Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet

Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneous...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 41; no. 3; pp. 1113 - 1124
Main Authors Guo, Honglei, Li, Hongmei, Wang, Bin, Ding, Wei, Ling, Lilu, Yang, Min, Gu, Yong, Niu, Jianying
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2017
Cell Physiol Biochem Press GmbH & Co KG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Results: Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. Conclusion: The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.
AbstractList Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Results: Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. Conclusion: The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.
The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.
The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD).AIMSThe study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD).Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting.METHODSTwenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting.Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice.RESULTSIncrease of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice.The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.CONCLUSIONThe study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.
Author Yang, Min
Li, Hongmei
Ding, Wei
Ling, Lilu
Niu, Jianying
Guo, Honglei
Wang, Bin
Gu, Yong
Author_xml – sequence: 1
  givenname: Honglei
  surname: Guo
  fullname: Guo, Honglei
– sequence: 2
  givenname: Hongmei
  surname: Li
  fullname: Li, Hongmei
– sequence: 3
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
– sequence: 4
  givenname: Wei
  surname: Ding
  fullname: Ding, Wei
– sequence: 5
  givenname: Lilu
  surname: Ling
  fullname: Ling, Lilu
– sequence: 6
  givenname: Min
  surname: Yang
  fullname: Yang, Min
– sequence: 7
  givenname: Yong
  surname: Gu
  fullname: Gu, Yong
  email: yonggu@vip.163.com
– sequence: 8
  givenname: Jianying
  surname: Niu
  fullname: Niu, Jianying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28245463$$D View this record in MEDLINE/PubMed
BookMark eNptkc9v2yAcxdHUaW2zHXafJqReuoNXMGDg2GX9ESnToqk7I4y_zkgdk2E8qf99ydzmUPX0ffA-7wnxPUVHfegBoY-UfKVU6AtCCK84peoNOqG8pIWWUh1lTagolFbyGJ0Ow4bko9TlO3RcqpILXrETBKsYErjk_wG-atusBhxafNONzq5DXyz9PeAV7JJvoKD4srddWOPQ41-QJb4b67GzES_6zRgfsO_xD-9g79_69Z_i2ib83UN6j962thvgw9Ocod_XV3fz22L582Yxv1wWTpQ6FYpXomZAdKsZlK5xUsmWVVLVlhAtgQjOCchKVEQo1oIGYR1rVK2AMpGjM7SYeptgN2YX_dbGBxOsN_8vQlwbG5N3HZjGck0b7kBp4K5pdS0ZIUox0CXjFHLX-dS1i-HvCEMyWz846DrbQxgHQ5VkTPP9mKGzF-gmjDH_T6a0JoqKiqpMfX6ixnoLzeF5z8vIwMUEuBiGIUJrnE82-dCnaH1nKDH7dZvDunPiy4vEc-lr7KeJvbdxDfFAHuyzV-356ttEmF3Tskcimror
CitedBy_id crossref_primary_10_3390_ijms23137395
crossref_primary_10_1111_jcmm_13333
crossref_primary_10_1089_met_2020_0141
crossref_primary_10_1111_1440_1681_12944
crossref_primary_10_1016_j_biopha_2018_09_049
crossref_primary_10_1002_jcp_27940
crossref_primary_10_34019_1982_8047_2018_v44_13982
crossref_primary_10_1039_C8FO01653D
crossref_primary_10_1016_j_jfda_2018_07_004
crossref_primary_10_15406_emij_2018_06_00182
crossref_primary_10_3389_fnins_2024_1342944
crossref_primary_10_3389_fendo_2021_622737
crossref_primary_10_3389_fmicb_2017_00495
crossref_primary_10_1016_j_jcjd_2018_08_199
crossref_primary_10_1152_ajprenal_00302_2017
crossref_primary_10_1111_dom_13619
crossref_primary_10_1093_toxres_tfab102
crossref_primary_10_1080_10715762_2018_1449948
crossref_primary_10_3389_fphar_2020_574229
crossref_primary_10_3389_fendo_2024_1494560
crossref_primary_10_3389_fphar_2020_600175
crossref_primary_10_1007_s00261_023_04062_1
crossref_primary_10_1186_s12882_023_03104_6
crossref_primary_10_1002_2211_5463_12946
crossref_primary_10_1038_nrneph_2017_157
crossref_primary_10_2147_JIR_S302934
crossref_primary_10_1186_s12872_024_04427_4
Cites_doi 10.1681/ASN.2013020134
10.1097/00004872-199816050-00003
10.1681/ASN.2010080888
10.1210/jc.2012-3855
10.2174/138920309787315176
10.1681/ASN.2005060638
10.1002/oby.20833
10.1152/ajprenal.00196.2010
10.1016/S0140-6736(02)07952-7
10.1681/ASN.2006070778
10.1038/srep23525
10.1159/000430199
10.1016/j.bbrc.2004.10.201
10.1210/jc.2003-031403
10.5527/wjn.v3.i3.50
10.1007/s11010-011-1211-9
10.2337/db09-0685
10.1002/jcp.22255
10.1007/s00125-012-2592-3
10.1159/000445634
10.2337/db11-1824
10.1016/j.bbrc.2013.10.026
10.1038/ijo.2011.95
10.1016/S0092-8674(01)00623-7
10.1210/en.2005-0003
10.1113/expphysiol.2014.078790
10.1038/oby.2007.114
10.1016/j.metabol.2014.02.012
10.1016/S2213-8587(14)70065-8
10.1681/ASN.2006080914
10.1152/ajprenal.00223.2015
10.1016/j.ejphar.2009.09.015
ContentType Journal Article
Copyright 2017 The Author(s)Published by S. Karger AG, Basel
2017 The Author(s)Published by S. Karger AG, Basel.
Copyright_xml – notice: 2017 The Author(s)Published by S. Karger AG, Basel
– notice: 2017 The Author(s)Published by S. Karger AG, Basel.
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1159/000464118
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest One Academic Middle East (New)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1421-9778
EndPage 1124
ExternalDocumentID oai_doaj_org_article_da491d4ce89e4cdf9b7300883e92341e
28245463
10_1159_000464118
464118
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
0R~
0~B
29B
326
36B
3O.
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
8UI
AAFWJ
AAYIC
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AEYAO
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CS3
CYUIP
DIK
DU5
E0A
E3Z
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GROUPED_DOAJ
HMCUK
HZ~
IAO
IHR
IPNFZ
KQ8
KUZGX
M--
M1P
ML-
N9A
O1H
O9-
OK1
P2P
PSQYO
RIG
RKO
RNS
SV3
UJ6
UKHRP
30W
AAYXX
ABBTS
ABWCG
ACQXL
ADAGL
AFSIO
AHFRZ
AIOBO
BVXVI
CAG
CITATION
COF
ITC
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
RXVBD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c529t-8465b3e09f93e2cdc787f3678ba0097e05440e76560583fe9e5ac3d8b8e1355b3
IEDL.DBID 7X7
ISSN 1015-8987
1421-9778
IngestDate Wed Aug 27 01:28:18 EDT 2025
Fri Jul 11 15:16:58 EDT 2025
Fri Jul 25 22:30:17 EDT 2025
Wed Feb 19 02:34:30 EST 2025
Tue Aug 05 12:09:45 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Thu Sep 05 17:57:55 EDT 2024
Thu Aug 29 12:04:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords AT1R
GLP-1
Renal tubular
ERS
Apoptosis
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
https://creativecommons.org/licenses/by-nc-nd/4.0
2017 The Author(s)Published by S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-8465b3e09f93e2cdc787f3678ba0097e05440e76560583fe9e5ac3d8b8e1355b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://karger.com/doi/10.1159/000464118
PMID 28245463
PQID 1990815618
PQPubID 2047990
PageCount 12
ParticipantIDs crossref_citationtrail_10_1159_000464118
pubmed_primary_28245463
doaj_primary_oai_doaj_org_article_da491d4ce89e4cdf9b7300883e92341e
karger_primary_464118
proquest_journals_1990815618
crossref_primary_10_1159_000464118
proquest_miscellaneous_1873394187
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Germany
– name: Basel
PublicationTitle Cellular physiology and biochemistry
PublicationTitleAlternate Cell Physiol Biochem
PublicationYear 2017
Publisher S. Karger AG
Cell Physiol Biochem Press GmbH & Co KG
Publisher_xml – name: S. Karger AG
– name: Cell Physiol Biochem Press GmbH & Co KG
References Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa S, Rask-Madsen C, King GL: Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 2012;61: 2967-2979.2282602910.2337/db11-1824
Bao Y, Jiang L, Chen H, Zou J, Liu Z, Shi Y: The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway. Cell Physiol Biochem 2015;36: 2366-2378.2627944010.1159/000430199
Zander M, Madsbad S, Madsen JL, Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet 2002;359: 824-830.1189728010.1016/S0140-6736(02)07952-7
Ly JP, Onay T, Sison K, Sivaskandarajah G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE: The sweet pee model for SGLT2 mutation. J Am Soc Nephrol 2011;22: 113-123.2120925410.1681/ASN.2010080888
Glastras SJ, Chen H, McGrath RT, Zaky AA, Gill AJ, Pollock CA, Saad S: Effect of GLP-1 receptor activation on offspring kidney health in a rat model of maternal obesity. Sci Rep 2016;6: 23525.2700460910.1038/srep23525
Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N: Glucagon-like peptide-1 production in the glutag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism 2014;63: 800-811.2468060110.1016/j.metabol.2014.02.012
Premaratna SD, Manickam E, Begg DP, Rayment DJ, Hafandi A, Jois M, Cameron-Smith D, Weisinger RS: Angiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J mice. Int J Obes (Lond) 2012;36: 233-243.2155604610.1038/ijo.2011.95
Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C: Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004; 89: 3055-3061.1518109810.1210/jc.2003-031403
Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y: Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin ǁ type 1a receptor. Endocrinology 2005;146: 3481-3489.1587896510.1210/en.2005-0003
Zhao L, Guo H, Chen H, Petersen RB, Zheng L, Peng A, Huang K: Effect of liraglutide on endoplasmic reticulum stress in diabetes. Biochem Biophys Res Commun 2013;441: 133-138.2412918910.1016/j.bbrc.2013.10.026
Cunha DA, Ladriere L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, Marchetti P, Eizirik DL, Cnop M: Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BIP and JunB. Diabetes 2009;58: 2851-2862.1972078810.2337/db09-0685
de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, D'Agati VD, Lamb HJ, Pongrac Barlovic D, Hojs R, Abbate M, Rodriquez R, Mogensen CE, Porrini E: Fatty kidney: Emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2014;2: 417-426.2479525510.1016/S2213-8587(14)70065-8
Ma Y, Hendershot LM: The unfolding tale of the unfolded protein response. Cell 2001;107: 827-830.1177945910.1016/S0092-8674(01)00623-7
Toblli JE, Munoz MC, Cao G, Mella J, Pereyra L, Mastai R: ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 2008;16: 770-776.1823959010.1038/oby.2007.114
Docherty NG, le Roux CW: Improvements in the metabolic milieu following Roux-en-y gastric bypass and the arrest of diabetic kidney disease. Exp Physiol 2014;99: 1146-1153.2508584210.1113/expphysiol.2014.078790
Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao L, Liu J: Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9C2 cells: Improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell Physiol Biochem 2016;39: 407-421.2737265110.1159/000445634
Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q, Chen J, Cheng WH, Shen W, Yang ZX: Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 2012;364: 115-129.2224680610.1007/s11010-011-1211-9
Katsoulieris E, Mabley JG, Samai M, Green IC, Chatterjee PK: Alpha-linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol 2009;623: 107-112.1976557310.1016/j.ejphar.2009.09.015
Gomez P, Ruilope LM, Barrios V, Navarro J, Prieto MA, Gonzalez O, Guerrero L, Zamorano MA, Filozof C: Prevalence of renal insufficiency in individuals with hypertension and obesity/overweight: The fath study. J Am Soc Nephrol 2006;17:S194-200.1713026110.1681/ASN.2006080914
Felizardo RJ, da Silva MB, Aguiar CF, Camara NO: Obesity in kidney disease: A heavyweight opponent. World J Nephrol 2014;3: 50-63.2533289610.5527/wjn.v3.i3.50
Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O: Obesity and risk for chronic renal failure. J Am Soc Nephrol 2006;17: 1695-1702.1664115310.1681/ASN.2005060638
Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H: Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, min6-a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun 2005;326: 60-65.1556715210.1016/j.bbrc.2004.10.201
Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW, Shin SJ, Bang BK, Breyer MD, Chang YS: Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 2007;18: 1227-1238.1736095110.1681/ASN.2006070778
Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A: Dpp4 inhibition attenuates filtration barrier injury and oxidant stress in the Zucker obese rat. Obesity (Silver Spring) 2014;22: 2172-2179.2499577510.1002/oby.20833
Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW: Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 2010;299:F821-829.2066810410.1152/ajprenal.00196.2010
Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E: Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013;24: 2034-2043.2409292810.1681/ASN.2013020134
Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W: Intrarenal renin-angiotensin system mediates fatty acid-induced er stress in the kidney. Am J Physiol Renal Physiol 2016;310:F351-363.2667261610.1152/ajprenal.00223.2015
Lim JC, Lim SK, Han HJ, Park SH: Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 2010;225: 654-663.2050611010.1002/jcp.22255
Chu KY, Leung PS: Angiotensin ǁ in type 2 diabetes mellitus. Curr Protein Pept Sci 2009;10: 75-84.1927567410.2174/138920309787315176
Skov J, Dejgaard A, Frokiaer J, Holst JJ, Jonassen T, Rittig S, Christiansen JS: Glucagon-like peptide-1 (GLP-1): Effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 2013;98:E664-671.2346365610.1210/jc.2012-3855
Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS: Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012;55: 2456-2468.2272245110.1007/s00125-012-2592-3
Cooper R, Forrester T, Ogunbiyi O, Muffinda J: Angiotensinogen levels and obesity in four black populations. Icshib investigators. J Hypertens 1998;16: 571-575.979716710.1097/00004872-199816050-00003
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – reference: Zhao L, Guo H, Chen H, Petersen RB, Zheng L, Peng A, Huang K: Effect of liraglutide on endoplasmic reticulum stress in diabetes. Biochem Biophys Res Commun 2013;441: 133-138.2412918910.1016/j.bbrc.2013.10.026
– reference: Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A: Dpp4 inhibition attenuates filtration barrier injury and oxidant stress in the Zucker obese rat. Obesity (Silver Spring) 2014;22: 2172-2179.2499577510.1002/oby.20833
– reference: Lim JC, Lim SK, Han HJ, Park SH: Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 2010;225: 654-663.2050611010.1002/jcp.22255
– reference: Toblli JE, Munoz MC, Cao G, Mella J, Pereyra L, Mastai R: ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 2008;16: 770-776.1823959010.1038/oby.2007.114
– reference: Felizardo RJ, da Silva MB, Aguiar CF, Camara NO: Obesity in kidney disease: A heavyweight opponent. World J Nephrol 2014;3: 50-63.2533289610.5527/wjn.v3.i3.50
– reference: Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao L, Liu J: Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9C2 cells: Improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell Physiol Biochem 2016;39: 407-421.2737265110.1159/000445634
– reference: Cunha DA, Ladriere L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, Marchetti P, Eizirik DL, Cnop M: Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BIP and JunB. Diabetes 2009;58: 2851-2862.1972078810.2337/db09-0685
– reference: Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W: Intrarenal renin-angiotensin system mediates fatty acid-induced er stress in the kidney. Am J Physiol Renal Physiol 2016;310:F351-363.2667261610.1152/ajprenal.00223.2015
– reference: Zander M, Madsbad S, Madsen JL, Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet 2002;359: 824-830.1189728010.1016/S0140-6736(02)07952-7
– reference: Docherty NG, le Roux CW: Improvements in the metabolic milieu following Roux-en-y gastric bypass and the arrest of diabetic kidney disease. Exp Physiol 2014;99: 1146-1153.2508584210.1113/expphysiol.2014.078790
– reference: Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y: Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin ǁ type 1a receptor. Endocrinology 2005;146: 3481-3489.1587896510.1210/en.2005-0003
– reference: Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW, Shin SJ, Bang BK, Breyer MD, Chang YS: Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 2007;18: 1227-1238.1736095110.1681/ASN.2006070778
– reference: Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C: Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004; 89: 3055-3061.1518109810.1210/jc.2003-031403
– reference: Gomez P, Ruilope LM, Barrios V, Navarro J, Prieto MA, Gonzalez O, Guerrero L, Zamorano MA, Filozof C: Prevalence of renal insufficiency in individuals with hypertension and obesity/overweight: The fath study. J Am Soc Nephrol 2006;17:S194-200.1713026110.1681/ASN.2006080914
– reference: Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N: Glucagon-like peptide-1 production in the glutag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism 2014;63: 800-811.2468060110.1016/j.metabol.2014.02.012
– reference: Skov J, Dejgaard A, Frokiaer J, Holst JJ, Jonassen T, Rittig S, Christiansen JS: Glucagon-like peptide-1 (GLP-1): Effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 2013;98:E664-671.2346365610.1210/jc.2012-3855
– reference: Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E: Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013;24: 2034-2043.2409292810.1681/ASN.2013020134
– reference: Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW: Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 2010;299:F821-829.2066810410.1152/ajprenal.00196.2010
– reference: de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, D'Agati VD, Lamb HJ, Pongrac Barlovic D, Hojs R, Abbate M, Rodriquez R, Mogensen CE, Porrini E: Fatty kidney: Emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2014;2: 417-426.2479525510.1016/S2213-8587(14)70065-8
– reference: Premaratna SD, Manickam E, Begg DP, Rayment DJ, Hafandi A, Jois M, Cameron-Smith D, Weisinger RS: Angiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J mice. Int J Obes (Lond) 2012;36: 233-243.2155604610.1038/ijo.2011.95
– reference: Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa S, Rask-Madsen C, King GL: Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 2012;61: 2967-2979.2282602910.2337/db11-1824
– reference: Cooper R, Forrester T, Ogunbiyi O, Muffinda J: Angiotensinogen levels and obesity in four black populations. Icshib investigators. J Hypertens 1998;16: 571-575.979716710.1097/00004872-199816050-00003
– reference: Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O: Obesity and risk for chronic renal failure. J Am Soc Nephrol 2006;17: 1695-1702.1664115310.1681/ASN.2005060638
– reference: Katsoulieris E, Mabley JG, Samai M, Green IC, Chatterjee PK: Alpha-linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol 2009;623: 107-112.1976557310.1016/j.ejphar.2009.09.015
– reference: Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS: Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012;55: 2456-2468.2272245110.1007/s00125-012-2592-3
– reference: Chu KY, Leung PS: Angiotensin ǁ in type 2 diabetes mellitus. Curr Protein Pept Sci 2009;10: 75-84.1927567410.2174/138920309787315176
– reference: Bao Y, Jiang L, Chen H, Zou J, Liu Z, Shi Y: The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway. Cell Physiol Biochem 2015;36: 2366-2378.2627944010.1159/000430199
– reference: Glastras SJ, Chen H, McGrath RT, Zaky AA, Gill AJ, Pollock CA, Saad S: Effect of GLP-1 receptor activation on offspring kidney health in a rat model of maternal obesity. Sci Rep 2016;6: 23525.2700460910.1038/srep23525
– reference: Ly JP, Onay T, Sison K, Sivaskandarajah G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE: The sweet pee model for SGLT2 mutation. J Am Soc Nephrol 2011;22: 113-123.2120925410.1681/ASN.2010080888
– reference: Ma Y, Hendershot LM: The unfolding tale of the unfolded protein response. Cell 2001;107: 827-830.1177945910.1016/S0092-8674(01)00623-7
– reference: Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H: Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, min6-a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun 2005;326: 60-65.1556715210.1016/j.bbrc.2004.10.201
– reference: Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q, Chen J, Cheng WH, Shen W, Yang ZX: Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 2012;364: 115-129.2224680610.1007/s11010-011-1211-9
– ident: ref18
  doi: 10.1681/ASN.2013020134
– ident: ref10
  doi: 10.1097/00004872-199816050-00003
– ident: ref20
  doi: 10.1681/ASN.2010080888
– ident: ref31
  doi: 10.1210/jc.2012-3855
– ident: ref11
  doi: 10.2174/138920309787315176
– ident: ref6
  doi: 10.1681/ASN.2005060638
– ident: ref19
  doi: 10.1002/oby.20833
– ident: ref9
  doi: 10.1152/ajprenal.00196.2010
– ident: ref16
  doi: 10.1016/S0140-6736(02)07952-7
– ident: ref2
  doi: 10.1681/ASN.2006070778
– ident: ref26
  doi: 10.1038/srep23525
– ident: ref15
  doi: 10.1159/000430199
– ident: ref12
  doi: 10.1016/j.bbrc.2004.10.201
– ident: ref32
  doi: 10.1210/jc.2003-031403
– ident: ref4
  doi: 10.5527/wjn.v3.i3.50
– ident: ref7
  doi: 10.1007/s11010-011-1211-9
– ident: ref27
  doi: 10.2337/db09-0685
– ident: ref21
  doi: 10.1002/jcp.22255
– ident: ref14
  doi: 10.1007/s00125-012-2592-3
– ident: ref24
  doi: 10.1159/000445634
– ident: ref30
  doi: 10.2337/db11-1824
– ident: ref23
  doi: 10.1016/j.bbrc.2013.10.026
– ident: ref28
  doi: 10.1038/ijo.2011.95
– ident: ref8
  doi: 10.1016/S0092-8674(01)00623-7
– ident: ref13
  doi: 10.1210/en.2005-0003
– ident: ref17
  doi: 10.1113/expphysiol.2014.078790
– ident: ref29
  doi: 10.1038/oby.2007.114
– ident: ref25
  doi: 10.1016/j.metabol.2014.02.012
– ident: ref1
  doi: 10.1016/S2213-8587(14)70065-8
– ident: ref5
  doi: 10.1681/ASN.2006080914
– ident: ref3
  doi: 10.1152/ajprenal.00223.2015
– ident: ref22
  doi: 10.1016/j.ejphar.2009.09.015
SSID ssj0015792
Score 2.3139904
Snippet Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a...
The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat...
SourceID doaj
proquest
pubmed
crossref
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1113
SubjectTerms Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - metabolism
Angiotensin II - genetics
Angiotensin II - metabolism
Animals
Apoptosis
AT1R
Blood Pressure - drug effects
Body Weight - drug effects
Diabetes
Diet
Diet, High-Fat - adverse effects
Eating - drug effects
Endoplasmic reticulum
Endoplasmic Reticulum Stress - drug effects
ERS
Eukaryotic Initiation Factor-2 - genetics
Eukaryotic Initiation Factor-2 - metabolism
Fatty acids
Gene Expression - drug effects
GLP-1
Glucagon-Like Peptide 1 - analogs & derivatives
Glucagon-Like Peptide 1 - pharmacology
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Inflammation
Insulin resistance
Ischemia
Kidney diseases
Kidney Tubules, Proximal - drug effects
Kidney Tubules, Proximal - metabolism
Kidney Tubules, Proximal - pathology
Kinases
Male
Mice
Nephritis - etiology
Nephritis - genetics
Nephritis - pathology
Nephritis - prevention & control
Obesity
Organ Size - drug effects
Original Paper
Oxidative stress
Palmitic Acid - pharmacology
Peptides
Protective Agents - pharmacology
Proteins
Receptor, Angiotensin, Type 1 - genetics
Receptor, Angiotensin, Type 1 - metabolism
Renal tubular
Rodents
Transcription Factor CHOP - genetics
Transcription Factor CHOP - metabolism
Transcription factors
Weight control
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJFQuVUsp3RYqF3HgYrGO7Y19LEsXqApaIZC4RXE8QQtVgiB76L_vTJxECFFx4RQpnnyNx5438fgNY7sSxh79mhIatBHap6nwKnfCBETnSRmcA9rgfHo2Ob7Uv67M1aNSX5QTFumBo-L2Q66dDLoA60AXoXSeGNatVYDQREug2Rd9Xh9MdesHJnVxnVMaYTGs7jiF0Hfvt_sltaQqH488UUvYj17olvKv7_8PN1u3M3vP3nV4kf-I7_mBvYFqna3GCpJ_19nbaV-w7SODeeRcwPmLR1LiB16X_Ijqml3Xlfi9uAU-pyyWAEJyoiOpr3ld8XOgR1wsPaWk8pPqBvXMFxU_xUmE2ikXRMzyhh8uoNlgl7OfF9Nj0VVREIVJXCMQYBivYOxKpyApQoFDtFToo3xOmzgAMZseQ0okPMaqEhyYvFDBegsSwYhXn9hKVVfwmfFgKbyZoIDCKDKdOJMmYGTIU6WMC8mI7fUazYqOYpwqXfzJ2lDDuGxQ_ojtDKJ3kVfjOaED6pZBgKiw2xNoIFlnINlLBjJiG7FTh9v0N996cn46P4hN2V0osbk3gawb1g-ZRN9N9Dp09fehGbuZVlnyCuolyljUhtN4GLHNaDrDEzC-1VR_4MtrfNhXtpYQxmj_B22xleZ-CduIkBr_rR0M_wAGpgZd
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Karger Open Access Journals
  dbid: M--
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3BbtQwEB1BEYILglLKQosM4sDFYhPbG_tIly4FsWiFWqm3KI4nq22rpGqzB_6emTiJVERPkeKJHXlszxt7_AbgY4JTT3ZNSY3aSO2zTHpVOGkCofO0Cs4hX3Be_pqdnOkf5-a83-_guzCXHP_cUaOO3AJkcD93lxw1geGH8Ij8KMXBe0spx_MCk7l4rpkYacmN7jmE7nzKvL821cz_fscIdVz9ZIBi0_cjzc7iLJ7Dsx4qii9Rty_gAda78Dgmj_yzC0_mQ662l4CrSLdAS5eIfMS3oqnEN05ptm5q-XNziWLFASwBZSKYiaRZi6YWv5GbON16jkYV3-sL6mKxqcWS1g8u5zAQuSha8XWD7R6cLY5P5yeyT6AgS5O6VhK2MF7h1FVOYVqGkmZnpcg8-YLvbyDBNT3FjPl3jFUVOjRFqYL1FhPCIV69gp26qfE1iGDZs5mRgCIHMps5k6VoklBkShkX0gl8Gno0L3t2cU5ycZV3XoZx-aiHCXwYRa8jpcb_hI5YLaMAs2B3L5qbdd5PqjwU2iVBl2gd6jJUzjP7vrUKCbbqBCewF5U6VjNUfvDP-_nqKBbl16Gi4mEI5P2Mvs0TMtvMrMNfvx-LSc18wFLU2GxJxlJvOE2PCezHoTO2MAy9N_f801t4mjJi6HZ3DmCnvdniIeGd1r_rhvpf3fjyIA
  priority: 102
  providerName: Karger AG
Title Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet
URI https://karger.com/doi/10.1159/000464118
https://www.ncbi.nlm.nih.gov/pubmed/28245463
https://www.proquest.com/docview/1990815618
https://www.proquest.com/docview/1873394187
https://doaj.org/article/da491d4ce89e4cdf9b7300883e92341e
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgE4ILgjFGYFQGceBirY7txj4hWlYGolM1bVJvURy_VGUoKW164L_nvSQNCAGXRIqfHMl-fj_s5-9j7I2EoUe_poQGbYT2SSK8ypwwAaPzuAjOAV1wnl2OLm7054VZdBtu266scm8TG0Mdqpz2yM8kmk1CNpH23fq7INYoOl3tKDTuskOCLiOtThZ9wiVN4trTTmmExeS6QxZCD37W3JrUkrg-fvNHDWw_-qJbqsLe_DvobJzP9BF72EWN_H07zY_ZHSiP2L2WR_LHEbs_2dO2PWEwb5EX0IrxFpp4y6uCfyR2s2VVii-rW-BzqmUJICQnUJJqyauSXwH94nrnqTCVfyq_4mjzVclnaEqonSpCxDSr-YcV1MfsZnp-PbkQHZeCyE3saoFhhvEKhq5wCuI85LhQC4Weymd0lQMwctNDSAiKx1hVgAOT5SpYb0FiSOLVU3ZQViU8YzxYSnJGKKAwl0xGziQxGBmyRCnjQhyxt_sRTfMOaJz4Lr6lTcJhXNoPfsRe96LrFl3jb0JjmpZegACxmw_VZpl26ysNmXYy6BysA52HwnkC4rdWAUawWkLEjttJ7bvZd376x_fJfNw2petQYPNeBdJucW_TX6oYsVd9M04znbVkJVQ7lLE4Gk7jK2Inrer0f8AsVxMLwfP_d_6CPYgphmj2e07ZQb3ZwUuMgGo_aNR8wA7H55fzq0Gzj4DPmRA_AUbHARI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEBovCMaAwACDQOLFWh3bTfyAEOsoLWunCnVS37IkvlRlKCn9ENo_xd_IXb5ACHjbU6T45Ei-833E59-PsVcSOgnGNSU0aCN0EgQiUbEVxmF27mfOWqALzuOz7uBcf5qZ2Q770dyFobbKxieWjtoVKf0jP5LoNgnZRIbvlt8EsUbR6WpDoVGZxSlcfceSbf12eIL6fe37_Q_T3kDUrAIiNb7dCAy4JlHQsZlV4KcuRZPNFPrsJKZLDYA5jO5AQKA0JlQZWDBxqlyYhCAxOCcK573BbmLg7VCxF8zaAk-awFanq9KIEIv5GskIM4aj8pamlsQt8lv8K2kCMPZdUtf36t9Jbhns-nfZnTpL5e8rs7rHdiDfZ7cq3sqrfbbXa2ji7jOYVEgP6DV5BYW85kXGPxKb2rzIxWhxCXxCvTMOhOQEglLMeZHzz0CfmG4TaoTlw_wLapcvcj5G10Xj1IEi-vGGnyxgc8DOr2WVH7DdvMjhEeMupKKqiwIKa9ega03gg5EuDpQy1vkee9OsaJTWwObEr_E1KgscY6N28T32shVdVmgefxM6JrW0AgTAXb4oVvOo3s-Ri7WVTqcQWtCpy2xCwP9hqAAzZi3BYweVUttpmskP_3jfmxxXQ9HSZTjcmEBUO5N19Mv0PfaiHUY109lOnEOxRZkQV8NqfHjsYWU67RewqtbEevD4_5M_Z3uD6XgUjYZnp0_YbZ_yl_Jf0yHb3ay28BSzr03yrDR5zi6ue4_9BPL1OX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJQCCwUMAomLtZvY3sQHhNhtl5a2q1XVSr2FJJ6slqKk7EOof41fx0xeIATceooUjxzJM55HPP4-gNce9hOKa0pq1EbqJAhkomIrjaPs3M-ctcgXnI8ng_0z_encnG_Aj-YuDLdVNj6xdNSuSPkfec8jt8nIJl7Yy-q2iOnu-P3lN8kMUnzS2tBpVCZyiFffqXxbvjvYJV2_8f3x3uloX9YMAzI1vl1JCr4mUdi3mVXopy4l880U-e8k5gsOSPmM7mPAADUmVBlaNHGqXJiE6FGgThTNewM2A66KOrA53JtMT9ozDBPY6qzVMzKk0r7GNaL8oVfe2dQeM438Fg1L0gCKhBfcA774d8pbhr7xPbhb56ziQ2Vk92ED8y24WbFYXm3B7VFDGvcAcFrhPpAPFRUw8lIUmfjI3GqzIpdH8wsUU-6kcSg9wZAoxUwUuThB_sTpOuG2WHGQfyFdi3kujsmR8Tj3o8hxvBK7c1xtw9m1rPND6ORFjo9BuJBLrAEJKKpkg4E1gY_Gc3GglLHO78LbZkWjtIY5Z7aNr1FZ7hgbtYvfhVet6GWF7fE3oSGrpRVgOO7yRbGYRfXujlysred0iqFFnbrMJkwDEIYKKX_WHnZhu1JqO00z-c4f70fTYTUUXbqMhhsTiGrXsox-bYQuvGyHSc180hPnWKxJJqTVsJoeXXhUmU77BaqxNXMgPPn_5C_gFu2v6OhgcvgU7viczJQ_nnags1qs8RmlYqvkeW3zAj5f9zb7CVqePxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protective+Effects+of+Glucagon-Like+Peptide-1+Analog+on+Renal+Tubular+Injury+in+Mice+on+High-Fat+Diet&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Guo%2C+Honglei&rft.au=Li%2C+Hongmei&rft.au=Wang%2C+Bin&rft.au=Ding%2C+Wei&rft.date=2017-01-01&rft.pub=S.+Karger+AG&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=41&rft.issue=3&rft.spage=1113&rft.epage=1124&rft_id=info:doi/10.1159%2F000464118&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon