Shape analysis based on depth-ordering
•We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary functions.•We define statistical tests to detect potential global and local differences between shape populations.•We provide the directional...
Saved in:
Published in | Medical image analysis Vol. 25; no. 1; pp. 2 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2015.04.004 |
Cover
Abstract | •We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary functions.•We define statistical tests to detect potential global and local differences between shape populations.•We provide the directionality of shape differences to augment local measurements.
[Display omitted]
In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls. |
---|---|
AbstractList | In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using
α
-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls. In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls. In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls. •We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary functions.•We define statistical tests to detect potential global and local differences between shape populations.•We provide the directionality of shape differences to augment local measurements. [Display omitted] In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls. |
Author | Gao, Yi Bouix, Sylvain Hong, Yi Niethammer, Marc |
AuthorAffiliation | b Biomedical Research Imaging Center, UNC-Chapel Hill, NC, USA d Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA a Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA c Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA |
AuthorAffiliation_xml | – name: b Biomedical Research Imaging Center, UNC-Chapel Hill, NC, USA – name: c Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA – name: a Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA – name: d Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA |
Author_xml | – sequence: 1 givenname: Yi surname: Hong fullname: Hong, Yi email: yihong@cs.unc.edu organization: Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA – sequence: 2 givenname: Yi surname: Gao fullname: Gao, Yi organization: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA – sequence: 3 givenname: Marc surname: Niethammer fullname: Niethammer, Marc organization: Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA – sequence: 4 givenname: Sylvain surname: Bouix fullname: Bouix, Sylvain organization: Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25980389$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1P3DAQxS1EVb76FyChPVW9JIzjjyQHKiEELRJSD8B55NgT1qusvdhZJP77ZllApQdOHsnv955m3gHbDTEQY8ccSg5cny7KJTlvygq4KkGWAHKH7XOhedHISuy-z1ztsYOcFwBQSwlf2V6l2gZE0-6z77dzs6KZCWZ4zj7POpPJzWKYOVqN8yImR8mHhyP2pTdDpm-v7yG7v7q8u_hd3Pz5dX1xflNYVbVjUVNPogdN3HIBrrPUdFXnampIOW57qhrVSa0bV8saOqq0a7Uyrm4nsAYpDtnPre9q3U3bWQpjMgOukl-a9IzRePz4E_wcH-ITSiVBi43Bj1eDFB_XlEdc-mxpGEyguM7Ia1AAXLR6kp78m_Ue8nacSdBuBTbFnBP1aP1oRh830X5ADrgpAhf4UgRuikCQCC-LiP_YN_vPqbMtRdONnzwlzNZTsJMwkR3RRf8p_xdE8qMa |
CitedBy_id | crossref_primary_10_3389_fnins_2023_1162096 crossref_primary_10_1016_j_ijdevneu_2015_08_004 |
Cites_doi | 10.1002/hbm.22525 10.1002/sta4.8 10.1198/jcgs.2011.09224 10.1016/j.media.2004.06.004 10.1109/TMI.2008.918338 10.1016/j.pscychresns.2012.07.001 10.1198/jasa.2009.0108 10.1109/TVCG.2013.143 10.1007/978-3-642-38868-2_24 10.1016/j.neuroimage.2004.07.021 10.1109/JBHI.2014.2298139 10.1016/S0031-2023(97)00122-2 10.1016/j.cad.2009.02.007 10.1016/j.media.2014.03.001 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.media.2015.04.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 10 |
ExternalDocumentID | PMC4540634 25980389 10_1016_j_media_2015_04_004 S1361841515000547 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH082918 – fundername: NIMH NIH HHS grantid: R01-MH082918 – fundername: NIBIB NIH HHS grantid: P41EB002025 – fundername: NIBIB NIH HHS grantid: P41 EB002025 – fundername: NHLBI NIH HHS grantid: R01 HL105241 – fundername: NHLBI NIH HHS grantid: R01-HL105241 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-7efe3f06e1c130dbce8b2bd7e8e5d1cfe285b4668d7470be26d965ad79efe7043 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Aug 21 14:09:06 EDT 2025 Fri Sep 05 13:34:47 EDT 2025 Mon Jul 21 05:39:53 EDT 2025 Tue Jul 01 02:49:24 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 23 02:28:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Shape analysis Depth-ordering of shape Local analysis Global analysis |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-7efe3f06e1c130dbce8b2bd7e8e5d1cfe285b4668d7470be26d965ad79efe7043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.media.2015.04.004 |
PMID | 25980389 |
PQID | 1705001396 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4540634 proquest_miscellaneous_1705001396 pubmed_primary_25980389 crossref_citationtrail_10_1016_j_media_2015_04_004 crossref_primary_10_1016_j_media_2015_04_004 elsevier_sciencedirect_doi_10_1016_j_media_2015_04_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nitzken, Casanova, Gimelfarb, Inanc, Zurada, El-Baz (bib0015) 2014; 18 Loncaric (bib0011) 1998; 31 Sun, Genton, Nychka (bib0019) 2012; 1 Wachinger, Golland, Reuter (bib0020) 2014; 17 Hong, Davis, Marron, Kwitt, Niethammer (bib0007) 2013 Hong, Gao, Niethammer, Bouix (bib0009) 2014 López-Pintado, Romo (bib0012) 2009; 104 Reuter, Wolter, Shenton, Niethammer (bib0016) 2009; 41 Gao, Riklin-Raviv, Bouix (bib0006) 2014; 35 Whitaker, Mirzargar, Kirby (bib0021) 2013; 19 McClure, Styner, Maltbie, Lieberman, Gouttard, Gerig, Shi, Zhu (bib0013) 2013; 211 Cates, Fletcher, Styner, Hazlett, Whitaker (bib0001) 2008; 11 Hong, Davis, Marron, Kwitt, Singh, Kimbell, Pitkin, Superfine, Davis, Zdanski, Niethammer (bib0008) 2014; 18 Yushkevich, Zhang (bib0022) 2013; 23 Hosseinbor, Kim, Adluru, Acharya, Vorperian, Chung (bib0010) 2014; 17 Sun, Genton (bib0018) 2011; 20 Cootes, Taylor (bib0003) 2004 Davies, Twining, Taylor (bib0004) 2008 Miller (bib0014) 2004; 23 Styner, Lieberman, Pantazis, Gerig (bib0017) 2004; 8 Chung, Dalton, Davidson (bib0002) 2008; 27 Gao, Bouix (bib0005) 2012 Yushkevich (10.1016/j.media.2015.04.004_bib0022) 2013; 23 Gao (10.1016/j.media.2015.04.004_bib0006) 2014; 35 Reuter (10.1016/j.media.2015.04.004_bib0016) 2009; 41 Gao (10.1016/j.media.2015.04.004_bib0005) 2012 Hosseinbor (10.1016/j.media.2015.04.004_bib0010) 2014; 17 Whitaker (10.1016/j.media.2015.04.004_bib0021) 2013; 19 Styner (10.1016/j.media.2015.04.004_bib0017) 2004; 8 Sun (10.1016/j.media.2015.04.004_bib0019) 2012; 1 Loncaric (10.1016/j.media.2015.04.004_bib0011) 1998; 31 Hong (10.1016/j.media.2015.04.004_bib0008) 2014; 18 López-Pintado (10.1016/j.media.2015.04.004_bib0012) 2009; 104 Hong (10.1016/j.media.2015.04.004_bib0009) 2014 Nitzken (10.1016/j.media.2015.04.004_bib0015) 2014; 18 McClure (10.1016/j.media.2015.04.004_bib0013) 2013; 211 Davies (10.1016/j.media.2015.04.004_bib0004) 2008 Wachinger (10.1016/j.media.2015.04.004_bib0020) 2014; 17 Cates (10.1016/j.media.2015.04.004_bib0001) 2008; 11 Miller (10.1016/j.media.2015.04.004_bib0014) 2004; 23 Cootes (10.1016/j.media.2015.04.004_bib0003) 2004 Chung (10.1016/j.media.2015.04.004_bib0002) 2008; 27 Hong (10.1016/j.media.2015.04.004_bib0007) 2013 Sun (10.1016/j.media.2015.04.004_bib0018) 2011; 20 18979781 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):477-85 15501089 - Neuroimage. 2004;23 Suppl 1:S19-33 25014938 - IEEE J Biomed Health Inform. 2014 Jul;18(4):1337-54 24753006 - Hum Brain Mapp. 2014 Oct;35(10):4965-78 23142194 - Psychiatry Res. 2013 Jan 30;211(1):1-10 24683976 - Inf Process Med Imaging. 2013;23:280-91 24505809 - Med Image Comput Comput Assist Interv. 2013;16(Pt 3):584-91 24747271 - Med Image Anal. 2014 May;18(4):684-98 24051838 - IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2713-22 20161035 - Comput Aided Des. 2009 Oct 1;41(10):739-755 25320777 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):17-24 25320783 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):65-72 25320780 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):41-8 15450215 - Med Image Anal. 2004 Sep;8(3):197-203 18672431 - IEEE Trans Med Imaging. 2008 Aug;27(8):1143-51 |
References_xml | – volume: 19 start-page: 2713 year: 2013 end-page: 2722 ident: bib0021 article-title: Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles publication-title: IEEE Trans. Visual. Comput. Graphics – volume: 17 start-page: 65 year: 2014 end-page: 72 ident: bib0010 article-title: The 4D hyperspherical diffusion wavelet: a new method for the detection of localized anatomical variation publication-title: Med. Image Comput. Comput. Assist. Interv. – year: 2004 ident: bib0003 publication-title: Statistical models of appearance for computer vision – volume: 11 start-page: 477 year: 2008 end-page: 485 ident: bib0001 article-title: Particle-based shape analysis of multi-object complexes publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 35 start-page: 4965 year: 2014 end-page: 4978 ident: bib0006 article-title: Shape analysis, a field in need of careful validation publication-title: Human Brain Map. – start-page: 584 year: 2013 end-page: 591 ident: bib0007 article-title: Weighted functional boxplot with application to statistical atlas construction publication-title: MICCAI 2013, Part III. LNCS – volume: 211 start-page: 1 year: 2013 end-page: 10 ident: bib0013 article-title: Localized differences in caudate and hippocampal shape are associated with schizophrenia but not antipsychotic type publication-title: Psychiatry Res.: Neuroimaging – volume: 27 start-page: 1143 year: 2008 end-page: 1151 ident: bib0002 article-title: Tensor-based cortical surface morphometry via weighted spherical harmonic representation publication-title: IEEE Trans. Med. Imaging – volume: 104 start-page: 718 year: 2009 end-page: 734 ident: bib0012 article-title: On the concept of depth for functional data publication-title: J. Am. Stat. Assoc. – volume: 41 start-page: 739 year: 2009 end-page: 755 ident: bib0016 article-title: Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis publication-title: Comput.-Aid. Des. – volume: 8 start-page: 197 year: 2004 end-page: 203 ident: bib0017 article-title: Boundary and medial shape analysis of the hippocampus in schizophrenia publication-title: Med. Image Anal. – start-page: 17 year: 2014 end-page: 24 ident: bib0009 article-title: Depth-based shape-analysis publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014) – volume: 23 start-page: 280 year: 2013 end-page: 291 ident: bib0022 article-title: Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the Blum skeleton publication-title: Inf. Process. Med. Imaging – volume: 18 start-page: 684 year: 2014 end-page: 698 ident: bib0008 article-title: Statistical atlas construction via weighted functional boxplots publication-title: Med. Image Anal. – start-page: 80 year: 2012 end-page: 88 ident: bib0005 article-title: Synthesis of realistic subcortical anatomy with known surface deformations publication-title: Mesh Processing in Medical Image Analysis – year: 2008 ident: bib0004 publication-title: Statistical Models of Shape: Optimisation and Evaluation – volume: 18 start-page: 1337 year: 2014 end-page: 1354 ident: bib0015 article-title: Shape analysis of the human brain: a brief survey publication-title: IEEE J. Biomed. Health Inf. – volume: 20 start-page: 316 year: 2011 end-page: 334 ident: bib0018 article-title: Functional boxplots publication-title: J. Comput. Graph. Stat. – volume: 1 start-page: 68 year: 2012 end-page: 74 ident: bib0019 article-title: Exact fast computation of band depth for large functional datasets: how quickly can one million curves be ranked? publication-title: Stat – volume: 17 start-page: 41 year: 2014 end-page: 48 ident: bib0020 article-title: Brainprint: identifying subjects by their brain publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 31 start-page: 983 year: 1998 end-page: 1001 ident: bib0011 article-title: A survey of shape analysis techniques publication-title: Pattern Recognit. – volume: 23 start-page: S19 year: 2004 end-page: S33 ident: bib0014 article-title: Computational anatomy: Shape, growth, and atrophy comparison via diffeomorphisms publication-title: NeuroImage – volume: 35 start-page: 4965 issue: 10 year: 2014 ident: 10.1016/j.media.2015.04.004_bib0006 article-title: Shape analysis, a field in need of careful validation publication-title: Human Brain Map. doi: 10.1002/hbm.22525 – volume: 1 start-page: 68 year: 2012 ident: 10.1016/j.media.2015.04.004_bib0019 article-title: Exact fast computation of band depth for large functional datasets: how quickly can one million curves be ranked? publication-title: Stat doi: 10.1002/sta4.8 – volume: 20 start-page: 316 year: 2011 ident: 10.1016/j.media.2015.04.004_bib0018 article-title: Functional boxplots publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2011.09224 – year: 2008 ident: 10.1016/j.media.2015.04.004_bib0004 – start-page: 584 year: 2013 ident: 10.1016/j.media.2015.04.004_bib0007 article-title: Weighted functional boxplot with application to statistical atlas construction – volume: 8 start-page: 197 issue: 3 year: 2004 ident: 10.1016/j.media.2015.04.004_bib0017 article-title: Boundary and medial shape analysis of the hippocampus in schizophrenia publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.004 – volume: 27 start-page: 1143 issue: 8 year: 2008 ident: 10.1016/j.media.2015.04.004_bib0002 article-title: Tensor-based cortical surface morphometry via weighted spherical harmonic representation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.918338 – volume: 211 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.media.2015.04.004_bib0013 article-title: Localized differences in caudate and hippocampal shape are associated with schizophrenia but not antipsychotic type publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2012.07.001 – volume: 104 start-page: 718 year: 2009 ident: 10.1016/j.media.2015.04.004_bib0012 article-title: On the concept of depth for functional data publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.0108 – volume: 19 start-page: 2713 issue: 12 year: 2013 ident: 10.1016/j.media.2015.04.004_bib0021 article-title: Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles publication-title: IEEE Trans. Visual. Comput. Graphics doi: 10.1109/TVCG.2013.143 – volume: 23 start-page: 280 year: 2013 ident: 10.1016/j.media.2015.04.004_bib0022 article-title: Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the Blum skeleton publication-title: Inf. Process. Med. Imaging doi: 10.1007/978-3-642-38868-2_24 – start-page: 17 year: 2014 ident: 10.1016/j.media.2015.04.004_bib0009 article-title: Depth-based shape-analysis – volume: 17 start-page: 41 issue: Pt 3 year: 2014 ident: 10.1016/j.media.2015.04.004_bib0020 article-title: Brainprint: identifying subjects by their brain publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 23 start-page: S19 year: 2004 ident: 10.1016/j.media.2015.04.004_bib0014 article-title: Computational anatomy: Shape, growth, and atrophy comparison via diffeomorphisms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.021 – start-page: 80 year: 2012 ident: 10.1016/j.media.2015.04.004_bib0005 article-title: Synthesis of realistic subcortical anatomy with known surface deformations – volume: 18 start-page: 1337 issue: 4 year: 2014 ident: 10.1016/j.media.2015.04.004_bib0015 article-title: Shape analysis of the human brain: a brief survey publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2298139 – year: 2004 ident: 10.1016/j.media.2015.04.004_bib0003 – volume: 31 start-page: 983 issue: 8 year: 1998 ident: 10.1016/j.media.2015.04.004_bib0011 article-title: A survey of shape analysis techniques publication-title: Pattern Recognit. doi: 10.1016/S0031-2023(97)00122-2 – volume: 11 start-page: 477 issue: Pt 1 year: 2008 ident: 10.1016/j.media.2015.04.004_bib0001 article-title: Particle-based shape analysis of multi-object complexes publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 17 start-page: 65 issue: Pt 3 year: 2014 ident: 10.1016/j.media.2015.04.004_bib0010 article-title: The 4D hyperspherical diffusion wavelet: a new method for the detection of localized anatomical variation publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 41 start-page: 739 issue: 10 year: 2009 ident: 10.1016/j.media.2015.04.004_bib0016 article-title: Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis publication-title: Comput.-Aid. Des. doi: 10.1016/j.cad.2009.02.007 – volume: 18 start-page: 684 issue: 4 year: 2014 ident: 10.1016/j.media.2015.04.004_bib0008 article-title: Statistical atlas construction via weighted functional boxplots publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.03.001 – reference: 24753006 - Hum Brain Mapp. 2014 Oct;35(10):4965-78 – reference: 20161035 - Comput Aided Des. 2009 Oct 1;41(10):739-755 – reference: 15450215 - Med Image Anal. 2004 Sep;8(3):197-203 – reference: 25014938 - IEEE J Biomed Health Inform. 2014 Jul;18(4):1337-54 – reference: 23142194 - Psychiatry Res. 2013 Jan 30;211(1):1-10 – reference: 25320780 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):41-8 – reference: 18979781 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):477-85 – reference: 25320783 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):65-72 – reference: 24505809 - Med Image Comput Comput Assist Interv. 2013;16(Pt 3):584-91 – reference: 18672431 - IEEE Trans Med Imaging. 2008 Aug;27(8):1143-51 – reference: 24051838 - IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2713-22 – reference: 24683976 - Inf Process Med Imaging. 2013;23:280-91 – reference: 24747271 - Med Image Anal. 2014 May;18(4):684-98 – reference: 15501089 - Neuroimage. 2004;23 Suppl 1:S19-33 – reference: 25320777 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):17-24 |
SSID | ssj0007440 |
Score | 2.1279826 |
Snippet | •We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary... In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Algorithms Brain - pathology Case-Control Studies Depth-ordering of shape Female Global analysis Humans Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Local analysis Magnetic Resonance Imaging Male Neuroimaging - methods Reproducibility of Results Schizophrenia - pathology Sensitivity and Specificity Shape analysis |
Title | Shape analysis based on depth-ordering |
URI | https://dx.doi.org/10.1016/j.media.2015.04.004 https://www.ncbi.nlm.nih.gov/pubmed/25980389 https://www.proquest.com/docview/1705001396 https://pubmed.ncbi.nlm.nih.gov/PMC4540634 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sE0QPovNX_UUF8WRdm7ZJexRxTMVdVPAWmiZlE-mGdlf_dvPSdGwqHry1TR6EL-l7X8jL9wDOQpKHuS9SLzMlzHTI1k-5JnKFioQOn9IvcKP4MKSD5-juJX5pwXVzFwbTKq3vr3268db2S8-i2ZuOx73HIMRiJRiQDfFgbVghYUrjDqxc3d4PhnOHjBp49fWrwEODRnzIpHmZCxqY4hUbyVNbsO2XAPWTgH7Po1wITP1N2LCM0r2qB70FLVV2YX1BZ7ALqw_2BH0bzh9H2VS5mdUicTGKSXdSulJNq5FnlDi1zQ4892-ergeerZXg5TFJK4-pQoWFT1WQ66gkRa4SQYRkKlGxDPJCkSQWEaWJ1PsHXyhCpYYqkyzVhsyPwl3olJNS7YObpCyjGdNUhGk6RzLhSxri-VlEZKBE7ABpAOK5FRLHehZvvMkYe-UGVY6ocj_iGlUHLuZG01pH4-_utEGeLy0Hrj3934anzTxx_aPg6UdWqsnsg6NukCG81IG9et7mI9F7wASVBh1gSzM674Ai3Mst5XhkxLhRwZCG0cF_B3wIa_hW5wceQad6n6ljzXMqcQLty8_gxK7mLww2-yw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSCwHBGULa5AQJ0Kz2skRIVCBlgutxM2KY0ctQmkF6ZVvx-M4pQXUA7co9kjW2J55lp_fAJwHfhZkLk-cVJcwUylbfWUKyOUy5Cp9CjfHg2LnibR64cNL9LIAN_VbGKRVmthfxXQdrc2fpvFmczQYNJ-9AIuVYELWwIMuwnIYBRR5fVef3zwPVMCrHl95DnavpYc0yUs_z0CCV6QFT025tj_S02_4-ZNFOZWW7jZhw-BJ-7oa8hYsyKIB61Mqgw1Y6Zj78224eO6nI2mnRonExhwm7GFhCzkq-47W4VQ2O9C7u-3etBxTKcHJIj8pHSpzGeQukV6mcpLgmYy5zwWVsYyEl-XSjyMeEhILdXpwufSJSEiUCpooQ-qGwS4sFcNC7oMdJzQlKVVAhCow56fcFSTA27PQF57kkQV-7SCWGRlxrGbxxmq-2CvTXmXoVeaGTHnVgsuJ0ahS0ZjfndSeZzOLgak4P9_wrJ4nprYJ3n2khRyOPxiqBmm4SyzYq-ZtMhJ1AoxRZ9ACOjOjkw4owT3bUgz6Woob9QtJEB78d8CnsNrqdtqsff_0eAhr2FIxBY9gqXwfy2OFeEp-olf0FytZ-_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+analysis+based+on+depth-ordering&rft.jtitle=Medical+image+analysis&rft.au=Hong%2C+Yi&rft.au=Gao%2C+Yi&rft.au=Niethammer%2C+Marc&rft.au=Bouix%2C+Sylvain&rft.date=2015-10-01&rft.issn=1361-8415&rft.volume=25&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.1016%2Fj.media.2015.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2015_04_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |