary_10_1007_s40778_022_00212_1 crossref_primary_10_3389_fimmu_2021_738312 crossref_primary_10_1155_2022_1613636 crossref_primary_10_3389_fimmu_2019_02474 crossref_primary_10_1016_j_stem_2018_05_004 crossref_primary_10_3389_fimmu_2023_1186224 crossref_primary_10_1016_S2665_9913_21_00326_X crossref_primary_10_3389_fimmu_2023_1192636 crossref_primary_10_1007_s10439_019_02400_3 crossref_primary_10_1016_j_heliyon_2023_e15946 crossref_primary_10_1016_j_jcyt_2024_03_486 crossref_primary_10_1038_s41551_018_0325_8 crossref_primary_10_1016_j_ejphar_2024_176719 crossref_primary_10_1016_j_jcyt_2024_03_001 crossref_primary_10_3389_fonc_2020_01632 crossref_primary_10_3390_ijms21030708 crossref_primary_10_1016_j_reth_2020_10_004 crossref_primary_10_3390_ijms241713258 crossref_primary_10_1155_2020_8833725 crossref_primary_10_3389_fcell_2020_00316 crossref_primary_10_3389_fphys_2019_00412 crossref_primary_10_3390_bioengineering9120805 crossref_primary_10_1002_sctm_18_0183 crossref_primary_10_1186_s13287_023_03594_z crossref_primary_10_3389_fimmu_2022_972095 crossref_primary_10_1093_stcltm_szad010 crossref_primary_10_3389_fcell_2022_867426 crossref_primary_10_1093_stmcls_sxad050 crossref_primary_10_3390_biology12050725 crossref_primary_10_3389_fcell_2020_600160 crossref_primary_10_1186_s13287_018_1059_y crossref_primary_10_1016_j_coche_2018_11_003 crossref_primary_10_3390_cells13060484 crossref_primary_10_1007_s10616_022_00541_3 crossref_primary_10_1186_s13287_024_03677_5 |
Cites_doi | 10.1016/j.stem.2014.01.013 10.1002/stem.1400 10.1016/j.it.2011.11.004 10.1038/mt.2015.67 10.1089/scd.2015.0329 10.1038/cmi.2012.40 10.1016/j.biomaterials.2013.06.050 10.1016/j.jcyt.2014.10.002 10.1016/j.jcyt.2015.07.010 10.1016/j.jcyt.2017.03.076 10.1016/j.bbmt.2015.01.014 10.1007/978-1-4939-3584-0_20 10.1111/apt.13717 10.1186/scrt214 10.1007/978-3-319-45457-3_7 10.1016/j.jcyt.2016.11.008 10.1002/stem.1654 10.1089/scd.2013.0591 10.1073/pnas.1522905113 10.1016/j.jcyt.2014.06.008 10.1002/stem.2415 10.1016/j.jcyt.2013.02.010 10.1016/j.jcyt.2015.07.008 10.1002/stem.2580 10.1186/scrt198 10.5966/sctm.2012-0099 10.1016/j.stem.2013.09.006 10.1080/14653240600855905 10.1007/978-1-4939-3584-0_19 10.1016/j.jcyt.2014.12.008 10.1016/j.jcyt.2015.08.008 10.3109/14653249.2011.623691 10.1073/pnas.1617933114 10.1111/trf.13569 10.1038/srep26463 10.1016/j.jcyt.2014.10.004 10.1002/stem.1729 10.1002/stem.2528 10.5966/sctm.2014-0268 10.1016/j.jcyt.2014.10.018 10.1016/j.jcyt.2017.04.005 10.1016/j.stem.2012.05.015 10.4049/jimmunol.1301828 10.1016/j.jcyt.2015.11.008 10.1016/j.jcyt.2016.10.007 10.1186/s13287-017-0512-7 10.1038/nm.3028 10.1371/journal.pone.0165466 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2018.02.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 2517 |
ExternalDocumentID | oai_doaj_org_article_44266d5a3f354f9e8b875cd62ba51295 PMC5855117 29490284 10_1016_j_celrep_2018_02_013 S2211124718301815 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: KL2 TR000455 – fundername: NIDDK NIH HHS grantid: R01 DK109508 – fundername: NCATS NIH HHS grantid: KL2 TR002381 – fundername: NCATS NIH HHS grantid: UL1 TR002378 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-c414532156f1393f748889eebfa7fd77a96717815599930c4f102b6478a1f2ba3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 13:37:38 EDT 2025 Fri Jul 11 16:58:23 EDT 2025 Thu Apr 03 07:06:12 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 Tue Jul 01 02:58:54 EDT 2025 Wed May 17 02:14:14 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | interferon-γ assay matrix secretome PBMCs transcriptome mesenchymal stromal cells |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-c414532156f1393f748889eebfa7fd77a96717815599930c4f102b6478a1f2ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/44266d5a3f354f9e8b875cd62ba51295 |
PMID | 29490284 |
PQID | 2009570305 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44266d5a3f354f9e8b875cd62ba51295 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5855117 proquest_miscellaneous_2009570305 pubmed_primary_29490284 crossref_citationtrail_10_1016_j_celrep_2018_02_013 crossref_primary_10_1016_j_celrep_2018_02_013 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-27 |
PublicationDateYYYYMMDD | 2018-02-27 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Bárcia, Santos, Teixeira, Filipe, Pereira, Ministro, Água-Doce, Carvalheiro, Gaspar, Miranda (bib1) 2017; 19 Shi, Su, Roberts, Shou, Rabson, Ren (bib45) 2012; 33 Loisel, Dulong, Ménard, Renoud, Meziere, Isabelle, Latour, Bescher, Pedeux, Bertheuil (bib30) 2017; 35 Krampera, Galipeau, Shi, Tarte, Sensebe (bib29) 2013; 15 Mendicino, Bailey, Wonnacott, Puri, Bauer (bib33) 2014; 14 Chinnadurai, Copland, Garcia, Petersen, Lewis, Waller, Kirk, Galipeau (bib9) 2016; 34 Ménard, Tarte (bib32) 2013; 4 Moll, Geißler, Catar, Ignatowicz, Hoogduijn, Strunk, Bieback, Ringdén (bib35) 2016; 951 Pollock, Sumstad, Kadidlo, McKenna, Hubel (bib38) 2015; 17 Quimby, Webb, Habenicht, Dow (bib40) 2013; 4 Kadekar, Rangole, Kale, Limaye (bib25) 2016; 11 Keating (bib26) 2012; 10 Deans (bib14) 2015; 17 Bianco, Cao, Frenette, Mao, Robey, Simmons, Wang (bib3) 2013; 19 Salem, Miner, Hensel, Battiwalla, Keyvanfar, Stroncek, Gee, Hanley, Bollard, Ito, Barrett (bib43) 2015; 17 Prockop (bib39) 2013; 31 Bernardo, Fibbe (bib2) 2013; 13 Galipeau, Krampera, Barrett, Dazzi, Deans, DeBruijn, Dominici, Fibbe, Gee, Gimble (bib21) 2016; 18 Radrizzani, Soncin, Lo Cicero, Andriolo, Bolis, Turchetto (bib42) 2016; 1416 Dhere, Copland, Garcia, Chiang, Chinnadurai, Prasad, Galipeau, Kugathasan (bib16) 2016; 44 Dominici, Le Blanc, Mueller, Slaper-Cortenbach, Marini, Krause, Deans, Keating, Prockop, Horwitz (bib17) 2006; 8 Nold, Hackstein, Riedlinger, Kasper, Neumann, Mernberger, Fölsch, Schmitt, Fuchs-Winkelmann, Barckhausen (bib36) 2015; 17 Pogozhykh, Pogozhykh, Prokopyuk, Kuleshova, Goltsev, Blasczyk, Mueller (bib37) 2017; 8 Bloom, Centanni, Bhatia, Emler, Drier, Leverson, McKenna, Gee, Lindblad, Hei, Hematti (bib4) 2015; 17 Ko, Lee, Jeong, Kim, Wee, Yoon, Choi, Prockop, Oh (bib28) 2016; 113 François, Copland, Yuan, Romieu-Mourez, Waller, Galipeau (bib19) 2012; 14 Yun, Park, Lee, Ko, Kim, Wee, Reger, Gregory, Choi, Fulcher (bib48) 2017; 19 Chinnadurai, Copland, Ng, Garcia, Prasad, Arafat, Gibson, Kugathasan, Galipeau (bib8) 2015; 23 Radrizzani, Soncin, Bolis, Lo Cicero, Andriolo, Turchetto (bib41) 2016; 1416 Hematti (bib23) 2016; 56 Viswanathan, Keating, Deans, Hematti, Prockop, Stroncek, Stacey, Weiss, Mason, Rao (bib47) 2014; 23 Gramlich, Burand, Brown, Deutsch, Kuehn, Ankrum (bib22) 2016; 6 Chabot, Tremblay, Paré, Bazin, Loubaki (bib6) 2017; 19 Galipeau, Krampera (bib20) 2015; 17 Copland, Garcia, Waller, Roback, Galipeau (bib10) 2013; 34 Fan, Zhao, Liu, Liu, Gong, Liu, Yang, Wang, Hou (bib18) 2012; 9 Moll, Alm, Davies, von Bahr, Heldring, Stenbeck-Funke, Hamad, Hinsch, Ignatowicz, Locke (bib34) 2014; 32 Chinnadurai, Copland, Patel, Galipeau (bib7) 2014; 192 Luetzkendorf, Nerger, Hering, Moegel, Hoffmann, Hoefers, Mueller-Tidow, Mueller (bib31) 2015; 17 Hoogduijn, de Witte, Luk, van den Hout-van Vroonhoven, Ignatowicz, Catar, Strini, Korevaar, van IJcken, Betjes (bib24) 2016; 25 Klinker, Marklein, Lo Surdo, Wei, Bauer (bib27) 2017; 114 Tanavde, Vaz, Rao, Vemuri, Pochampally (bib46) 2015; 17 Copland, Qayed, Garcia, Galipeau, Waller (bib11) 2015; 21 Cruz, Borg, Goodwin, Sokocevic, Wagner, McKenna, Rocco, Weiss (bib12) 2015; 4 Sepúlveda, Tomé, Fernández, Delgado, Campisi, Bernad, González (bib44) 2014; 32 Deskins, Bastakoty, Saraswati, Shinar, Holt, Young (bib15) 2013; 2 Burand, Gramlich, Brown, Ankrum (bib5) 2017; 35 de Wolf, van de Bovenkamp, Hoefnagel (bib13) 2017; 19 Krampera (10.1016/j.celrep.2018.02.013_bib29) 2013; 15 Viswanathan (10.1016/j.celrep.2018.02.013_bib47) 2014; 23 Yun (10.1016/j.celrep.2018.02.013_bib48) 2017; 19 Dhere (10.1016/j.celrep.2018.02.013_bib16) 2016; 44 Burand (10.1016/j.celrep.2018.02.013_bib5) 2017; 35 François (10.1016/j.celrep.2018.02.013_bib19) 2012; 14 Nold (10.1016/j.celrep.2018.02.013_bib36) 2015; 17 Bianco (10.1016/j.celrep.2018.02.013_bib3) 2013; 19 Radrizzani (10.1016/j.celrep.2018.02.013_bib41) 2016; 1416 Bernardo (10.1016/j.celrep.2018.02.013_bib2) 2013; 13 Cruz (10.1016/j.celrep.2018.02.013_bib12) 2015; 4 Radrizzani (10.1016/j.celrep.2018.02.013_bib42) 2016; 1416 Hoogduijn (10.1016/j.celrep.2018.02.013_bib24) 2016; 25 Klinker (10.1016/j.celrep.2018.02.013_bib27) 2017; 114 Hematti (10.1016/j.celrep.2018.02.013_bib23) 2016; 56 Chabot (10.1016/j.celrep.2018.02.013_bib6) 2017; 19 Copland (10.1016/j.celrep.2018.02.013_bib10) 2013; 34 Galipeau (10.1016/j.celrep.2018.02.013_bib20) 2015; 17 Shi (10.1016/j.celrep.2018.02.013_bib45) 2012; 33 Luetzkendorf (10.1016/j.celrep.2018.02.013_bib31) 2015; 17 Mendicino (10.1016/j.celrep.2018.02.013_bib33) 2014; 14 Gramlich (10.1016/j.celrep.2018.02.013_bib22) 2016; 6 Moll (10.1016/j.celrep.2018.02.013_bib34) 2014; 32 Galipeau (10.1016/j.celrep.2018.02.013_bib21) 2016; 18 Kadekar (10.1016/j.celrep.2018.02.013_bib25) 2016; 11 Sepúlveda (10.1016/j.celrep.2018.02.013_bib44) 2014; 32 Moll (10.1016/j.celrep.2018.02.013_bib35) 2016; 951 Prockop (10.1016/j.celrep.2018.02.013_bib39) 2013; 31 Ko (10.1016/j.celrep.2018.02.013_bib28) 2016; 113 Deskins (10.1016/j.celrep.2018.02.013_bib15) 2013; 2 de Wolf (10.1016/j.celrep.2018.02.013_bib13) 2017; 19 Pollock (10.1016/j.celrep.2018.02.013_bib38) 2015; 17 Pogozhykh (10.1016/j.celrep.2018.02.013_bib37) 2017; 8 Chinnadurai (10.1016/j.celrep.2018.02.013_bib9) 2016; 34 Chinnadurai (10.1016/j.celrep.2018.02.013_bib7) 2014; 192 Quimby (10.1016/j.celrep.2018.02.013_bib40) 2013; 4 Keating (10.1016/j.celrep.2018.02.013_bib26) 2012; 10 Bárcia (10.1016/j.celrep.2018.02.013_bib1) 2017; 19 Fan (10.1016/j.celrep.2018.02.013_bib18) 2012; 9 Dominici (10.1016/j.celrep.2018.02.013_bib17) 2006; 8 Salem (10.1016/j.celrep.2018.02.013_bib43) 2015; 17 Chinnadurai (10.1016/j.celrep.2018.02.013_bib8) 2015; 23 Loisel (10.1016/j.celrep.2018.02.013_bib30) 2017; 35 Bloom (10.1016/j.celrep.2018.02.013_bib4) 2015; 17 Copland (10.1016/j.celrep.2018.02.013_bib11) 2015; 21 Ménard (10.1016/j.celrep.2018.02.013_bib32) 2013; 4 Deans (10.1016/j.celrep.2018.02.013_bib14) 2015; 17 Tanavde (10.1016/j.celrep.2018.02.013_bib46) 2015; 17 |
References_xml | – volume: 32 start-page: 2430 year: 2014 end-page: 2442 ident: bib34 article-title: Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? publication-title: Stem Cells – volume: 10 start-page: 709 year: 2012 end-page: 716 ident: bib26 article-title: Mesenchymal stromal cells: new directions publication-title: Cell Stem Cell – volume: 1416 start-page: 339 year: 2016 end-page: 356 ident: bib41 article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Validation Strategy publication-title: Methods Mol. Biol. – volume: 34 start-page: 7840 year: 2013 end-page: 7850 ident: bib10 article-title: The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy publication-title: Biomaterials – volume: 17 start-page: 38 year: 2015 end-page: 45 ident: bib38 article-title: Clinical mesenchymal stromal cell products undergo functional changes in response to freezing publication-title: Cytotherapy – volume: 17 start-page: 1675 year: 2015 end-page: 1686 ident: bib43 article-title: Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency publication-title: Cytotherapy – volume: 19 start-page: 28 year: 2017 end-page: 35 ident: bib48 article-title: Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury publication-title: Cytotherapy – volume: 32 start-page: 1865 year: 2014 end-page: 1877 ident: bib44 article-title: Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model publication-title: Stem Cells – volume: 19 start-page: 784 year: 2017 end-page: 797 ident: bib13 article-title: Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy publication-title: Cytotherapy – volume: 21 start-page: 934 year: 2015 end-page: 940 ident: bib11 article-title: Bone marrow mesenchymal stromal cells from patients with acute and chronic graft-versus-host disease deploy normal phenotype, differentiation plasticity, and immune-suppressive activity publication-title: Biol Blood Marrow Transplant. – volume: 8 start-page: 315 year: 2006 end-page: 317 ident: bib17 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy – volume: 31 start-page: 2042 year: 2013 end-page: 2046 ident: bib39 article-title: Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation publication-title: Stem Cells – volume: 23 start-page: 1157 year: 2014 end-page: 1167 ident: bib47 article-title: Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation publication-title: Stem Cells Dev. – volume: 18 start-page: 151 year: 2016 end-page: 159 ident: bib21 article-title: International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials publication-title: Cytotherapy – volume: 114 start-page: E2598 year: 2017 end-page: E2607 ident: bib27 article-title: Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity publication-title: Proc. Natl. Acad. Sci. USA – volume: 951 start-page: 77 year: 2016 end-page: 98 ident: bib35 article-title: Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy? publication-title: Adv. Exp. Med. Biol. – volume: 11 start-page: e0165466 year: 2016 ident: bib25 article-title: Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells publication-title: PLoS ONE – volume: 4 start-page: 615 year: 2015 end-page: 624 ident: bib12 article-title: Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice publication-title: Stem Cells Transl. Med. – volume: 17 start-page: 125 year: 2015 end-page: 127 ident: bib20 article-title: The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria publication-title: Cytotherapy – volume: 17 start-page: 152 year: 2015 end-page: 162 ident: bib36 article-title: Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation publication-title: Cytotherapy – volume: 13 start-page: 392 year: 2013 end-page: 402 ident: bib2 article-title: Mesenchymal stromal cells: sensors and switchers of inflammation publication-title: Cell Stem Cell – volume: 17 start-page: 140 year: 2015 end-page: 151 ident: bib4 article-title: A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression publication-title: Cytotherapy – volume: 19 start-page: 978 year: 2017 end-page: 989 ident: bib6 article-title: Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality publication-title: Cytotherapy – volume: 35 start-page: 1437 year: 2017 end-page: 1439 ident: bib5 article-title: Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent publication-title: Stem Cells – volume: 33 start-page: 136 year: 2012 end-page: 143 ident: bib45 article-title: How mesenchymal stem cells interact with tissue immune responses publication-title: Trends Immunol. – volume: 19 start-page: 35 year: 2013 end-page: 42 ident: bib3 article-title: The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine publication-title: Nat. Med. – volume: 15 start-page: 1054 year: 2013 end-page: 1061 ident: bib29 article-title: Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal publication-title: Cytotherapy – volume: 25 start-page: 586 year: 2016 end-page: 597 ident: bib24 article-title: Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression publication-title: Stem Cells Dev. – volume: 113 start-page: 158 year: 2016 end-page: 163 ident: bib28 article-title: Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 360 year: 2017 end-page: 370 ident: bib1 article-title: Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing publication-title: Cytotherapy – volume: 17 start-page: 1167 year: 2015 end-page: 1168 ident: bib14 article-title: Towards the creation of a standard MSC line as a calibration tool publication-title: Cytotherapy – volume: 1416 start-page: 313 year: 2016 end-page: 337 ident: bib42 article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Methods for ATMP Release publication-title: Methods Mol. Biol. – volume: 4 start-page: 64 year: 2013 ident: bib32 article-title: Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application publication-title: Stem Cell Res. Ther. – volume: 17 start-page: 1169 year: 2015 end-page: 1177 ident: bib46 article-title: Research using Mesenchymal Stem/Stromal Cells: quality metric towards developing a reference material publication-title: Cytotherapy – volume: 14 start-page: 141 year: 2014 end-page: 145 ident: bib33 article-title: MSC-based product characterization for clinical trials: an FDA perspective publication-title: Cell Stem Cell – volume: 44 start-page: 471 year: 2016 end-page: 481 ident: bib16 article-title: The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses publication-title: Aliment. Pharmacol. Ther. – volume: 35 start-page: 1431 year: 2017 end-page: 1436 ident: bib30 article-title: Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence publication-title: Stem Cells – volume: 56 start-page: 32S year: 2016 end-page: 35S ident: bib23 article-title: Characterization of mesenchymal stromal cells: potency assay development publication-title: Transfusion – volume: 2 start-page: 151 year: 2013 end-page: 158 ident: bib15 article-title: Human mesenchymal stromal cells: identifying assays to predict potency for therapeutic selection publication-title: Stem Cells Transl. Med. – volume: 34 start-page: 2429 year: 2016 end-page: 2442 ident: bib9 article-title: Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing publication-title: Stem Cells – volume: 4 start-page: 48 year: 2013 ident: bib40 article-title: Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies publication-title: Stem Cell Res. Ther. – volume: 17 start-page: 186 year: 2015 end-page: 198 ident: bib31 article-title: Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation publication-title: Cytotherapy – volume: 14 start-page: 147 year: 2012 end-page: 152 ident: bib19 article-title: Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing publication-title: Cytotherapy – volume: 6 start-page: 26463 year: 2016 ident: bib22 article-title: Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy publication-title: Sci. Rep. – volume: 9 start-page: 473 year: 2012 end-page: 481 ident: bib18 article-title: Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis publication-title: Cell. Mol. Immunol. – volume: 192 start-page: 1491 year: 2014 end-page: 1501 ident: bib7 article-title: IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells publication-title: J. Immunol. – volume: 23 start-page: 1248 year: 2015 end-page: 1261 ident: bib8 article-title: Mesenchymal stromal cells derived from Crohn’s patients deploy indoleamine 2,3-dioxygenase-mediated immune suppression, independent of autophagy publication-title: Mol Ther. – volume: 8 start-page: 66 year: 2017 ident: bib37 article-title: Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells publication-title: Stem Cell Res. Ther. – volume: 14 start-page: 141 year: 2014 ident: 10.1016/j.celrep.2018.02.013_bib33 article-title: MSC-based product characterization for clinical trials: an FDA perspective publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.013 – volume: 31 start-page: 2042 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib39 article-title: Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation publication-title: Stem Cells doi: 10.1002/stem.1400 – volume: 33 start-page: 136 year: 2012 ident: 10.1016/j.celrep.2018.02.013_bib45 article-title: How mesenchymal stem cells interact with tissue immune responses publication-title: Trends Immunol. doi: 10.1016/j.it.2011.11.004 – volume: 23 start-page: 1248 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib8 article-title: Mesenchymal stromal cells derived from Crohn’s patients deploy indoleamine 2,3-dioxygenase-mediated immune suppression, independent of autophagy publication-title: Mol Ther. doi: 10.1038/mt.2015.67 – volume: 25 start-page: 586 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib24 article-title: Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression publication-title: Stem Cells Dev. doi: 10.1089/scd.2015.0329 – volume: 9 start-page: 473 year: 2012 ident: 10.1016/j.celrep.2018.02.013_bib18 article-title: Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis publication-title: Cell. Mol. Immunol. doi: 10.1038/cmi.2012.40 – volume: 34 start-page: 7840 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib10 article-title: The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.06.050 – volume: 17 start-page: 140 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib4 article-title: A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression publication-title: Cytotherapy doi: 10.1016/j.jcyt.2014.10.002 – volume: 17 start-page: 1167 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib14 article-title: Towards the creation of a standard MSC line as a calibration tool publication-title: Cytotherapy doi: 10.1016/j.jcyt.2015.07.010 – volume: 19 start-page: 784 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib13 article-title: Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy publication-title: Cytotherapy doi: 10.1016/j.jcyt.2017.03.076 – volume: 21 start-page: 934 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib11 article-title: Bone marrow mesenchymal stromal cells from patients with acute and chronic graft-versus-host disease deploy normal phenotype, differentiation plasticity, and immune-suppressive activity publication-title: Biol Blood Marrow Transplant. doi: 10.1016/j.bbmt.2015.01.014 – volume: 1416 start-page: 339 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib41 article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Validation Strategy publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3584-0_20 – volume: 44 start-page: 471 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib16 article-title: The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease - a phase 1 trial with three doses publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.13717 – volume: 4 start-page: 64 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib32 article-title: Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application publication-title: Stem Cell Res. Ther. doi: 10.1186/scrt214 – volume: 951 start-page: 77 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib35 article-title: Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy? publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-45457-3_7 – volume: 19 start-page: 360 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib1 article-title: Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing publication-title: Cytotherapy doi: 10.1016/j.jcyt.2016.11.008 – volume: 32 start-page: 1865 year: 2014 ident: 10.1016/j.celrep.2018.02.013_bib44 article-title: Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model publication-title: Stem Cells doi: 10.1002/stem.1654 – volume: 23 start-page: 1157 year: 2014 ident: 10.1016/j.celrep.2018.02.013_bib47 article-title: Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation publication-title: Stem Cells Dev. doi: 10.1089/scd.2013.0591 – volume: 113 start-page: 158 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib28 article-title: Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1522905113 – volume: 17 start-page: 38 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib38 article-title: Clinical mesenchymal stromal cell products undergo functional changes in response to freezing publication-title: Cytotherapy doi: 10.1016/j.jcyt.2014.06.008 – volume: 34 start-page: 2429 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib9 article-title: Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing publication-title: Stem Cells doi: 10.1002/stem.2415 – volume: 15 start-page: 1054 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib29 article-title: Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal publication-title: Cytotherapy doi: 10.1016/j.jcyt.2013.02.010 – volume: 17 start-page: 1169 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib46 article-title: Research using Mesenchymal Stem/Stromal Cells: quality metric towards developing a reference material publication-title: Cytotherapy doi: 10.1016/j.jcyt.2015.07.008 – volume: 35 start-page: 1431 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib30 article-title: Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence publication-title: Stem Cells doi: 10.1002/stem.2580 – volume: 4 start-page: 48 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib40 article-title: Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies publication-title: Stem Cell Res. Ther. doi: 10.1186/scrt198 – volume: 2 start-page: 151 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib15 article-title: Human mesenchymal stromal cells: identifying assays to predict potency for therapeutic selection publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2012-0099 – volume: 13 start-page: 392 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib2 article-title: Mesenchymal stromal cells: sensors and switchers of inflammation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.09.006 – volume: 8 start-page: 315 year: 2006 ident: 10.1016/j.celrep.2018.02.013_bib17 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy doi: 10.1080/14653240600855905 – volume: 1416 start-page: 313 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib42 article-title: Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Methods for ATMP Release publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3584-0_19 – volume: 17 start-page: 125 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib20 article-title: The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria publication-title: Cytotherapy doi: 10.1016/j.jcyt.2014.12.008 – volume: 17 start-page: 1675 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib43 article-title: Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency publication-title: Cytotherapy doi: 10.1016/j.jcyt.2015.08.008 – volume: 14 start-page: 147 year: 2012 ident: 10.1016/j.celrep.2018.02.013_bib19 article-title: Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing publication-title: Cytotherapy doi: 10.3109/14653249.2011.623691 – volume: 114 start-page: E2598 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib27 article-title: Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1617933114 – volume: 56 start-page: 32S year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib23 article-title: Characterization of mesenchymal stromal cells: potency assay development publication-title: Transfusion doi: 10.1111/trf.13569 – volume: 6 start-page: 26463 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib22 article-title: Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy publication-title: Sci. Rep. doi: 10.1038/srep26463 – volume: 17 start-page: 152 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib36 article-title: Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation publication-title: Cytotherapy doi: 10.1016/j.jcyt.2014.10.004 – volume: 32 start-page: 2430 year: 2014 ident: 10.1016/j.celrep.2018.02.013_bib34 article-title: Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? publication-title: Stem Cells doi: 10.1002/stem.1729 – volume: 35 start-page: 1437 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib5 article-title: Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent publication-title: Stem Cells doi: 10.1002/stem.2528 – volume: 4 start-page: 615 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib12 article-title: Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2014-0268 – volume: 17 start-page: 186 year: 2015 ident: 10.1016/j.celrep.2018.02.013_bib31 article-title: Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation publication-title: Cytotherapy doi: 10.1016/j.jcyt.2014.10.018 – volume: 19 start-page: 978 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib6 article-title: Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality publication-title: Cytotherapy doi: 10.1016/j.jcyt.2017.04.005 – volume: 10 start-page: 709 year: 2012 ident: 10.1016/j.celrep.2018.02.013_bib26 article-title: Mesenchymal stromal cells: new directions publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.015 – volume: 192 start-page: 1491 year: 2014 ident: 10.1016/j.celrep.2018.02.013_bib7 article-title: IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1301828 – volume: 18 start-page: 151 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib21 article-title: International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials publication-title: Cytotherapy doi: 10.1016/j.jcyt.2015.11.008 – volume: 19 start-page: 28 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib48 article-title: Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury publication-title: Cytotherapy doi: 10.1016/j.jcyt.2016.10.007 – volume: 8 start-page: 66 year: 2017 ident: 10.1016/j.celrep.2018.02.013_bib37 article-title: Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-017-0512-7 – volume: 19 start-page: 35 year: 2013 ident: 10.1016/j.celrep.2018.02.013_bib3 article-title: The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine publication-title: Nat. Med. doi: 10.1038/nm.3028 – volume: 11 start-page: e0165466 year: 2016 ident: 10.1016/j.celrep.2018.02.013_bib25 article-title: Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0165466 |
SSID | ssj0000601194 |
Score | 2.5480042 |
Snippet | Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2504 |
SubjectTerms | assay matrix Cell Communication - drug effects Cell Proliferation - drug effects Coculture Techniques Cytokines - metabolism Humans Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism Interferon-gamma - pharmacology interferon-γ Leukocytes, Mononuclear - cytology Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - metabolism Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - metabolism mesenchymal stromal cells PBMCs secretome T-Lymphocytes - cytology T-Lymphocytes - drug effects transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA5FEPoiaqueWkmhr0t3N8nu5lGlIoUrhVawTyHJJnhy7sr9AO-_dybZPW714V76dHC3Py6ZSb5vyMw3hHxzJtXMGLAAkzoBhMgSzVKbeAchEECQrQRWI49_Fbd3_Oe9uN9o9YU5YVEeOE7cd44QUgvNPBPcS1cZYNi2LnKjEauCeilg3kYwFfdg1DLDI-U8x5ytnJd93VxI7rJuOnMoV5lVQbIzYwNcCvL9A3h6Tz_fZlFuwNLNPtnr-CS9jOM4IB9cc0h2Y4fJ1Sfy73eLpHhFe_ER2no6xooj-7B6ghv_LGYtfl676XROQwIB1RR2CYiYMR6f4MPnc72iYxTzf6GXnQj5Z3J38-Pv9W3SdVNIrMjlIrE844IBwhceWB_zJSzdSjpnvC59XZZaFhDaVXhMCZwltdwD9zBYiqozD7PNjshO0zbuhFAn0rqyXAhWS269NpLJ2ojK2NoXdZqOCOvnUtlOahw7XkxVn1P2qKIFFFpApbkCC4xIsr7rOUptbLn-Cs20vhaFssMX4D6qcx-1zX1GpOyNrDrOEbkEPGqy5fVfe59QsCTxnEU3rl3OsbOnFGEnHZHj6CPrP5lLjno5HN478J7BKIa_NJOHIPsNgR2w4_L0fwz7jHzEoYTa_PKc7CxmS_cF2NXCXISF9ApHdiAi priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBalUNjL6NZtTdcVFfZqYluSbT22oaUUUgpdIXsSkiytLqkdkhSWf7872Q5191DoU4gj2bLvdPddfPcdIT-diTUzBiTApI7AQySRZrGNvIMQCFyQLQRWI09vsqt7fj0Tsx0y6WthMK2ys_2tTQ_Wujsy7p7meFFV47sUYhfwTmBcGbJOYaE540Uo4pudb_9nQb6RJPRDxPERTugr6EKal3XzpUPiyqQI5J0JG3ioQOQ_cFT_A9HX-ZQvHNTlPvnYIUt61i7-E9lx9Wey1_aa3ByQ37cNwuMN7WlIaOPpFGuP7MPmCSberZcNfk7cfL6iIZWAagr2AmJnjMwrPPlqpTd0irT-f-lZR0f-hdxfXvyaXEVdX4XIilSuI8sTLhj4-swD_mM-h01cSOeM17kv81zLDIK8Al9YAnqJLfeAQgwWperEp0azr2S3bmp3SKgTcVlYLgQrJbdeG8lkaURhbOmzMo5HhPXPUtmOdBx7X8xVn132qFoJKJSAilMFEhiRaDtr0ZJuvDH-HMW0HYuU2eFAs_yjOp1RHLFIKTTzTHAvXWEgVLNlBjeEoEeMSN4LWQ00EE5VvXH5014nFGxOfOOia9c8r7DHpxTBpo7It1ZHtotMJUfmHA7XHWjP4C6Gv9TVQyAAhxAPcHJ-9O4Vfycf8Fsozc-Pye56-ex-ALham5Owe_4Bnqsh2w priority: 102 providerName: Elsevier |
Title | Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach |
URI | https://dx.doi.org/10.1016/j.celrep.2018.02.013 https://www.ncbi.nlm.nih.gov/pubmed/29490284 https://www.proquest.com/docview/2009570305 https://pubmed.ncbi.nlm.nih.gov/PMC5855117 https://doaj.org/article/44266d5a3f354f9e8b875cd62ba51295 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFA9jMvCLTDf1po4Ifu3oXZK2-SCyDccUTgR3cH4KSZq4k9pqe4P1v_e9tD3tNhn4pYW2adK-9_J-r837PULeOBNrZgxIgEkdgYeYRprFNvIOQiBwQTYTmI08_5ScL_jHpVhukaFma_8CmztDO6wntaiLo-tf7Tsw-Ld_1mpZV9QO2SenWWDgxDK2D8A3pWiq8x7wd3MzcpzxIYfuH42RIVhy5DXhI3cVWP1HXus2Kr25uPIvb3W2Sx71MJMed3rxmGy58gnZ6QpPtnvk6-cKsXJLB04SWnk6x0Qke9n-gIZf1nWF-1NXFA0N6wqopjB5QCCNYfoKb940uqVz5Pi_psc9N_k-WZy9vzg9j_oiC5EVM7mOLJ9ywcDxJx7AIPMpWHQmnTNepz5PUy0TiPgy_HsJUCa23AMkMZihqqd-ZjR7SrbLqnTPCXUizjPLhWC55NZrI5nMjciMzX2Sx_GEsOFdKtszkGMhjEINS82-q04YCoWh4pkCYUxItGn1s2PguOf6ExTT5lrkzw4Hqvqb6s1RcQQmudDMM8G9dJmBuM3mCTwQIiAxIekgZNVDkQ5iwK1W93T_etAJBZaKv1906aqrBgt-ShEm2Al51unIZpCDukG_I-0ZPcX4TLm6DGzgEO8BaE4P_rvlC_IQxx_y9NOXZHtdX7lXgLTW5jB8oYDth-XJYTCk31T-Kmw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELa6TtP6MnU_m63bPGmvKIBtwI9ttCrdmmpSWyl7smxjr1QpVEkqLf_97gxEY3uotCckwGC48913cPcdIZ-diTUzBiTApI7AQySRZrGNvIMQCFyQLQRWI8_Os-kV_zoX8x0y6WthMK2ys_2tTQ_Wutsz7t7m-K6qxhcpxC7gncC4MmSdEo_IY0ADOfZvOJ0fbz-0IOFIEhoi4oAIR_QldCHPy7rF0iFzZVIE9s6EDVxUYPIfeKp_kejfCZV_eKiTffKsg5b0qJ39c7Lj6hfkSdtscvOS_PjeID7e0J6HhDaezrD4yF5vbmHgxXrZ4HbiFosVDbkEVFMwGBA8Y2he4cVXK72hM-T1_0WPOj7yV-Tq5MvlZBp1jRUiK1K5jixPuGDg7DMPAJD5HFZxIZ0zXue-zHMtM4jyCvxjCfAlttwDDDFYlaoTnxrNXpPduqndAaFOxGVhuRCslNx6bSSTpRGFsaXPyjgeEda_S2U71nFsfrFQfXrZjWoloFACKk4VSGBEou2ou5Z144Hzj1FM23ORMzvsaJY_Vac0iiMYKYVmngnupSsMxGq2zOCBEPWIEcl7IauBCsKlqgdu_6nXCQWrE3-56No19yts8ilFMKoj8qbVke0kU8mROofDfQfaM3iK4ZG6ug4M4BDjAVDO3_73jD-Sp9PL2Zk6Oz3_9o7s4ZFQp58fkt318t69B6S1Nh_CSvoNKP8k-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potency+Analysis+of+Mesenchymal+Stromal+Cells+Using+a+Combinatorial+Assay+Matrix+Approach&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chinnadurai%2C+Raghavan&rft.au=Rajan%2C+Devi&rft.au=Qayed%2C+Muna&rft.au=Arafat%2C+Dalia&rft.date=2018-02-27&rft.eissn=2211-1247&rft.volume=22&rft.issue=9&rft.spage=2504&rft.epage=2517&rft_id=info:doi/10.1016%2Fj.celrep.2018.02.013&rft_id=info%3Apmid%2F29490284&rft.externalDocID=PMC5855117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |