l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain
Bioethanol production processes with using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here p...
Saved in:
Published in | Biotechnology for biofuels Vol. 11; no. 1; p. 231 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
23.08.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1754-6834 1754-6834 2731-3654 |
DOI | 10.1186/s13068-018-1231-8 |
Cover
Loading…
Abstract | Bioethanol production processes with
using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in
and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in
wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing
expression.
expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain
DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of
expression. Expression levels of
during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced
expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in
DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of
DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. |
---|---|
AbstractList | Abstract Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p—the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains—has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p--the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains--has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p--the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains--has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. Keywords: l-Arabinose uptake, Lignocellulosic ethanol, Gal2p, Saccharomyces cerevisiae, Catabolite repression, l-Arabinose fermentation, Next generation sequencing, RNA-seq Bioethanol production processes with using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing expression. expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of expression. Expression levels of during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l- arabinose in S. cerevisiae and reveal its regulation by d -glucose and d -galactose. Gal2p—the most prominent transporter enabling l -arabinose uptake in S. cerevisiae wild-type strains—has an affinity for the transport of l -arabinose, d -glucose, and d -galactose. d -Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d -glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l -arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l -arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l -arabinose reached up to 21% of those obtained with d -galactose as sole carbon and energy source. l -Arabinose-induced GAL2 expression was also subject to catabolite repression by d -glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d -glucose/ l -arabinose revealed impairment of growth and ethanol production from l -arabinose upon d -glucose depletion. The presence of d -glucose is thus preventing the fermentation of l -arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l -arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics. |
ArticleNumber | 231 |
Audience | Academic |
Author | Klaassen, Paul Dusny, Christian Frick, Oliver Schmid, Andreas Oehling, Verena |
Author_xml | – sequence: 1 givenname: Verena surname: Oehling fullname: Oehling, Verena – sequence: 2 givenname: Paul surname: Klaassen fullname: Klaassen, Paul – sequence: 3 givenname: Oliver surname: Frick fullname: Frick, Oliver – sequence: 4 givenname: Christian surname: Dusny fullname: Dusny, Christian – sequence: 5 givenname: Andreas surname: Schmid fullname: Schmid, Andreas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30159031$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxiNURP_AA3BBlrjAIcUTx0l8QVpVUCpVQqJwtibOeOuStRc7KfQleGa83RZ1KyHkg63x7_vkGX-HxZ4PnoriJfBjgK55l0Dwpis5dCVUAsruSXEArazLphP13oPzfnGY0hXnDbS8fVbsCw5ScQEHxe-xXETsnQ-J2BTdckkxMTclFn56Nq8n_E7s2iFzfpjN5IJnwbLpkhjey8q0JuOsM-wUx2qdXdCndYgTxaxi6G-1KZvjyC7QmEuMYXVjKDFDka5dckgs36Pzz4unFsdEL-72o-Lbxw9fTz6V559Pz04W56WRlZpKpaxQFYjeUMM73ggjVNtTr3CwKOrKdNZWzVDb2hjZU1MpJFBYSSla2_dSHBVnW98h4JVeR7fCeKMDOn1bCHGpMU7OjKQba7AZLBkwtm4EdVC1VpGQ0HHbDSJ7vd96red-RYMhn1sZd0x3b7y71MtwrRvIv5e7OCre3BnE8GOmNOmVS4bGET2FOemMQNdyqNX_Ua5aqaCSdUZfP0Kvwhx9nmo25IoDb8VmEMdbaom5V-dtyE80eQ20cibHzbpcX0gJspIt8Cx4uyPIzES_piXOKemziy-77KuHk_k7kvv4ZaDdAiaGlCJZbdyEm5Rt0jBq4HoTdL0Nus5B15ug6y4r4ZHy3vzfmj9cBAF0 |
CitedBy_id | crossref_primary_10_1080_07388551_2020_1844632 crossref_primary_10_1016_j_rser_2025_115352 crossref_primary_10_1016_j_crfs_2021_07_004 crossref_primary_10_1093_femsyr_foab019 crossref_primary_10_1007_s00253_019_09625_1 |
Cites_doi | 10.1016/j.biortech.2008.11.047 10.1128/AEM.56.12.3785-3792.1990 10.1128/AEM.00429-09 10.1016/j.femsyr.2004.09.010 10.1099/00221287-136-3-405 10.1016/S0076-6879(02)50957-5 10.1038/nprot.2012.016 10.1007/s00253-015-7211-z 10.1101/gr.091777.109 10.1007/s00253-006-0827-2 10.1128/AEM.69.10.5892-5897.2003 10.1128/AEM.02268-08 10.1016/S0167-7799(99)01384-0 10.1007/s10482-005-7283-3 10.1002/yea.986 10.1186/1754-6834-3-1 10.1007/s00253-003-1450-0 10.1111/j.1574-6976.1997.tb00346.x 10.1128/AEM.61.12.4184-4190.1995 10.1016/S0021-9258(19)50315-5 10.1016/j.tibtech.2006.10.004 10.1002/yea.320080703 10.1128/jb.179.9.2987-2993.1997 10.1128/MCB.11.10.5330 10.1111/1574-6976.12073 10.1016/0734-9750(94)90014-0 10.1111/j.1567-1364.2011.00760.x 10.1016/0168-1656(88)90001-6 10.1038/nprot1014-2513a 10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4 10.1002/yea.3084 10.1128/MMBR.58.4.616-630.1994 10.1093/femsyr/foy062 10.1128/AEM.69.7.4144-4150.2003 10.1186/1754-6834-5-14 10.1002/jctb.1676 10.5483/BMBRep.2012.45.2.59 10.1128/AEM.02395-07 10.1093/femsyr/fox044 10.1007/s10529-015-1840-2 10.1186/1475-2859-4-30 10.1186/1472-6750-14-22 10.1371/journal.pone.0069005 10.1186/1754-6834-4-38 10.1016/S1567-1356(02)00184-8 10.1111/j.1432-1033.1997.00324.x 10.1128/AEM.00177-07 10.1007/BF00133837 10.1099/00221287-148-9-2783 10.1126/science.272.5268.1662 10.1007/s10482-006-9085-7 10.1016/j.femsyr.2005.04.004 10.1128/AEM.70.4.2307-2317.2004 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K 10.1016/j.ymben.2004.02.005 10.1186/1754-6834-6-89 10.1007/BF00693408 10.1093/bioinformatics/btu638 10.1128/MMBR.63.3.554-569.1999 10.1016/j.seppur.2013.11.008 10.1093/femsyr/foy056 10.1038/sj.embor.7400132 10.4161/bbug.1.6.12724 10.1186/gb-2013-14-1-r4 10.1007/BF02941704 10.1007/s00253-003-1444-y 10.1038/nmeth.1923 10.1007/s00253-003-1414-4 10.3109/07388551.2010.539551 10.1038/srep38676 10.1186/1752-0509-2-60 10.1186/1472-6750-13-110 10.1128/jb.179.5.1541-1549.1997 10.1016/j.biombioe.2008.05.007 10.1128/MMBR.51.4.458-476.1987 10.1186/s13068-018-1047-6 10.1186/s13059-014-0550-8 10.1073/pnas.1323464111 10.1186/1471-2199-10-99 10.1186/gb-2009-10-1-r3 10.1016/j.rser.2010.03.035 10.4161/bioe.21444 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2018 |
DBID | AAYXX CITATION NPM ISR 3V. 7QO 7SP 7ST 7TB 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V L7M LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS SOI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13068-018-1231-8 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database (Proquest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-6834 2731-3654 |
EndPage | 231 |
ExternalDocumentID | oai_doaj_org_article_6fca6dfec1cf463e8127f9e35180f8d3 PMC6106821 A551525710 30159031 10_1186_s13068_018_1231_8 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: ; grantid: project 07.001.02 |
GroupedDBID | 23N 2WC 2XV 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBS ECGQY EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE I-F IAG IAO IEA IEP ISR ITC KQ8 L6V L8X LK8 M48 M7P M7S ML0 M~E O5R O5S OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RBZ RNS ROL RPM RVI SCM TR2 TUS UKHRP ~8M -A0 2VQ 3V. 4.4 ADINQ AHSBF BMC C1A C24 C6C IHR IPNFZ NPM OK1 RIG RSV SOJ PMFND 0R~ 7QO 7SP 7ST 7TB 7XB 8FD 8FK AAJSJ AASML ADUKV AZQEC C1K DWQXO EBLON FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS SOI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c529t-99f39213bce608063c397beb9adfa342c8ff26d4f4cc5be629ae19a25537fbb53 |
IEDL.DBID | M48 |
ISSN | 1754-6834 |
IngestDate | Wed Aug 27 01:02:35 EDT 2025 Thu Aug 21 14:09:07 EDT 2025 Mon Jul 21 11:09:44 EDT 2025 Fri Jul 11 00:09:38 EDT 2025 Sat Aug 23 12:29:14 EDT 2025 Tue Jun 10 20:44:05 EDT 2025 Fri Jun 27 04:36:33 EDT 2025 Wed Feb 19 02:43:36 EST 2025 Tue Jul 01 04:18:51 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Catabolite repression RNA-seq l-Arabinose fermentation Gal2p Lignocellulosic ethanol l-Arabinose uptake Next generation sequencing Saccharomyces cerevisiae |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-99f39213bce608063c397beb9adfa342c8ff26d4f4cc5be629ae19a25537fbb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/6fca6dfec1cf463e8127f9e35180f8d3 |
PMID | 30159031 |
PQID | 2109010735 |
PQPubID | 55236 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6fca6dfec1cf463e8127f9e35180f8d3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6106821 proquest_miscellaneous_2131870149 proquest_miscellaneous_2097591254 proquest_journals_2109010735 gale_infotracacademiconefile_A551525710 gale_incontextgauss_ISR_A551525710 pubmed_primary_30159031 crossref_citationtrail_10_1186_s13068_018_1231_8 crossref_primary_10_1186_s13068_018_1231_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-23 |
PublicationDateYYYYMMDD | 2018-08-23 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Biotechnology for biofuels |
PublicationTitleAlternate | Biotechnol Biofuels |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | A Farwick (1231_CR90) 2014; 111 HW Wisselink (1231_CR32) 2009; 75 P Jouhten (1231_CR55) 2008; 2 JA Barnett (1231_CR15) 2003; 20 TW Jeffries (1231_CR27) 2004; 63 M Walfridsson (1231_CR25) 1995; 61 M Johnston (1231_CR65) 1987; 51 BS Dien (1231_CR19) 2003; 63 MLA Jansen (1231_CR47) 2017 C Verduyn (1231_CR50) 1990; 136 K Otterstedt (1231_CR48) 2004; 5 BU Stambuck (1231_CR12) 2008; 67 MI Love (1231_CR83) 2014; 15 I Papapetridis (1231_CR35) 2018 RG Sanchez (1231_CR28) 2010; 3 AJ Maris Van (1231_CR7) 2006; 90 P Richard (1231_CR21) 2003; 3 P Caunt (1231_CR40) 1988; 8 M Sonderegger (1231_CR54) 2004; 70 R Costenoble (1231_CR58) 2000; 16 1231_CR69 A Matsushika (1231_CR45) 2009; 100 B Wiedemann (1231_CR20) 2008; 74 J Sambrook (1231_CR74) 2001 JM Bracher (1231_CR89) 2018; 11 RP Jones (1231_CR57) 1981; 16 LV Santos Dos (1231_CR11) 2016; 6 B Hahn-Hagerdal (1231_CR17) 2007; 74 R Verho (1231_CR26) 2003; 69 JT Pronk (1231_CR49) 1996; 12 AE Wheals (1231_CR43) 1999; 17 HW Wisselink (1231_CR18) 2007; 73 JL Argueso (1231_CR39) 2009; 19 J Becker (1231_CR23) 2003; 69 JRM Almeida (1231_CR6) 2007; 82 M Kuyper (1231_CR30) 2005; 5 B Hahn-Hagerdal (1231_CR1) 2006; 24 J Konish (1231_CR8) 2015; 37 M Kuyper (1231_CR31) 2005; 5 O Frick (1231_CR52) 2005; 4 PA Moore (1231_CR61) 1991; 11 D Kim (1231_CR79) 2013; 14 A Madhavan (1231_CR37) 2012; 32 E Oura (1231_CR85) 1977; 12 LY Diao (1231_CR9) 2013; 13 E Boles (1231_CR63) 1997; 21 1231_CR84 RJ Haselbeck (1231_CR93) 1993; 268 W Visser (1231_CR51) 1990; 56 HTT Nguyen (1231_CR91) 2004; 6 RA Weusthuis (1231_CR95) 1994; 58 T Subtil (1231_CR16) 2011; 4 C Trapnell (1231_CR77) 2014; 9 E Reifenberger (1231_CR87) 1997; 245 CQ Wang (1231_CR67) 2013; 2013 JT Timson (1231_CR66) 2007; 1 C Trapnell (1231_CR78) 2012; 7 P Vinuselvi (1231_CR13) 2012; 45 B Langmead (1231_CR80) 2012; 9 1231_CR46 MM Demeke (1231_CR10) 2013; 6 BS Dien (1231_CR24) 1996; 57–8 SM Lee (1231_CR33) 2016; 100 T Subtil (1231_CR36) 2012; 5 MA Teste (1231_CR76) 2009 NW Ho (1231_CR22) 1998; 4 S Fernandes (1231_CR29) 2010; 4 C Verduyn (1231_CR75) 1992; 8 A Garay-Arroyo (1231_CR38) 2004; 63 1231_CR71 1231_CR70 1231_CR73 A Matsushika (1231_CR96) 2013; 8 MD Verhoeven (1231_CR68) 2018 EP Knoshaug (1231_CR88) 2015; 32 S Gonzalez-Garcia (1231_CR4) 2010; 14 RD Gietz (1231_CR72) 2002; 350 J Steensels (1231_CR14) 2014; 38 PM Bruinenberg (1231_CR53) 1985; 142 E Boles (1231_CR86) 1997; 179 B Langmead (1231_CR81) 2009; 10 O Smidt De (1231_CR92) 2012; 12 AJ McLoughlin (1231_CR41) 1994; 12 S Ozcan (1231_CR60) 1999; 63 HJ Huang (1231_CR3) 2009; 33 JW Lee (1231_CR34) 2014; 22 J Zha (1231_CR5) 2012; 2 LG Boender (1231_CR94) 2009; 75 Y Zha (1231_CR2) 2014; 14 GK Hoppe (1231_CR56) 1984; 6 T Hamacher (1231_CR59) 2002; 148 S Anders (1231_CR82) 2015; 31 M Oreb (1231_CR42) 2012; 3 J Horak (1231_CR64) 1997; 179 FT Zenke (1231_CR62) 1996; 272 EA Silva-Filho Da (1231_CR44) 2005; 88 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 12839792 - Appl Environ Microbiol. 2003 Jul;69(7):4144-50 24706835 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5159-64 24655423 - BMC Biotechnol. 2014 Mar 21;14:22 19074603 - Appl Environ Microbiol. 2009 Feb;75(4):907-14 8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90 9572962 - Appl Environ Microbiol. 1998 May;64(5):1852-9 22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78 8658143 - Science. 1996 Jun 14;272(5268):1662-5 15113568 - Metab Eng. 2004 Apr;6(2):155-63 10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69 25994575 - Biotechnol Lett. 2015 Aug;37(8):1623-30 19874630 - BMC Mol Biol. 2009 Oct 30;10:99 2082825 - Appl Environ Microbiol. 1990 Dec;56(12):3785-92 9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33 17545317 - Appl Environ Microbiol. 2007 Aug;73(15):4881-91 8099357 - J Biol Chem. 1993 Jun 5;268(16):12116-22 19592533 - Appl Environ Microbiol. 2009 Sep;75(17):5607-14 15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34 24195072 - Biomed Res Int. 2013;2013:461204 24724938 - FEMS Microbiol Rev. 2014 Sep;38(5):947-95 12702451 - FEMS Yeast Res. 2003 Apr;3(2):185-9 21992610 - Biotechnol Biofuels. 2011 Oct 12;4:38 17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418 24354503 - BMC Biotechnol. 2013 Dec 19;13:110 18263741 - Appl Environ Microbiol. 2008 Apr;74(7):2043-50 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 16269086 - Microb Cell Fact. 2005 Nov 03;4:30 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 15928973 - Antonie Van Leeuwenhoek. 2005 Jul;88(1):13-23 14532041 - Appl Environ Microbiol. 2003 Oct;69(10):5892-7 15071495 - EMBO Rep. 2004 May;5(5):532-7 22094012 - FEMS Yeast Res. 2012 Feb;12(1):33-47 29860442 - FEMS Yeast Res. 2018 Sep 1;18(6):null 2830478 - Microbiol Rev. 1987 Dec;51(4):458-76 14545895 - Biotechnol Adv. 1994;12(2):279-324 10557161 - Trends Biotechnol. 1999 Dec;17(12):482-7 15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17 28000736 - Sci Rep. 2016 Dec 21;6:38676 2202777 - J Gen Microbiol. 1990 Mar;136(3):405-12 9045811 - J Bacteriol. 1997 Mar;179(5):1541-9 1523884 - Yeast. 1992 Jul;8(7):501-17 12722184 - Yeast. 2003 Apr 30;20(6):509-43 14595523 - Appl Microbiol Biotechnol. 2004 Feb;63(5):495-509 23800147 - Biotechnol Biofuels. 2013 Jun 21;6(1):89 17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56 29771304 - FEMS Yeast Res. 2018 Sep 1;18(6):null 12073338 - Methods Enzymol. 2002;350:87-96 12910327 - Appl Microbiol Biotechnol. 2004 Feb;63(6):734-41 25516281 - Genome Biol. 2014;15(12):550 22360882 - BMB Rep. 2012 Feb;45(2):59-70 17294186 - Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53 12213924 - Microbiology. 2002 Sep;148(Pt 9):2783-8 22424089 - Biotechnol Biofuels. 2012 Mar 16;5:14 13680206 - Appl Microbiol Biotechnol. 2003 Dec;63(3):258-66 29563966 - Biotechnol Biofuels. 2018 Mar 13;11:63 23874849 - PLoS One. 2013 Jul 09;8(7):e69005 8669899 - Appl Biochem Biotechnol. 1996 Spring;57-58:233-42 9139918 - J Bacteriol. 1997 May;179(9):2987-93 28899031 - FEMS Yeast Res. 2017 Aug 1;17(5) 26671616 - Appl Microbiol Biotechnol. 2016 Mar;100(5):2487-98 9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111 26129747 - Yeast. 2015 Oct;32(10):615-28 21204601 - Crit Rev Biotechnol. 2012 Mar;32(1):22-48 7854249 - Microbiol Rev. 1994 Dec;58(4):616-30 19128960 - Bioresour Technol. 2009 Apr;100(8):2392-8 19261174 - Genome Biol. 2009;10(3):R25 21468211 - Bioeng Bugs. 2010 Nov-Dec;1(6):424-8 1922048 - Mol Cell Biol. 1991 Oct;11(10):5330-7 19812109 - Genome Res. 2009 Dec;19(12):2258-70 15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409 18613954 - BMC Syst Biol. 2008 Jul 09;2:60 11113971 - Yeast. 2000 Dec;16(16):1483-95 22892590 - Bioengineered. 2012 Nov-Dec;3(6):347-51 9123965 - Yeast. 1996 Dec;12(16):1607-33 20550651 - Biotechnol Biofuels. 2010 Jun 15;3:13 |
References_xml | – volume: 100 start-page: 2392 year: 2009 ident: 1231_CR45 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2008.11.047 – volume: 56 start-page: 3785 year: 1990 ident: 1231_CR51 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.56.12.3785-3792.1990 – volume: 75 start-page: 5607 year: 2009 ident: 1231_CR94 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00429-09 – volume: 5 start-page: 399 year: 2005 ident: 1231_CR31 publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.09.010 – volume: 136 start-page: 405 year: 1990 ident: 1231_CR50 publication-title: J Gen Microbiol doi: 10.1099/00221287-136-3-405 – volume: 350 start-page: 87 year: 2002 ident: 1231_CR72 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(02)50957-5 – ident: 1231_CR71 – volume: 7 start-page: 562 year: 2012 ident: 1231_CR78 publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 100 start-page: 2487 year: 2016 ident: 1231_CR33 publication-title: Appl Microbiol Biot. doi: 10.1007/s00253-015-7211-z – volume: 19 start-page: 2258 year: 2009 ident: 1231_CR39 publication-title: Genome Res doi: 10.1101/gr.091777.109 – volume: 74 start-page: 937 year: 2007 ident: 1231_CR17 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-006-0827-2 – volume: 69 start-page: 5892 year: 2003 ident: 1231_CR26 publication-title: Appl Environ Microb. doi: 10.1128/AEM.69.10.5892-5897.2003 – volume: 75 start-page: 907 year: 2009 ident: 1231_CR32 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02268-08 – volume: 17 start-page: 482 year: 1999 ident: 1231_CR43 publication-title: Trends Biotechnol doi: 10.1016/S0167-7799(99)01384-0 – volume: 88 start-page: 13 year: 2005 ident: 1231_CR44 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-005-7283-3 – volume: 20 start-page: 509 year: 2003 ident: 1231_CR15 publication-title: Yeast doi: 10.1002/yea.986 – volume: 3 start-page: 1 year: 2010 ident: 1231_CR28 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-3-1 – volume: 63 start-page: 495 year: 2004 ident: 1231_CR27 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-003-1450-0 – volume: 21 start-page: 85 year: 1997 ident: 1231_CR63 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.1997.tb00346.x – volume: 61 start-page: 4184 year: 1995 ident: 1231_CR25 publication-title: Appl Environ Microb. doi: 10.1128/AEM.61.12.4184-4190.1995 – volume: 268 start-page: 12116 year: 1993 ident: 1231_CR93 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50315-5 – volume: 24 start-page: 549 year: 2006 ident: 1231_CR1 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2006.10.004 – volume: 8 start-page: 501 year: 1992 ident: 1231_CR75 publication-title: Yeast doi: 10.1002/yea.320080703 – volume: 179 start-page: 2987 year: 1997 ident: 1231_CR86 publication-title: J Bacteriol doi: 10.1128/jb.179.9.2987-2993.1997 – volume: 11 start-page: 5330 year: 1991 ident: 1231_CR61 publication-title: Mol Cell Biol doi: 10.1128/MCB.11.10.5330 – volume: 38 start-page: 947 year: 2014 ident: 1231_CR14 publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12073 – ident: 1231_CR70 – volume: 12 start-page: 279 year: 1994 ident: 1231_CR41 publication-title: Biotechnol Adv doi: 10.1016/0734-9750(94)90014-0 – volume: 12 start-page: 33 year: 2012 ident: 1231_CR92 publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2011.00760.x – volume: 8 start-page: 173 year: 1988 ident: 1231_CR40 publication-title: J Biotechnol doi: 10.1016/0168-1656(88)90001-6 – volume: 4 start-page: 1852 year: 1998 ident: 1231_CR22 publication-title: Appl Environ Microbiol – volume: 9 start-page: 2513 year: 2014 ident: 1231_CR77 publication-title: Nat Protoc doi: 10.1038/nprot1014-2513a – volume: 12 start-page: 1607 year: 1996 ident: 1231_CR49 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4 – volume: 32 start-page: 615 year: 2015 ident: 1231_CR88 publication-title: Yeast doi: 10.1002/yea.3084 – volume: 58 start-page: 1 year: 1994 ident: 1231_CR95 publication-title: Microbiol Rev doi: 10.1128/MMBR.58.4.616-630.1994 – year: 2018 ident: 1231_CR68 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/foy062 – volume: 69 start-page: 4144 year: 2003 ident: 1231_CR23 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.7.4144-4150.2003 – ident: 1231_CR46 – volume: 5 start-page: 1 year: 2012 ident: 1231_CR36 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-5-14 – volume: 2013 start-page: 1 year: 2013 ident: 1231_CR67 publication-title: Biomed Res Int – volume-title: Molecular cloning: a laboratory manual year: 2001 ident: 1231_CR74 – ident: 1231_CR84 – volume: 2 start-page: 1 year: 2012 ident: 1231_CR5 publication-title: Bioproces Biotechniq. – volume: 82 start-page: 340 year: 2007 ident: 1231_CR6 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.1676 – volume: 45 start-page: 59 year: 2012 ident: 1231_CR13 publication-title: BMB Rep. doi: 10.5483/BMBRep.2012.45.2.59 – volume: 74 start-page: 2043 year: 2008 ident: 1231_CR20 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02395-07 – year: 2017 ident: 1231_CR47 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/fox044 – volume: 37 start-page: 1623 year: 2015 ident: 1231_CR8 publication-title: Biotechnol Lett doi: 10.1007/s10529-015-1840-2 – ident: 1231_CR73 – volume: 4 start-page: 1 year: 2005 ident: 1231_CR52 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-4-30 – volume: 14 start-page: 22 year: 2014 ident: 1231_CR2 publication-title: BMC Biotechno. doi: 10.1186/1472-6750-14-22 – volume: 8 start-page: 7 year: 2013 ident: 1231_CR96 publication-title: PLoS ONE doi: 10.1371/journal.pone.0069005 – volume: 4 start-page: 1 year: 2011 ident: 1231_CR16 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-4-38 – volume: 3 start-page: 185 year: 2003 ident: 1231_CR21 publication-title: FEMS Yeast Res doi: 10.1016/S1567-1356(02)00184-8 – volume: 245 start-page: 324 year: 1997 ident: 1231_CR87 publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1997.00324.x – volume: 73 start-page: 4881 year: 2007 ident: 1231_CR18 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00177-07 – volume: 6 start-page: 681 year: 1984 ident: 1231_CR56 publication-title: Biotechnol Lett doi: 10.1007/BF00133837 – volume: 148 start-page: 2783 year: 2002 ident: 1231_CR59 publication-title: Microbiology. doi: 10.1099/00221287-148-9-2783 – volume: 272 start-page: 1662 year: 1996 ident: 1231_CR62 publication-title: Science doi: 10.1126/science.272.5268.1662 – volume: 90 start-page: 391 year: 2006 ident: 1231_CR7 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-006-9085-7 – volume: 5 start-page: 925 year: 2005 ident: 1231_CR30 publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2005.04.004 – volume: 70 start-page: 2307 year: 2004 ident: 1231_CR54 publication-title: Appl Environ Microb. doi: 10.1128/AEM.70.4.2307-2317.2004 – volume: 16 start-page: 1483 year: 2000 ident: 1231_CR58 publication-title: Yeast. doi: 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K – volume: 6 start-page: 155 year: 2004 ident: 1231_CR91 publication-title: Metab Eng doi: 10.1016/j.ymben.2004.02.005 – volume: 6 start-page: 89 year: 2013 ident: 1231_CR10 publication-title: Biotechnol Biofuels. doi: 10.1186/1754-6834-6-89 – volume: 142 start-page: 302 year: 1985 ident: 1231_CR53 publication-title: Arch Microbiol doi: 10.1007/BF00693408 – volume: 31 start-page: 166 year: 2015 ident: 1231_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 63 start-page: 554 year: 1999 ident: 1231_CR60 publication-title: Microbiol Mol Biol R. doi: 10.1128/MMBR.63.3.554-569.1999 – volume: 22 start-page: 242 year: 2014 ident: 1231_CR34 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2013.11.008 – year: 2018 ident: 1231_CR35 publication-title: FEMS Yeast Res doi: 10.1093/femsyr/foy056 – volume: 5 start-page: 532 year: 2004 ident: 1231_CR48 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400132 – volume: 4 start-page: 424 year: 2010 ident: 1231_CR29 publication-title: Bioeng Bugs. doi: 10.4161/bbug.1.6.12724 – volume: 14 start-page: 4 year: 2013 ident: 1231_CR79 publication-title: Genome Biol doi: 10.1186/gb-2013-14-1-r4 – volume: 57–8 start-page: 233 year: 1996 ident: 1231_CR24 publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02941704 – volume: 63 start-page: 258 year: 2003 ident: 1231_CR19 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-003-1444-y – volume: 9 start-page: 357 year: 2012 ident: 1231_CR80 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 63 start-page: 734 year: 2004 ident: 1231_CR38 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-003-1414-4 – volume: 32 start-page: 22 year: 2012 ident: 1231_CR37 publication-title: Crit Rev Biotechnol doi: 10.3109/07388551.2010.539551 – volume: 6 start-page: 38676 year: 2016 ident: 1231_CR11 publication-title: Sci Rep-Uk doi: 10.1038/srep38676 – volume: 2 start-page: 60 year: 2008 ident: 1231_CR55 publication-title: BMC Syst Biol. doi: 10.1186/1752-0509-2-60 – volume: 13 start-page: 110 year: 2013 ident: 1231_CR9 publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-13-110 – volume: 1 start-page: 63 year: 2007 ident: 1231_CR66 publication-title: Dyn Biochem Process Biotechnol Mol Biol. – volume: 16 start-page: 42 year: 1981 ident: 1231_CR57 publication-title: Process Biochem – volume: 179 start-page: 1541 year: 1997 ident: 1231_CR64 publication-title: J Bacteriol doi: 10.1128/jb.179.5.1541-1549.1997 – volume: 67 start-page: 918 year: 2008 ident: 1231_CR12 publication-title: J Sci Ind Res – volume: 33 start-page: 234 year: 2009 ident: 1231_CR3 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2008.05.007 – volume: 51 start-page: 458 year: 1987 ident: 1231_CR65 publication-title: Microbiol Rev doi: 10.1128/MMBR.51.4.458-476.1987 – volume: 11 start-page: 63 year: 2018 ident: 1231_CR89 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1047-6 – volume: 12 start-page: 19 year: 1977 ident: 1231_CR85 publication-title: Process Biochem. – volume: 15 start-page: 12 year: 2014 ident: 1231_CR83 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 111 start-page: 5159 year: 2014 ident: 1231_CR90 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1323464111 – year: 2009 ident: 1231_CR76 publication-title: BMC Mol Biol doi: 10.1186/1471-2199-10-99 – volume: 10 start-page: 3 year: 2009 ident: 1231_CR81 publication-title: Genome Biol doi: 10.1186/gb-2009-10-1-r3 – volume: 14 start-page: 2077 year: 2010 ident: 1231_CR4 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.03.035 – volume: 3 start-page: 347 year: 2012 ident: 1231_CR42 publication-title: Bioengineered doi: 10.4161/bioe.21444 – ident: 1231_CR69 – reference: 21992610 - Biotechnol Biofuels. 2011 Oct 12;4:38 – reference: 2202777 - J Gen Microbiol. 1990 Mar;136(3):405-12 – reference: 8669899 - Appl Biochem Biotechnol. 1996 Spring;57-58:233-42 – reference: 17294186 - Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53 – reference: 12839792 - Appl Environ Microbiol. 2003 Jul;69(7):4144-50 – reference: 29771304 - FEMS Yeast Res. 2018 Sep 1;18(6):null – reference: 19812109 - Genome Res. 2009 Dec;19(12):2258-70 – reference: 15113568 - Metab Eng. 2004 Apr;6(2):155-63 – reference: 19074603 - Appl Environ Microbiol. 2009 Feb;75(4):907-14 – reference: 9572962 - Appl Environ Microbiol. 1998 May;64(5):1852-9 – reference: 9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111 – reference: 21468211 - Bioeng Bugs. 2010 Nov-Dec;1(6):424-8 – reference: 1922048 - Mol Cell Biol. 1991 Oct;11(10):5330-7 – reference: 9139918 - J Bacteriol. 1997 May;179(9):2987-93 – reference: 12213924 - Microbiology. 2002 Sep;148(Pt 9):2783-8 – reference: 12073338 - Methods Enzymol. 2002;350:87-96 – reference: 29563966 - Biotechnol Biofuels. 2018 Mar 13;11:63 – reference: 9123965 - Yeast. 1996 Dec;12(16):1607-33 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34 – reference: 17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56 – reference: 12910327 - Appl Microbiol Biotechnol. 2004 Feb;63(6):734-41 – reference: 22094012 - FEMS Yeast Res. 2012 Feb;12(1):33-47 – reference: 14595523 - Appl Microbiol Biotechnol. 2004 Feb;63(5):495-509 – reference: 22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78 – reference: 17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418 – reference: 18613954 - BMC Syst Biol. 2008 Jul 09;2:60 – reference: 16269086 - Microb Cell Fact. 2005 Nov 03;4:30 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 28000736 - Sci Rep. 2016 Dec 21;6:38676 – reference: 22360882 - BMB Rep. 2012 Feb;45(2):59-70 – reference: 14545895 - Biotechnol Adv. 1994;12(2):279-324 – reference: 2830478 - Microbiol Rev. 1987 Dec;51(4):458-76 – reference: 24706835 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5159-64 – reference: 17545317 - Appl Environ Microbiol. 2007 Aug;73(15):4881-91 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 8658143 - Science. 1996 Jun 14;272(5268):1662-5 – reference: 12722184 - Yeast. 2003 Apr 30;20(6):509-43 – reference: 22892590 - Bioengineered. 2012 Nov-Dec;3(6):347-51 – reference: 24354503 - BMC Biotechnol. 2013 Dec 19;13:110 – reference: 21204601 - Crit Rev Biotechnol. 2012 Mar;32(1):22-48 – reference: 10557161 - Trends Biotechnol. 1999 Dec;17(12):482-7 – reference: 2082825 - Appl Environ Microbiol. 1990 Dec;56(12):3785-92 – reference: 28899031 - FEMS Yeast Res. 2017 Aug 1;17(5): – reference: 19592533 - Appl Environ Microbiol. 2009 Sep;75(17):5607-14 – reference: 9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33 – reference: 7854249 - Microbiol Rev. 1994 Dec;58(4):616-30 – reference: 20550651 - Biotechnol Biofuels. 2010 Jun 15;3:13 – reference: 13680206 - Appl Microbiol Biotechnol. 2003 Dec;63(3):258-66 – reference: 24724938 - FEMS Microbiol Rev. 2014 Sep;38(5):947-95 – reference: 25994575 - Biotechnol Lett. 2015 Aug;37(8):1623-30 – reference: 12702451 - FEMS Yeast Res. 2003 Apr;3(2):185-9 – reference: 10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69 – reference: 24195072 - Biomed Res Int. 2013;2013:461204 – reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 – reference: 8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90 – reference: 1523884 - Yeast. 1992 Jul;8(7):501-17 – reference: 11113971 - Yeast. 2000 Dec;16(16):1483-95 – reference: 18263741 - Appl Environ Microbiol. 2008 Apr;74(7):2043-50 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 19128960 - Bioresour Technol. 2009 Apr;100(8):2392-8 – reference: 15071495 - EMBO Rep. 2004 May;5(5):532-7 – reference: 8099357 - J Biol Chem. 1993 Jun 5;268(16):12116-22 – reference: 26671616 - Appl Microbiol Biotechnol. 2016 Mar;100(5):2487-98 – reference: 19874630 - BMC Mol Biol. 2009 Oct 30;10:99 – reference: 14532041 - Appl Environ Microbiol. 2003 Oct;69(10):5892-7 – reference: 15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17 – reference: 26129747 - Yeast. 2015 Oct;32(10):615-28 – reference: 9045811 - J Bacteriol. 1997 Mar;179(5):1541-9 – reference: 22424089 - Biotechnol Biofuels. 2012 Mar 16;5:14 – reference: 23800147 - Biotechnol Biofuels. 2013 Jun 21;6(1):89 – reference: 23874849 - PLoS One. 2013 Jul 09;8(7):e69005 – reference: 15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409 – reference: 24655423 - BMC Biotechnol. 2014 Mar 21;14:22 – reference: 29860442 - FEMS Yeast Res. 2018 Sep 1;18(6):null – reference: 15928973 - Antonie Van Leeuwenhoek. 2005 Jul;88(1):13-23 |
SSID | ssj0061707 ssj0002769473 |
Score | 2.22237 |
Snippet | Bioethanol production processes with
using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars... Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of... Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of... Abstract Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 231 |
SubjectTerms | adenosine triphosphate Arabinose Biodiesel fuels Biofuels Biomass Biorefineries biorefining Carbon Catabolite repression Conversion D-Galactose Deactivation Dehydrogenases energy Energy metabolism Energy sources Ethanol ethanol production feedstocks Fermentation Gal2p Galactose Gene expression Genetic aspects Genomes Glucose Glucose transport Hexose Hydrolysates Inactivation Kinases l-Arabinose fermentation l-Arabinose uptake Lignocellulose Lignocellulosic ethanol Metabolism Methods Pentose pentoses Physiological aspects Physiology Production processes quantitative polymerase chain reaction R&D Regeneration Research & development reverse transcriptase polymerase chain reaction Ribonucleic acid RNA Saccharomyces cerevisiae sequence analysis Substrates Sugar transcriptome Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASElLUJI4d-7ggSkGCA6VSb5Yf47Lqkqw22Ur9E_xmxnmsNkIqF67JOEpmxuPvU8afCXkTcg4ejEh9xVVaeoDUGuBpARl4J7y3Lm5w_vpNnJyVX875-d5RX7EnbJAHHhx3JIIzwgdwuQulYIALUhUUMJ7LLEjf63zimjeRqaEGR5XxavyHmUtx1GKlFrFpCxkTAppUzlahXqz_75K8tybN-yX3FqDje-TuiBzpYnjj--QW1A_InT09wYfk9ypdbAxy3aYF2iHvvkBwR5ddS5Fr0-26M5dAr5aGIhEfVGNpEyhCQGqmYWncehnbh-gnsyrW-JRJ_HyDo6ip-7HDYR_01Li4a6v5dY3Vhrq-ZbhdGqBtf_LEI3J2_PHHh5N0PHAhdbxQXapUQLiUM-tAIJIUzCFasWCV8cGwsnAyhEL4MpTOcQuiUAZyZZCVsCpYy9ljclA3NTwl1FrDhXW5DUGUyhlpfCktY8pWsgTgCcmmAGg3qpHHV1vpnpVIoYeYaYyZjjHTMiHvdkPWgxTHTcbvY1R3hlFFu7-AuaXH3NL_yq2EvI45oaNORh0bcS7Mtm3159PveoFIMwrJ5llC3o5GocEvcGbc14B-iNJaM8vDKbf0WClaXcTOWOTgDF3yancb53j8cWNqaLZokymcSQhFyxtscqzOVSS8CXkypOvu47GIc4XVOyHVLJFn3pnfqZc_e61xRNdCFvmz_-HO5-R2EadghrWZHZKDbrOFFwjpOvuyn71_ABNLTtk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8SawIIOQkJCiTeLYsU-oIJYFCQ4sK-3N8rNUlKQ0KRJ_gt_MTJKWRki9NuMqzjz8jT3-hpAXMefBByNSX3GVlj6E1JrA0yJkwTvhvXV4wfnTZ3F2UX685Jfjhls7llVuY2IfqH3jcI_8pMAKQshVGH-9-pli1yg8XR1baFwl15C6DJOv6rLa7bEUlVBlxcbDzFyKkxZCtsDqLUidANmkcrIc9az9_8fmvcVpWji5txKd3iI3RwhJZ4POb5Mrob5DbuwRC94lf5bpbG0g6W3aQDuYxRxQHl10LYWkm25Wnfke6K-FoZCRD_SxtIkUsCA122Ep3sHEOiL63iyLFfzLlgV9DaOoqfuxQ9cPem4cXt9qfvyGsENdXzvcLkygbd-C4h65OH339e1ZOnZeSB0vVJcqFQE35cy6IABSCuYAtthglfHRsLJwMsZC-DKWznEbRKFMyJWB9IRV0VrO7pOjuqnDQ0KtNVxYl9sYRamckcaX0jKmbCXLEHhCsq0CtBtpyfHVlrpPT6TQg8406EyjzrRMyKvdkNXAyXFI-A1qdSeIdNr9D816rkfv1CI6I3wMLnexFCwA6qmiCoznMovSs4Q8R5vQSJhRY0XO3GzaVn84_6JnADmRUTbPEvJyFIoNzMCZ8YIDfAfk2JpIHm9tS48ho9X_DDwhz3aPwdnxBMfUodmATKbApQCTlgdkcgjTFWa-CXkwmOtu8hDNuYIwnpBqYsiTrzN9Ui--9aTjALOFLPJHh1_9MbleoHNlEH7ZMTnq1pvwBFBbZ5_2rvkXwtxF7w priority: 102 providerName: ProQuest |
Title | l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30159031 https://www.proquest.com/docview/2109010735 https://www.proquest.com/docview/2097591254 https://www.proquest.com/docview/2131870149 https://pubmed.ncbi.nlm.nih.gov/PMC6106821 https://doaj.org/article/6fca6dfec1cf463e8127f9e35180f8d3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf28QIPiO8FRmUQEhJSIIkdx3lAqEPrRqVNaKVS3yzbsUtFSUqTIvZP8DdzzkfViGkSL63UnKPkznf-XX3-HUKvbRibzEjmZ0mc-jQzxlfSxH5kApNplmVKuwPOF5fsfErHs3i2h7r2Vq0CyxtTO9dParpevvv98_ojOPyH2uE5e19CHGauJAvyIYArPt9Hh7AwJa6TwwXdbio46vG610oSU59xQttNzhtv0Vumajb_f2P2zqLVL6jcWaFG99G9FlriYTMXHqA9kz9Ed3cIBx-hP0t_uJaQDBelwRUk5nNAf3hRlRiScbxZVfK7wb8WEkOm3tDK4sJiwIhYdsN8dzbT1RfhM7mMVnCXjh19DaOwzOuxTTcQPJHaHesqflxDOMK6rikuF9Lgsm5N8RhNR6dfP537bUcGX8dRWvlpagFPhURpwwBqMqIBziijUplZSWikubURy6ilWsfKsCiVJkwlpC0ksUrF5Ak6yIvcHCGslIyZ0qGyltFUSy4zyhUhqUo4NSb2UNAZQOiWrtw92lLUaQtnorGZAJsJZzPBPfR2O2TVcHXcJnzirLoVdDTb9Q_Fei5arxXMaskya3SoLWXEABpKbGpIHPLA8ox46JWbE8IRaeSuUmcuN2UpPk-uxBCgqGOaDQMPvWmFbAFvoGV78AH04Li3epLH3dwSnSeIyJXOQpJOQCUvt5chCLidHZmbYgMyQQquBliV3iITQvhOXEbsoafNdN2-PET5OIXw7qGkN5F72ulfyRffajJygN-MR-Gz_9H9c3Qncq4WQJAmx-igWm_MC8B2lRqg_WSWwCcfnQ3Q4XA4nozh--T08svVoP6_ZFD79F9iWVO7 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWywE4IN4EFjAIhIQUbR6OYx8QKo_uln0c2F1pb8bPUlGS0qSg_RP8FH4j4zxKK6Te9pqMo8QznvkmHn-D0AsXZ9ZYSUOTZzwkxtpQSZuFiY2s0dQYpf0B56Njun9GPp1n51voT38WxpdV9j6xcdSm1P4f-W7iKwghV0mzt7Mfoe8a5XdX-xYarVkc2ItfkLJVb0YfQL8vk2T48fT9fth1FQh1lvA65NwBJohTpS0FuERTDSFZWcWlcTIliWbOJdQQR7TOlKUJlzbmEqB3mjulfJcIcPlXSJpyX0LIhnvLfzpJTjnJ027zNGZ0t4IQQX21GKRqgKRCthb-mi4B_8eClWC4Xqi5EvmGN9GNDrLiQWtjt9CWLW6j6ytEhnfQ72k4mEtIssvK4hpmbQyoEk_qCkOSjxezWn6z-OdE4klhWrpaXDoM2BPLfljoz3z6uiW8J6fJDJ7Ss67PYRSWRTO27TKCT6T2x8XK7xfg5rBuapWribS4alpe3EVnl6KTe2i7KAv7AGGlZEaVjpVzlHAtmTSEKVCWyhmxNgtQ1CtA6I4G3b_aVDTpEKOi1ZkAnQmvM8EC9Ho5ZNZygGwSfue1uhT09N3NhXI-Fp03ENRpSY2zOtaO0NQCysodt2kWs8gxkwboubcJ4Qk6Cl8BNJaLqhKjk89iABDXM9jGUYBedUKuhC_QsjtQAfPgOb3WJHd62xKdi6rEvwUVoGfL2-Bc_I6RLGy5AJmIwxIGDEw2yMQQFnKfaQfofmuuy4-H6JFxCBsBytcMeW121u8Uk68NyTnAesqS-OHmV3-Kru6fHh2Kw9HxwSN0LfELLQLXn-6g7Xq-sI8BMdbqSbNMMfpy2X7hL1img9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Arabinose+triggers+its+own+uptake+via+induction+of+the+arabinose-specific+Gal2p+transporter+in+an+industrial+Saccharomyces+cerevisiae+strain&rft.jtitle=Biotechnology+for+biofuels&rft.au=Oehling%2C+Verena&rft.au=Klaassen%2C+Paul&rft.au=Frick%2C+Oliver&rft.au=Dusny%2C+Christian&rft.date=2018-08-23&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs13068-018-1231-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13068_018_1231_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon |