l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain

Bioethanol production processes with using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here p...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 11; no. 1; p. 231
Main Authors Oehling, Verena, Klaassen, Paul, Frick, Oliver, Dusny, Christian, Schmid, Andreas
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 23.08.2018
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1754-6834
1754-6834
2731-3654
DOI10.1186/s13068-018-1231-8

Cover

Loading…
Abstract Bioethanol production processes with using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing expression. expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of expression. Expression levels of during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
AbstractList Abstract Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p—the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains—has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p--the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains--has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p--the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains--has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. Keywords: l-Arabinose uptake, Lignocellulosic ethanol, Gal2p, Saccharomyces cerevisiae, Catabolite repression, l-Arabinose fermentation, Next generation sequencing, RNA-seq
Bioethanol production processes with using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing expression. expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of expression. Expression levels of during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l- arabinose in S. cerevisiae and reveal its regulation by d -glucose and d -galactose. Gal2p—the most prominent transporter enabling l -arabinose uptake in S. cerevisiae wild-type strains—has an affinity for the transport of l -arabinose, d -glucose, and d -galactose. d -Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d -glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l -arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l -arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l -arabinose reached up to 21% of those obtained with d -galactose as sole carbon and energy source. l -Arabinose-induced GAL2 expression was also subject to catabolite repression by d -glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d -glucose/ l -arabinose revealed impairment of growth and ethanol production from l -arabinose upon d -glucose depletion. The presence of d -glucose is thus preventing the fermentation of l -arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l -arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
ArticleNumber 231
Audience Academic
Author Klaassen, Paul
Dusny, Christian
Frick, Oliver
Schmid, Andreas
Oehling, Verena
Author_xml – sequence: 1
  givenname: Verena
  surname: Oehling
  fullname: Oehling, Verena
– sequence: 2
  givenname: Paul
  surname: Klaassen
  fullname: Klaassen, Paul
– sequence: 3
  givenname: Oliver
  surname: Frick
  fullname: Frick, Oliver
– sequence: 4
  givenname: Christian
  surname: Dusny
  fullname: Dusny, Christian
– sequence: 5
  givenname: Andreas
  surname: Schmid
  fullname: Schmid, Andreas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30159031$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxiNURP_AA3BBlrjAIcUTx0l8QVpVUCpVQqJwtibOeOuStRc7KfQleGa83RZ1KyHkg63x7_vkGX-HxZ4PnoriJfBjgK55l0Dwpis5dCVUAsruSXEArazLphP13oPzfnGY0hXnDbS8fVbsCw5ScQEHxe-xXETsnQ-J2BTdckkxMTclFn56Nq8n_E7s2iFzfpjN5IJnwbLpkhjey8q0JuOsM-wUx2qdXdCndYgTxaxi6G-1KZvjyC7QmEuMYXVjKDFDka5dckgs36Pzz4unFsdEL-72o-Lbxw9fTz6V559Pz04W56WRlZpKpaxQFYjeUMM73ggjVNtTr3CwKOrKdNZWzVDb2hjZU1MpJFBYSSla2_dSHBVnW98h4JVeR7fCeKMDOn1bCHGpMU7OjKQba7AZLBkwtm4EdVC1VpGQ0HHbDSJ7vd96red-RYMhn1sZd0x3b7y71MtwrRvIv5e7OCre3BnE8GOmNOmVS4bGET2FOemMQNdyqNX_Ua5aqaCSdUZfP0Kvwhx9nmo25IoDb8VmEMdbaom5V-dtyE80eQ20cibHzbpcX0gJspIt8Cx4uyPIzES_piXOKemziy-77KuHk_k7kvv4ZaDdAiaGlCJZbdyEm5Rt0jBq4HoTdL0Nus5B15ug6y4r4ZHy3vzfmj9cBAF0
CitedBy_id crossref_primary_10_1080_07388551_2020_1844632
crossref_primary_10_1016_j_rser_2025_115352
crossref_primary_10_1016_j_crfs_2021_07_004
crossref_primary_10_1093_femsyr_foab019
crossref_primary_10_1007_s00253_019_09625_1
Cites_doi 10.1016/j.biortech.2008.11.047
10.1128/AEM.56.12.3785-3792.1990
10.1128/AEM.00429-09
10.1016/j.femsyr.2004.09.010
10.1099/00221287-136-3-405
10.1016/S0076-6879(02)50957-5
10.1038/nprot.2012.016
10.1007/s00253-015-7211-z
10.1101/gr.091777.109
10.1007/s00253-006-0827-2
10.1128/AEM.69.10.5892-5897.2003
10.1128/AEM.02268-08
10.1016/S0167-7799(99)01384-0
10.1007/s10482-005-7283-3
10.1002/yea.986
10.1186/1754-6834-3-1
10.1007/s00253-003-1450-0
10.1111/j.1574-6976.1997.tb00346.x
10.1128/AEM.61.12.4184-4190.1995
10.1016/S0021-9258(19)50315-5
10.1016/j.tibtech.2006.10.004
10.1002/yea.320080703
10.1128/jb.179.9.2987-2993.1997
10.1128/MCB.11.10.5330
10.1111/1574-6976.12073
10.1016/0734-9750(94)90014-0
10.1111/j.1567-1364.2011.00760.x
10.1016/0168-1656(88)90001-6
10.1038/nprot1014-2513a
10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
10.1002/yea.3084
10.1128/MMBR.58.4.616-630.1994
10.1093/femsyr/foy062
10.1128/AEM.69.7.4144-4150.2003
10.1186/1754-6834-5-14
10.1002/jctb.1676
10.5483/BMBRep.2012.45.2.59
10.1128/AEM.02395-07
10.1093/femsyr/fox044
10.1007/s10529-015-1840-2
10.1186/1475-2859-4-30
10.1186/1472-6750-14-22
10.1371/journal.pone.0069005
10.1186/1754-6834-4-38
10.1016/S1567-1356(02)00184-8
10.1111/j.1432-1033.1997.00324.x
10.1128/AEM.00177-07
10.1007/BF00133837
10.1099/00221287-148-9-2783
10.1126/science.272.5268.1662
10.1007/s10482-006-9085-7
10.1016/j.femsyr.2005.04.004
10.1128/AEM.70.4.2307-2317.2004
10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K
10.1016/j.ymben.2004.02.005
10.1186/1754-6834-6-89
10.1007/BF00693408
10.1093/bioinformatics/btu638
10.1128/MMBR.63.3.554-569.1999
10.1016/j.seppur.2013.11.008
10.1093/femsyr/foy056
10.1038/sj.embor.7400132
10.4161/bbug.1.6.12724
10.1186/gb-2013-14-1-r4
10.1007/BF02941704
10.1007/s00253-003-1444-y
10.1038/nmeth.1923
10.1007/s00253-003-1414-4
10.3109/07388551.2010.539551
10.1038/srep38676
10.1186/1752-0509-2-60
10.1186/1472-6750-13-110
10.1128/jb.179.5.1541-1549.1997
10.1016/j.biombioe.2008.05.007
10.1128/MMBR.51.4.458-476.1987
10.1186/s13068-018-1047-6
10.1186/s13059-014-0550-8
10.1073/pnas.1323464111
10.1186/1471-2199-10-99
10.1186/gb-2009-10-1-r3
10.1016/j.rser.2010.03.035
10.4161/bioe.21444
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2018
DBID AAYXX
CITATION
NPM
ISR
3V.
7QO
7SP
7ST
7TB
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
L7M
LK8
M0S
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
SOI
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13068-018-1231-8
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database (Proquest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-6834
2731-3654
EndPage 231
ExternalDocumentID oai_doaj_org_article_6fca6dfec1cf463e8127f9e35180f8d3
PMC6106821
A551525710
30159031
10_1186_s13068_018_1231_8
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ;
  grantid: project 07.001.02
GroupedDBID 23N
2WC
2XV
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
I-F
IAG
IAO
IEA
IEP
ISR
ITC
KQ8
L6V
L8X
LK8
M48
M7P
M7S
ML0
M~E
O5R
O5S
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RBZ
RNS
ROL
RPM
RVI
SCM
TR2
TUS
UKHRP
~8M
-A0
2VQ
3V.
4.4
ADINQ
AHSBF
BMC
C1A
C24
C6C
IHR
IPNFZ
NPM
OK1
RIG
RSV
SOJ
PMFND
0R~
7QO
7SP
7ST
7TB
7XB
8FD
8FK
AAJSJ
AASML
ADUKV
AZQEC
C1K
DWQXO
EBLON
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
SOI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c529t-99f39213bce608063c397beb9adfa342c8ff26d4f4cc5be629ae19a25537fbb53
IEDL.DBID M48
ISSN 1754-6834
IngestDate Wed Aug 27 01:02:35 EDT 2025
Thu Aug 21 14:09:07 EDT 2025
Mon Jul 21 11:09:44 EDT 2025
Fri Jul 11 00:09:38 EDT 2025
Sat Aug 23 12:29:14 EDT 2025
Tue Jun 10 20:44:05 EDT 2025
Fri Jun 27 04:36:33 EDT 2025
Wed Feb 19 02:43:36 EST 2025
Tue Jul 01 04:18:51 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Catabolite repression
RNA-seq
l-Arabinose fermentation
Gal2p
Lignocellulosic ethanol
l-Arabinose uptake
Next generation sequencing
Saccharomyces cerevisiae
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-99f39213bce608063c397beb9adfa342c8ff26d4f4cc5be629ae19a25537fbb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/6fca6dfec1cf463e8127f9e35180f8d3
PMID 30159031
PQID 2109010735
PQPubID 55236
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6fca6dfec1cf463e8127f9e35180f8d3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6106821
proquest_miscellaneous_2131870149
proquest_miscellaneous_2097591254
proquest_journals_2109010735
gale_infotracacademiconefile_A551525710
gale_incontextgauss_ISR_A551525710
pubmed_primary_30159031
crossref_citationtrail_10_1186_s13068_018_1231_8
crossref_primary_10_1186_s13068_018_1231_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-23
PublicationDateYYYYMMDD 2018-08-23
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-23
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Biotechnology for biofuels
PublicationTitleAlternate Biotechnol Biofuels
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References A Farwick (1231_CR90) 2014; 111
HW Wisselink (1231_CR32) 2009; 75
P Jouhten (1231_CR55) 2008; 2
JA Barnett (1231_CR15) 2003; 20
TW Jeffries (1231_CR27) 2004; 63
M Walfridsson (1231_CR25) 1995; 61
M Johnston (1231_CR65) 1987; 51
BS Dien (1231_CR19) 2003; 63
MLA Jansen (1231_CR47) 2017
C Verduyn (1231_CR50) 1990; 136
K Otterstedt (1231_CR48) 2004; 5
BU Stambuck (1231_CR12) 2008; 67
MI Love (1231_CR83) 2014; 15
I Papapetridis (1231_CR35) 2018
RG Sanchez (1231_CR28) 2010; 3
AJ Maris Van (1231_CR7) 2006; 90
P Richard (1231_CR21) 2003; 3
P Caunt (1231_CR40) 1988; 8
M Sonderegger (1231_CR54) 2004; 70
R Costenoble (1231_CR58) 2000; 16
1231_CR69
A Matsushika (1231_CR45) 2009; 100
B Wiedemann (1231_CR20) 2008; 74
J Sambrook (1231_CR74) 2001
JM Bracher (1231_CR89) 2018; 11
RP Jones (1231_CR57) 1981; 16
LV Santos Dos (1231_CR11) 2016; 6
B Hahn-Hagerdal (1231_CR17) 2007; 74
R Verho (1231_CR26) 2003; 69
JT Pronk (1231_CR49) 1996; 12
AE Wheals (1231_CR43) 1999; 17
HW Wisselink (1231_CR18) 2007; 73
JL Argueso (1231_CR39) 2009; 19
J Becker (1231_CR23) 2003; 69
JRM Almeida (1231_CR6) 2007; 82
M Kuyper (1231_CR30) 2005; 5
B Hahn-Hagerdal (1231_CR1) 2006; 24
J Konish (1231_CR8) 2015; 37
M Kuyper (1231_CR31) 2005; 5
O Frick (1231_CR52) 2005; 4
PA Moore (1231_CR61) 1991; 11
D Kim (1231_CR79) 2013; 14
A Madhavan (1231_CR37) 2012; 32
E Oura (1231_CR85) 1977; 12
LY Diao (1231_CR9) 2013; 13
E Boles (1231_CR63) 1997; 21
1231_CR84
RJ Haselbeck (1231_CR93) 1993; 268
W Visser (1231_CR51) 1990; 56
HTT Nguyen (1231_CR91) 2004; 6
RA Weusthuis (1231_CR95) 1994; 58
T Subtil (1231_CR16) 2011; 4
C Trapnell (1231_CR77) 2014; 9
E Reifenberger (1231_CR87) 1997; 245
CQ Wang (1231_CR67) 2013; 2013
JT Timson (1231_CR66) 2007; 1
C Trapnell (1231_CR78) 2012; 7
P Vinuselvi (1231_CR13) 2012; 45
B Langmead (1231_CR80) 2012; 9
1231_CR46
MM Demeke (1231_CR10) 2013; 6
BS Dien (1231_CR24) 1996; 57–8
SM Lee (1231_CR33) 2016; 100
T Subtil (1231_CR36) 2012; 5
MA Teste (1231_CR76) 2009
NW Ho (1231_CR22) 1998; 4
S Fernandes (1231_CR29) 2010; 4
C Verduyn (1231_CR75) 1992; 8
A Garay-Arroyo (1231_CR38) 2004; 63
1231_CR71
1231_CR70
1231_CR73
A Matsushika (1231_CR96) 2013; 8
MD Verhoeven (1231_CR68) 2018
EP Knoshaug (1231_CR88) 2015; 32
S Gonzalez-Garcia (1231_CR4) 2010; 14
RD Gietz (1231_CR72) 2002; 350
J Steensels (1231_CR14) 2014; 38
PM Bruinenberg (1231_CR53) 1985; 142
E Boles (1231_CR86) 1997; 179
B Langmead (1231_CR81) 2009; 10
O Smidt De (1231_CR92) 2012; 12
AJ McLoughlin (1231_CR41) 1994; 12
S Ozcan (1231_CR60) 1999; 63
HJ Huang (1231_CR3) 2009; 33
JW Lee (1231_CR34) 2014; 22
J Zha (1231_CR5) 2012; 2
LG Boender (1231_CR94) 2009; 75
Y Zha (1231_CR2) 2014; 14
GK Hoppe (1231_CR56) 1984; 6
T Hamacher (1231_CR59) 2002; 148
S Anders (1231_CR82) 2015; 31
M Oreb (1231_CR42) 2012; 3
J Horak (1231_CR64) 1997; 179
FT Zenke (1231_CR62) 1996; 272
EA Silva-Filho Da (1231_CR44) 2005; 88
23618408 - Genome Biol. 2013 Apr 25;14(4):R36
12839792 - Appl Environ Microbiol. 2003 Jul;69(7):4144-50
24706835 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5159-64
24655423 - BMC Biotechnol. 2014 Mar 21;14:22
19074603 - Appl Environ Microbiol. 2009 Feb;75(4):907-14
8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90
9572962 - Appl Environ Microbiol. 1998 May;64(5):1852-9
22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78
8658143 - Science. 1996 Jun 14;272(5268):1662-5
15113568 - Metab Eng. 2004 Apr;6(2):155-63
10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69
25994575 - Biotechnol Lett. 2015 Aug;37(8):1623-30
19874630 - BMC Mol Biol. 2009 Oct 30;10:99
2082825 - Appl Environ Microbiol. 1990 Dec;56(12):3785-92
9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33
17545317 - Appl Environ Microbiol. 2007 Aug;73(15):4881-91
8099357 - J Biol Chem. 1993 Jun 5;268(16):12116-22
19592533 - Appl Environ Microbiol. 2009 Sep;75(17):5607-14
15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34
24195072 - Biomed Res Int. 2013;2013:461204
24724938 - FEMS Microbiol Rev. 2014 Sep;38(5):947-95
12702451 - FEMS Yeast Res. 2003 Apr;3(2):185-9
21992610 - Biotechnol Biofuels. 2011 Oct 12;4:38
17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418
24354503 - BMC Biotechnol. 2013 Dec 19;13:110
18263741 - Appl Environ Microbiol. 2008 Apr;74(7):2043-50
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
16269086 - Microb Cell Fact. 2005 Nov 03;4:30
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
15928973 - Antonie Van Leeuwenhoek. 2005 Jul;88(1):13-23
14532041 - Appl Environ Microbiol. 2003 Oct;69(10):5892-7
15071495 - EMBO Rep. 2004 May;5(5):532-7
22094012 - FEMS Yeast Res. 2012 Feb;12(1):33-47
29860442 - FEMS Yeast Res. 2018 Sep 1;18(6):null
2830478 - Microbiol Rev. 1987 Dec;51(4):458-76
14545895 - Biotechnol Adv. 1994;12(2):279-324
10557161 - Trends Biotechnol. 1999 Dec;17(12):482-7
15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17
28000736 - Sci Rep. 2016 Dec 21;6:38676
2202777 - J Gen Microbiol. 1990 Mar;136(3):405-12
9045811 - J Bacteriol. 1997 Mar;179(5):1541-9
1523884 - Yeast. 1992 Jul;8(7):501-17
12722184 - Yeast. 2003 Apr 30;20(6):509-43
14595523 - Appl Microbiol Biotechnol. 2004 Feb;63(5):495-509
23800147 - Biotechnol Biofuels. 2013 Jun 21;6(1):89
17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56
29771304 - FEMS Yeast Res. 2018 Sep 1;18(6):null
12073338 - Methods Enzymol. 2002;350:87-96
12910327 - Appl Microbiol Biotechnol. 2004 Feb;63(6):734-41
25516281 - Genome Biol. 2014;15(12):550
22360882 - BMB Rep. 2012 Feb;45(2):59-70
17294186 - Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53
12213924 - Microbiology. 2002 Sep;148(Pt 9):2783-8
22424089 - Biotechnol Biofuels. 2012 Mar 16;5:14
13680206 - Appl Microbiol Biotechnol. 2003 Dec;63(3):258-66
29563966 - Biotechnol Biofuels. 2018 Mar 13;11:63
23874849 - PLoS One. 2013 Jul 09;8(7):e69005
8669899 - Appl Biochem Biotechnol. 1996 Spring;57-58:233-42
9139918 - J Bacteriol. 1997 May;179(9):2987-93
28899031 - FEMS Yeast Res. 2017 Aug 1;17(5)
26671616 - Appl Microbiol Biotechnol. 2016 Mar;100(5):2487-98
9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111
26129747 - Yeast. 2015 Oct;32(10):615-28
21204601 - Crit Rev Biotechnol. 2012 Mar;32(1):22-48
7854249 - Microbiol Rev. 1994 Dec;58(4):616-30
19128960 - Bioresour Technol. 2009 Apr;100(8):2392-8
19261174 - Genome Biol. 2009;10(3):R25
21468211 - Bioeng Bugs. 2010 Nov-Dec;1(6):424-8
1922048 - Mol Cell Biol. 1991 Oct;11(10):5330-7
19812109 - Genome Res. 2009 Dec;19(12):2258-70
15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409
18613954 - BMC Syst Biol. 2008 Jul 09;2:60
11113971 - Yeast. 2000 Dec;16(16):1483-95
22892590 - Bioengineered. 2012 Nov-Dec;3(6):347-51
9123965 - Yeast. 1996 Dec;12(16):1607-33
20550651 - Biotechnol Biofuels. 2010 Jun 15;3:13
References_xml – volume: 100
  start-page: 2392
  year: 2009
  ident: 1231_CR45
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2008.11.047
– volume: 56
  start-page: 3785
  year: 1990
  ident: 1231_CR51
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.56.12.3785-3792.1990
– volume: 75
  start-page: 5607
  year: 2009
  ident: 1231_CR94
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00429-09
– volume: 5
  start-page: 399
  year: 2005
  ident: 1231_CR31
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2004.09.010
– volume: 136
  start-page: 405
  year: 1990
  ident: 1231_CR50
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-136-3-405
– volume: 350
  start-page: 87
  year: 2002
  ident: 1231_CR72
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(02)50957-5
– ident: 1231_CR71
– volume: 7
  start-page: 562
  year: 2012
  ident: 1231_CR78
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 100
  start-page: 2487
  year: 2016
  ident: 1231_CR33
  publication-title: Appl Microbiol Biot.
  doi: 10.1007/s00253-015-7211-z
– volume: 19
  start-page: 2258
  year: 2009
  ident: 1231_CR39
  publication-title: Genome Res
  doi: 10.1101/gr.091777.109
– volume: 74
  start-page: 937
  year: 2007
  ident: 1231_CR17
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-006-0827-2
– volume: 69
  start-page: 5892
  year: 2003
  ident: 1231_CR26
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.69.10.5892-5897.2003
– volume: 75
  start-page: 907
  year: 2009
  ident: 1231_CR32
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02268-08
– volume: 17
  start-page: 482
  year: 1999
  ident: 1231_CR43
  publication-title: Trends Biotechnol
  doi: 10.1016/S0167-7799(99)01384-0
– volume: 88
  start-page: 13
  year: 2005
  ident: 1231_CR44
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-005-7283-3
– volume: 20
  start-page: 509
  year: 2003
  ident: 1231_CR15
  publication-title: Yeast
  doi: 10.1002/yea.986
– volume: 3
  start-page: 1
  year: 2010
  ident: 1231_CR28
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-3-1
– volume: 63
  start-page: 495
  year: 2004
  ident: 1231_CR27
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-003-1450-0
– volume: 21
  start-page: 85
  year: 1997
  ident: 1231_CR63
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.1997.tb00346.x
– volume: 61
  start-page: 4184
  year: 1995
  ident: 1231_CR25
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.61.12.4184-4190.1995
– volume: 268
  start-page: 12116
  year: 1993
  ident: 1231_CR93
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)50315-5
– volume: 24
  start-page: 549
  year: 2006
  ident: 1231_CR1
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2006.10.004
– volume: 8
  start-page: 501
  year: 1992
  ident: 1231_CR75
  publication-title: Yeast
  doi: 10.1002/yea.320080703
– volume: 179
  start-page: 2987
  year: 1997
  ident: 1231_CR86
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.9.2987-2993.1997
– volume: 11
  start-page: 5330
  year: 1991
  ident: 1231_CR61
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.11.10.5330
– volume: 38
  start-page: 947
  year: 2014
  ident: 1231_CR14
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12073
– ident: 1231_CR70
– volume: 12
  start-page: 279
  year: 1994
  ident: 1231_CR41
  publication-title: Biotechnol Adv
  doi: 10.1016/0734-9750(94)90014-0
– volume: 12
  start-page: 33
  year: 2012
  ident: 1231_CR92
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2011.00760.x
– volume: 8
  start-page: 173
  year: 1988
  ident: 1231_CR40
  publication-title: J Biotechnol
  doi: 10.1016/0168-1656(88)90001-6
– volume: 4
  start-page: 1852
  year: 1998
  ident: 1231_CR22
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 2513
  year: 2014
  ident: 1231_CR77
  publication-title: Nat Protoc
  doi: 10.1038/nprot1014-2513a
– volume: 12
  start-page: 1607
  year: 1996
  ident: 1231_CR49
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4
– volume: 32
  start-page: 615
  year: 2015
  ident: 1231_CR88
  publication-title: Yeast
  doi: 10.1002/yea.3084
– volume: 58
  start-page: 1
  year: 1994
  ident: 1231_CR95
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.58.4.616-630.1994
– year: 2018
  ident: 1231_CR68
  publication-title: FEMS Yeast Res
  doi: 10.1093/femsyr/foy062
– volume: 69
  start-page: 4144
  year: 2003
  ident: 1231_CR23
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.7.4144-4150.2003
– ident: 1231_CR46
– volume: 5
  start-page: 1
  year: 2012
  ident: 1231_CR36
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-5-14
– volume: 2013
  start-page: 1
  year: 2013
  ident: 1231_CR67
  publication-title: Biomed Res Int
– volume-title: Molecular cloning: a laboratory manual
  year: 2001
  ident: 1231_CR74
– ident: 1231_CR84
– volume: 2
  start-page: 1
  year: 2012
  ident: 1231_CR5
  publication-title: Bioproces Biotechniq.
– volume: 82
  start-page: 340
  year: 2007
  ident: 1231_CR6
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.1676
– volume: 45
  start-page: 59
  year: 2012
  ident: 1231_CR13
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2012.45.2.59
– volume: 74
  start-page: 2043
  year: 2008
  ident: 1231_CR20
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02395-07
– year: 2017
  ident: 1231_CR47
  publication-title: FEMS Yeast Res
  doi: 10.1093/femsyr/fox044
– volume: 37
  start-page: 1623
  year: 2015
  ident: 1231_CR8
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-015-1840-2
– ident: 1231_CR73
– volume: 4
  start-page: 1
  year: 2005
  ident: 1231_CR52
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-4-30
– volume: 14
  start-page: 22
  year: 2014
  ident: 1231_CR2
  publication-title: BMC Biotechno.
  doi: 10.1186/1472-6750-14-22
– volume: 8
  start-page: 7
  year: 2013
  ident: 1231_CR96
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0069005
– volume: 4
  start-page: 1
  year: 2011
  ident: 1231_CR16
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-4-38
– volume: 3
  start-page: 185
  year: 2003
  ident: 1231_CR21
  publication-title: FEMS Yeast Res
  doi: 10.1016/S1567-1356(02)00184-8
– volume: 245
  start-page: 324
  year: 1997
  ident: 1231_CR87
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1997.00324.x
– volume: 73
  start-page: 4881
  year: 2007
  ident: 1231_CR18
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00177-07
– volume: 6
  start-page: 681
  year: 1984
  ident: 1231_CR56
  publication-title: Biotechnol Lett
  doi: 10.1007/BF00133837
– volume: 148
  start-page: 2783
  year: 2002
  ident: 1231_CR59
  publication-title: Microbiology.
  doi: 10.1099/00221287-148-9-2783
– volume: 272
  start-page: 1662
  year: 1996
  ident: 1231_CR62
  publication-title: Science
  doi: 10.1126/science.272.5268.1662
– volume: 90
  start-page: 391
  year: 2006
  ident: 1231_CR7
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-006-9085-7
– volume: 5
  start-page: 925
  year: 2005
  ident: 1231_CR30
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2005.04.004
– volume: 70
  start-page: 2307
  year: 2004
  ident: 1231_CR54
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.70.4.2307-2317.2004
– volume: 16
  start-page: 1483
  year: 2000
  ident: 1231_CR58
  publication-title: Yeast.
  doi: 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K
– volume: 6
  start-page: 155
  year: 2004
  ident: 1231_CR91
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2004.02.005
– volume: 6
  start-page: 89
  year: 2013
  ident: 1231_CR10
  publication-title: Biotechnol Biofuels.
  doi: 10.1186/1754-6834-6-89
– volume: 142
  start-page: 302
  year: 1985
  ident: 1231_CR53
  publication-title: Arch Microbiol
  doi: 10.1007/BF00693408
– volume: 31
  start-page: 166
  year: 2015
  ident: 1231_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 63
  start-page: 554
  year: 1999
  ident: 1231_CR60
  publication-title: Microbiol Mol Biol R.
  doi: 10.1128/MMBR.63.3.554-569.1999
– volume: 22
  start-page: 242
  year: 2014
  ident: 1231_CR34
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2013.11.008
– year: 2018
  ident: 1231_CR35
  publication-title: FEMS Yeast Res
  doi: 10.1093/femsyr/foy056
– volume: 5
  start-page: 532
  year: 2004
  ident: 1231_CR48
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400132
– volume: 4
  start-page: 424
  year: 2010
  ident: 1231_CR29
  publication-title: Bioeng Bugs.
  doi: 10.4161/bbug.1.6.12724
– volume: 14
  start-page: 4
  year: 2013
  ident: 1231_CR79
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-1-r4
– volume: 57–8
  start-page: 233
  year: 1996
  ident: 1231_CR24
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02941704
– volume: 63
  start-page: 258
  year: 2003
  ident: 1231_CR19
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-003-1444-y
– volume: 9
  start-page: 357
  year: 2012
  ident: 1231_CR80
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 63
  start-page: 734
  year: 2004
  ident: 1231_CR38
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-003-1414-4
– volume: 32
  start-page: 22
  year: 2012
  ident: 1231_CR37
  publication-title: Crit Rev Biotechnol
  doi: 10.3109/07388551.2010.539551
– volume: 6
  start-page: 38676
  year: 2016
  ident: 1231_CR11
  publication-title: Sci Rep-Uk
  doi: 10.1038/srep38676
– volume: 2
  start-page: 60
  year: 2008
  ident: 1231_CR55
  publication-title: BMC Syst Biol.
  doi: 10.1186/1752-0509-2-60
– volume: 13
  start-page: 110
  year: 2013
  ident: 1231_CR9
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-13-110
– volume: 1
  start-page: 63
  year: 2007
  ident: 1231_CR66
  publication-title: Dyn Biochem Process Biotechnol Mol Biol.
– volume: 16
  start-page: 42
  year: 1981
  ident: 1231_CR57
  publication-title: Process Biochem
– volume: 179
  start-page: 1541
  year: 1997
  ident: 1231_CR64
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.5.1541-1549.1997
– volume: 67
  start-page: 918
  year: 2008
  ident: 1231_CR12
  publication-title: J Sci Ind Res
– volume: 33
  start-page: 234
  year: 2009
  ident: 1231_CR3
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2008.05.007
– volume: 51
  start-page: 458
  year: 1987
  ident: 1231_CR65
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.51.4.458-476.1987
– volume: 11
  start-page: 63
  year: 2018
  ident: 1231_CR89
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1047-6
– volume: 12
  start-page: 19
  year: 1977
  ident: 1231_CR85
  publication-title: Process Biochem.
– volume: 15
  start-page: 12
  year: 2014
  ident: 1231_CR83
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 111
  start-page: 5159
  year: 2014
  ident: 1231_CR90
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1323464111
– year: 2009
  ident: 1231_CR76
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-10-99
– volume: 10
  start-page: 3
  year: 2009
  ident: 1231_CR81
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-1-r3
– volume: 14
  start-page: 2077
  year: 2010
  ident: 1231_CR4
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.03.035
– volume: 3
  start-page: 347
  year: 2012
  ident: 1231_CR42
  publication-title: Bioengineered
  doi: 10.4161/bioe.21444
– ident: 1231_CR69
– reference: 21992610 - Biotechnol Biofuels. 2011 Oct 12;4:38
– reference: 2202777 - J Gen Microbiol. 1990 Mar;136(3):405-12
– reference: 8669899 - Appl Biochem Biotechnol. 1996 Spring;57-58:233-42
– reference: 17294186 - Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53
– reference: 12839792 - Appl Environ Microbiol. 2003 Jul;69(7):4144-50
– reference: 29771304 - FEMS Yeast Res. 2018 Sep 1;18(6):null
– reference: 19812109 - Genome Res. 2009 Dec;19(12):2258-70
– reference: 15113568 - Metab Eng. 2004 Apr;6(2):155-63
– reference: 19074603 - Appl Environ Microbiol. 2009 Feb;75(4):907-14
– reference: 9572962 - Appl Environ Microbiol. 1998 May;64(5):1852-9
– reference: 9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111
– reference: 21468211 - Bioeng Bugs. 2010 Nov-Dec;1(6):424-8
– reference: 1922048 - Mol Cell Biol. 1991 Oct;11(10):5330-7
– reference: 9139918 - J Bacteriol. 1997 May;179(9):2987-93
– reference: 12213924 - Microbiology. 2002 Sep;148(Pt 9):2783-8
– reference: 12073338 - Methods Enzymol. 2002;350:87-96
– reference: 29563966 - Biotechnol Biofuels. 2018 Mar 13;11:63
– reference: 9123965 - Yeast. 1996 Dec;12(16):1607-33
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34
– reference: 17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56
– reference: 12910327 - Appl Microbiol Biotechnol. 2004 Feb;63(6):734-41
– reference: 22094012 - FEMS Yeast Res. 2012 Feb;12(1):33-47
– reference: 14595523 - Appl Microbiol Biotechnol. 2004 Feb;63(5):495-509
– reference: 22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78
– reference: 17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418
– reference: 18613954 - BMC Syst Biol. 2008 Jul 09;2:60
– reference: 16269086 - Microb Cell Fact. 2005 Nov 03;4:30
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 28000736 - Sci Rep. 2016 Dec 21;6:38676
– reference: 22360882 - BMB Rep. 2012 Feb;45(2):59-70
– reference: 14545895 - Biotechnol Adv. 1994;12(2):279-324
– reference: 2830478 - Microbiol Rev. 1987 Dec;51(4):458-76
– reference: 24706835 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5159-64
– reference: 17545317 - Appl Environ Microbiol. 2007 Aug;73(15):4881-91
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 8658143 - Science. 1996 Jun 14;272(5268):1662-5
– reference: 12722184 - Yeast. 2003 Apr 30;20(6):509-43
– reference: 22892590 - Bioengineered. 2012 Nov-Dec;3(6):347-51
– reference: 24354503 - BMC Biotechnol. 2013 Dec 19;13:110
– reference: 21204601 - Crit Rev Biotechnol. 2012 Mar;32(1):22-48
– reference: 10557161 - Trends Biotechnol. 1999 Dec;17(12):482-7
– reference: 2082825 - Appl Environ Microbiol. 1990 Dec;56(12):3785-92
– reference: 28899031 - FEMS Yeast Res. 2017 Aug 1;17(5):
– reference: 19592533 - Appl Environ Microbiol. 2009 Sep;75(17):5607-14
– reference: 9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33
– reference: 7854249 - Microbiol Rev. 1994 Dec;58(4):616-30
– reference: 20550651 - Biotechnol Biofuels. 2010 Jun 15;3:13
– reference: 13680206 - Appl Microbiol Biotechnol. 2003 Dec;63(3):258-66
– reference: 24724938 - FEMS Microbiol Rev. 2014 Sep;38(5):947-95
– reference: 25994575 - Biotechnol Lett. 2015 Aug;37(8):1623-30
– reference: 12702451 - FEMS Yeast Res. 2003 Apr;3(2):185-9
– reference: 10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69
– reference: 24195072 - Biomed Res Int. 2013;2013:461204
– reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36
– reference: 8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90
– reference: 1523884 - Yeast. 1992 Jul;8(7):501-17
– reference: 11113971 - Yeast. 2000 Dec;16(16):1483-95
– reference: 18263741 - Appl Environ Microbiol. 2008 Apr;74(7):2043-50
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 19128960 - Bioresour Technol. 2009 Apr;100(8):2392-8
– reference: 15071495 - EMBO Rep. 2004 May;5(5):532-7
– reference: 8099357 - J Biol Chem. 1993 Jun 5;268(16):12116-22
– reference: 26671616 - Appl Microbiol Biotechnol. 2016 Mar;100(5):2487-98
– reference: 19874630 - BMC Mol Biol. 2009 Oct 30;10:99
– reference: 14532041 - Appl Environ Microbiol. 2003 Oct;69(10):5892-7
– reference: 15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17
– reference: 26129747 - Yeast. 2015 Oct;32(10):615-28
– reference: 9045811 - J Bacteriol. 1997 Mar;179(5):1541-9
– reference: 22424089 - Biotechnol Biofuels. 2012 Mar 16;5:14
– reference: 23800147 - Biotechnol Biofuels. 2013 Jun 21;6(1):89
– reference: 23874849 - PLoS One. 2013 Jul 09;8(7):e69005
– reference: 15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409
– reference: 24655423 - BMC Biotechnol. 2014 Mar 21;14:22
– reference: 29860442 - FEMS Yeast Res. 2018 Sep 1;18(6):null
– reference: 15928973 - Antonie Van Leeuwenhoek. 2005 Jul;88(1):13-23
SSID ssj0061707
ssj0002769473
Score 2.22237
Snippet Bioethanol production processes with using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars...
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of...
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of...
Abstract Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 231
SubjectTerms adenosine triphosphate
Arabinose
Biodiesel fuels
Biofuels
Biomass
Biorefineries
biorefining
Carbon
Catabolite repression
Conversion
D-Galactose
Deactivation
Dehydrogenases
energy
Energy metabolism
Energy sources
Ethanol
ethanol production
feedstocks
Fermentation
Gal2p
Galactose
Gene expression
Genetic aspects
Genomes
Glucose
Glucose transport
Hexose
Hydrolysates
Inactivation
Kinases
l-Arabinose fermentation
l-Arabinose uptake
Lignocellulose
Lignocellulosic ethanol
Metabolism
Methods
Pentose
pentoses
Physiological aspects
Physiology
Production processes
quantitative polymerase chain reaction
R&D
Regeneration
Research & development
reverse transcriptase polymerase chain reaction
Ribonucleic acid
RNA
Saccharomyces cerevisiae
sequence analysis
Substrates
Sugar
transcriptome
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASElLUJI4d-7ggSkGCA6VSb5Yf47Lqkqw22Ur9E_xmxnmsNkIqF67JOEpmxuPvU8afCXkTcg4ejEh9xVVaeoDUGuBpARl4J7y3Lm5w_vpNnJyVX875-d5RX7EnbJAHHhx3JIIzwgdwuQulYIALUhUUMJ7LLEjf63zimjeRqaEGR5XxavyHmUtx1GKlFrFpCxkTAppUzlahXqz_75K8tybN-yX3FqDje-TuiBzpYnjj--QW1A_InT09wYfk9ypdbAxy3aYF2iHvvkBwR5ddS5Fr0-26M5dAr5aGIhEfVGNpEyhCQGqmYWncehnbh-gnsyrW-JRJ_HyDo6ip-7HDYR_01Li4a6v5dY3Vhrq-ZbhdGqBtf_LEI3J2_PHHh5N0PHAhdbxQXapUQLiUM-tAIJIUzCFasWCV8cGwsnAyhEL4MpTOcQuiUAZyZZCVsCpYy9ljclA3NTwl1FrDhXW5DUGUyhlpfCktY8pWsgTgCcmmAGg3qpHHV1vpnpVIoYeYaYyZjjHTMiHvdkPWgxTHTcbvY1R3hlFFu7-AuaXH3NL_yq2EvI45oaNORh0bcS7Mtm3159PveoFIMwrJ5llC3o5GocEvcGbc14B-iNJaM8vDKbf0WClaXcTOWOTgDF3yancb53j8cWNqaLZokymcSQhFyxtscqzOVSS8CXkypOvu47GIc4XVOyHVLJFn3pnfqZc_e61xRNdCFvmz_-HO5-R2EadghrWZHZKDbrOFFwjpOvuyn71_ABNLTtk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8SawIIOQkJCiTeLYsU-oIJYFCQ4sK-3N8rNUlKQ0KRJ_gt_MTJKWRki9NuMqzjz8jT3-hpAXMefBByNSX3GVlj6E1JrA0yJkwTvhvXV4wfnTZ3F2UX685Jfjhls7llVuY2IfqH3jcI_8pMAKQshVGH-9-pli1yg8XR1baFwl15C6DJOv6rLa7bEUlVBlxcbDzFyKkxZCtsDqLUidANmkcrIc9az9_8fmvcVpWji5txKd3iI3RwhJZ4POb5Mrob5DbuwRC94lf5bpbG0g6W3aQDuYxRxQHl10LYWkm25Wnfke6K-FoZCRD_SxtIkUsCA122Ep3sHEOiL63iyLFfzLlgV9DaOoqfuxQ9cPem4cXt9qfvyGsENdXzvcLkygbd-C4h65OH339e1ZOnZeSB0vVJcqFQE35cy6IABSCuYAtthglfHRsLJwMsZC-DKWznEbRKFMyJWB9IRV0VrO7pOjuqnDQ0KtNVxYl9sYRamckcaX0jKmbCXLEHhCsq0CtBtpyfHVlrpPT6TQg8406EyjzrRMyKvdkNXAyXFI-A1qdSeIdNr9D816rkfv1CI6I3wMLnexFCwA6qmiCoznMovSs4Q8R5vQSJhRY0XO3GzaVn84_6JnADmRUTbPEvJyFIoNzMCZ8YIDfAfk2JpIHm9tS48ho9X_DDwhz3aPwdnxBMfUodmATKbApQCTlgdkcgjTFWa-CXkwmOtu8hDNuYIwnpBqYsiTrzN9Ui--9aTjALOFLPJHh1_9MbleoHNlEH7ZMTnq1pvwBFBbZ5_2rvkXwtxF7w
  priority: 102
  providerName: ProQuest
Title l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain
URI https://www.ncbi.nlm.nih.gov/pubmed/30159031
https://www.proquest.com/docview/2109010735
https://www.proquest.com/docview/2097591254
https://www.proquest.com/docview/2131870149
https://pubmed.ncbi.nlm.nih.gov/PMC6106821
https://doaj.org/article/6fca6dfec1cf463e8127f9e35180f8d3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf28QIPiO8FRmUQEhJSIIkdx3lAqEPrRqVNaKVS3yzbsUtFSUqTIvZP8DdzzkfViGkSL63UnKPkznf-XX3-HUKvbRibzEjmZ0mc-jQzxlfSxH5kApNplmVKuwPOF5fsfErHs3i2h7r2Vq0CyxtTO9dParpevvv98_ojOPyH2uE5e19CHGauJAvyIYArPt9Hh7AwJa6TwwXdbio46vG610oSU59xQttNzhtv0Vumajb_f2P2zqLVL6jcWaFG99G9FlriYTMXHqA9kz9Ed3cIBx-hP0t_uJaQDBelwRUk5nNAf3hRlRiScbxZVfK7wb8WEkOm3tDK4sJiwIhYdsN8dzbT1RfhM7mMVnCXjh19DaOwzOuxTTcQPJHaHesqflxDOMK6rikuF9Lgsm5N8RhNR6dfP537bUcGX8dRWvlpagFPhURpwwBqMqIBziijUplZSWikubURy6ilWsfKsCiVJkwlpC0ksUrF5Ak6yIvcHCGslIyZ0qGyltFUSy4zyhUhqUo4NSb2UNAZQOiWrtw92lLUaQtnorGZAJsJZzPBPfR2O2TVcHXcJnzirLoVdDTb9Q_Fei5arxXMaskya3SoLWXEABpKbGpIHPLA8ox46JWbE8IRaeSuUmcuN2UpPk-uxBCgqGOaDQMPvWmFbAFvoGV78AH04Li3epLH3dwSnSeIyJXOQpJOQCUvt5chCLidHZmbYgMyQQquBliV3iITQvhOXEbsoafNdN2-PET5OIXw7qGkN5F72ulfyRffajJygN-MR-Gz_9H9c3Qncq4WQJAmx-igWm_MC8B2lRqg_WSWwCcfnQ3Q4XA4nozh--T08svVoP6_ZFD79F9iWVO7
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWywE4IN4EFjAIhIQUbR6OYx8QKo_uln0c2F1pb8bPUlGS0qSg_RP8FH4j4zxKK6Te9pqMo8QznvkmHn-D0AsXZ9ZYSUOTZzwkxtpQSZuFiY2s0dQYpf0B56Njun9GPp1n51voT38WxpdV9j6xcdSm1P4f-W7iKwghV0mzt7Mfoe8a5XdX-xYarVkc2ItfkLJVb0YfQL8vk2T48fT9fth1FQh1lvA65NwBJohTpS0FuERTDSFZWcWlcTIliWbOJdQQR7TOlKUJlzbmEqB3mjulfJcIcPlXSJpyX0LIhnvLfzpJTjnJ027zNGZ0t4IQQX21GKRqgKRCthb-mi4B_8eClWC4Xqi5EvmGN9GNDrLiQWtjt9CWLW6j6ytEhnfQ72k4mEtIssvK4hpmbQyoEk_qCkOSjxezWn6z-OdE4klhWrpaXDoM2BPLfljoz3z6uiW8J6fJDJ7Ss67PYRSWRTO27TKCT6T2x8XK7xfg5rBuapWribS4alpe3EVnl6KTe2i7KAv7AGGlZEaVjpVzlHAtmTSEKVCWyhmxNgtQ1CtA6I4G3b_aVDTpEKOi1ZkAnQmvM8EC9Ho5ZNZygGwSfue1uhT09N3NhXI-Fp03ENRpSY2zOtaO0NQCysodt2kWs8gxkwboubcJ4Qk6Cl8BNJaLqhKjk89iABDXM9jGUYBedUKuhC_QsjtQAfPgOb3WJHd62xKdi6rEvwUVoGfL2-Bc_I6RLGy5AJmIwxIGDEw2yMQQFnKfaQfofmuuy4-H6JFxCBsBytcMeW121u8Uk68NyTnAesqS-OHmV3-Kru6fHh2Kw9HxwSN0LfELLQLXn-6g7Xq-sI8BMdbqSbNMMfpy2X7hL1img9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Arabinose+triggers+its+own+uptake+via+induction+of+the+arabinose-specific+Gal2p+transporter+in+an+industrial+Saccharomyces+cerevisiae+strain&rft.jtitle=Biotechnology+for+biofuels&rft.au=Oehling%2C+Verena&rft.au=Klaassen%2C+Paul&rft.au=Frick%2C+Oliver&rft.au=Dusny%2C+Christian&rft.date=2018-08-23&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs13068-018-1231-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13068_018_1231_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon