Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet
Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneous...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 41; no. 3; pp. 1113 - 1124 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2017
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Results: Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. Conclusion: The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro. |
---|---|
AbstractList | Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Methods: Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Results: Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. Conclusion: The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro. The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD). Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting. Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice. The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro. The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD).AIMSThe study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat diet (HFD).Twenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting.METHODSTwenty C57BL/6 mice were fed HFD for 12 weeks. Ten of these mice were treated with GLP-1 at 200 µg/kg subcutaneously twice daily for 4 weeks (HFDG group), and the other ten mice received vehicle only (HFD group). Ten mice fed standard rodent chow served as controls (Con group). Body weight, kidney weight, food intake, and systolic blood pressure were measured. The expression of endoplasmic reticulum stress (ERS) markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis in the kidney were examined utilizing western blotting, immunohistochemistry and TUNEL, respectively. Angiotensin II and angiotensin II type 1 receptor (AT1R) were examined by ELISA. Human proximal tubule epithelial cells (HK2) were treated with GLP-1(150 nM) followed by treatment with palmitic acid (500 nM [PA]) for 24 h. HK2 cells treated with BSA were used as controls. The protein levels of ERS markers, apoptosis-associated protein, and AT1R were measured by western blotting.Increase of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice.RESULTSIncrease of body weight, food intake, and systolic blood pressure was less pronounced in GLP-1 treated HFDG mice compared to HFD mice. The levels of ERS markers (BIP, p-eIF2α, ATF4, and CHOP) and apoptosis decreased following GLP-1 treatment in vivo and in vitro (p<0.05). Increased AT1R induced by HFD and PA were blocked with GLP-1 treatment. In contrast, the level of angiotensin II after GLP-1 treatment was not significantly different between the HFD and HFDG mice.The study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro.CONCLUSIONThe study indicated that saturated fatty acids induced ERS and apoptosis in the kidney and increased AT1R expression. GLP-1 treatment exerted renoprotective effects against saturated fatty acid-induced kidney tubular cell ERS and apoptosis together with inhibition of AT1R expression in vivo and in vitro. |
Author | Yang, Min Li, Hongmei Ding, Wei Ling, Lilu Niu, Jianying Guo, Honglei Wang, Bin Gu, Yong |
Author_xml | – sequence: 1 givenname: Honglei surname: Guo fullname: Guo, Honglei – sequence: 2 givenname: Hongmei surname: Li fullname: Li, Hongmei – sequence: 3 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 4 givenname: Wei surname: Ding fullname: Ding, Wei – sequence: 5 givenname: Lilu surname: Ling fullname: Ling, Lilu – sequence: 6 givenname: Min surname: Yang fullname: Yang, Min – sequence: 7 givenname: Yong surname: Gu fullname: Gu, Yong email: yonggu@vip.163.com – sequence: 8 givenname: Jianying surname: Niu fullname: Niu, Jianying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28245463$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9v2yAcxdHUaW2zHXafJqReuoNXMGDg2GX9ESnToqk7I4y_zkgdk2E8qf99ydzmUPX0ffA-7wnxPUVHfegBoY-UfKVU6AtCCK84peoNOqG8pIWWUh1lTagolFbyGJ0Ow4bko9TlO3RcqpILXrETBKsYErjk_wG-atusBhxafNONzq5DXyz9PeAV7JJvoKD4srddWOPQ41-QJb4b67GzES_6zRgfsO_xD-9g79_69Z_i2ib83UN6j962thvgw9Ocod_XV3fz22L582Yxv1wWTpQ6FYpXomZAdKsZlK5xUsmWVVLVlhAtgQjOCchKVEQo1oIGYR1rVK2AMpGjM7SYeptgN2YX_dbGBxOsN_8vQlwbG5N3HZjGck0b7kBp4K5pdS0ZIUox0CXjFHLX-dS1i-HvCEMyWz846DrbQxgHQ5VkTPP9mKGzF-gmjDH_T6a0JoqKiqpMfX6ixnoLzeF5z8vIwMUEuBiGIUJrnE82-dCnaH1nKDH7dZvDunPiy4vEc-lr7KeJvbdxDfFAHuyzV-356ttEmF3Tskcimror |
CitedBy_id | crossref_primary_10_3390_ijms23137395 crossref_primary_10_1111_jcmm_13333 crossref_primary_10_1089_met_2020_0141 crossref_primary_10_1111_1440_1681_12944 crossref_primary_10_1016_j_biopha_2018_09_049 crossref_primary_10_1002_jcp_27940 crossref_primary_10_34019_1982_8047_2018_v44_13982 crossref_primary_10_1039_C8FO01653D crossref_primary_10_1016_j_jfda_2018_07_004 crossref_primary_10_15406_emij_2018_06_00182 crossref_primary_10_3389_fnins_2024_1342944 crossref_primary_10_3389_fendo_2021_622737 crossref_primary_10_3389_fmicb_2017_00495 crossref_primary_10_1016_j_jcjd_2018_08_199 crossref_primary_10_1152_ajprenal_00302_2017 crossref_primary_10_1111_dom_13619 crossref_primary_10_1093_toxres_tfab102 crossref_primary_10_1080_10715762_2018_1449948 crossref_primary_10_3389_fphar_2020_574229 crossref_primary_10_3389_fendo_2024_1494560 crossref_primary_10_3389_fphar_2020_600175 crossref_primary_10_1007_s00261_023_04062_1 crossref_primary_10_1186_s12882_023_03104_6 crossref_primary_10_1002_2211_5463_12946 crossref_primary_10_1038_nrneph_2017_157 crossref_primary_10_2147_JIR_S302934 crossref_primary_10_1186_s12872_024_04427_4 |
Cites_doi | 10.1681/ASN.2013020134 10.1097/00004872-199816050-00003 10.1681/ASN.2010080888 10.1210/jc.2012-3855 10.2174/138920309787315176 10.1681/ASN.2005060638 10.1002/oby.20833 10.1152/ajprenal.00196.2010 10.1016/S0140-6736(02)07952-7 10.1681/ASN.2006070778 10.1038/srep23525 10.1159/000430199 10.1016/j.bbrc.2004.10.201 10.1210/jc.2003-031403 10.5527/wjn.v3.i3.50 10.1007/s11010-011-1211-9 10.2337/db09-0685 10.1002/jcp.22255 10.1007/s00125-012-2592-3 10.1159/000445634 10.2337/db11-1824 10.1016/j.bbrc.2013.10.026 10.1038/ijo.2011.95 10.1016/S0092-8674(01)00623-7 10.1210/en.2005-0003 10.1113/expphysiol.2014.078790 10.1038/oby.2007.114 10.1016/j.metabol.2014.02.012 10.1016/S2213-8587(14)70065-8 10.1681/ASN.2006080914 10.1152/ajprenal.00223.2015 10.1016/j.ejphar.2009.09.015 |
ContentType | Journal Article |
Copyright | 2017 The Author(s)Published by S. Karger AG, Basel 2017 The Author(s)Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2017 The Author(s)Published by S. Karger AG, Basel – notice: 2017 The Author(s)Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1159/000464118 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 1124 |
ExternalDocumentID | oai_doaj_org_article_da491d4ce89e4cdf9b7300883e92341e 28245463 10_1159_000464118 464118 |
Genre | Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | --- 0R~ 0~B 29B 326 36B 3O. 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ 8UI AAFWJ AAYIC ABUWG ACGFO ACGFS ADBBV AENEX AEYAO AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV BENPR BPHCQ CCPQU CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- M1P ML- N9A O1H O9- OK1 P2P PSQYO RIG RKO RNS SV3 UJ6 UKHRP 30W AAYXX ABBTS ABWCG ACQXL ADAGL AFSIO AHFRZ AIOBO BVXVI CAG CITATION COF ITC PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC RXVBD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c529t-8465b3e09f93e2cdc787f3678ba0097e05440e76560583fe9e5ac3d8b8e1355b3 |
IEDL.DBID | 7X7 |
ISSN | 1015-8987 1421-9778 |
IngestDate | Wed Aug 27 01:28:18 EDT 2025 Fri Jul 11 15:16:58 EDT 2025 Fri Jul 25 22:30:17 EDT 2025 Wed Feb 19 02:34:30 EST 2025 Tue Aug 05 12:09:45 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Thu Sep 05 17:57:55 EDT 2024 Thu Aug 29 12:04:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | AT1R GLP-1 Renal tubular ERS Apoptosis |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2017 The Author(s)Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-8465b3e09f93e2cdc787f3678ba0097e05440e76560583fe9e5ac3d8b8e1355b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000464118 |
PMID | 28245463 |
PQID | 1990815618 |
PQPubID | 2047990 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1159_000464118 pubmed_primary_28245463 doaj_primary_oai_doaj_org_article_da491d4ce89e4cdf9b7300883e92341e karger_primary_464118 proquest_journals_1990815618 crossref_primary_10_1159_000464118 proquest_miscellaneous_1873394187 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany – name: Basel |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2017 |
Publisher | S. Karger AG Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: S. Karger AG – name: Cell Physiol Biochem Press GmbH & Co KG |
References | Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa S, Rask-Madsen C, King GL: Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 2012;61: 2967-2979.2282602910.2337/db11-1824 Bao Y, Jiang L, Chen H, Zou J, Liu Z, Shi Y: The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway. Cell Physiol Biochem 2015;36: 2366-2378.2627944010.1159/000430199 Zander M, Madsbad S, Madsen JL, Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet 2002;359: 824-830.1189728010.1016/S0140-6736(02)07952-7 Ly JP, Onay T, Sison K, Sivaskandarajah G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE: The sweet pee model for SGLT2 mutation. J Am Soc Nephrol 2011;22: 113-123.2120925410.1681/ASN.2010080888 Glastras SJ, Chen H, McGrath RT, Zaky AA, Gill AJ, Pollock CA, Saad S: Effect of GLP-1 receptor activation on offspring kidney health in a rat model of maternal obesity. Sci Rep 2016;6: 23525.2700460910.1038/srep23525 Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N: Glucagon-like peptide-1 production in the glutag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism 2014;63: 800-811.2468060110.1016/j.metabol.2014.02.012 Premaratna SD, Manickam E, Begg DP, Rayment DJ, Hafandi A, Jois M, Cameron-Smith D, Weisinger RS: Angiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J mice. Int J Obes (Lond) 2012;36: 233-243.2155604610.1038/ijo.2011.95 Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C: Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004; 89: 3055-3061.1518109810.1210/jc.2003-031403 Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y: Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin ǁ type 1a receptor. Endocrinology 2005;146: 3481-3489.1587896510.1210/en.2005-0003 Zhao L, Guo H, Chen H, Petersen RB, Zheng L, Peng A, Huang K: Effect of liraglutide on endoplasmic reticulum stress in diabetes. Biochem Biophys Res Commun 2013;441: 133-138.2412918910.1016/j.bbrc.2013.10.026 Cunha DA, Ladriere L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, Marchetti P, Eizirik DL, Cnop M: Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BIP and JunB. Diabetes 2009;58: 2851-2862.1972078810.2337/db09-0685 de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, D'Agati VD, Lamb HJ, Pongrac Barlovic D, Hojs R, Abbate M, Rodriquez R, Mogensen CE, Porrini E: Fatty kidney: Emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2014;2: 417-426.2479525510.1016/S2213-8587(14)70065-8 Ma Y, Hendershot LM: The unfolding tale of the unfolded protein response. Cell 2001;107: 827-830.1177945910.1016/S0092-8674(01)00623-7 Toblli JE, Munoz MC, Cao G, Mella J, Pereyra L, Mastai R: ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 2008;16: 770-776.1823959010.1038/oby.2007.114 Docherty NG, le Roux CW: Improvements in the metabolic milieu following Roux-en-y gastric bypass and the arrest of diabetic kidney disease. Exp Physiol 2014;99: 1146-1153.2508584210.1113/expphysiol.2014.078790 Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao L, Liu J: Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9C2 cells: Improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell Physiol Biochem 2016;39: 407-421.2737265110.1159/000445634 Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q, Chen J, Cheng WH, Shen W, Yang ZX: Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 2012;364: 115-129.2224680610.1007/s11010-011-1211-9 Katsoulieris E, Mabley JG, Samai M, Green IC, Chatterjee PK: Alpha-linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol 2009;623: 107-112.1976557310.1016/j.ejphar.2009.09.015 Gomez P, Ruilope LM, Barrios V, Navarro J, Prieto MA, Gonzalez O, Guerrero L, Zamorano MA, Filozof C: Prevalence of renal insufficiency in individuals with hypertension and obesity/overweight: The fath study. J Am Soc Nephrol 2006;17:S194-200.1713026110.1681/ASN.2006080914 Felizardo RJ, da Silva MB, Aguiar CF, Camara NO: Obesity in kidney disease: A heavyweight opponent. World J Nephrol 2014;3: 50-63.2533289610.5527/wjn.v3.i3.50 Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O: Obesity and risk for chronic renal failure. J Am Soc Nephrol 2006;17: 1695-1702.1664115310.1681/ASN.2005060638 Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H: Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, min6-a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun 2005;326: 60-65.1556715210.1016/j.bbrc.2004.10.201 Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW, Shin SJ, Bang BK, Breyer MD, Chang YS: Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 2007;18: 1227-1238.1736095110.1681/ASN.2006070778 Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A: Dpp4 inhibition attenuates filtration barrier injury and oxidant stress in the Zucker obese rat. Obesity (Silver Spring) 2014;22: 2172-2179.2499577510.1002/oby.20833 Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW: Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 2010;299:F821-829.2066810410.1152/ajprenal.00196.2010 Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E: Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013;24: 2034-2043.2409292810.1681/ASN.2013020134 Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W: Intrarenal renin-angiotensin system mediates fatty acid-induced er stress in the kidney. Am J Physiol Renal Physiol 2016;310:F351-363.2667261610.1152/ajprenal.00223.2015 Lim JC, Lim SK, Han HJ, Park SH: Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 2010;225: 654-663.2050611010.1002/jcp.22255 Chu KY, Leung PS: Angiotensin ǁ in type 2 diabetes mellitus. Curr Protein Pept Sci 2009;10: 75-84.1927567410.2174/138920309787315176 Skov J, Dejgaard A, Frokiaer J, Holst JJ, Jonassen T, Rittig S, Christiansen JS: Glucagon-like peptide-1 (GLP-1): Effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 2013;98:E664-671.2346365610.1210/jc.2012-3855 Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS: Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012;55: 2456-2468.2272245110.1007/s00125-012-2592-3 Cooper R, Forrester T, Ogunbiyi O, Muffinda J: Angiotensinogen levels and obesity in four black populations. Icshib investigators. J Hypertens 1998;16: 571-575.979716710.1097/00004872-199816050-00003 ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – reference: Zhao L, Guo H, Chen H, Petersen RB, Zheng L, Peng A, Huang K: Effect of liraglutide on endoplasmic reticulum stress in diabetes. Biochem Biophys Res Commun 2013;441: 133-138.2412918910.1016/j.bbrc.2013.10.026 – reference: Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A: Dpp4 inhibition attenuates filtration barrier injury and oxidant stress in the Zucker obese rat. Obesity (Silver Spring) 2014;22: 2172-2179.2499577510.1002/oby.20833 – reference: Lim JC, Lim SK, Han HJ, Park SH: Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 2010;225: 654-663.2050611010.1002/jcp.22255 – reference: Toblli JE, Munoz MC, Cao G, Mella J, Pereyra L, Mastai R: ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 2008;16: 770-776.1823959010.1038/oby.2007.114 – reference: Felizardo RJ, da Silva MB, Aguiar CF, Camara NO: Obesity in kidney disease: A heavyweight opponent. World J Nephrol 2014;3: 50-63.2533289610.5527/wjn.v3.i3.50 – reference: Jiang YQ, Chang GL, Wang Y, Zhang DY, Cao L, Liu J: Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9C2 cells: Improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway. Cell Physiol Biochem 2016;39: 407-421.2737265110.1159/000445634 – reference: Cunha DA, Ladriere L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, Marchetti P, Eizirik DL, Cnop M: Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BIP and JunB. Diabetes 2009;58: 2851-2862.1972078810.2337/db09-0685 – reference: Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W: Intrarenal renin-angiotensin system mediates fatty acid-induced er stress in the kidney. Am J Physiol Renal Physiol 2016;310:F351-363.2667261610.1152/ajprenal.00223.2015 – reference: Zander M, Madsbad S, Madsen JL, Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet 2002;359: 824-830.1189728010.1016/S0140-6736(02)07952-7 – reference: Docherty NG, le Roux CW: Improvements in the metabolic milieu following Roux-en-y gastric bypass and the arrest of diabetic kidney disease. Exp Physiol 2014;99: 1146-1153.2508584210.1113/expphysiol.2014.078790 – reference: Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y: Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin ǁ type 1a receptor. Endocrinology 2005;146: 3481-3489.1587896510.1210/en.2005-0003 – reference: Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW, Shin SJ, Bang BK, Breyer MD, Chang YS: Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 2007;18: 1227-1238.1736095110.1681/ASN.2006070778 – reference: Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C: Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004; 89: 3055-3061.1518109810.1210/jc.2003-031403 – reference: Gomez P, Ruilope LM, Barrios V, Navarro J, Prieto MA, Gonzalez O, Guerrero L, Zamorano MA, Filozof C: Prevalence of renal insufficiency in individuals with hypertension and obesity/overweight: The fath study. J Am Soc Nephrol 2006;17:S194-200.1713026110.1681/ASN.2006080914 – reference: Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N: Glucagon-like peptide-1 production in the glutag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism 2014;63: 800-811.2468060110.1016/j.metabol.2014.02.012 – reference: Skov J, Dejgaard A, Frokiaer J, Holst JJ, Jonassen T, Rittig S, Christiansen JS: Glucagon-like peptide-1 (GLP-1): Effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 2013;98:E664-671.2346365610.1210/jc.2012-3855 – reference: Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E: Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013;24: 2034-2043.2409292810.1681/ASN.2013020134 – reference: Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, Mundel P, Jehle AW: Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 2010;299:F821-829.2066810410.1152/ajprenal.00196.2010 – reference: de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, D'Agati VD, Lamb HJ, Pongrac Barlovic D, Hojs R, Abbate M, Rodriquez R, Mogensen CE, Porrini E: Fatty kidney: Emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2014;2: 417-426.2479525510.1016/S2213-8587(14)70065-8 – reference: Premaratna SD, Manickam E, Begg DP, Rayment DJ, Hafandi A, Jois M, Cameron-Smith D, Weisinger RS: Angiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J mice. Int J Obes (Lond) 2012;36: 233-243.2155604610.1038/ijo.2011.95 – reference: Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, Matsumoto M, Mizutani K, Park K, Cahill C, Nishikawa S, Rask-Madsen C, King GL: Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 2012;61: 2967-2979.2282602910.2337/db11-1824 – reference: Cooper R, Forrester T, Ogunbiyi O, Muffinda J: Angiotensinogen levels and obesity in four black populations. Icshib investigators. J Hypertens 1998;16: 571-575.979716710.1097/00004872-199816050-00003 – reference: Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O: Obesity and risk for chronic renal failure. J Am Soc Nephrol 2006;17: 1695-1702.1664115310.1681/ASN.2005060638 – reference: Katsoulieris E, Mabley JG, Samai M, Green IC, Chatterjee PK: Alpha-linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress. Eur J Pharmacol 2009;623: 107-112.1976557310.1016/j.ejphar.2009.09.015 – reference: Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y, Jun HS: Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 2012;55: 2456-2468.2272245110.1007/s00125-012-2592-3 – reference: Chu KY, Leung PS: Angiotensin ǁ in type 2 diabetes mellitus. Curr Protein Pept Sci 2009;10: 75-84.1927567410.2174/138920309787315176 – reference: Bao Y, Jiang L, Chen H, Zou J, Liu Z, Shi Y: The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway. Cell Physiol Biochem 2015;36: 2366-2378.2627944010.1159/000430199 – reference: Glastras SJ, Chen H, McGrath RT, Zaky AA, Gill AJ, Pollock CA, Saad S: Effect of GLP-1 receptor activation on offspring kidney health in a rat model of maternal obesity. Sci Rep 2016;6: 23525.2700460910.1038/srep23525 – reference: Ly JP, Onay T, Sison K, Sivaskandarajah G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE: The sweet pee model for SGLT2 mutation. J Am Soc Nephrol 2011;22: 113-123.2120925410.1681/ASN.2010080888 – reference: Ma Y, Hendershot LM: The unfolding tale of the unfolded protein response. Cell 2001;107: 827-830.1177945910.1016/S0092-8674(01)00623-7 – reference: Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H: Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, min6-a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun 2005;326: 60-65.1556715210.1016/j.bbrc.2004.10.201 – reference: Cao J, Dai DL, Yao L, Yu HH, Ning B, Zhang Q, Chen J, Cheng WH, Shen W, Yang ZX: Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 2012;364: 115-129.2224680610.1007/s11010-011-1211-9 – ident: ref18 doi: 10.1681/ASN.2013020134 – ident: ref10 doi: 10.1097/00004872-199816050-00003 – ident: ref20 doi: 10.1681/ASN.2010080888 – ident: ref31 doi: 10.1210/jc.2012-3855 – ident: ref11 doi: 10.2174/138920309787315176 – ident: ref6 doi: 10.1681/ASN.2005060638 – ident: ref19 doi: 10.1002/oby.20833 – ident: ref9 doi: 10.1152/ajprenal.00196.2010 – ident: ref16 doi: 10.1016/S0140-6736(02)07952-7 – ident: ref2 doi: 10.1681/ASN.2006070778 – ident: ref26 doi: 10.1038/srep23525 – ident: ref15 doi: 10.1159/000430199 – ident: ref12 doi: 10.1016/j.bbrc.2004.10.201 – ident: ref32 doi: 10.1210/jc.2003-031403 – ident: ref4 doi: 10.5527/wjn.v3.i3.50 – ident: ref7 doi: 10.1007/s11010-011-1211-9 – ident: ref27 doi: 10.2337/db09-0685 – ident: ref21 doi: 10.1002/jcp.22255 – ident: ref14 doi: 10.1007/s00125-012-2592-3 – ident: ref24 doi: 10.1159/000445634 – ident: ref30 doi: 10.2337/db11-1824 – ident: ref23 doi: 10.1016/j.bbrc.2013.10.026 – ident: ref28 doi: 10.1038/ijo.2011.95 – ident: ref8 doi: 10.1016/S0092-8674(01)00623-7 – ident: ref13 doi: 10.1210/en.2005-0003 – ident: ref17 doi: 10.1113/expphysiol.2014.078790 – ident: ref29 doi: 10.1038/oby.2007.114 – ident: ref25 doi: 10.1016/j.metabol.2014.02.012 – ident: ref1 doi: 10.1016/S2213-8587(14)70065-8 – ident: ref5 doi: 10.1681/ASN.2006080914 – ident: ref3 doi: 10.1152/ajprenal.00223.2015 – ident: ref22 doi: 10.1016/j.ejphar.2009.09.015 |
SSID | ssj0015792 |
Score | 2.3139904 |
Snippet | Aims: The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a... The study aimed to investigate the renoprotective effect of glucagon-like peptide-1 (GLP-1) against renal tubular injury in C57BL/6 mice induced by a high-fat... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1113 |
SubjectTerms | Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism Angiotensin II - genetics Angiotensin II - metabolism Animals Apoptosis AT1R Blood Pressure - drug effects Body Weight - drug effects Diabetes Diet Diet, High-Fat - adverse effects Eating - drug effects Endoplasmic reticulum Endoplasmic Reticulum Stress - drug effects ERS Eukaryotic Initiation Factor-2 - genetics Eukaryotic Initiation Factor-2 - metabolism Fatty acids Gene Expression - drug effects GLP-1 Glucagon-Like Peptide 1 - analogs & derivatives Glucagon-Like Peptide 1 - pharmacology Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Inflammation Insulin resistance Ischemia Kidney diseases Kidney Tubules, Proximal - drug effects Kidney Tubules, Proximal - metabolism Kidney Tubules, Proximal - pathology Kinases Male Mice Nephritis - etiology Nephritis - genetics Nephritis - pathology Nephritis - prevention & control Obesity Organ Size - drug effects Original Paper Oxidative stress Palmitic Acid - pharmacology Peptides Protective Agents - pharmacology Proteins Receptor, Angiotensin, Type 1 - genetics Receptor, Angiotensin, Type 1 - metabolism Renal tubular Rodents Transcription Factor CHOP - genetics Transcription Factor CHOP - metabolism Transcription factors Weight control |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJFQuVUsp3RYqF3HgYrGO7Y19LEsXqApaIZC4RXE8QQtVgiB76L_vTJxECFFx4RQpnnyNx5438fgNY7sSxh79mhIatBHap6nwKnfCBETnSRmcA9rgfHo2Ob7Uv67M1aNSX5QTFumBo-L2Q66dDLoA60AXoXSeGNatVYDQREug2Rd9Xh9MdesHJnVxnVMaYTGs7jiF0Hfvt_sltaQqH488UUvYj17olvKv7_8PN1u3M3vP3nV4kf-I7_mBvYFqna3GCpJ_19nbaV-w7SODeeRcwPmLR1LiB16X_Ijqml3Xlfi9uAU-pyyWAEJyoiOpr3ld8XOgR1wsPaWk8pPqBvXMFxU_xUmE2ikXRMzyhh8uoNlgl7OfF9Nj0VVREIVJXCMQYBivYOxKpyApQoFDtFToo3xOmzgAMZseQ0okPMaqEhyYvFDBegsSwYhXn9hKVVfwmfFgKbyZoIDCKDKdOJMmYGTIU6WMC8mI7fUazYqOYpwqXfzJ2lDDuGxQ_ojtDKJ3kVfjOaED6pZBgKiw2xNoIFlnINlLBjJiG7FTh9v0N996cn46P4hN2V0osbk3gawb1g-ZRN9N9Dp09fehGbuZVlnyCuolyljUhtN4GLHNaDrDEzC-1VR_4MtrfNhXtpYQxmj_B22xleZ-CduIkBr_rR0M_wAGpgZd priority: 102 providerName: Directory of Open Access Journals – databaseName: Karger Open Access Journals dbid: M-- link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3BbtQwEB1BEYILglLKQosM4sDFYhPbG_tIly4FsWiFWqm3KI4nq22rpGqzB_6emTiJVERPkeKJHXlszxt7_AbgY4JTT3ZNSY3aSO2zTHpVOGkCofO0Cs4hX3Be_pqdnOkf5-a83-_guzCXHP_cUaOO3AJkcD93lxw1geGH8Ij8KMXBe0spx_MCk7l4rpkYacmN7jmE7nzKvL821cz_fscIdVz9ZIBi0_cjzc7iLJ7Dsx4qii9Rty_gAda78Dgmj_yzC0_mQ662l4CrSLdAS5eIfMS3oqnEN05ptm5q-XNziWLFASwBZSKYiaRZi6YWv5GbON16jkYV3-sL6mKxqcWS1g8u5zAQuSha8XWD7R6cLY5P5yeyT6AgS5O6VhK2MF7h1FVOYVqGkmZnpcg8-YLvbyDBNT3FjPl3jFUVOjRFqYL1FhPCIV69gp26qfE1iGDZs5mRgCIHMps5k6VoklBkShkX0gl8Gno0L3t2cU5ycZV3XoZx-aiHCXwYRa8jpcb_hI5YLaMAs2B3L5qbdd5PqjwU2iVBl2gd6jJUzjP7vrUKCbbqBCewF5U6VjNUfvDP-_nqKBbl16Gi4mEI5P2Mvs0TMtvMrMNfvx-LSc18wFLU2GxJxlJvOE2PCezHoTO2MAy9N_f801t4mjJi6HZ3DmCnvdniIeGd1r_rhvpf3fjyIA priority: 102 providerName: Karger AG |
Title | Protective Effects of Glucagon-Like Peptide-1 Analog on Renal Tubular Injury in Mice on High-Fat Diet |
URI | https://karger.com/doi/10.1159/000464118 https://www.ncbi.nlm.nih.gov/pubmed/28245463 https://www.proquest.com/docview/1990815618 https://www.proquest.com/docview/1873394187 https://doaj.org/article/da491d4ce89e4cdf9b7300883e92341e |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgE4ILgjFGYFQGceBirY7txj4hWlYGolM1bVJvURy_VGUoKW164L_nvSQNCAGXRIqfHMl-fj_s5-9j7I2EoUe_poQGbYT2SSK8ypwwAaPzuAjOAV1wnl2OLm7054VZdBtu266scm8TG0Mdqpz2yM8kmk1CNpH23fq7INYoOl3tKDTuskOCLiOtThZ9wiVN4trTTmmExeS6QxZCD37W3JrUkrg-fvNHDWw_-qJbqsLe_DvobJzP9BF72EWN_H07zY_ZHSiP2L2WR_LHEbs_2dO2PWEwb5EX0IrxFpp4y6uCfyR2s2VVii-rW-BzqmUJICQnUJJqyauSXwH94nrnqTCVfyq_4mjzVclnaEqonSpCxDSr-YcV1MfsZnp-PbkQHZeCyE3saoFhhvEKhq5wCuI85LhQC4Weymd0lQMwctNDSAiKx1hVgAOT5SpYb0FiSOLVU3ZQViU8YzxYSnJGKKAwl0xGziQxGBmyRCnjQhyxt_sRTfMOaJz4Lr6lTcJhXNoPfsRe96LrFl3jb0JjmpZegACxmw_VZpl26ysNmXYy6BysA52HwnkC4rdWAUawWkLEjttJ7bvZd376x_fJfNw2petQYPNeBdJucW_TX6oYsVd9M04znbVkJVQ7lLE4Gk7jK2Inrer0f8AsVxMLwfP_d_6CPYgphmj2e07ZQb3ZwUuMgGo_aNR8wA7H55fzq0Gzj4DPmRA_AUbHARI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEBovCMaAwACDQOLFWh3bTfyAEOsoLWunCnVS37IkvlRlKCn9ENo_xd_IXb5ACHjbU6T45Ei-833E59-PsVcSOgnGNSU0aCN0EgQiUbEVxmF27mfOWqALzuOz7uBcf5qZ2Q770dyFobbKxieWjtoVKf0jP5LoNgnZRIbvlt8EsUbR6WpDoVGZxSlcfceSbf12eIL6fe37_Q_T3kDUrAIiNb7dCAy4JlHQsZlV4KcuRZPNFPrsJKZLDYA5jO5AQKA0JlQZWDBxqlyYhCAxOCcK573BbmLg7VCxF8zaAk-awFanq9KIEIv5GskIM4aj8pamlsQt8lv8K2kCMPZdUtf36t9Jbhns-nfZnTpL5e8rs7rHdiDfZ7cq3sqrfbbXa2ji7jOYVEgP6DV5BYW85kXGPxKb2rzIxWhxCXxCvTMOhOQEglLMeZHzz0CfmG4TaoTlw_wLapcvcj5G10Xj1IEi-vGGnyxgc8DOr2WVH7DdvMjhEeMupKKqiwIKa9ega03gg5EuDpQy1vkee9OsaJTWwObEr_E1KgscY6N28T32shVdVmgefxM6JrW0AgTAXb4oVvOo3s-Ri7WVTqcQWtCpy2xCwP9hqAAzZi3BYweVUttpmskP_3jfmxxXQ9HSZTjcmEBUO5N19Mv0PfaiHUY109lOnEOxRZkQV8NqfHjsYWU67RewqtbEevD4_5M_Z3uD6XgUjYZnp0_YbZ_yl_Jf0yHb3ay28BSzr03yrDR5zi6ue4_9BPL1OX4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJQCCwUMAomLtZvY3sQHhNhtl5a2q1XVSr2FJJ6slqKk7EOof41fx0xeIATceooUjxzJM55HPP4-gNce9hOKa0pq1EbqJAhkomIrjaPs3M-ctcgXnI8ng_0z_encnG_Aj-YuDLdVNj6xdNSuSPkfec8jt8nIJl7Yy-q2iOnu-P3lN8kMUnzS2tBpVCZyiFffqXxbvjvYJV2_8f3x3uloX9YMAzI1vl1JCr4mUdi3mVXopy4l880U-e8k5gsOSPmM7mPAADUmVBlaNHGqXJiE6FGgThTNewM2A66KOrA53JtMT9ozDBPY6qzVMzKk0r7GNaL8oVfe2dQeM438Fg1L0gCKhBfcA774d8pbhr7xPbhb56ziQ2Vk92ED8y24WbFYXm3B7VFDGvcAcFrhPpAPFRUw8lIUmfjI3GqzIpdH8wsUU-6kcSg9wZAoxUwUuThB_sTpOuG2WHGQfyFdi3kujsmR8Tj3o8hxvBK7c1xtw9m1rPND6ORFjo9BuJBLrAEJKKpkg4E1gY_Gc3GglLHO78LbZkWjtIY5Z7aNr1FZ7hgbtYvfhVet6GWF7fE3oSGrpRVgOO7yRbGYRfXujlysred0iqFFnbrMJkwDEIYKKX_WHnZhu1JqO00z-c4f70fTYTUUXbqMhhsTiGrXsox-bYQuvGyHSc180hPnWKxJJqTVsJoeXXhUmU77BaqxNXMgPPn_5C_gFu2v6OhgcvgU7viczJQ_nnags1qs8RmlYqvkeW3zAj5f9zb7CVqePxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protective+Effects+of+Glucagon-Like+Peptide-1+Analog+on+Renal+Tubular+Injury+in+Mice+on+High-Fat+Diet&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Guo%2C+Honglei&rft.au=Li%2C+Hongmei&rft.au=Wang%2C+Bin&rft.au=Ding%2C+Wei&rft.date=2017-01-01&rft.pub=S.+Karger+AG&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=41&rft.issue=3&rft.spage=1113&rft.epage=1124&rft_id=info:doi/10.1159%2F000464118&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |