Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, w...
Saved in:
Published in | Cell reports (Cambridge) Vol. 40; no. 2; p. 111040 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2022.111040 |
Cover
Loading…
Abstract | Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
[Display omitted]
•Function, morphology, and gene expression jointly specify retinal ganglion cell type•42 classified types in mice comprise 89% of the total population•Online resource at rgctypes.org to explore and download the data
Function, morphology, and gene expression are the most common criteria used to classify neurons. Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells and build an interactive online resource for exploring the data. |
---|---|
AbstractList | Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Function, morphology, and gene expression are the most common criteria used to classify neurons. Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells and build an interactive online resource for exploring the data. Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution. Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution. Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution. [Display omitted] •Function, morphology, and gene expression jointly specify retinal ganglion cell type•42 classified types in mice comprise 89% of the total population•Online resource at rgctypes.org to explore and download the data Function, morphology, and gene expression are the most common criteria used to classify neurons. Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells and build an interactive online resource for exploring the data. |
ArticleNumber | 111040 |
Author | Segal, Jeremy Schwartz, Gregory W. Goetz, Jillian Cooler, Sam Kadri, Sabah Jessen, Zachary F. Sanes, Joshua R. Shekhar, Karthik Mani, Adam Greer, Devon Jacobi, Anne |
AuthorAffiliation | 13 These authors contributed equally 5 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA 11 Present address: Department of Neurosurgery, Stanford University, Stanford, CA, USA 3 Medical Scientist Training Program, Northwestern University, Chicago, IL, USA 6 Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA 14 Lead contact 10 Present address: Department of Neuroscience, Brown University, Providence, RI, USA 4 F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA 12 Present address: Department of Pathology and Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 1 Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 8 Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 2 Nor |
AuthorAffiliation_xml | – name: 5 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA – name: 9 Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA – name: 3 Medical Scientist Training Program, Northwestern University, Chicago, IL, USA – name: 6 Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA – name: 14 Lead contact – name: 11 Present address: Department of Neurosurgery, Stanford University, Stanford, CA, USA – name: 8 Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – name: 1 Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – name: 12 Present address: Department of Pathology and Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – name: 4 F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – name: 2 Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA – name: 13 These authors contributed equally – name: 7 Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA – name: 10 Present address: Department of Neuroscience, Brown University, Providence, RI, USA |
Author_xml | – sequence: 1 givenname: Jillian surname: Goetz fullname: Goetz, Jillian organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – sequence: 2 givenname: Zachary F. surname: Jessen fullname: Jessen, Zachary F. organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – sequence: 3 givenname: Anne surname: Jacobi fullname: Jacobi, Anne organization: F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 4 givenname: Adam surname: Mani fullname: Mani, Adam organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – sequence: 5 givenname: Sam surname: Cooler fullname: Cooler, Sam organization: Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA – sequence: 6 givenname: Devon surname: Greer fullname: Greer, Devon organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA – sequence: 7 givenname: Sabah surname: Kadri fullname: Kadri, Sabah organization: Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA – sequence: 8 givenname: Jeremy surname: Segal fullname: Segal, Jeremy organization: Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA – sequence: 9 givenname: Karthik surname: Shekhar fullname: Shekhar, Karthik organization: Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA – sequence: 10 givenname: Joshua R. surname: Sanes fullname: Sanes, Joshua R. organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA – sequence: 11 givenname: Gregory W. orcidid: 0000-0001-8909-4397 surname: Schwartz fullname: Schwartz, Gregory W. email: greg.schwartz@northwestern.edu organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35830791$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFq3DAQFSElSdP8QSg69pDdamRbtnMolNC0hUAvzVnI8sjRopUcyQ7N31fObkrSQysYNDBv3mPee0sOffBIyDmwNTAQHzdrjS7iuOaM8zUAsJIdkBPOAVbAy_rwRX9MzlLasPwEA2jLI3JcVE3B6hZOiLn11ljsqXYqpdxqNdngaTB0G-aENOJkvXJ0UH5wyyQLu0TnZP1Azez1Ar_I4DjeBReGxwuqfE8H9Ejx1xgxswb_jrwxyiU82_-n5Pb6y8-rb6ubH1-_X32-WemKt9Oq7aBjRnSsUsqAqVgpGlYDa3ouWmOEalRtlNAN1qBNvlkvVUGhC0BQXXFKPu14x7nbYq_RT1E5OUa7VfFRBmXl64m3d3IID7ItRFnyJhN82BPEcD9jmuTWpuVk5TH7IbloWlEDrxfo-5daf0Sezc2Ayx1Ax5BSRCO1nZ7szdLWSWByCVNu5C5MuYQpd2Hm5fKv5Wf-_6ztDcDs8oPFKJO26DX2NqKeZB_svwl-A0YCvL8 |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_112985 crossref_primary_10_3390_ijms25052848 crossref_primary_10_1016_j_conb_2023_102752 crossref_primary_10_1016_j_neuron_2024_06_001 crossref_primary_10_1038_s41467_023_43382_0 crossref_primary_10_1038_s41559_023_02291_7 crossref_primary_10_1002_cne_70015 crossref_primary_10_1152_jn_00243_2022 crossref_primary_10_1002_cne_25606 crossref_primary_10_1038_s41467_023_40527_z crossref_primary_10_1371_journal_pbio_3002422 crossref_primary_10_1016_j_celrep_2025_115373 crossref_primary_10_1016_j_stemcr_2024_102393 crossref_primary_10_1007_s12021_024_09674_6 crossref_primary_10_1146_annurev_neuro_083122_021241 crossref_primary_10_1088_1741_2552_ad38de crossref_primary_10_7554_eLife_91532 crossref_primary_10_1523_JNEUROSCI_1592_24_2024 crossref_primary_10_1364_BOE_504637 crossref_primary_10_7554_eLife_98742_3 crossref_primary_10_1016_j_celrep_2024_113830 crossref_primary_10_1016_j_preteyeres_2024_101321 crossref_primary_10_3389_fphar_2022_1082997 crossref_primary_10_1016_j_neuroscience_2022_07_013 crossref_primary_10_1038_s41467_025_55882_2 crossref_primary_10_1016_j_cobeha_2024_101391 crossref_primary_10_1016_j_ymthe_2025_01_030 crossref_primary_10_1038_s41467_024_50114_5 crossref_primary_10_1016_j_isci_2024_111250 crossref_primary_10_1109_TBCAS_2023_3342465 crossref_primary_10_1002_cne_70023 crossref_primary_10_1523_ENEURO_0280_23_2023 crossref_primary_10_1016_j_cub_2024_11_013 crossref_primary_10_1113_JP286414 crossref_primary_10_1093_pnasnexus_pgae423 crossref_primary_10_1098_rsob_220217 crossref_primary_10_1016_j_asoc_2023_110484 crossref_primary_10_3390_s23135782 crossref_primary_10_7554_eLife_86860 crossref_primary_10_1038_s41467_024_44851_w crossref_primary_10_3389_fncel_2023_1115703 crossref_primary_10_1038_s41586_023_06638_9 crossref_primary_10_1016_j_preteyeres_2022_101131 crossref_primary_10_1016_j_tins_2024_09_010 crossref_primary_10_1098_rspb_2024_2586 crossref_primary_10_1016_j_neuroscience_2024_03_001 crossref_primary_10_3389_fneur_2024_1486139 crossref_primary_10_1016_j_cub_2022_12_026 crossref_primary_10_1038_s41586_023_06659_4 crossref_primary_10_1162_neco_a_01595 crossref_primary_10_1002_cne_25663 crossref_primary_10_1073_pnas_2405138121 crossref_primary_10_7554_eLife_98742 crossref_primary_10_1016_j_exer_2023_109540 crossref_primary_10_7554_eLife_91532_3 crossref_primary_10_1186_s13024_023_00655_y crossref_primary_10_1146_annurev_vision_102122_105721 crossref_primary_10_1038_s41467_023_41032_z crossref_primary_10_1038_s41586_024_08212_3 crossref_primary_10_3389_fnins_2023_1241691 crossref_primary_10_7554_eLife_93339 crossref_primary_10_1016_j_cub_2025_02_014 crossref_primary_10_1126_sciadv_adk4062 crossref_primary_10_1038_s41586_024_08518_2 crossref_primary_10_1016_j_neuron_2022_12_006 crossref_primary_10_1002_cne_25591 crossref_primary_10_1101_cshperspect_a041512 crossref_primary_10_3389_fnana_2022_1054849 crossref_primary_10_3389_fnana_2024_1335176 crossref_primary_10_1016_j_celrep_2024_114639 crossref_primary_10_1016_j_devcel_2023_07_011 crossref_primary_10_1038_s41467_024_49206_z crossref_primary_10_1073_pnas_2317773121 crossref_primary_10_1089_ars_2023_0309 crossref_primary_10_1126_sciadv_adi8534 crossref_primary_10_3389_fopht_2023_1180142 crossref_primary_10_3390_cells12151951 crossref_primary_10_1016_j_cub_2025_02_008 crossref_primary_10_1371_journal_pcbi_1012370 crossref_primary_10_1073_pnas_2415223122 crossref_primary_10_7554_eLife_80749 crossref_primary_10_1016_j_biopha_2025_117944 crossref_primary_10_1016_j_cell_2024_04_010 crossref_primary_10_1073_pnas_2411130121 crossref_primary_10_1038_s41467_024_46996_0 crossref_primary_10_3389_fncel_2025_1536452 crossref_primary_10_1016_j_celrep_2022_111322 |
Cites_doi | 10.1016/j.cub.2016.12.033 10.1016/j.media.2014.09.007 10.1038/s41586-021-03950-0 10.4310/SII.2009.v2.n3.a8 10.1038/s41593-018-0127-z 10.1016/j.cell.2018.04.040 10.1146/annurev-vision-082114-035502 10.1146/annurev-neuro-071714-034120 10.1523/JNEUROSCI.4298-14.2015 10.1038/s41586-020-2907-3 10.1016/j.cub.2013.12.020 10.1113/jphysiol.1967.sp008140 10.1038/s41592-020-01040-z 10.1038/nature14682 10.1038/nprot.2014.006 10.1038/nature17158 10.1093/bioinformatics/bts356 10.1523/JNEUROSCI.2804-16.2016 10.3389/fncel.2018.00481 10.1126/science.142.3594.977 10.1038/nature22818 10.1016/j.celrep.2016.04.069 10.1038/nbt.3445 10.1152/jn.01097.2012 10.1038/s41467-018-05134-3 10.1038/nature16468 10.1016/j.cub.2018.01.016 10.1152/jn.00331.2010 10.1038/s41467-017-01980-9 10.7554/eLife.27041 10.1038/292344a0 10.1016/j.celrep.2015.11.062 10.1111/brv.12139 10.1042/BCJ20190341 10.1523/JNEUROSCI.20-18-07087.2000 10.1371/journal.pone.0180091 10.1016/j.celrep.2017.01.075 10.1038/35069068 10.1038/nrn.2017.85 10.1073/pnas.030413497 10.3389/fnmol.2018.00385 10.1523/JNEUROSCI.4554-15.2016 10.1016/j.neuron.2022.04.012 10.1038/nature21394 10.1523/JNEUROSCI.1241-13.2013 10.1523/JNEUROSCI.1521-15.2015 10.1152/jn.00360.2015 10.1038/ncomms4512 10.1038/s41593-020-0685-8 10.1016/j.neuron.2014.02.037 10.1038/nature10877 10.1038/nn.3891 10.1186/1471-2105-12-323 10.3389/fncel.2018.00269 10.1016/j.celrep.2018.01.037 10.1038/nprot.2010.106 10.1038/s41586-019-1506-7 10.1038/s41592-021-01105-7 10.1002/cne.22158 10.1016/j.neuron.2021.03.010 10.1016/j.preteyeres.2018.06.003 10.1016/j.preteyeres.2014.06.003 10.1016/j.neuron.2019.11.006 10.7554/eLife.56840 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2022.111040 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 111040 |
ExternalDocumentID | PMC9364428 35830791 10_1016_j_celrep_2022_111040 S2211124722008348 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R00 EY028625 – fundername: NEI NIH HHS grantid: DP2 EY026770 – fundername: NIGMS NIH HHS grantid: T32 GM008152 – fundername: NIMH NIH HHS grantid: U01 MH105960 – fundername: NEI NIH HHS grantid: R01 EY031029 – fundername: NIMH NIH HHS grantid: T32 MH067564 – fundername: NEI NIH HHS grantid: F30 EY031565 – fundername: NEI NIH HHS grantid: R01 EY031329 – fundername: NEI NIH HHS grantid: R01 EY022073 – fundername: NEI NIH HHS grantid: F31 EY029593 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-9b1b0f6b05aaf1f5046807108d269ff6a8a7fa6c8e71cf040c040c513c31e1ab3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Thu Aug 21 14:05:49 EDT 2025 Fri Jul 11 03:51:37 EDT 2025 Thu Apr 03 06:51:32 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Tue Jul 01 02:59:28 EDT 2025 Tue Jul 25 20:57:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CP: Neuroscience retina, retinal ganglion cell, transcriptomics, morphology, light responses, classification |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-9b1b0f6b05aaf1f5046807108d269ff6a8a7fa6c8e71cf040c040c513c31e1ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS J.G. and G.W.S. designed the study. J.G. and G.W.S. collected functionally identified cells for RNA sequencing. A.J. performed RNA sequencing experiments in the lab of J.R.S. Z.F.J., G.W.S., and A.M. wrote analysis code for quantifying and classifying RGC responses. Z.F.J., S.C., and G.W.S. built rgctypes.org. S.K. and J.S. helped design the molecular studies and analyzed transcriptomics data. K.S. matched transcriptomic data to the previously identified clusters. J.R.S., K.S., and G.W.S. led the molecular parts of the project. D.G. analyzed data for the dense RGC recording (Figure S6) and assembled the database of traced RGC images at rgctypes.org.. Z.F.J. built the machine learning RGC classifier. Z.F.J. and G.W.S. performed morphological analyses. G.W.S. performed analyses to align the classification modalities. J.G., Z.F.J., A.M., S.C., D.G., G.W.S., and additional members of the Schwartz Lab recorded RGCs for the dataset. J.R.S. and G.W.S. acquired funding and managed the project. J.G. and G.W.S. wrote the first draft of the paper. Z.F.J., J.R.S., K.S., and G.W.S. revised the paper. |
ORCID | 0000-0001-8909-4397 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2022.111040 |
PMID | 35830791 |
PQID | 2689671278 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364428 proquest_miscellaneous_2689671278 pubmed_primary_35830791 crossref_citationtrail_10_1016_j_celrep_2022_111040 crossref_primary_10_1016_j_celrep_2022_111040 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_111040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-12 |
PublicationDateYYYYMMDD | 2022-07-12 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Scala, Kobak, Bernabucci, Bernaerts, Cadwell, Castro, Hartmanis, Jiang, Laturnus, Miranda (bib57) 2020; 598 Dhande, Stafford, Lim, Huberman (bib12) 2015; 1 Euler, Franke, Baden (bib16) 2019 Nath, Schwartz (bib47) 2017; 8 Zadrozny, Elkan (bib72) 2002 Cooler, Schwartz (bib11) 2020; 24 Sanes, Masland (bib56) 2015; 38 Estevez, Quattrochi, Dhande, Kim, Firman, Eldanaf, Huberman, Berson (bib15) 2013; 54 (bib7) 2021; 598 Hastie, Rosset, Zhu, Zou (bib22) 2009; 2 Sabbah, Gemmer, Bhatia-Lin, Manoff, Castro, Siegel, Jeffery, Berson (bib55) 2017; 546 Maturana, Frenk (bib43) 1963; 142 Wilbrey-Clark, Roberts, Teichmann (bib69) 2020; 477 Cadwell, Palasantza, Jiang, Berens, Deng, Yilmaz, Reimer, Shen, Bethge, Tolias (bib8) 2016; 34 MacKay, Mac (bib75) 2003 Wei, Elstrott, Feller (bib66) 2010; 5 Li, Dewey (bib78) 2011; 12 Schneider, Hirsch, Weber, Székely, Menze (bib58) 2015; 19 Yuste, Hawrylycz, Aalling, Aguilar-Valles, Arendt, Armañanzas, Ascoli, Bielza, Bokharaie, Bergmann (bib70) 2020; 23 Tikidji-Hamburyan, Reinhard, Seitter, Hovhannisyan, Procyk, Allen, Schenk, Lucas, Münch (bib62) 2015; 18 Becht, McInnes, Healy, Dutertre, Kwok, Ng, Ginhoux, Newell (bib5) 2018 Farrow, Masland (bib17) 2011; 105 Arshadi, Günther, Eddison, Harrington, Ferreira (bib1) 2021; 18 Close, Long, Zeng (bib10) 2021; 18 Pearson, Kerschensteiner (bib48) 2015; 114 Rousso, Qiao, Kagan, Yamagata, Palmiter, Sanes (bib54) 2016; 15 Wang, Wang, Li (bib76) 2012; 28 Sümbül, Song, McCulloch, Becker, Lin, Sanes, Masland, Sebastian Seung (bib59) 2014; 5 Zhang, Kim, Sanes, Meister (bib74) 2012; 109 Johnson, Fitzpatrick, Zhao, Wang, McCracken, Williams, Kerschensteiner (bib29) 2021; 109 Tien, Pearson, Heller, Demas, Kerschensteiner (bib61) 2015; 35 Rheaume, Jereen, Bolisetty, Sajid, Yang, Renna, Sun, Robson, Trakhtenberg (bib51) 2018; 9 Mani, Schwartz (bib39) 2017; 27 Nath, Schwartz (bib46) 2016; 36 Kay, Chu, Sanes (bib32) 2012; 483 Warwick, Kaushansky, Sarid, Golan, Rivlin-Etzion (bib64) 2018; 28 Bae, Mu, Kim, Turner, Tartavull, Kemnitz, Jordan, Norton, Silversmith, Prentki (bib4) 2018; 173 Franke, Berens, Schubert, Bethge, Euler, Baden (bib18) 2017; 542 Borghuis, Looger, Demb, Demb (bib42) 2013; 33 Wienbar, Schwartz (bib67) 2018; 67 Rockhill, Euler, Masland (bib52) 2000; 97 Levick (bib37) 1967; 188 Martersteck, Hirokawa, Evarts, Bernard, Duan, Li, Ng, Oh, Ouellette, Royall (bib41) 2017; 18 Roska, Werblin (bib53) 2001; 410 Zadrozny (bib71) 2002 Jouty, Hilgen, Sernagor, Hennig (bib31) 2018; 12 Surgucheva, Weisman, Goldberg, Shnyra, Surguchov (bib60) 2008; 14 Johnson, Zhao, Kerschensteiner (bib30) 2018; 22 Awatramani, Slaughter (bib2) 2000; 20 Krieger, Qiao, Rousso, Sanes, Meister (bib33) 2017; 12 Gauvain, Murphy (bib20) 2015; 35 Laboulaye, Duan, Qiao, Whitney, Sanes (bib35) 2018; 11 Tran, Shekhar, Whitney, Jacobi, Benhar, Hong, Yan, Adiconis, Arnold, Lee (bib63) 2019; 104 Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib77) 2014; 9 Jacoby, Schwartz (bib26) 2018; 12 Nadal-Nicolás, Kunze, Ball, Peng, Krishnan, Zhou, Dong, Li (bib45) 2020; 9 Wässle, Peichl, Boycott (bib65) 1981; 292 Ester, Kriegel, Sander, Xu (bib14) 1996; 96 Dumitrescu, Pucci, Wong, Berson (bib13) 2009; 517 Jacoby, Schwartz (bib25) 2017; 37 McInnes, Healy, Melville (bib44) 2018 Jacoby, Zhu, DeVries, Schwartz (bib27) 2015; 13 Reese, Keeley (bib49) 2015; 90 Hoon, Okawa, Della Santina, Wong (bib24) 2014; 42 Liu, Reggiani, Laboulaye, Pandey, Chen, Rubenstein, Krishnaswamy, Sanes (bib38) 2018; 21 Regev, Teichmann, Lander, Amit, Benoist, Birney, Bodenmiller, Campbell, Carninci, Clatworthy (bib50) 2017; 6 Bleckert, Schwartz, Turner, Rieke, Wong (bib6) 2014; 24 Friedman, Hastie, Tibshirani (bib19) 2010; 33 Zeng, Sanes (bib73) 2017; 18 Laturnus, Berens (bib36) 2021 Krishnaswamy, Yamagata, Duan, Hong, Sanes (bib34) 2015; 524 Hodge, Bakken, Miller, Smith, Barkan, Graybuck, Close, Long, Johansen, Penn (bib23) 2019; 573 Baden, Berens, Franke, Román Rosón, Bethge, Euler (bib3) 2016; 529 Wienbar, Schwartz (bib68) 2022; 110 Langmead, Salzberg (bib79) 2012; 9 Joesch, Meister (bib28) 2016; 532 Grimes, Schwartz, Rieke (bib21) 2014; 82 Chen, Guestrin (bib9) 2016 Marco, Di Marco, Protti, Solomon (bib40) 2013; 110 Joesch (10.1016/j.celrep.2022.111040_bib28) 2016; 532 Borghuis (10.1016/j.celrep.2022.111040_bib42) 2013; 33 Farrow (10.1016/j.celrep.2022.111040_bib17) 2011; 105 Arshadi (10.1016/j.celrep.2022.111040_bib1) 2021; 18 Tien (10.1016/j.celrep.2022.111040_bib61) 2015; 35 Jacoby (10.1016/j.celrep.2022.111040_bib27) 2015; 13 Dhande (10.1016/j.celrep.2022.111040_bib12) 2015; 1 Langmead (10.1016/j.celrep.2022.111040_bib79) 2012; 9 Mani (10.1016/j.celrep.2022.111040_bib39) 2017; 27 Rockhill (10.1016/j.celrep.2022.111040_bib52) 2000; 97 Liu (10.1016/j.celrep.2022.111040_bib38) 2018; 21 Nath (10.1016/j.celrep.2022.111040_bib47) 2017; 8 Johnson (10.1016/j.celrep.2022.111040_bib29) 2021; 109 Reese (10.1016/j.celrep.2022.111040_bib49) 2015; 90 Euler (10.1016/j.celrep.2022.111040_bib16) 2019 Picelli (10.1016/j.celrep.2022.111040_bib77) 2014; 9 Regev (10.1016/j.celrep.2022.111040_bib50) 2017; 6 Scala (10.1016/j.celrep.2022.111040_bib57) 2020; 598 Hoon (10.1016/j.celrep.2022.111040_bib24) 2014; 42 Martersteck (10.1016/j.celrep.2022.111040_bib41) 2017; 18 Hodge (10.1016/j.celrep.2022.111040_bib23) 2019; 573 Levick (10.1016/j.celrep.2022.111040_bib37) 1967; 188 Marco (10.1016/j.celrep.2022.111040_bib40) 2013; 110 Awatramani (10.1016/j.celrep.2022.111040_bib2) 2000; 20 Krieger (10.1016/j.celrep.2022.111040_bib33) 2017; 12 Krishnaswamy (10.1016/j.celrep.2022.111040_bib34) 2015; 524 Tikidji-Hamburyan (10.1016/j.celrep.2022.111040_bib62) 2015; 18 Cadwell (10.1016/j.celrep.2022.111040_bib8) 2016; 34 MacKay (10.1016/j.celrep.2022.111040_bib75) 2003 Li (10.1016/j.celrep.2022.111040_bib78) 2011; 12 Schneider (10.1016/j.celrep.2022.111040_bib58) 2015; 19 Nath (10.1016/j.celrep.2022.111040_bib46) 2016; 36 Wässle (10.1016/j.celrep.2022.111040_bib65) 1981; 292 Dumitrescu (10.1016/j.celrep.2022.111040_bib13) 2009; 517 Warwick (10.1016/j.celrep.2022.111040_bib64) 2018; 28 Baden (10.1016/j.celrep.2022.111040_bib3) 2016; 529 Zadrozny (10.1016/j.celrep.2022.111040_bib72) 2002 Sabbah (10.1016/j.celrep.2022.111040_bib55) 2017; 546 Zeng (10.1016/j.celrep.2022.111040_bib73) 2017; 18 Nadal-Nicolás (10.1016/j.celrep.2022.111040_bib45) 2020; 9 Bleckert (10.1016/j.celrep.2022.111040_bib6) 2014; 24 Laboulaye (10.1016/j.celrep.2022.111040_bib35) 2018; 11 Bae (10.1016/j.celrep.2022.111040_bib4) 2018; 173 Close (10.1016/j.celrep.2022.111040_bib10) 2021; 18 Wei (10.1016/j.celrep.2022.111040_bib66) 2010; 5 Maturana (10.1016/j.celrep.2022.111040_bib43) 1963; 142 Friedman (10.1016/j.celrep.2022.111040_bib19) 2010; 33 Estevez (10.1016/j.celrep.2022.111040_bib15) 2013; 54 Pearson (10.1016/j.celrep.2022.111040_bib48) 2015; 114 Wilbrey-Clark (10.1016/j.celrep.2022.111040_bib69) 2020; 477 Rousso (10.1016/j.celrep.2022.111040_bib54) 2016; 15 Kay (10.1016/j.celrep.2022.111040_bib32) 2012; 483 Sümbül (10.1016/j.celrep.2022.111040_bib59) 2014; 5 Becht (10.1016/j.celrep.2022.111040_bib5) 2018 Franke (10.1016/j.celrep.2022.111040_bib18) 2017; 542 Jouty (10.1016/j.celrep.2022.111040_bib31) 2018; 12 Surgucheva (10.1016/j.celrep.2022.111040_bib60) 2008; 14 Chen (10.1016/j.celrep.2022.111040_bib9) 2016 Grimes (10.1016/j.celrep.2022.111040_bib21) 2014; 82 Gauvain (10.1016/j.celrep.2022.111040_bib20) 2015; 35 Roska (10.1016/j.celrep.2022.111040_bib53) 2001; 410 Zhang (10.1016/j.celrep.2022.111040_bib74) 2012; 109 Ester (10.1016/j.celrep.2022.111040_bib14) 1996; 96 Tran (10.1016/j.celrep.2022.111040_bib63) 2019; 104 Cooler (10.1016/j.celrep.2022.111040_bib11) 2020; 24 Hastie (10.1016/j.celrep.2022.111040_bib22) 2009; 2 Jacoby (10.1016/j.celrep.2022.111040_bib26) 2018; 12 McInnes (10.1016/j.celrep.2022.111040_bib44) 2018 Wang (10.1016/j.celrep.2022.111040_bib76) 2012; 28 Yuste (10.1016/j.celrep.2022.111040_bib70) 2020; 23 Jacoby (10.1016/j.celrep.2022.111040_bib25) 2017; 37 Rheaume (10.1016/j.celrep.2022.111040_bib51) 2018; 9 Johnson (10.1016/j.celrep.2022.111040_bib30) 2018; 22 Laturnus (10.1016/j.celrep.2022.111040_bib36) 2021 Wienbar (10.1016/j.celrep.2022.111040_bib67) 2018; 67 Wienbar (10.1016/j.celrep.2022.111040_bib68) 2022; 110 (10.1016/j.celrep.2022.111040_bib7) 2021; 598 Sanes (10.1016/j.celrep.2022.111040_bib56) 2015; 38 Zadrozny (10.1016/j.celrep.2022.111040_bib71) 2002 |
References_xml | – volume: 34 start-page: 199 year: 2016 end-page: 203 ident: bib8 article-title: Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq publication-title: Nat. Biotechnol. – start-page: 1041 year: 2002 end-page: 1048 ident: bib71 article-title: Reducing multiclass to binary by coupling probability estimates publication-title: Advances in Neural Information Processing Systems 14 – volume: 109 start-page: 1527 year: 2021 end-page: 1539.e4 ident: bib29 article-title: Cell-type-specific binocular vision guides predation in mice publication-title: Neuron – volume: 110 start-page: 1 year: 2022 ident: bib68 article-title: Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types publication-title: Neuron – volume: 9 start-page: 2759 year: 2018 ident: bib51 article-title: Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes publication-title: Nat. Commun. – volume: 598 start-page: 86 year: 2021 end-page: 102 ident: bib7 article-title: A multimodal cell census and atlas of the mammalian primary motor cortex publication-title: Nature – volume: 35 start-page: 6575 year: 2015 end-page: 6583 ident: bib20 article-title: Projection-specific characteristics of retinal input to the brain publication-title: J. Neurosci. – volume: 18 start-page: 2058 year: 2017 end-page: 2072 ident: bib41 article-title: Diverse central projection patterns of retinal ganglion cells publication-title: Cell Rep. – volume: 36 start-page: 3208 year: 2016 end-page: 3221 ident: bib46 article-title: Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina publication-title: J. Neurosci. – start-page: 225 year: 2019 end-page: 250 ident: bib16 article-title: Studying a light sensor with light: multiphoton imaging in the retina publication-title: Multiphoton Microscopy – volume: 529 start-page: 345 year: 2016 end-page: 350 ident: bib3 article-title: The functional diversity of retinal ganglion cells in the mouse publication-title: Nature – volume: 2 start-page: 349 year: 2009 end-page: 360 ident: bib22 article-title: Multi-class adaboost publication-title: Stat. Interface – volume: 5 start-page: 1347 year: 2010 end-page: 1352 ident: bib66 article-title: Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina publication-title: Nat. Protoc. – volume: 24 start-page: 310 year: 2014 end-page: 315 ident: bib6 article-title: Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types publication-title: Curr. Biol. – volume: 12 start-page: 481 year: 2018 ident: bib31 article-title: Non-parametric physiological classification of retinal ganglion cells in the mouse retina publication-title: Front. Cell. Neurosci. – volume: 15 start-page: 1930 year: 2016 end-page: 1944 ident: bib54 article-title: Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression publication-title: Cell Rep. – volume: 12 start-page: 269 year: 2018 ident: bib26 article-title: Typology and circuitry of suppressed-by-contrast retinal ganglion cells publication-title: Front. Cell. Neurosci. – volume: 38 start-page: 221 year: 2015 end-page: 246 ident: bib56 article-title: The types of retinal ganglion cells: current status and implications for neuronal classification publication-title: Annu. Rev. Neurosci. – volume: 18 start-page: 374 year: 2021 end-page: 377 ident: bib1 article-title: SNT: a unifying toolbox for quantification of neuronal anatomy publication-title: Nat. Methods – year: 2018 ident: bib5 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat. Biotechnol. – volume: 19 start-page: 220 year: 2015 end-page: 249 ident: bib58 article-title: Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters publication-title: Med. Image Anal. – volume: 142 start-page: 977 year: 1963 end-page: 979 ident: bib43 article-title: Directional movement and horizontal edge detectors in the pigeon retina publication-title: Science – volume: 37 start-page: 610 year: 2017 end-page: 625 ident: bib25 article-title: Three small-receptive-field ganglion cells in the mouse retina are distinctly Tuned to size, speed, and object motion publication-title: J. Neurosci. – volume: 13 start-page: 2663 year: 2015 end-page: 2670 ident: bib27 article-title: An amacrine cell circuit for signaling steady illumination in the retina publication-title: Cell Rep. – volume: 173 start-page: 1293 year: 2018 end-page: 1306.e19 ident: bib4 article-title: Digital museum of retinal ganglion cells with dense anatomy and physiology publication-title: Cell – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib79 article-title: Fast gapped-read alignment with Bowtie 2. Nat publication-title: Methods – volume: 21 start-page: 659 year: 2018 end-page: 670 ident: bib38 article-title: Tbr1 instructs laminar patterning of retinal ganglion cell dendrites publication-title: Nat. Neurosci. – volume: 12 year: 2011 ident: bib78 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 96 start-page: 226 year: 1996 end-page: 231 ident: bib14 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: In Kdd – volume: 6 start-page: e27041 year: 2017 ident: bib50 article-title: The human cell atlas publication-title: Elife – volume: 105 start-page: 1516 year: 2011 end-page: 1530 ident: bib17 article-title: Physiological clustering of visual channels in the mouse retina publication-title: J. Neurophysiol. – start-page: 785 year: 2016 end-page: 794 ident: bib9 article-title: XGBoost: A Scalable Tree Boosting System publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 542 start-page: 439 year: 2017 end-page: 444 ident: bib18 article-title: Inhibition decorrelates visual feature representations in the inner retina publication-title: Nature – volume: 410 start-page: 583 year: 2001 end-page: 587 ident: bib53 article-title: Vertical interactions across ten parallel, stacked representations in the mammalian retina publication-title: Nature – volume: 109 start-page: E2391 year: 2012 end-page: E2398 ident: bib74 article-title: The most numerous ganglion cell type of the mouse retina is a selective feature detector publication-title: Proc. Natl. Acad. Sci. USA – volume: 517 start-page: 226 year: 2009 end-page: 244 ident: bib13 article-title: Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells publication-title: J. Comp. Neurol. – volume: 42 start-page: 44 year: 2014 end-page: 84 ident: bib24 article-title: Functional architecture of the retina: development and disease publication-title: Prog. Retin. Eye Res. – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: bib77 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. – volume: 546 start-page: 492 year: 2017 end-page: 497 ident: bib55 article-title: A retinal code for motion along the gravitational and body axes publication-title: Nature – volume: 598 start-page: 144 year: 2020 end-page: 150 ident: bib57 article-title: Phenotypic variation of transcriptomic cell types in mouse motor cortex publication-title: Nature – volume: 18 start-page: 530 year: 2017 end-page: 546 ident: bib73 article-title: Neuronal cell-type classification: challenges, opportunities and the path forward publication-title: Nat. Rev. Neurosci. – volume: 1 start-page: 291 year: 2015 end-page: 328 ident: bib12 article-title: Contributions of retinal ganglion cells to subcortical visual processing and behaviors publication-title: Annu. Rev. Vis. Sci. – volume: 477 start-page: 1427 year: 2020 end-page: 1442 ident: bib69 article-title: Cell Atlas technologies and insights into tissue architecture publication-title: Biochem. J. – year: 2018 ident: bib44 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 9 start-page: e56840 year: 2020 ident: bib45 article-title: True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field publication-title: Elife – volume: 82 start-page: 460 year: 2014 end-page: 473 ident: bib21 article-title: The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina publication-title: Neuron – year: 2003 ident: bib75 publication-title: Information Theory, Inference and Learning Algorithms – volume: 27 start-page: 471 year: 2017 end-page: 482 ident: bib39 article-title: Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites publication-title: Curr. Biol. – volume: 8 start-page: 2025 year: 2017 ident: bib47 article-title: Electrical synapses convey orientation selectivity in the mouse retina publication-title: Nat. Commun. – volume: 33 start-page: 10972 year: 2013 end-page: 10985 ident: bib42 article-title: Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina publication-title: J. Neurosci. – volume: 14 start-page: 1540 year: 2008 end-page: 1548 ident: bib60 article-title: Gamma-synuclein as a marker of retinal ganglion cells publication-title: Mol. Vis. – volume: 110 start-page: 1426 year: 2013 end-page: 1440 ident: bib40 article-title: Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse publication-title: J. Neurophysiol. – volume: 54 start-page: 1298 year: 2013 ident: bib15 article-title: Form and function of the three ON-type direction-selective retinal ganglion cells in the Hoxd10 mouse publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 18 start-page: 66 year: 2015 end-page: 74 ident: bib62 article-title: Retinal output changes qualitatively with every change in ambient illuminance publication-title: Nat. Neurosci. – volume: 24 start-page: 1 year: 2020 end-page: 11 ident: bib11 article-title: An offset ON–OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells publication-title: Nat. Neurosci. – volume: 5 start-page: 3512 year: 2014 ident: bib59 article-title: A genetic and computational approach to structurally classify neuronal types publication-title: Nat. Commun. – start-page: 694 year: 2002 end-page: 699 ident: bib72 article-title: Transforming classifier scores into accurate multiclass probability estimates publication-title: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 97 start-page: 2303 year: 2000 end-page: 2307 ident: bib52 article-title: Spatial order within but not between types of retinal neurons publication-title: Proc. Natl. Acad. Sci. USA – volume: 573 start-page: 61 year: 2019 end-page: 68 ident: bib23 article-title: Conserved cell types with divergent features in human versus mouse cortex publication-title: Nature – volume: 28 start-page: 2184 year: 2012 end-page: 2185 ident: bib76 article-title: RSeQC: quality control of RNA-seq experiments publication-title: Bioinformatics – volume: 18 start-page: 23 year: 2021 end-page: 25 ident: bib10 article-title: Spatially resolved transcriptomics in neuroscience publication-title: Nat. Methods – volume: 104 start-page: 1039 year: 2019 end-page: 1055.e12 ident: bib63 article-title: Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes publication-title: Neuron – volume: 67 start-page: 102 year: 2018 end-page: 117 ident: bib67 article-title: The dynamic receptive fields of retinal ganglion cells publication-title: Prog. Retin. Eye Res. – volume: 12 start-page: e0180091 year: 2017 ident: bib33 article-title: Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures publication-title: PLoS One – volume: 90 start-page: 854 year: 2015 end-page: 876 ident: bib49 article-title: Design principles and developmental mechanisms underlying retinal mosaics publication-title: Biol. Rev. Camb. Philos. Soc. – volume: 35 start-page: 10815 year: 2015 end-page: 10820 ident: bib61 article-title: Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli publication-title: J. Neurosci. – volume: 20 start-page: 7087 year: 2000 end-page: 7095 ident: bib2 article-title: Origin of transient and sustained responses in ganglion cells of the retina publication-title: J. Neurosci. – volume: 524 start-page: 466 year: 2015 end-page: 470 ident: bib34 article-title: Sidekick 2 directs formation of a retinal circuit that detects differential motion publication-title: Nature – volume: 292 start-page: 344 year: 1981 end-page: 345 ident: bib65 article-title: Dendritic territories of cat retinal ganglion cells publication-title: Nature – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib19 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 22 start-page: 1462 year: 2018 end-page: 1472 ident: bib30 article-title: A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields publication-title: Cell Rep. – volume: 11 start-page: 385 year: 2018 ident: bib35 article-title: Mapping transgene insertion sites reveals complex interactions between mouse transgenes and neighboring endogenous genes publication-title: Front. Mol. Neurosci. – volume: 23 start-page: 1456 year: 2020 end-page: 1468 ident: bib70 article-title: A community-based transcriptomics classification and nomenclature of neocortical cell types publication-title: Nat. Neurosci. – volume: 188 start-page: 285 year: 1967 end-page: 307 ident: bib37 article-title: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina publication-title: J. Physiol. – volume: 114 start-page: 540 year: 2015 end-page: 550 ident: bib48 article-title: Ambient illumination switches contrast preference of specific retinal processing streams publication-title: J. Neurophysiol. – volume: 28 start-page: 655 year: 2018 end-page: 665.e3 ident: bib64 article-title: Inhomogeneous encoding of the visual field in the mouse retina publication-title: Curr. Biol. – year: 2021 ident: bib36 article-title: MorphVAE: generating neural morphologies from 3D-walks using a variational autoencoder with spherical latent space publication-title: bioRxiv – volume: 532 start-page: 236 year: 2016 end-page: 239 ident: bib28 article-title: A neuronal circuit for colour vision based on rod–cone opponency publication-title: Nature – volume: 483 start-page: 465 year: 2012 end-page: 469 ident: bib32 article-title: MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons publication-title: Nature – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.celrep.2022.111040_bib79 article-title: Fast gapped-read alignment with Bowtie 2. Nat publication-title: Methods – start-page: 225 year: 2019 ident: 10.1016/j.celrep.2022.111040_bib16 article-title: Studying a light sensor with light: multiphoton imaging in the retina – volume: 27 start-page: 471 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib39 article-title: Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.12.033 – volume: 19 start-page: 220 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib58 article-title: Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.09.007 – volume: 598 start-page: 86 year: 2021 ident: 10.1016/j.celrep.2022.111040_bib7 article-title: A multimodal cell census and atlas of the mammalian primary motor cortex publication-title: Nature doi: 10.1038/s41586-021-03950-0 – volume: 2 start-page: 349 year: 2009 ident: 10.1016/j.celrep.2022.111040_bib22 article-title: Multi-class adaboost publication-title: Stat. Interface doi: 10.4310/SII.2009.v2.n3.a8 – volume: 21 start-page: 659 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib38 article-title: Tbr1 instructs laminar patterning of retinal ganglion cell dendrites publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0127-z – volume: 14 start-page: 1540 year: 2008 ident: 10.1016/j.celrep.2022.111040_bib60 article-title: Gamma-synuclein as a marker of retinal ganglion cells publication-title: Mol. Vis. – volume: 173 start-page: 1293 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib4 article-title: Digital museum of retinal ganglion cells with dense anatomy and physiology publication-title: Cell doi: 10.1016/j.cell.2018.04.040 – volume: 1 start-page: 291 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib12 article-title: Contributions of retinal ganglion cells to subcortical visual processing and behaviors publication-title: Annu. Rev. Vis. Sci. doi: 10.1146/annurev-vision-082114-035502 – volume: 38 start-page: 221 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib56 article-title: The types of retinal ganglion cells: current status and implications for neuronal classification publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071714-034120 – volume: 109 start-page: E2391 year: 2012 ident: 10.1016/j.celrep.2022.111040_bib74 article-title: The most numerous ganglion cell type of the mouse retina is a selective feature detector publication-title: Proc. Natl. Acad. Sci. USA – year: 2003 ident: 10.1016/j.celrep.2022.111040_bib75 – volume: 54 start-page: 1298 year: 2013 ident: 10.1016/j.celrep.2022.111040_bib15 article-title: Form and function of the three ON-type direction-selective retinal ganglion cells in the Hoxd10 mouse publication-title: Invest. Ophthalmol. Vis. Sci. – year: 2018 ident: 10.1016/j.celrep.2022.111040_bib44 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 35 start-page: 6575 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib20 article-title: Projection-specific characteristics of retinal input to the brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4298-14.2015 – volume: 598 start-page: 144 year: 2020 ident: 10.1016/j.celrep.2022.111040_bib57 article-title: Phenotypic variation of transcriptomic cell types in mouse motor cortex publication-title: Nature doi: 10.1038/s41586-020-2907-3 – volume: 24 start-page: 310 year: 2014 ident: 10.1016/j.celrep.2022.111040_bib6 article-title: Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.12.020 – volume: 188 start-page: 285 year: 1967 ident: 10.1016/j.celrep.2022.111040_bib37 article-title: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina publication-title: J. Physiol. doi: 10.1113/jphysiol.1967.sp008140 – volume: 18 start-page: 23 year: 2021 ident: 10.1016/j.celrep.2022.111040_bib10 article-title: Spatially resolved transcriptomics in neuroscience publication-title: Nat. Methods doi: 10.1038/s41592-020-01040-z – volume: 524 start-page: 466 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib34 article-title: Sidekick 2 directs formation of a retinal circuit that detects differential motion publication-title: Nature doi: 10.1038/nature14682 – volume: 9 start-page: 171 year: 2014 ident: 10.1016/j.celrep.2022.111040_bib77 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 532 start-page: 236 year: 2016 ident: 10.1016/j.celrep.2022.111040_bib28 article-title: A neuronal circuit for colour vision based on rod–cone opponency publication-title: Nature doi: 10.1038/nature17158 – volume: 28 start-page: 2184 year: 2012 ident: 10.1016/j.celrep.2022.111040_bib76 article-title: RSeQC: quality control of RNA-seq experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts356 – volume: 37 start-page: 610 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib25 article-title: Three small-receptive-field ganglion cells in the mouse retina are distinctly Tuned to size, speed, and object motion publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2804-16.2016 – volume: 12 start-page: 481 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib31 article-title: Non-parametric physiological classification of retinal ganglion cells in the mouse retina publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2018.00481 – year: 2018 ident: 10.1016/j.celrep.2022.111040_bib5 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat. Biotechnol. – volume: 142 start-page: 977 year: 1963 ident: 10.1016/j.celrep.2022.111040_bib43 article-title: Directional movement and horizontal edge detectors in the pigeon retina publication-title: Science doi: 10.1126/science.142.3594.977 – volume: 546 start-page: 492 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib55 article-title: A retinal code for motion along the gravitational and body axes publication-title: Nature doi: 10.1038/nature22818 – volume: 15 start-page: 1930 year: 2016 ident: 10.1016/j.celrep.2022.111040_bib54 article-title: Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.069 – volume: 34 start-page: 199 year: 2016 ident: 10.1016/j.celrep.2022.111040_bib8 article-title: Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3445 – volume: 110 start-page: 1426 year: 2013 ident: 10.1016/j.celrep.2022.111040_bib40 article-title: Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse publication-title: J. Neurophysiol. doi: 10.1152/jn.01097.2012 – volume: 9 start-page: 2759 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib51 article-title: Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes publication-title: Nat. Commun. doi: 10.1038/s41467-018-05134-3 – volume: 529 start-page: 345 year: 2016 ident: 10.1016/j.celrep.2022.111040_bib3 article-title: The functional diversity of retinal ganglion cells in the mouse publication-title: Nature doi: 10.1038/nature16468 – volume: 28 start-page: 655 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib64 article-title: Inhomogeneous encoding of the visual field in the mouse retina publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.016 – volume: 105 start-page: 1516 year: 2011 ident: 10.1016/j.celrep.2022.111040_bib17 article-title: Physiological clustering of visual channels in the mouse retina publication-title: J. Neurophysiol. doi: 10.1152/jn.00331.2010 – volume: 24 start-page: 1 year: 2020 ident: 10.1016/j.celrep.2022.111040_bib11 article-title: An offset ON–OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells publication-title: Nat. Neurosci. – volume: 8 start-page: 2025 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib47 article-title: Electrical synapses convey orientation selectivity in the mouse retina publication-title: Nat. Commun. doi: 10.1038/s41467-017-01980-9 – volume: 6 start-page: e27041 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib50 article-title: The human cell atlas publication-title: Elife doi: 10.7554/eLife.27041 – volume: 292 start-page: 344 year: 1981 ident: 10.1016/j.celrep.2022.111040_bib65 article-title: Dendritic territories of cat retinal ganglion cells publication-title: Nature doi: 10.1038/292344a0 – volume: 13 start-page: 2663 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib27 article-title: An amacrine cell circuit for signaling steady illumination in the retina publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.11.062 – volume: 90 start-page: 854 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib49 article-title: Design principles and developmental mechanisms underlying retinal mosaics publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/brv.12139 – volume: 477 start-page: 1427 year: 2020 ident: 10.1016/j.celrep.2022.111040_bib69 article-title: Cell Atlas technologies and insights into tissue architecture publication-title: Biochem. J. doi: 10.1042/BCJ20190341 – volume: 20 start-page: 7087 year: 2000 ident: 10.1016/j.celrep.2022.111040_bib2 article-title: Origin of transient and sustained responses in ganglion cells of the retina publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-18-07087.2000 – volume: 12 start-page: e0180091 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib33 article-title: Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures publication-title: PLoS One doi: 10.1371/journal.pone.0180091 – volume: 18 start-page: 2058 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib41 article-title: Diverse central projection patterns of retinal ganglion cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.075 – volume: 410 start-page: 583 year: 2001 ident: 10.1016/j.celrep.2022.111040_bib53 article-title: Vertical interactions across ten parallel, stacked representations in the mammalian retina publication-title: Nature doi: 10.1038/35069068 – volume: 18 start-page: 530 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib73 article-title: Neuronal cell-type classification: challenges, opportunities and the path forward publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.85 – volume: 97 start-page: 2303 year: 2000 ident: 10.1016/j.celrep.2022.111040_bib52 article-title: Spatial order within but not between types of retinal neurons publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.030413497 – volume: 11 start-page: 385 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib35 article-title: Mapping transgene insertion sites reveals complex interactions between mouse transgenes and neighboring endogenous genes publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00385 – start-page: 694 year: 2002 ident: 10.1016/j.celrep.2022.111040_bib72 article-title: Transforming classifier scores into accurate multiclass probability estimates – volume: 36 start-page: 3208 year: 2016 ident: 10.1016/j.celrep.2022.111040_bib46 article-title: Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4554-15.2016 – volume: 110 start-page: 1 year: 2022 ident: 10.1016/j.celrep.2022.111040_bib68 article-title: Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types publication-title: Neuron doi: 10.1016/j.neuron.2022.04.012 – volume: 542 start-page: 439 year: 2017 ident: 10.1016/j.celrep.2022.111040_bib18 article-title: Inhibition decorrelates visual feature representations in the inner retina publication-title: Nature doi: 10.1038/nature21394 – volume: 33 start-page: 10972 year: 2013 ident: 10.1016/j.celrep.2022.111040_bib42 article-title: Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1241-13.2013 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.celrep.2022.111040_bib19 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 35 start-page: 10815 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib61 article-title: Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1521-15.2015 – volume: 114 start-page: 540 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib48 article-title: Ambient illumination switches contrast preference of specific retinal processing streams publication-title: J. Neurophysiol. doi: 10.1152/jn.00360.2015 – volume: 5 start-page: 3512 year: 2014 ident: 10.1016/j.celrep.2022.111040_bib59 article-title: A genetic and computational approach to structurally classify neuronal types publication-title: Nat. Commun. doi: 10.1038/ncomms4512 – start-page: 785 year: 2016 ident: 10.1016/j.celrep.2022.111040_bib9 article-title: XGBoost: A Scalable Tree Boosting System – volume: 23 start-page: 1456 year: 2020 ident: 10.1016/j.celrep.2022.111040_bib70 article-title: A community-based transcriptomics classification and nomenclature of neocortical cell types publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-0685-8 – year: 2021 ident: 10.1016/j.celrep.2022.111040_bib36 article-title: MorphVAE: generating neural morphologies from 3D-walks using a variational autoencoder with spherical latent space publication-title: bioRxiv – volume: 82 start-page: 460 year: 2014 ident: 10.1016/j.celrep.2022.111040_bib21 article-title: The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina publication-title: Neuron doi: 10.1016/j.neuron.2014.02.037 – volume: 483 start-page: 465 year: 2012 ident: 10.1016/j.celrep.2022.111040_bib32 article-title: MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons publication-title: Nature doi: 10.1038/nature10877 – volume: 18 start-page: 66 year: 2015 ident: 10.1016/j.celrep.2022.111040_bib62 article-title: Retinal output changes qualitatively with every change in ambient illuminance publication-title: Nat. Neurosci. doi: 10.1038/nn.3891 – volume: 12 year: 2011 ident: 10.1016/j.celrep.2022.111040_bib78 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 12 start-page: 269 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib26 article-title: Typology and circuitry of suppressed-by-contrast retinal ganglion cells publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2018.00269 – volume: 22 start-page: 1462 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib30 article-title: A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.037 – volume: 5 start-page: 1347 year: 2010 ident: 10.1016/j.celrep.2022.111040_bib66 article-title: Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.106 – volume: 573 start-page: 61 year: 2019 ident: 10.1016/j.celrep.2022.111040_bib23 article-title: Conserved cell types with divergent features in human versus mouse cortex publication-title: Nature doi: 10.1038/s41586-019-1506-7 – volume: 18 start-page: 374 year: 2021 ident: 10.1016/j.celrep.2022.111040_bib1 article-title: SNT: a unifying toolbox for quantification of neuronal anatomy publication-title: Nat. Methods doi: 10.1038/s41592-021-01105-7 – volume: 517 start-page: 226 year: 2009 ident: 10.1016/j.celrep.2022.111040_bib13 article-title: Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells publication-title: J. Comp. Neurol. doi: 10.1002/cne.22158 – volume: 109 start-page: 1527 year: 2021 ident: 10.1016/j.celrep.2022.111040_bib29 article-title: Cell-type-specific binocular vision guides predation in mice publication-title: Neuron doi: 10.1016/j.neuron.2021.03.010 – volume: 67 start-page: 102 year: 2018 ident: 10.1016/j.celrep.2022.111040_bib67 article-title: The dynamic receptive fields of retinal ganglion cells publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2018.06.003 – volume: 42 start-page: 44 year: 2014 ident: 10.1016/j.celrep.2022.111040_bib24 article-title: Functional architecture of the retina: development and disease publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2014.06.003 – start-page: 1041 year: 2002 ident: 10.1016/j.celrep.2022.111040_bib71 article-title: Reducing multiclass to binary by coupling probability estimates – volume: 104 start-page: 1039 year: 2019 ident: 10.1016/j.celrep.2022.111040_bib63 article-title: Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes publication-title: Neuron doi: 10.1016/j.neuron.2019.11.006 – volume: 9 start-page: e56840 year: 2020 ident: 10.1016/j.celrep.2022.111040_bib45 article-title: True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field publication-title: Elife doi: 10.7554/eLife.56840 – volume: 96 start-page: 226 year: 1996 ident: 10.1016/j.celrep.2022.111040_bib14 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: In Kdd |
SSID | ssj0000601194 |
Score | 2.6224132 |
Snippet | Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111040 |
SubjectTerms | Animals Gene Expression Mice Retina - physiology retina, retinal ganglion cell, transcriptomics, morphology, light responses, classification Retinal Ganglion Cells - metabolism |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8iCL6I384vIvho2ZI0afOowyGCvqiwt5CkyZxIHXOC_vfe9WM4FQQfWmh7SUN-6d0v6d2FkNNCOu-EzRKX2iJJtXXoBJAmyuc2xXQhWcBo5JtbdfWQXg_lcIn021gYdKtsdH-t0ytt3dzpNr3ZnYzH3TsOcxewThnHX_gixYBfOFdBfMOL-ToL5hth1X6IKJ9ggTaCrnLz8uF5GjBxJeeoPnq4CvK7hfrJQL87Un6xTIN1stZQSnpet3qDLIVyk6zUm0x-bJEItDIC0aQeiTJ6BlVg0JdIcdofKMYxYgUjiyG98AQX818pesSPKNo9FD8DYYCkqvOM2rKgMPICDe-NI225TR4Gl_f9q6TZXSHxkutZoh1zvahcT1obWZQwUc6Rb-QFVzpGZXObRQuYhYz5CP3i8ZBMeMECs07skOXypQx7hHoVnbTaYl7RtOBO96STSkTvOLBLyztEtD1qfJN6HHfAeDatj9mTqXEwiIOpceiQZF5qUqfe-EM-a8EyC0PIgHX4o-RJi62Brwt72ZYBIDBc5VpljGd5h-zWWM_bImQOClIzeO_CKJgLYObuxSfl-LHK4K0F0FCe7_-7xQdkFa9wkZnxQ7I8m76FI2BHM3dcDf9PLI0Pdg priority: 102 providerName: Elsevier |
Title | Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression |
URI | https://dx.doi.org/10.1016/j.celrep.2022.111040 https://www.ncbi.nlm.nih.gov/pubmed/35830791 https://www.proquest.com/docview/2689671278 https://pubmed.ncbi.nlm.nih.gov/PMC9364428 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH9YpcWLqLV2_SIFj45sMpPM5CCioqigJxf2FpJMYpVlbNct6H_ve_OxVlsRPMxcJsmE_N5Lfnm8D4DtUjrvUpsnLrNlkmnryAkgS5QvbEbpQvJA0cgXl-p0kJ0P5XAGupqt7QLe__dqR_WkBuPR7sPvx31U-L1nXy0fRuNA2SeFoD0ABfMTzOHZlJOqXrSEv9mbKcdZ1sXQvdF5Hr6kskDp1_yt4-pfOvraq_KvY-pkERZafskOGoFYgplQLcPnpuLk41eIyDEjsk7miTWTm1CNDLuLjGwAgVFQIw1wbSm-F7-QZf-ekXv8NaNDkJrvYGPEpx5zh9mqZCiGgYWH1qu2WoHByfHV0WnSllpIvBR6kmjHXT8q15fWRh4l3poLIh9FKZSOUdnC5tEigCHnPuISeXokT33KA7cu_Qaz1V0VvgPzKjpptaUko1kpnO5LJ1UavRNINa3oQdqtqPFtHnIqhzEyncPZrWkgMQSJaSDpQTLt9avJw_FO-7wDy7RcouEIBiXnnZ4_OmwNqhqtsq0CQmCEKrTKuciLHqw2WE_n0skL_veFFEwbUBrvl1-qm591Om-dIicVxdqHe67DPM2fLM5cbMDsZPwnbCJVmrit2sSA77Ph4VatCU_oCRg6 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UitgX8e56jeBjh90kk9ujFstW277Ywr6FJJPUlTIt7Qr67z1nLourQsGHeZlcJuRLzvmSOReAd42KKcpgqliHpqpdiGQEUFc62VBTuBCTyRv56FjPT-tPC7XYgr3RF4bMKgfZ38v0TloPb6bDbE4vl8vpF4FnF9RORtAvfFnbW3Ab2YCh_A0Hiw_rixYKOMK7hIjUoKIWowtdZ-eV8vlVpsiVQpD8mNE1yL9V1N8U9E9Lyt9U0_59uDdwSva-H_YD2MrtQ7jTZ5n8-QgK8sqCTJMlYspkGtShwS4Ko3N_ZuTISB2cBfLpxRK6zb9mZBJ_xkjxUfVdrIyYdH3ustA2DJdeZvnHYEnbPobT_Y8ne_NqSK9QJSXcqnKRx1nRcaZCKLwoPClbIhy2EdqVooMNpgQELRueCs5LokdxmSTPPET5BLbbizY_A5Z0iSq4QIFF60ZEN1NRaVlSFEgvg5iAHGfUpyH2OKXAOPejkdk33-PgCQff4zCBat3qso-9cUN9M4LlN9aQR_VwQ8u3I7YetxfNcmgzQuCFtk4bLoydwNMe6_VYpLIoIR3H726sgnUFCt29WdIuv3YhvJ1EHirs8_8e8Ru4Oz85OvSHB8efX8AOldCNMxcvYXt19T2_Qqq0iq-7rfALzbESlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+classification+of+mouse+retinal+ganglion+cells+using+function%2C+morphology%2C+and+gene+expression&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Goetz%2C+Jillian&rft.au=Jessen%2C+Zachary+F.&rft.au=Jacobi%2C+Anne&rft.au=Mani%2C+Adam&rft.date=2022-07-12&rft.eissn=2211-1247&rft.volume=40&rft.issue=2&rft.spage=111040&rft.epage=111040&rft_id=info:doi/10.1016%2Fj.celrep.2022.111040&rft_id=info%3Apmid%2F35830791&rft.externalDocID=PMC9364428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |