Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression

Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, w...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 40; no. 2; p. 111040
Main Authors Goetz, Jillian, Jessen, Zachary F., Jacobi, Anne, Mani, Adam, Cooler, Sam, Greer, Devon, Kadri, Sabah, Segal, Jeremy, Shekhar, Karthik, Sanes, Joshua R., Schwartz, Gregory W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.07.2022
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2022.111040

Cover

Loading…
Abstract Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution. [Display omitted] •Function, morphology, and gene expression jointly specify retinal ganglion cell type•42 classified types in mice comprise 89% of the total population•Online resource at rgctypes.org to explore and download the data Function, morphology, and gene expression are the most common criteria used to classify neurons. Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells and build an interactive online resource for exploring the data.
AbstractList Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution. Function, morphology, and gene expression are the most common criteria used to classify neurons. Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells and build an interactive online resource for exploring the data.
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution. [Display omitted] •Function, morphology, and gene expression jointly specify retinal ganglion cell type•42 classified types in mice comprise 89% of the total population•Online resource at rgctypes.org to explore and download the data Function, morphology, and gene expression are the most common criteria used to classify neurons. Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells and build an interactive online resource for exploring the data.
ArticleNumber 111040
Author Segal, Jeremy
Schwartz, Gregory W.
Goetz, Jillian
Cooler, Sam
Kadri, Sabah
Jessen, Zachary F.
Sanes, Joshua R.
Shekhar, Karthik
Mani, Adam
Greer, Devon
Jacobi, Anne
AuthorAffiliation 13 These authors contributed equally
5 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
11 Present address: Department of Neurosurgery, Stanford University, Stanford, CA, USA
3 Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
6 Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
14 Lead contact
10 Present address: Department of Neuroscience, Brown University, Providence, RI, USA
4 F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
12 Present address: Department of Pathology and Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
1 Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
8 Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
2 Nor
AuthorAffiliation_xml – name: 5 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
– name: 9 Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
– name: 3 Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
– name: 6 Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
– name: 14 Lead contact
– name: 11 Present address: Department of Neurosurgery, Stanford University, Stanford, CA, USA
– name: 8 Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– name: 1 Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– name: 12 Present address: Department of Pathology and Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– name: 4 F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– name: 2 Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
– name: 13 These authors contributed equally
– name: 7 Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
– name: 10 Present address: Department of Neuroscience, Brown University, Providence, RI, USA
Author_xml – sequence: 1
  givenname: Jillian
  surname: Goetz
  fullname: Goetz, Jillian
  organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– sequence: 2
  givenname: Zachary F.
  surname: Jessen
  fullname: Jessen, Zachary F.
  organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– sequence: 3
  givenname: Anne
  surname: Jacobi
  fullname: Jacobi, Anne
  organization: F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– sequence: 4
  givenname: Adam
  surname: Mani
  fullname: Mani, Adam
  organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– sequence: 5
  givenname: Sam
  surname: Cooler
  fullname: Cooler, Sam
  organization: Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
– sequence: 6
  givenname: Devon
  surname: Greer
  fullname: Greer, Devon
  organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
– sequence: 7
  givenname: Sabah
  surname: Kadri
  fullname: Kadri, Sabah
  organization: Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
– sequence: 8
  givenname: Jeremy
  surname: Segal
  fullname: Segal, Jeremy
  organization: Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
– sequence: 9
  givenname: Karthik
  surname: Shekhar
  fullname: Shekhar, Karthik
  organization: Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
– sequence: 10
  givenname: Joshua R.
  surname: Sanes
  fullname: Sanes, Joshua R.
  organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
– sequence: 11
  givenname: Gregory W.
  orcidid: 0000-0001-8909-4397
  surname: Schwartz
  fullname: Schwartz, Gregory W.
  email: greg.schwartz@northwestern.edu
  organization: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35830791$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFq3DAQFSElSdP8QSg69pDdamRbtnMolNC0hUAvzVnI8sjRopUcyQ7N31fObkrSQysYNDBv3mPee0sOffBIyDmwNTAQHzdrjS7iuOaM8zUAsJIdkBPOAVbAy_rwRX9MzlLasPwEA2jLI3JcVE3B6hZOiLn11ljsqXYqpdxqNdngaTB0G-aENOJkvXJ0UH5wyyQLu0TnZP1Azez1Ar_I4DjeBReGxwuqfE8H9Ejx1xgxswb_jrwxyiU82_-n5Pb6y8-rb6ubH1-_X32-WemKt9Oq7aBjRnSsUsqAqVgpGlYDa3ouWmOEalRtlNAN1qBNvlkvVUGhC0BQXXFKPu14x7nbYq_RT1E5OUa7VfFRBmXl64m3d3IID7ItRFnyJhN82BPEcD9jmuTWpuVk5TH7IbloWlEDrxfo-5daf0Sezc2Ayx1Ax5BSRCO1nZ7szdLWSWByCVNu5C5MuYQpd2Hm5fKv5Wf-_6ztDcDs8oPFKJO26DX2NqKeZB_svwl-A0YCvL8
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112985
crossref_primary_10_3390_ijms25052848
crossref_primary_10_1016_j_conb_2023_102752
crossref_primary_10_1016_j_neuron_2024_06_001
crossref_primary_10_1038_s41467_023_43382_0
crossref_primary_10_1038_s41559_023_02291_7
crossref_primary_10_1002_cne_70015
crossref_primary_10_1152_jn_00243_2022
crossref_primary_10_1002_cne_25606
crossref_primary_10_1038_s41467_023_40527_z
crossref_primary_10_1371_journal_pbio_3002422
crossref_primary_10_1016_j_celrep_2025_115373
crossref_primary_10_1016_j_stemcr_2024_102393
crossref_primary_10_1007_s12021_024_09674_6
crossref_primary_10_1146_annurev_neuro_083122_021241
crossref_primary_10_1088_1741_2552_ad38de
crossref_primary_10_7554_eLife_91532
crossref_primary_10_1523_JNEUROSCI_1592_24_2024
crossref_primary_10_1364_BOE_504637
crossref_primary_10_7554_eLife_98742_3
crossref_primary_10_1016_j_celrep_2024_113830
crossref_primary_10_1016_j_preteyeres_2024_101321
crossref_primary_10_3389_fphar_2022_1082997
crossref_primary_10_1016_j_neuroscience_2022_07_013
crossref_primary_10_1038_s41467_025_55882_2
crossref_primary_10_1016_j_cobeha_2024_101391
crossref_primary_10_1016_j_ymthe_2025_01_030
crossref_primary_10_1038_s41467_024_50114_5
crossref_primary_10_1016_j_isci_2024_111250
crossref_primary_10_1109_TBCAS_2023_3342465
crossref_primary_10_1002_cne_70023
crossref_primary_10_1523_ENEURO_0280_23_2023
crossref_primary_10_1016_j_cub_2024_11_013
crossref_primary_10_1113_JP286414
crossref_primary_10_1093_pnasnexus_pgae423
crossref_primary_10_1098_rsob_220217
crossref_primary_10_1016_j_asoc_2023_110484
crossref_primary_10_3390_s23135782
crossref_primary_10_7554_eLife_86860
crossref_primary_10_1038_s41467_024_44851_w
crossref_primary_10_3389_fncel_2023_1115703
crossref_primary_10_1038_s41586_023_06638_9
crossref_primary_10_1016_j_preteyeres_2022_101131
crossref_primary_10_1016_j_tins_2024_09_010
crossref_primary_10_1098_rspb_2024_2586
crossref_primary_10_1016_j_neuroscience_2024_03_001
crossref_primary_10_3389_fneur_2024_1486139
crossref_primary_10_1016_j_cub_2022_12_026
crossref_primary_10_1038_s41586_023_06659_4
crossref_primary_10_1162_neco_a_01595
crossref_primary_10_1002_cne_25663
crossref_primary_10_1073_pnas_2405138121
crossref_primary_10_7554_eLife_98742
crossref_primary_10_1016_j_exer_2023_109540
crossref_primary_10_7554_eLife_91532_3
crossref_primary_10_1186_s13024_023_00655_y
crossref_primary_10_1146_annurev_vision_102122_105721
crossref_primary_10_1038_s41467_023_41032_z
crossref_primary_10_1038_s41586_024_08212_3
crossref_primary_10_3389_fnins_2023_1241691
crossref_primary_10_7554_eLife_93339
crossref_primary_10_1016_j_cub_2025_02_014
crossref_primary_10_1126_sciadv_adk4062
crossref_primary_10_1038_s41586_024_08518_2
crossref_primary_10_1016_j_neuron_2022_12_006
crossref_primary_10_1002_cne_25591
crossref_primary_10_1101_cshperspect_a041512
crossref_primary_10_3389_fnana_2022_1054849
crossref_primary_10_3389_fnana_2024_1335176
crossref_primary_10_1016_j_celrep_2024_114639
crossref_primary_10_1016_j_devcel_2023_07_011
crossref_primary_10_1038_s41467_024_49206_z
crossref_primary_10_1073_pnas_2317773121
crossref_primary_10_1089_ars_2023_0309
crossref_primary_10_1126_sciadv_adi8534
crossref_primary_10_3389_fopht_2023_1180142
crossref_primary_10_3390_cells12151951
crossref_primary_10_1016_j_cub_2025_02_008
crossref_primary_10_1371_journal_pcbi_1012370
crossref_primary_10_1073_pnas_2415223122
crossref_primary_10_7554_eLife_80749
crossref_primary_10_1016_j_biopha_2025_117944
crossref_primary_10_1016_j_cell_2024_04_010
crossref_primary_10_1073_pnas_2411130121
crossref_primary_10_1038_s41467_024_46996_0
crossref_primary_10_3389_fncel_2025_1536452
crossref_primary_10_1016_j_celrep_2022_111322
Cites_doi 10.1016/j.cub.2016.12.033
10.1016/j.media.2014.09.007
10.1038/s41586-021-03950-0
10.4310/SII.2009.v2.n3.a8
10.1038/s41593-018-0127-z
10.1016/j.cell.2018.04.040
10.1146/annurev-vision-082114-035502
10.1146/annurev-neuro-071714-034120
10.1523/JNEUROSCI.4298-14.2015
10.1038/s41586-020-2907-3
10.1016/j.cub.2013.12.020
10.1113/jphysiol.1967.sp008140
10.1038/s41592-020-01040-z
10.1038/nature14682
10.1038/nprot.2014.006
10.1038/nature17158
10.1093/bioinformatics/bts356
10.1523/JNEUROSCI.2804-16.2016
10.3389/fncel.2018.00481
10.1126/science.142.3594.977
10.1038/nature22818
10.1016/j.celrep.2016.04.069
10.1038/nbt.3445
10.1152/jn.01097.2012
10.1038/s41467-018-05134-3
10.1038/nature16468
10.1016/j.cub.2018.01.016
10.1152/jn.00331.2010
10.1038/s41467-017-01980-9
10.7554/eLife.27041
10.1038/292344a0
10.1016/j.celrep.2015.11.062
10.1111/brv.12139
10.1042/BCJ20190341
10.1523/JNEUROSCI.20-18-07087.2000
10.1371/journal.pone.0180091
10.1016/j.celrep.2017.01.075
10.1038/35069068
10.1038/nrn.2017.85
10.1073/pnas.030413497
10.3389/fnmol.2018.00385
10.1523/JNEUROSCI.4554-15.2016
10.1016/j.neuron.2022.04.012
10.1038/nature21394
10.1523/JNEUROSCI.1241-13.2013
10.1523/JNEUROSCI.1521-15.2015
10.1152/jn.00360.2015
10.1038/ncomms4512
10.1038/s41593-020-0685-8
10.1016/j.neuron.2014.02.037
10.1038/nature10877
10.1038/nn.3891
10.1186/1471-2105-12-323
10.3389/fncel.2018.00269
10.1016/j.celrep.2018.01.037
10.1038/nprot.2010.106
10.1038/s41586-019-1506-7
10.1038/s41592-021-01105-7
10.1002/cne.22158
10.1016/j.neuron.2021.03.010
10.1016/j.preteyeres.2018.06.003
10.1016/j.preteyeres.2014.06.003
10.1016/j.neuron.2019.11.006
10.7554/eLife.56840
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2022.111040
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 111040
ExternalDocumentID PMC9364428
35830791
10_1016_j_celrep_2022_111040
S2211124722008348
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R00 EY028625
– fundername: NEI NIH HHS
  grantid: DP2 EY026770
– fundername: NIGMS NIH HHS
  grantid: T32 GM008152
– fundername: NIMH NIH HHS
  grantid: U01 MH105960
– fundername: NEI NIH HHS
  grantid: R01 EY031029
– fundername: NIMH NIH HHS
  grantid: T32 MH067564
– fundername: NEI NIH HHS
  grantid: F30 EY031565
– fundername: NEI NIH HHS
  grantid: R01 EY031329
– fundername: NEI NIH HHS
  grantid: R01 EY022073
– fundername: NEI NIH HHS
  grantid: F31 EY029593
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-9b1b0f6b05aaf1f5046807108d269ff6a8a7fa6c8e71cf040c040c513c31e1ab3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Thu Aug 21 14:05:49 EDT 2025
Fri Jul 11 03:51:37 EDT 2025
Thu Apr 03 06:51:32 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Tue Jul 01 02:59:28 EDT 2025
Tue Jul 25 20:57:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CP: Neuroscience
retina, retinal ganglion cell, transcriptomics, morphology, light responses, classification
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-9b1b0f6b05aaf1f5046807108d269ff6a8a7fa6c8e71cf040c040c513c31e1ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
J.G. and G.W.S. designed the study. J.G. and G.W.S. collected functionally identified cells for RNA sequencing. A.J. performed RNA sequencing experiments in the lab of J.R.S. Z.F.J., G.W.S., and A.M. wrote analysis code for quantifying and classifying RGC responses. Z.F.J., S.C., and G.W.S. built rgctypes.org. S.K. and J.S. helped design the molecular studies and analyzed transcriptomics data. K.S. matched transcriptomic data to the previously identified clusters. J.R.S., K.S., and G.W.S. led the molecular parts of the project. D.G. analyzed data for the dense RGC recording (Figure S6) and assembled the database of traced RGC images at rgctypes.org.. Z.F.J. built the machine learning RGC classifier. Z.F.J. and G.W.S. performed morphological analyses. G.W.S. performed analyses to align the classification modalities. J.G., Z.F.J., A.M., S.C., D.G., G.W.S., and additional members of the Schwartz Lab recorded RGCs for the dataset. J.R.S. and G.W.S. acquired funding and managed the project. J.G. and G.W.S. wrote the first draft of the paper. Z.F.J., J.R.S., K.S., and G.W.S. revised the paper.
ORCID 0000-0001-8909-4397
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2022.111040
PMID 35830791
PQID 2689671278
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364428
proquest_miscellaneous_2689671278
pubmed_primary_35830791
crossref_citationtrail_10_1016_j_celrep_2022_111040
crossref_primary_10_1016_j_celrep_2022_111040
elsevier_sciencedirect_doi_10_1016_j_celrep_2022_111040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-12
PublicationDateYYYYMMDD 2022-07-12
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Scala, Kobak, Bernabucci, Bernaerts, Cadwell, Castro, Hartmanis, Jiang, Laturnus, Miranda (bib57) 2020; 598
Dhande, Stafford, Lim, Huberman (bib12) 2015; 1
Euler, Franke, Baden (bib16) 2019
Nath, Schwartz (bib47) 2017; 8
Zadrozny, Elkan (bib72) 2002
Cooler, Schwartz (bib11) 2020; 24
Sanes, Masland (bib56) 2015; 38
Estevez, Quattrochi, Dhande, Kim, Firman, Eldanaf, Huberman, Berson (bib15) 2013; 54
(bib7) 2021; 598
Hastie, Rosset, Zhu, Zou (bib22) 2009; 2
Sabbah, Gemmer, Bhatia-Lin, Manoff, Castro, Siegel, Jeffery, Berson (bib55) 2017; 546
Maturana, Frenk (bib43) 1963; 142
Wilbrey-Clark, Roberts, Teichmann (bib69) 2020; 477
Cadwell, Palasantza, Jiang, Berens, Deng, Yilmaz, Reimer, Shen, Bethge, Tolias (bib8) 2016; 34
MacKay, Mac (bib75) 2003
Wei, Elstrott, Feller (bib66) 2010; 5
Li, Dewey (bib78) 2011; 12
Schneider, Hirsch, Weber, Székely, Menze (bib58) 2015; 19
Yuste, Hawrylycz, Aalling, Aguilar-Valles, Arendt, Armañanzas, Ascoli, Bielza, Bokharaie, Bergmann (bib70) 2020; 23
Tikidji-Hamburyan, Reinhard, Seitter, Hovhannisyan, Procyk, Allen, Schenk, Lucas, Münch (bib62) 2015; 18
Becht, McInnes, Healy, Dutertre, Kwok, Ng, Ginhoux, Newell (bib5) 2018
Farrow, Masland (bib17) 2011; 105
Arshadi, Günther, Eddison, Harrington, Ferreira (bib1) 2021; 18
Close, Long, Zeng (bib10) 2021; 18
Pearson, Kerschensteiner (bib48) 2015; 114
Rousso, Qiao, Kagan, Yamagata, Palmiter, Sanes (bib54) 2016; 15
Wang, Wang, Li (bib76) 2012; 28
Sümbül, Song, McCulloch, Becker, Lin, Sanes, Masland, Sebastian Seung (bib59) 2014; 5
Zhang, Kim, Sanes, Meister (bib74) 2012; 109
Johnson, Fitzpatrick, Zhao, Wang, McCracken, Williams, Kerschensteiner (bib29) 2021; 109
Tien, Pearson, Heller, Demas, Kerschensteiner (bib61) 2015; 35
Rheaume, Jereen, Bolisetty, Sajid, Yang, Renna, Sun, Robson, Trakhtenberg (bib51) 2018; 9
Mani, Schwartz (bib39) 2017; 27
Nath, Schwartz (bib46) 2016; 36
Kay, Chu, Sanes (bib32) 2012; 483
Warwick, Kaushansky, Sarid, Golan, Rivlin-Etzion (bib64) 2018; 28
Bae, Mu, Kim, Turner, Tartavull, Kemnitz, Jordan, Norton, Silversmith, Prentki (bib4) 2018; 173
Franke, Berens, Schubert, Bethge, Euler, Baden (bib18) 2017; 542
Borghuis, Looger, Demb, Demb (bib42) 2013; 33
Wienbar, Schwartz (bib67) 2018; 67
Rockhill, Euler, Masland (bib52) 2000; 97
Levick (bib37) 1967; 188
Martersteck, Hirokawa, Evarts, Bernard, Duan, Li, Ng, Oh, Ouellette, Royall (bib41) 2017; 18
Roska, Werblin (bib53) 2001; 410
Zadrozny (bib71) 2002
Jouty, Hilgen, Sernagor, Hennig (bib31) 2018; 12
Surgucheva, Weisman, Goldberg, Shnyra, Surguchov (bib60) 2008; 14
Johnson, Zhao, Kerschensteiner (bib30) 2018; 22
Awatramani, Slaughter (bib2) 2000; 20
Krieger, Qiao, Rousso, Sanes, Meister (bib33) 2017; 12
Gauvain, Murphy (bib20) 2015; 35
Laboulaye, Duan, Qiao, Whitney, Sanes (bib35) 2018; 11
Tran, Shekhar, Whitney, Jacobi, Benhar, Hong, Yan, Adiconis, Arnold, Lee (bib63) 2019; 104
Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib77) 2014; 9
Jacoby, Schwartz (bib26) 2018; 12
Nadal-Nicolás, Kunze, Ball, Peng, Krishnan, Zhou, Dong, Li (bib45) 2020; 9
Wässle, Peichl, Boycott (bib65) 1981; 292
Ester, Kriegel, Sander, Xu (bib14) 1996; 96
Dumitrescu, Pucci, Wong, Berson (bib13) 2009; 517
Jacoby, Schwartz (bib25) 2017; 37
McInnes, Healy, Melville (bib44) 2018
Jacoby, Zhu, DeVries, Schwartz (bib27) 2015; 13
Reese, Keeley (bib49) 2015; 90
Hoon, Okawa, Della Santina, Wong (bib24) 2014; 42
Liu, Reggiani, Laboulaye, Pandey, Chen, Rubenstein, Krishnaswamy, Sanes (bib38) 2018; 21
Regev, Teichmann, Lander, Amit, Benoist, Birney, Bodenmiller, Campbell, Carninci, Clatworthy (bib50) 2017; 6
Bleckert, Schwartz, Turner, Rieke, Wong (bib6) 2014; 24
Friedman, Hastie, Tibshirani (bib19) 2010; 33
Zeng, Sanes (bib73) 2017; 18
Laturnus, Berens (bib36) 2021
Krishnaswamy, Yamagata, Duan, Hong, Sanes (bib34) 2015; 524
Hodge, Bakken, Miller, Smith, Barkan, Graybuck, Close, Long, Johansen, Penn (bib23) 2019; 573
Baden, Berens, Franke, Román Rosón, Bethge, Euler (bib3) 2016; 529
Wienbar, Schwartz (bib68) 2022; 110
Langmead, Salzberg (bib79) 2012; 9
Joesch, Meister (bib28) 2016; 532
Grimes, Schwartz, Rieke (bib21) 2014; 82
Chen, Guestrin (bib9) 2016
Marco, Di Marco, Protti, Solomon (bib40) 2013; 110
Joesch (10.1016/j.celrep.2022.111040_bib28) 2016; 532
Borghuis (10.1016/j.celrep.2022.111040_bib42) 2013; 33
Farrow (10.1016/j.celrep.2022.111040_bib17) 2011; 105
Arshadi (10.1016/j.celrep.2022.111040_bib1) 2021; 18
Tien (10.1016/j.celrep.2022.111040_bib61) 2015; 35
Jacoby (10.1016/j.celrep.2022.111040_bib27) 2015; 13
Dhande (10.1016/j.celrep.2022.111040_bib12) 2015; 1
Langmead (10.1016/j.celrep.2022.111040_bib79) 2012; 9
Mani (10.1016/j.celrep.2022.111040_bib39) 2017; 27
Rockhill (10.1016/j.celrep.2022.111040_bib52) 2000; 97
Liu (10.1016/j.celrep.2022.111040_bib38) 2018; 21
Nath (10.1016/j.celrep.2022.111040_bib47) 2017; 8
Johnson (10.1016/j.celrep.2022.111040_bib29) 2021; 109
Reese (10.1016/j.celrep.2022.111040_bib49) 2015; 90
Euler (10.1016/j.celrep.2022.111040_bib16) 2019
Picelli (10.1016/j.celrep.2022.111040_bib77) 2014; 9
Regev (10.1016/j.celrep.2022.111040_bib50) 2017; 6
Scala (10.1016/j.celrep.2022.111040_bib57) 2020; 598
Hoon (10.1016/j.celrep.2022.111040_bib24) 2014; 42
Martersteck (10.1016/j.celrep.2022.111040_bib41) 2017; 18
Hodge (10.1016/j.celrep.2022.111040_bib23) 2019; 573
Levick (10.1016/j.celrep.2022.111040_bib37) 1967; 188
Marco (10.1016/j.celrep.2022.111040_bib40) 2013; 110
Awatramani (10.1016/j.celrep.2022.111040_bib2) 2000; 20
Krieger (10.1016/j.celrep.2022.111040_bib33) 2017; 12
Krishnaswamy (10.1016/j.celrep.2022.111040_bib34) 2015; 524
Tikidji-Hamburyan (10.1016/j.celrep.2022.111040_bib62) 2015; 18
Cadwell (10.1016/j.celrep.2022.111040_bib8) 2016; 34
MacKay (10.1016/j.celrep.2022.111040_bib75) 2003
Li (10.1016/j.celrep.2022.111040_bib78) 2011; 12
Schneider (10.1016/j.celrep.2022.111040_bib58) 2015; 19
Nath (10.1016/j.celrep.2022.111040_bib46) 2016; 36
Wässle (10.1016/j.celrep.2022.111040_bib65) 1981; 292
Dumitrescu (10.1016/j.celrep.2022.111040_bib13) 2009; 517
Warwick (10.1016/j.celrep.2022.111040_bib64) 2018; 28
Baden (10.1016/j.celrep.2022.111040_bib3) 2016; 529
Zadrozny (10.1016/j.celrep.2022.111040_bib72) 2002
Sabbah (10.1016/j.celrep.2022.111040_bib55) 2017; 546
Zeng (10.1016/j.celrep.2022.111040_bib73) 2017; 18
Nadal-Nicolás (10.1016/j.celrep.2022.111040_bib45) 2020; 9
Bleckert (10.1016/j.celrep.2022.111040_bib6) 2014; 24
Laboulaye (10.1016/j.celrep.2022.111040_bib35) 2018; 11
Bae (10.1016/j.celrep.2022.111040_bib4) 2018; 173
Close (10.1016/j.celrep.2022.111040_bib10) 2021; 18
Wei (10.1016/j.celrep.2022.111040_bib66) 2010; 5
Maturana (10.1016/j.celrep.2022.111040_bib43) 1963; 142
Friedman (10.1016/j.celrep.2022.111040_bib19) 2010; 33
Estevez (10.1016/j.celrep.2022.111040_bib15) 2013; 54
Pearson (10.1016/j.celrep.2022.111040_bib48) 2015; 114
Wilbrey-Clark (10.1016/j.celrep.2022.111040_bib69) 2020; 477
Rousso (10.1016/j.celrep.2022.111040_bib54) 2016; 15
Kay (10.1016/j.celrep.2022.111040_bib32) 2012; 483
Sümbül (10.1016/j.celrep.2022.111040_bib59) 2014; 5
Becht (10.1016/j.celrep.2022.111040_bib5) 2018
Franke (10.1016/j.celrep.2022.111040_bib18) 2017; 542
Jouty (10.1016/j.celrep.2022.111040_bib31) 2018; 12
Surgucheva (10.1016/j.celrep.2022.111040_bib60) 2008; 14
Chen (10.1016/j.celrep.2022.111040_bib9) 2016
Grimes (10.1016/j.celrep.2022.111040_bib21) 2014; 82
Gauvain (10.1016/j.celrep.2022.111040_bib20) 2015; 35
Roska (10.1016/j.celrep.2022.111040_bib53) 2001; 410
Zhang (10.1016/j.celrep.2022.111040_bib74) 2012; 109
Ester (10.1016/j.celrep.2022.111040_bib14) 1996; 96
Tran (10.1016/j.celrep.2022.111040_bib63) 2019; 104
Cooler (10.1016/j.celrep.2022.111040_bib11) 2020; 24
Hastie (10.1016/j.celrep.2022.111040_bib22) 2009; 2
Jacoby (10.1016/j.celrep.2022.111040_bib26) 2018; 12
McInnes (10.1016/j.celrep.2022.111040_bib44) 2018
Wang (10.1016/j.celrep.2022.111040_bib76) 2012; 28
Yuste (10.1016/j.celrep.2022.111040_bib70) 2020; 23
Jacoby (10.1016/j.celrep.2022.111040_bib25) 2017; 37
Rheaume (10.1016/j.celrep.2022.111040_bib51) 2018; 9
Johnson (10.1016/j.celrep.2022.111040_bib30) 2018; 22
Laturnus (10.1016/j.celrep.2022.111040_bib36) 2021
Wienbar (10.1016/j.celrep.2022.111040_bib67) 2018; 67
Wienbar (10.1016/j.celrep.2022.111040_bib68) 2022; 110
(10.1016/j.celrep.2022.111040_bib7) 2021; 598
Sanes (10.1016/j.celrep.2022.111040_bib56) 2015; 38
Zadrozny (10.1016/j.celrep.2022.111040_bib71) 2002
References_xml – volume: 34
  start-page: 199
  year: 2016
  end-page: 203
  ident: bib8
  article-title: Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq
  publication-title: Nat. Biotechnol.
– start-page: 1041
  year: 2002
  end-page: 1048
  ident: bib71
  article-title: Reducing multiclass to binary by coupling probability estimates
  publication-title: Advances in Neural Information Processing Systems 14
– volume: 109
  start-page: 1527
  year: 2021
  end-page: 1539.e4
  ident: bib29
  article-title: Cell-type-specific binocular vision guides predation in mice
  publication-title: Neuron
– volume: 110
  start-page: 1
  year: 2022
  ident: bib68
  article-title: Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types
  publication-title: Neuron
– volume: 9
  start-page: 2759
  year: 2018
  ident: bib51
  article-title: Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes
  publication-title: Nat. Commun.
– volume: 598
  start-page: 86
  year: 2021
  end-page: 102
  ident: bib7
  article-title: A multimodal cell census and atlas of the mammalian primary motor cortex
  publication-title: Nature
– volume: 35
  start-page: 6575
  year: 2015
  end-page: 6583
  ident: bib20
  article-title: Projection-specific characteristics of retinal input to the brain
  publication-title: J. Neurosci.
– volume: 18
  start-page: 2058
  year: 2017
  end-page: 2072
  ident: bib41
  article-title: Diverse central projection patterns of retinal ganglion cells
  publication-title: Cell Rep.
– volume: 36
  start-page: 3208
  year: 2016
  end-page: 3221
  ident: bib46
  article-title: Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina
  publication-title: J. Neurosci.
– start-page: 225
  year: 2019
  end-page: 250
  ident: bib16
  article-title: Studying a light sensor with light: multiphoton imaging in the retina
  publication-title: Multiphoton Microscopy
– volume: 529
  start-page: 345
  year: 2016
  end-page: 350
  ident: bib3
  article-title: The functional diversity of retinal ganglion cells in the mouse
  publication-title: Nature
– volume: 2
  start-page: 349
  year: 2009
  end-page: 360
  ident: bib22
  article-title: Multi-class adaboost
  publication-title: Stat. Interface
– volume: 5
  start-page: 1347
  year: 2010
  end-page: 1352
  ident: bib66
  article-title: Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina
  publication-title: Nat. Protoc.
– volume: 24
  start-page: 310
  year: 2014
  end-page: 315
  ident: bib6
  article-title: Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types
  publication-title: Curr. Biol.
– volume: 12
  start-page: 481
  year: 2018
  ident: bib31
  article-title: Non-parametric physiological classification of retinal ganglion cells in the mouse retina
  publication-title: Front. Cell. Neurosci.
– volume: 15
  start-page: 1930
  year: 2016
  end-page: 1944
  ident: bib54
  article-title: Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression
  publication-title: Cell Rep.
– volume: 12
  start-page: 269
  year: 2018
  ident: bib26
  article-title: Typology and circuitry of suppressed-by-contrast retinal ganglion cells
  publication-title: Front. Cell. Neurosci.
– volume: 38
  start-page: 221
  year: 2015
  end-page: 246
  ident: bib56
  article-title: The types of retinal ganglion cells: current status and implications for neuronal classification
  publication-title: Annu. Rev. Neurosci.
– volume: 18
  start-page: 374
  year: 2021
  end-page: 377
  ident: bib1
  article-title: SNT: a unifying toolbox for quantification of neuronal anatomy
  publication-title: Nat. Methods
– year: 2018
  ident: bib5
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat. Biotechnol.
– volume: 19
  start-page: 220
  year: 2015
  end-page: 249
  ident: bib58
  article-title: Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters
  publication-title: Med. Image Anal.
– volume: 142
  start-page: 977
  year: 1963
  end-page: 979
  ident: bib43
  article-title: Directional movement and horizontal edge detectors in the pigeon retina
  publication-title: Science
– volume: 37
  start-page: 610
  year: 2017
  end-page: 625
  ident: bib25
  article-title: Three small-receptive-field ganglion cells in the mouse retina are distinctly Tuned to size, speed, and object motion
  publication-title: J. Neurosci.
– volume: 13
  start-page: 2663
  year: 2015
  end-page: 2670
  ident: bib27
  article-title: An amacrine cell circuit for signaling steady illumination in the retina
  publication-title: Cell Rep.
– volume: 173
  start-page: 1293
  year: 2018
  end-page: 1306.e19
  ident: bib4
  article-title: Digital museum of retinal ganglion cells with dense anatomy and physiology
  publication-title: Cell
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib79
  article-title: Fast gapped-read alignment with Bowtie 2. Nat
  publication-title: Methods
– volume: 21
  start-page: 659
  year: 2018
  end-page: 670
  ident: bib38
  article-title: Tbr1 instructs laminar patterning of retinal ganglion cell dendrites
  publication-title: Nat. Neurosci.
– volume: 12
  year: 2011
  ident: bib78
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: bib14
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: In Kdd
– volume: 6
  start-page: e27041
  year: 2017
  ident: bib50
  article-title: The human cell atlas
  publication-title: Elife
– volume: 105
  start-page: 1516
  year: 2011
  end-page: 1530
  ident: bib17
  article-title: Physiological clustering of visual channels in the mouse retina
  publication-title: J. Neurophysiol.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib9
  article-title: XGBoost: A Scalable Tree Boosting System
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 542
  start-page: 439
  year: 2017
  end-page: 444
  ident: bib18
  article-title: Inhibition decorrelates visual feature representations in the inner retina
  publication-title: Nature
– volume: 410
  start-page: 583
  year: 2001
  end-page: 587
  ident: bib53
  article-title: Vertical interactions across ten parallel, stacked representations in the mammalian retina
  publication-title: Nature
– volume: 109
  start-page: E2391
  year: 2012
  end-page: E2398
  ident: bib74
  article-title: The most numerous ganglion cell type of the mouse retina is a selective feature detector
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 517
  start-page: 226
  year: 2009
  end-page: 244
  ident: bib13
  article-title: Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells
  publication-title: J. Comp. Neurol.
– volume: 42
  start-page: 44
  year: 2014
  end-page: 84
  ident: bib24
  article-title: Functional architecture of the retina: development and disease
  publication-title: Prog. Retin. Eye Res.
– volume: 9
  start-page: 171
  year: 2014
  end-page: 181
  ident: bib77
  article-title: Full-length RNA-seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
– volume: 546
  start-page: 492
  year: 2017
  end-page: 497
  ident: bib55
  article-title: A retinal code for motion along the gravitational and body axes
  publication-title: Nature
– volume: 598
  start-page: 144
  year: 2020
  end-page: 150
  ident: bib57
  article-title: Phenotypic variation of transcriptomic cell types in mouse motor cortex
  publication-title: Nature
– volume: 18
  start-page: 530
  year: 2017
  end-page: 546
  ident: bib73
  article-title: Neuronal cell-type classification: challenges, opportunities and the path forward
  publication-title: Nat. Rev. Neurosci.
– volume: 1
  start-page: 291
  year: 2015
  end-page: 328
  ident: bib12
  article-title: Contributions of retinal ganglion cells to subcortical visual processing and behaviors
  publication-title: Annu. Rev. Vis. Sci.
– volume: 477
  start-page: 1427
  year: 2020
  end-page: 1442
  ident: bib69
  article-title: Cell Atlas technologies and insights into tissue architecture
  publication-title: Biochem. J.
– year: 2018
  ident: bib44
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 9
  start-page: e56840
  year: 2020
  ident: bib45
  article-title: True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field
  publication-title: Elife
– volume: 82
  start-page: 460
  year: 2014
  end-page: 473
  ident: bib21
  article-title: The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina
  publication-title: Neuron
– year: 2003
  ident: bib75
  publication-title: Information Theory, Inference and Learning Algorithms
– volume: 27
  start-page: 471
  year: 2017
  end-page: 482
  ident: bib39
  article-title: Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites
  publication-title: Curr. Biol.
– volume: 8
  start-page: 2025
  year: 2017
  ident: bib47
  article-title: Electrical synapses convey orientation selectivity in the mouse retina
  publication-title: Nat. Commun.
– volume: 33
  start-page: 10972
  year: 2013
  end-page: 10985
  ident: bib42
  article-title: Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina
  publication-title: J. Neurosci.
– volume: 14
  start-page: 1540
  year: 2008
  end-page: 1548
  ident: bib60
  article-title: Gamma-synuclein as a marker of retinal ganglion cells
  publication-title: Mol. Vis.
– volume: 110
  start-page: 1426
  year: 2013
  end-page: 1440
  ident: bib40
  article-title: Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse
  publication-title: J. Neurophysiol.
– volume: 54
  start-page: 1298
  year: 2013
  ident: bib15
  article-title: Form and function of the three ON-type direction-selective retinal ganglion cells in the Hoxd10 mouse
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 18
  start-page: 66
  year: 2015
  end-page: 74
  ident: bib62
  article-title: Retinal output changes qualitatively with every change in ambient illuminance
  publication-title: Nat. Neurosci.
– volume: 24
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib11
  article-title: An offset ON–OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells
  publication-title: Nat. Neurosci.
– volume: 5
  start-page: 3512
  year: 2014
  ident: bib59
  article-title: A genetic and computational approach to structurally classify neuronal types
  publication-title: Nat. Commun.
– start-page: 694
  year: 2002
  end-page: 699
  ident: bib72
  article-title: Transforming classifier scores into accurate multiclass probability estimates
  publication-title: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 97
  start-page: 2303
  year: 2000
  end-page: 2307
  ident: bib52
  article-title: Spatial order within but not between types of retinal neurons
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 573
  start-page: 61
  year: 2019
  end-page: 68
  ident: bib23
  article-title: Conserved cell types with divergent features in human versus mouse cortex
  publication-title: Nature
– volume: 28
  start-page: 2184
  year: 2012
  end-page: 2185
  ident: bib76
  article-title: RSeQC: quality control of RNA-seq experiments
  publication-title: Bioinformatics
– volume: 18
  start-page: 23
  year: 2021
  end-page: 25
  ident: bib10
  article-title: Spatially resolved transcriptomics in neuroscience
  publication-title: Nat. Methods
– volume: 104
  start-page: 1039
  year: 2019
  end-page: 1055.e12
  ident: bib63
  article-title: Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes
  publication-title: Neuron
– volume: 67
  start-page: 102
  year: 2018
  end-page: 117
  ident: bib67
  article-title: The dynamic receptive fields of retinal ganglion cells
  publication-title: Prog. Retin. Eye Res.
– volume: 12
  start-page: e0180091
  year: 2017
  ident: bib33
  article-title: Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures
  publication-title: PLoS One
– volume: 90
  start-page: 854
  year: 2015
  end-page: 876
  ident: bib49
  article-title: Design principles and developmental mechanisms underlying retinal mosaics
  publication-title: Biol. Rev. Camb. Philos. Soc.
– volume: 35
  start-page: 10815
  year: 2015
  end-page: 10820
  ident: bib61
  article-title: Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli
  publication-title: J. Neurosci.
– volume: 20
  start-page: 7087
  year: 2000
  end-page: 7095
  ident: bib2
  article-title: Origin of transient and sustained responses in ganglion cells of the retina
  publication-title: J. Neurosci.
– volume: 524
  start-page: 466
  year: 2015
  end-page: 470
  ident: bib34
  article-title: Sidekick 2 directs formation of a retinal circuit that detects differential motion
  publication-title: Nature
– volume: 292
  start-page: 344
  year: 1981
  end-page: 345
  ident: bib65
  article-title: Dendritic territories of cat retinal ganglion cells
  publication-title: Nature
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib19
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 22
  start-page: 1462
  year: 2018
  end-page: 1472
  ident: bib30
  article-title: A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields
  publication-title: Cell Rep.
– volume: 11
  start-page: 385
  year: 2018
  ident: bib35
  article-title: Mapping transgene insertion sites reveals complex interactions between mouse transgenes and neighboring endogenous genes
  publication-title: Front. Mol. Neurosci.
– volume: 23
  start-page: 1456
  year: 2020
  end-page: 1468
  ident: bib70
  article-title: A community-based transcriptomics classification and nomenclature of neocortical cell types
  publication-title: Nat. Neurosci.
– volume: 188
  start-page: 285
  year: 1967
  end-page: 307
  ident: bib37
  article-title: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina
  publication-title: J. Physiol.
– volume: 114
  start-page: 540
  year: 2015
  end-page: 550
  ident: bib48
  article-title: Ambient illumination switches contrast preference of specific retinal processing streams
  publication-title: J. Neurophysiol.
– volume: 28
  start-page: 655
  year: 2018
  end-page: 665.e3
  ident: bib64
  article-title: Inhomogeneous encoding of the visual field in the mouse retina
  publication-title: Curr. Biol.
– year: 2021
  ident: bib36
  article-title: MorphVAE: generating neural morphologies from 3D-walks using a variational autoencoder with spherical latent space
  publication-title: bioRxiv
– volume: 532
  start-page: 236
  year: 2016
  end-page: 239
  ident: bib28
  article-title: A neuronal circuit for colour vision based on rod–cone opponency
  publication-title: Nature
– volume: 483
  start-page: 465
  year: 2012
  end-page: 469
  ident: bib32
  article-title: MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons
  publication-title: Nature
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.celrep.2022.111040_bib79
  article-title: Fast gapped-read alignment with Bowtie 2. Nat
  publication-title: Methods
– start-page: 225
  year: 2019
  ident: 10.1016/j.celrep.2022.111040_bib16
  article-title: Studying a light sensor with light: multiphoton imaging in the retina
– volume: 27
  start-page: 471
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib39
  article-title: Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.12.033
– volume: 19
  start-page: 220
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib58
  article-title: Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.09.007
– volume: 598
  start-page: 86
  year: 2021
  ident: 10.1016/j.celrep.2022.111040_bib7
  article-title: A multimodal cell census and atlas of the mammalian primary motor cortex
  publication-title: Nature
  doi: 10.1038/s41586-021-03950-0
– volume: 2
  start-page: 349
  year: 2009
  ident: 10.1016/j.celrep.2022.111040_bib22
  article-title: Multi-class adaboost
  publication-title: Stat. Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 21
  start-page: 659
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib38
  article-title: Tbr1 instructs laminar patterning of retinal ganglion cell dendrites
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0127-z
– volume: 14
  start-page: 1540
  year: 2008
  ident: 10.1016/j.celrep.2022.111040_bib60
  article-title: Gamma-synuclein as a marker of retinal ganglion cells
  publication-title: Mol. Vis.
– volume: 173
  start-page: 1293
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib4
  article-title: Digital museum of retinal ganglion cells with dense anatomy and physiology
  publication-title: Cell
  doi: 10.1016/j.cell.2018.04.040
– volume: 1
  start-page: 291
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib12
  article-title: Contributions of retinal ganglion cells to subcortical visual processing and behaviors
  publication-title: Annu. Rev. Vis. Sci.
  doi: 10.1146/annurev-vision-082114-035502
– volume: 38
  start-page: 221
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib56
  article-title: The types of retinal ganglion cells: current status and implications for neuronal classification
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071714-034120
– volume: 109
  start-page: E2391
  year: 2012
  ident: 10.1016/j.celrep.2022.111040_bib74
  article-title: The most numerous ganglion cell type of the mouse retina is a selective feature detector
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2003
  ident: 10.1016/j.celrep.2022.111040_bib75
– volume: 54
  start-page: 1298
  year: 2013
  ident: 10.1016/j.celrep.2022.111040_bib15
  article-title: Form and function of the three ON-type direction-selective retinal ganglion cells in the Hoxd10 mouse
  publication-title: Invest. Ophthalmol. Vis. Sci.
– year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib44
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 35
  start-page: 6575
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib20
  article-title: Projection-specific characteristics of retinal input to the brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4298-14.2015
– volume: 598
  start-page: 144
  year: 2020
  ident: 10.1016/j.celrep.2022.111040_bib57
  article-title: Phenotypic variation of transcriptomic cell types in mouse motor cortex
  publication-title: Nature
  doi: 10.1038/s41586-020-2907-3
– volume: 24
  start-page: 310
  year: 2014
  ident: 10.1016/j.celrep.2022.111040_bib6
  article-title: Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.12.020
– volume: 188
  start-page: 285
  year: 1967
  ident: 10.1016/j.celrep.2022.111040_bib37
  article-title: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1967.sp008140
– volume: 18
  start-page: 23
  year: 2021
  ident: 10.1016/j.celrep.2022.111040_bib10
  article-title: Spatially resolved transcriptomics in neuroscience
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01040-z
– volume: 524
  start-page: 466
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib34
  article-title: Sidekick 2 directs formation of a retinal circuit that detects differential motion
  publication-title: Nature
  doi: 10.1038/nature14682
– volume: 9
  start-page: 171
  year: 2014
  ident: 10.1016/j.celrep.2022.111040_bib77
  article-title: Full-length RNA-seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 532
  start-page: 236
  year: 2016
  ident: 10.1016/j.celrep.2022.111040_bib28
  article-title: A neuronal circuit for colour vision based on rod–cone opponency
  publication-title: Nature
  doi: 10.1038/nature17158
– volume: 28
  start-page: 2184
  year: 2012
  ident: 10.1016/j.celrep.2022.111040_bib76
  article-title: RSeQC: quality control of RNA-seq experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts356
– volume: 37
  start-page: 610
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib25
  article-title: Three small-receptive-field ganglion cells in the mouse retina are distinctly Tuned to size, speed, and object motion
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2804-16.2016
– volume: 12
  start-page: 481
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib31
  article-title: Non-parametric physiological classification of retinal ganglion cells in the mouse retina
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2018.00481
– year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib5
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat. Biotechnol.
– volume: 142
  start-page: 977
  year: 1963
  ident: 10.1016/j.celrep.2022.111040_bib43
  article-title: Directional movement and horizontal edge detectors in the pigeon retina
  publication-title: Science
  doi: 10.1126/science.142.3594.977
– volume: 546
  start-page: 492
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib55
  article-title: A retinal code for motion along the gravitational and body axes
  publication-title: Nature
  doi: 10.1038/nature22818
– volume: 15
  start-page: 1930
  year: 2016
  ident: 10.1016/j.celrep.2022.111040_bib54
  article-title: Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.04.069
– volume: 34
  start-page: 199
  year: 2016
  ident: 10.1016/j.celrep.2022.111040_bib8
  article-title: Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3445
– volume: 110
  start-page: 1426
  year: 2013
  ident: 10.1016/j.celrep.2022.111040_bib40
  article-title: Excitatory and inhibitory contributions to receptive fields of alpha-like retinal ganglion cells in mouse
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01097.2012
– volume: 9
  start-page: 2759
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib51
  article-title: Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05134-3
– volume: 529
  start-page: 345
  year: 2016
  ident: 10.1016/j.celrep.2022.111040_bib3
  article-title: The functional diversity of retinal ganglion cells in the mouse
  publication-title: Nature
  doi: 10.1038/nature16468
– volume: 28
  start-page: 655
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib64
  article-title: Inhomogeneous encoding of the visual field in the mouse retina
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.016
– volume: 105
  start-page: 1516
  year: 2011
  ident: 10.1016/j.celrep.2022.111040_bib17
  article-title: Physiological clustering of visual channels in the mouse retina
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00331.2010
– volume: 24
  start-page: 1
  year: 2020
  ident: 10.1016/j.celrep.2022.111040_bib11
  article-title: An offset ON–OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 2025
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib47
  article-title: Electrical synapses convey orientation selectivity in the mouse retina
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01980-9
– volume: 6
  start-page: e27041
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib50
  article-title: The human cell atlas
  publication-title: Elife
  doi: 10.7554/eLife.27041
– volume: 292
  start-page: 344
  year: 1981
  ident: 10.1016/j.celrep.2022.111040_bib65
  article-title: Dendritic territories of cat retinal ganglion cells
  publication-title: Nature
  doi: 10.1038/292344a0
– volume: 13
  start-page: 2663
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib27
  article-title: An amacrine cell circuit for signaling steady illumination in the retina
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.11.062
– volume: 90
  start-page: 854
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib49
  article-title: Design principles and developmental mechanisms underlying retinal mosaics
  publication-title: Biol. Rev. Camb. Philos. Soc.
  doi: 10.1111/brv.12139
– volume: 477
  start-page: 1427
  year: 2020
  ident: 10.1016/j.celrep.2022.111040_bib69
  article-title: Cell Atlas technologies and insights into tissue architecture
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20190341
– volume: 20
  start-page: 7087
  year: 2000
  ident: 10.1016/j.celrep.2022.111040_bib2
  article-title: Origin of transient and sustained responses in ganglion cells of the retina
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-18-07087.2000
– volume: 12
  start-page: e0180091
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib33
  article-title: Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180091
– volume: 18
  start-page: 2058
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib41
  article-title: Diverse central projection patterns of retinal ganglion cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.075
– volume: 410
  start-page: 583
  year: 2001
  ident: 10.1016/j.celrep.2022.111040_bib53
  article-title: Vertical interactions across ten parallel, stacked representations in the mammalian retina
  publication-title: Nature
  doi: 10.1038/35069068
– volume: 18
  start-page: 530
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib73
  article-title: Neuronal cell-type classification: challenges, opportunities and the path forward
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2017.85
– volume: 97
  start-page: 2303
  year: 2000
  ident: 10.1016/j.celrep.2022.111040_bib52
  article-title: Spatial order within but not between types of retinal neurons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.030413497
– volume: 11
  start-page: 385
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib35
  article-title: Mapping transgene insertion sites reveals complex interactions between mouse transgenes and neighboring endogenous genes
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2018.00385
– start-page: 694
  year: 2002
  ident: 10.1016/j.celrep.2022.111040_bib72
  article-title: Transforming classifier scores into accurate multiclass probability estimates
– volume: 36
  start-page: 3208
  year: 2016
  ident: 10.1016/j.celrep.2022.111040_bib46
  article-title: Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4554-15.2016
– volume: 110
  start-page: 1
  year: 2022
  ident: 10.1016/j.celrep.2022.111040_bib68
  article-title: Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.04.012
– volume: 542
  start-page: 439
  year: 2017
  ident: 10.1016/j.celrep.2022.111040_bib18
  article-title: Inhibition decorrelates visual feature representations in the inner retina
  publication-title: Nature
  doi: 10.1038/nature21394
– volume: 33
  start-page: 10972
  year: 2013
  ident: 10.1016/j.celrep.2022.111040_bib42
  article-title: Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1241-13.2013
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.celrep.2022.111040_bib19
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 35
  start-page: 10815
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib61
  article-title: Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1521-15.2015
– volume: 114
  start-page: 540
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib48
  article-title: Ambient illumination switches contrast preference of specific retinal processing streams
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00360.2015
– volume: 5
  start-page: 3512
  year: 2014
  ident: 10.1016/j.celrep.2022.111040_bib59
  article-title: A genetic and computational approach to structurally classify neuronal types
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4512
– start-page: 785
  year: 2016
  ident: 10.1016/j.celrep.2022.111040_bib9
  article-title: XGBoost: A Scalable Tree Boosting System
– volume: 23
  start-page: 1456
  year: 2020
  ident: 10.1016/j.celrep.2022.111040_bib70
  article-title: A community-based transcriptomics classification and nomenclature of neocortical cell types
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0685-8
– year: 2021
  ident: 10.1016/j.celrep.2022.111040_bib36
  article-title: MorphVAE: generating neural morphologies from 3D-walks using a variational autoencoder with spherical latent space
  publication-title: bioRxiv
– volume: 82
  start-page: 460
  year: 2014
  ident: 10.1016/j.celrep.2022.111040_bib21
  article-title: The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.02.037
– volume: 483
  start-page: 465
  year: 2012
  ident: 10.1016/j.celrep.2022.111040_bib32
  article-title: MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons
  publication-title: Nature
  doi: 10.1038/nature10877
– volume: 18
  start-page: 66
  year: 2015
  ident: 10.1016/j.celrep.2022.111040_bib62
  article-title: Retinal output changes qualitatively with every change in ambient illuminance
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3891
– volume: 12
  year: 2011
  ident: 10.1016/j.celrep.2022.111040_bib78
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 12
  start-page: 269
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib26
  article-title: Typology and circuitry of suppressed-by-contrast retinal ganglion cells
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2018.00269
– volume: 22
  start-page: 1462
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib30
  article-title: A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.037
– volume: 5
  start-page: 1347
  year: 2010
  ident: 10.1016/j.celrep.2022.111040_bib66
  article-title: Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.106
– volume: 573
  start-page: 61
  year: 2019
  ident: 10.1016/j.celrep.2022.111040_bib23
  article-title: Conserved cell types with divergent features in human versus mouse cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
– volume: 18
  start-page: 374
  year: 2021
  ident: 10.1016/j.celrep.2022.111040_bib1
  article-title: SNT: a unifying toolbox for quantification of neuronal anatomy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01105-7
– volume: 517
  start-page: 226
  year: 2009
  ident: 10.1016/j.celrep.2022.111040_bib13
  article-title: Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.22158
– volume: 109
  start-page: 1527
  year: 2021
  ident: 10.1016/j.celrep.2022.111040_bib29
  article-title: Cell-type-specific binocular vision guides predation in mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.03.010
– volume: 67
  start-page: 102
  year: 2018
  ident: 10.1016/j.celrep.2022.111040_bib67
  article-title: The dynamic receptive fields of retinal ganglion cells
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2018.06.003
– volume: 42
  start-page: 44
  year: 2014
  ident: 10.1016/j.celrep.2022.111040_bib24
  article-title: Functional architecture of the retina: development and disease
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2014.06.003
– start-page: 1041
  year: 2002
  ident: 10.1016/j.celrep.2022.111040_bib71
  article-title: Reducing multiclass to binary by coupling probability estimates
– volume: 104
  start-page: 1039
  year: 2019
  ident: 10.1016/j.celrep.2022.111040_bib63
  article-title: Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.11.006
– volume: 9
  start-page: e56840
  year: 2020
  ident: 10.1016/j.celrep.2022.111040_bib45
  article-title: True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field
  publication-title: Elife
  doi: 10.7554/eLife.56840
– volume: 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.celrep.2022.111040_bib14
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: In Kdd
SSID ssj0000601194
Score 2.6224132
Snippet Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111040
SubjectTerms Animals
Gene Expression
Mice
Retina - physiology
retina, retinal ganglion cell, transcriptomics, morphology, light responses, classification
Retinal Ganglion Cells - metabolism
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8iCL6I384vIvho2ZI0afOowyGCvqiwt5CkyZxIHXOC_vfe9WM4FQQfWmh7SUN-6d0v6d2FkNNCOu-EzRKX2iJJtXXoBJAmyuc2xXQhWcBo5JtbdfWQXg_lcIn021gYdKtsdH-t0ytt3dzpNr3ZnYzH3TsOcxewThnHX_gixYBfOFdBfMOL-ToL5hth1X6IKJ9ggTaCrnLz8uF5GjBxJeeoPnq4CvK7hfrJQL87Un6xTIN1stZQSnpet3qDLIVyk6zUm0x-bJEItDIC0aQeiTJ6BlVg0JdIcdofKMYxYgUjiyG98AQX818pesSPKNo9FD8DYYCkqvOM2rKgMPICDe-NI225TR4Gl_f9q6TZXSHxkutZoh1zvahcT1obWZQwUc6Rb-QFVzpGZXObRQuYhYz5CP3i8ZBMeMECs07skOXypQx7hHoVnbTaYl7RtOBO96STSkTvOLBLyztEtD1qfJN6HHfAeDatj9mTqXEwiIOpceiQZF5qUqfe-EM-a8EyC0PIgHX4o-RJi62Brwt72ZYBIDBc5VpljGd5h-zWWM_bImQOClIzeO_CKJgLYObuxSfl-LHK4K0F0FCe7_-7xQdkFa9wkZnxQ7I8m76FI2BHM3dcDf9PLI0Pdg
  priority: 102
  providerName: Elsevier
Title Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression
URI https://dx.doi.org/10.1016/j.celrep.2022.111040
https://www.ncbi.nlm.nih.gov/pubmed/35830791
https://www.proquest.com/docview/2689671278
https://pubmed.ncbi.nlm.nih.gov/PMC9364428
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH9YpcWLqLV2_SIFj45sMpPM5CCioqigJxf2FpJMYpVlbNct6H_ve_OxVlsRPMxcJsmE_N5Lfnm8D4DtUjrvUpsnLrNlkmnryAkgS5QvbEbpQvJA0cgXl-p0kJ0P5XAGupqt7QLe__dqR_WkBuPR7sPvx31U-L1nXy0fRuNA2SeFoD0ABfMTzOHZlJOqXrSEv9mbKcdZ1sXQvdF5Hr6kskDp1_yt4-pfOvraq_KvY-pkERZafskOGoFYgplQLcPnpuLk41eIyDEjsk7miTWTm1CNDLuLjGwAgVFQIw1wbSm-F7-QZf-ekXv8NaNDkJrvYGPEpx5zh9mqZCiGgYWH1qu2WoHByfHV0WnSllpIvBR6kmjHXT8q15fWRh4l3poLIh9FKZSOUdnC5tEigCHnPuISeXokT33KA7cu_Qaz1V0VvgPzKjpptaUko1kpnO5LJ1UavRNINa3oQdqtqPFtHnIqhzEyncPZrWkgMQSJaSDpQTLt9avJw_FO-7wDy7RcouEIBiXnnZ4_OmwNqhqtsq0CQmCEKrTKuciLHqw2WE_n0skL_veFFEwbUBrvl1-qm591Om-dIicVxdqHe67DPM2fLM5cbMDsZPwnbCJVmrit2sSA77Ph4VatCU_oCRg6
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UitgX8e56jeBjh90kk9ujFstW277Ywr6FJJPUlTIt7Qr67z1nLourQsGHeZlcJuRLzvmSOReAd42KKcpgqliHpqpdiGQEUFc62VBTuBCTyRv56FjPT-tPC7XYgr3RF4bMKgfZ38v0TloPb6bDbE4vl8vpF4FnF9RORtAvfFnbW3Ab2YCh_A0Hiw_rixYKOMK7hIjUoKIWowtdZ-eV8vlVpsiVQpD8mNE1yL9V1N8U9E9Lyt9U0_59uDdwSva-H_YD2MrtQ7jTZ5n8-QgK8sqCTJMlYspkGtShwS4Ko3N_ZuTISB2cBfLpxRK6zb9mZBJ_xkjxUfVdrIyYdH3ustA2DJdeZvnHYEnbPobT_Y8ne_NqSK9QJSXcqnKRx1nRcaZCKLwoPClbIhy2EdqVooMNpgQELRueCs5LokdxmSTPPET5BLbbizY_A5Z0iSq4QIFF60ZEN1NRaVlSFEgvg5iAHGfUpyH2OKXAOPejkdk33-PgCQff4zCBat3qso-9cUN9M4LlN9aQR_VwQ8u3I7YetxfNcmgzQuCFtk4bLoydwNMe6_VYpLIoIR3H726sgnUFCt29WdIuv3YhvJ1EHirs8_8e8Ru4Oz85OvSHB8efX8AOldCNMxcvYXt19T2_Qqq0iq-7rfALzbESlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+classification+of+mouse+retinal+ganglion+cells+using+function%2C+morphology%2C+and+gene+expression&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Goetz%2C+Jillian&rft.au=Jessen%2C+Zachary+F.&rft.au=Jacobi%2C+Anne&rft.au=Mani%2C+Adam&rft.date=2022-07-12&rft.eissn=2211-1247&rft.volume=40&rft.issue=2&rft.spage=111040&rft.epage=111040&rft_id=info:doi/10.1016%2Fj.celrep.2022.111040&rft_id=info%3Apmid%2F35830791&rft.externalDocID=PMC9364428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon