Shape analysis based on depth-ordering

•We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary functions.•We define statistical tests to detect potential global and local differences between shape populations.•We provide the directional...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 25; no. 1; pp. 2 - 10
Main Authors Hong, Yi, Gao, Yi, Niethammer, Marc, Bouix, Sylvain
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2015
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2015.04.004

Cover

Abstract •We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary functions.•We define statistical tests to detect potential global and local differences between shape populations.•We provide the directionality of shape differences to augment local measurements. [Display omitted] In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.
AbstractList In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using α -central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.
In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.
In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.
•We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary functions.•We define statistical tests to detect potential global and local differences between shape populations.•We provide the directionality of shape differences to augment local measurements. [Display omitted] In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.
Author Gao, Yi
Bouix, Sylvain
Hong, Yi
Niethammer, Marc
AuthorAffiliation b Biomedical Research Imaging Center, UNC-Chapel Hill, NC, USA
d Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
a Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA
c Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
AuthorAffiliation_xml – name: b Biomedical Research Imaging Center, UNC-Chapel Hill, NC, USA
– name: c Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
– name: a Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA
– name: d Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Yi
  surname: Hong
  fullname: Hong, Yi
  email: yihong@cs.unc.edu
  organization: Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA
– sequence: 2
  givenname: Yi
  surname: Gao
  fullname: Gao, Yi
  organization: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
– sequence: 3
  givenname: Marc
  surname: Niethammer
  fullname: Niethammer, Marc
  organization: Department of Computer Science, University of North Carolina (UNC) at Chapel Hill, NC, USA
– sequence: 4
  givenname: Sylvain
  surname: Bouix
  fullname: Bouix, Sylvain
  organization: Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25980389$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxS1EVb76FyChPVW9JIzjjyQHKiEELRJSD8B55NgT1qusvdhZJP77ZllApQdOHsnv955m3gHbDTEQY8ccSg5cny7KJTlvygq4KkGWAHKH7XOhedHISuy-z1ztsYOcFwBQSwlf2V6l2gZE0-6z77dzs6KZCWZ4zj7POpPJzWKYOVqN8yImR8mHhyP2pTdDpm-v7yG7v7q8u_hd3Pz5dX1xflNYVbVjUVNPogdN3HIBrrPUdFXnampIOW57qhrVSa0bV8saOqq0a7Uyrm4nsAYpDtnPre9q3U3bWQpjMgOukl-a9IzRePz4E_wcH-ITSiVBi43Bj1eDFB_XlEdc-mxpGEyguM7Ia1AAXLR6kp78m_Ue8nacSdBuBTbFnBP1aP1oRh830X5ADrgpAhf4UgRuikCQCC-LiP_YN_vPqbMtRdONnzwlzNZTsJMwkR3RRf8p_xdE8qMa
CitedBy_id crossref_primary_10_3389_fnins_2023_1162096
crossref_primary_10_1016_j_ijdevneu_2015_08_004
Cites_doi 10.1002/hbm.22525
10.1002/sta4.8
10.1198/jcgs.2011.09224
10.1016/j.media.2004.06.004
10.1109/TMI.2008.918338
10.1016/j.pscychresns.2012.07.001
10.1198/jasa.2009.0108
10.1109/TVCG.2013.143
10.1007/978-3-642-38868-2_24
10.1016/j.neuroimage.2004.07.021
10.1109/JBHI.2014.2298139
10.1016/S0031-2023(97)00122-2
10.1016/j.cad.2009.02.007
10.1016/j.media.2014.03.001
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.media.2015.04.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 10
ExternalDocumentID PMC4540634
25980389
10_1016_j_media_2015_04_004
S1361841515000547
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH082918
– fundername: NIMH NIH HHS
  grantid: R01-MH082918
– fundername: NIBIB NIH HHS
  grantid: P41EB002025
– fundername: NIBIB NIH HHS
  grantid: P41 EB002025
– fundername: NHLBI NIH HHS
  grantid: R01 HL105241
– fundername: NHLBI NIH HHS
  grantid: R01-HL105241
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-7efe3f06e1c130dbce8b2bd7e8e5d1cfe285b4668d7470be26d965ad79efe7043
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 14:09:06 EDT 2025
Fri Sep 05 13:34:47 EDT 2025
Mon Jul 21 05:39:53 EDT 2025
Tue Jul 01 02:49:24 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 23 02:28:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shape analysis
Depth-ordering of shape
Local analysis
Global analysis
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-7efe3f06e1c130dbce8b2bd7e8e5d1cfe285b4668d7470be26d965ad79efe7043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.media.2015.04.004
PMID 25980389
PQID 1705001396
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4540634
proquest_miscellaneous_1705001396
pubmed_primary_25980389
crossref_citationtrail_10_1016_j_media_2015_04_004
crossref_primary_10_1016_j_media_2015_04_004
elsevier_sciencedirect_doi_10_1016_j_media_2015_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nitzken, Casanova, Gimelfarb, Inanc, Zurada, El-Baz (bib0015) 2014; 18
Loncaric (bib0011) 1998; 31
Sun, Genton, Nychka (bib0019) 2012; 1
Wachinger, Golland, Reuter (bib0020) 2014; 17
Hong, Davis, Marron, Kwitt, Niethammer (bib0007) 2013
Hong, Gao, Niethammer, Bouix (bib0009) 2014
López-Pintado, Romo (bib0012) 2009; 104
Reuter, Wolter, Shenton, Niethammer (bib0016) 2009; 41
Gao, Riklin-Raviv, Bouix (bib0006) 2014; 35
Whitaker, Mirzargar, Kirby (bib0021) 2013; 19
McClure, Styner, Maltbie, Lieberman, Gouttard, Gerig, Shi, Zhu (bib0013) 2013; 211
Cates, Fletcher, Styner, Hazlett, Whitaker (bib0001) 2008; 11
Hong, Davis, Marron, Kwitt, Singh, Kimbell, Pitkin, Superfine, Davis, Zdanski, Niethammer (bib0008) 2014; 18
Yushkevich, Zhang (bib0022) 2013; 23
Hosseinbor, Kim, Adluru, Acharya, Vorperian, Chung (bib0010) 2014; 17
Sun, Genton (bib0018) 2011; 20
Cootes, Taylor (bib0003) 2004
Davies, Twining, Taylor (bib0004) 2008
Miller (bib0014) 2004; 23
Styner, Lieberman, Pantazis, Gerig (bib0017) 2004; 8
Chung, Dalton, Davidson (bib0002) 2008; 27
Gao, Bouix (bib0005) 2012
Yushkevich (10.1016/j.media.2015.04.004_bib0022) 2013; 23
Gao (10.1016/j.media.2015.04.004_bib0006) 2014; 35
Reuter (10.1016/j.media.2015.04.004_bib0016) 2009; 41
Gao (10.1016/j.media.2015.04.004_bib0005) 2012
Hosseinbor (10.1016/j.media.2015.04.004_bib0010) 2014; 17
Whitaker (10.1016/j.media.2015.04.004_bib0021) 2013; 19
Styner (10.1016/j.media.2015.04.004_bib0017) 2004; 8
Sun (10.1016/j.media.2015.04.004_bib0019) 2012; 1
Loncaric (10.1016/j.media.2015.04.004_bib0011) 1998; 31
Hong (10.1016/j.media.2015.04.004_bib0008) 2014; 18
López-Pintado (10.1016/j.media.2015.04.004_bib0012) 2009; 104
Hong (10.1016/j.media.2015.04.004_bib0009) 2014
Nitzken (10.1016/j.media.2015.04.004_bib0015) 2014; 18
McClure (10.1016/j.media.2015.04.004_bib0013) 2013; 211
Davies (10.1016/j.media.2015.04.004_bib0004) 2008
Wachinger (10.1016/j.media.2015.04.004_bib0020) 2014; 17
Cates (10.1016/j.media.2015.04.004_bib0001) 2008; 11
Miller (10.1016/j.media.2015.04.004_bib0014) 2004; 23
Cootes (10.1016/j.media.2015.04.004_bib0003) 2004
Chung (10.1016/j.media.2015.04.004_bib0002) 2008; 27
Hong (10.1016/j.media.2015.04.004_bib0007) 2013
Sun (10.1016/j.media.2015.04.004_bib0018) 2011; 20
18979781 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):477-85
15501089 - Neuroimage. 2004;23 Suppl 1:S19-33
25014938 - IEEE J Biomed Health Inform. 2014 Jul;18(4):1337-54
24753006 - Hum Brain Mapp. 2014 Oct;35(10):4965-78
23142194 - Psychiatry Res. 2013 Jan 30;211(1):1-10
24683976 - Inf Process Med Imaging. 2013;23:280-91
24505809 - Med Image Comput Comput Assist Interv. 2013;16(Pt 3):584-91
24747271 - Med Image Anal. 2014 May;18(4):684-98
24051838 - IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2713-22
20161035 - Comput Aided Des. 2009 Oct 1;41(10):739-755
25320777 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):17-24
25320783 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):65-72
25320780 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):41-8
15450215 - Med Image Anal. 2004 Sep;8(3):197-203
18672431 - IEEE Trans Med Imaging. 2008 Aug;27(8):1143-51
References_xml – volume: 19
  start-page: 2713
  year: 2013
  end-page: 2722
  ident: bib0021
  article-title: Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles
  publication-title: IEEE Trans. Visual. Comput. Graphics
– volume: 17
  start-page: 65
  year: 2014
  end-page: 72
  ident: bib0010
  article-title: The 4D hyperspherical diffusion wavelet: a new method for the detection of localized anatomical variation
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– year: 2004
  ident: bib0003
  publication-title: Statistical models of appearance for computer vision
– volume: 11
  start-page: 477
  year: 2008
  end-page: 485
  ident: bib0001
  article-title: Particle-based shape analysis of multi-object complexes
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 35
  start-page: 4965
  year: 2014
  end-page: 4978
  ident: bib0006
  article-title: Shape analysis, a field in need of careful validation
  publication-title: Human Brain Map.
– start-page: 584
  year: 2013
  end-page: 591
  ident: bib0007
  article-title: Weighted functional boxplot with application to statistical atlas construction
  publication-title: MICCAI 2013, Part III. LNCS
– volume: 211
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib0013
  article-title: Localized differences in caudate and hippocampal shape are associated with schizophrenia but not antipsychotic type
  publication-title: Psychiatry Res.: Neuroimaging
– volume: 27
  start-page: 1143
  year: 2008
  end-page: 1151
  ident: bib0002
  article-title: Tensor-based cortical surface morphometry via weighted spherical harmonic representation
  publication-title: IEEE Trans. Med. Imaging
– volume: 104
  start-page: 718
  year: 2009
  end-page: 734
  ident: bib0012
  article-title: On the concept of depth for functional data
  publication-title: J. Am. Stat. Assoc.
– volume: 41
  start-page: 739
  year: 2009
  end-page: 755
  ident: bib0016
  article-title: Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis
  publication-title: Comput.-Aid. Des.
– volume: 8
  start-page: 197
  year: 2004
  end-page: 203
  ident: bib0017
  article-title: Boundary and medial shape analysis of the hippocampus in schizophrenia
  publication-title: Med. Image Anal.
– start-page: 17
  year: 2014
  end-page: 24
  ident: bib0009
  article-title: Depth-based shape-analysis
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014)
– volume: 23
  start-page: 280
  year: 2013
  end-page: 291
  ident: bib0022
  article-title: Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the Blum skeleton
  publication-title: Inf. Process. Med. Imaging
– volume: 18
  start-page: 684
  year: 2014
  end-page: 698
  ident: bib0008
  article-title: Statistical atlas construction via weighted functional boxplots
  publication-title: Med. Image Anal.
– start-page: 80
  year: 2012
  end-page: 88
  ident: bib0005
  article-title: Synthesis of realistic subcortical anatomy with known surface deformations
  publication-title: Mesh Processing in Medical Image Analysis
– year: 2008
  ident: bib0004
  publication-title: Statistical Models of Shape: Optimisation and Evaluation
– volume: 18
  start-page: 1337
  year: 2014
  end-page: 1354
  ident: bib0015
  article-title: Shape analysis of the human brain: a brief survey
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 20
  start-page: 316
  year: 2011
  end-page: 334
  ident: bib0018
  article-title: Functional boxplots
  publication-title: J. Comput. Graph. Stat.
– volume: 1
  start-page: 68
  year: 2012
  end-page: 74
  ident: bib0019
  article-title: Exact fast computation of band depth for large functional datasets: how quickly can one million curves be ranked?
  publication-title: Stat
– volume: 17
  start-page: 41
  year: 2014
  end-page: 48
  ident: bib0020
  article-title: Brainprint: identifying subjects by their brain
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 31
  start-page: 983
  year: 1998
  end-page: 1001
  ident: bib0011
  article-title: A survey of shape analysis techniques
  publication-title: Pattern Recognit.
– volume: 23
  start-page: S19
  year: 2004
  end-page: S33
  ident: bib0014
  article-title: Computational anatomy: Shape, growth, and atrophy comparison via diffeomorphisms
  publication-title: NeuroImage
– volume: 35
  start-page: 4965
  issue: 10
  year: 2014
  ident: 10.1016/j.media.2015.04.004_bib0006
  article-title: Shape analysis, a field in need of careful validation
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.22525
– volume: 1
  start-page: 68
  year: 2012
  ident: 10.1016/j.media.2015.04.004_bib0019
  article-title: Exact fast computation of band depth for large functional datasets: how quickly can one million curves be ranked?
  publication-title: Stat
  doi: 10.1002/sta4.8
– volume: 20
  start-page: 316
  year: 2011
  ident: 10.1016/j.media.2015.04.004_bib0018
  article-title: Functional boxplots
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2011.09224
– year: 2008
  ident: 10.1016/j.media.2015.04.004_bib0004
– start-page: 584
  year: 2013
  ident: 10.1016/j.media.2015.04.004_bib0007
  article-title: Weighted functional boxplot with application to statistical atlas construction
– volume: 8
  start-page: 197
  issue: 3
  year: 2004
  ident: 10.1016/j.media.2015.04.004_bib0017
  article-title: Boundary and medial shape analysis of the hippocampus in schizophrenia
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.004
– volume: 27
  start-page: 1143
  issue: 8
  year: 2008
  ident: 10.1016/j.media.2015.04.004_bib0002
  article-title: Tensor-based cortical surface morphometry via weighted spherical harmonic representation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.918338
– volume: 211
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2015.04.004_bib0013
  article-title: Localized differences in caudate and hippocampal shape are associated with schizophrenia but not antipsychotic type
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2012.07.001
– volume: 104
  start-page: 718
  year: 2009
  ident: 10.1016/j.media.2015.04.004_bib0012
  article-title: On the concept of depth for functional data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0108
– volume: 19
  start-page: 2713
  issue: 12
  year: 2013
  ident: 10.1016/j.media.2015.04.004_bib0021
  article-title: Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles
  publication-title: IEEE Trans. Visual. Comput. Graphics
  doi: 10.1109/TVCG.2013.143
– volume: 23
  start-page: 280
  year: 2013
  ident: 10.1016/j.media.2015.04.004_bib0022
  article-title: Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the Blum skeleton
  publication-title: Inf. Process. Med. Imaging
  doi: 10.1007/978-3-642-38868-2_24
– start-page: 17
  year: 2014
  ident: 10.1016/j.media.2015.04.004_bib0009
  article-title: Depth-based shape-analysis
– volume: 17
  start-page: 41
  issue: Pt 3
  year: 2014
  ident: 10.1016/j.media.2015.04.004_bib0020
  article-title: Brainprint: identifying subjects by their brain
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 23
  start-page: S19
  year: 2004
  ident: 10.1016/j.media.2015.04.004_bib0014
  article-title: Computational anatomy: Shape, growth, and atrophy comparison via diffeomorphisms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.021
– start-page: 80
  year: 2012
  ident: 10.1016/j.media.2015.04.004_bib0005
  article-title: Synthesis of realistic subcortical anatomy with known surface deformations
– volume: 18
  start-page: 1337
  issue: 4
  year: 2014
  ident: 10.1016/j.media.2015.04.004_bib0015
  article-title: Shape analysis of the human brain: a brief survey
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2298139
– year: 2004
  ident: 10.1016/j.media.2015.04.004_bib0003
– volume: 31
  start-page: 983
  issue: 8
  year: 1998
  ident: 10.1016/j.media.2015.04.004_bib0011
  article-title: A survey of shape analysis techniques
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-2023(97)00122-2
– volume: 11
  start-page: 477
  issue: Pt 1
  year: 2008
  ident: 10.1016/j.media.2015.04.004_bib0001
  article-title: Particle-based shape analysis of multi-object complexes
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 17
  start-page: 65
  issue: Pt 3
  year: 2014
  ident: 10.1016/j.media.2015.04.004_bib0010
  article-title: The 4D hyperspherical diffusion wavelet: a new method for the detection of localized anatomical variation
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 41
  start-page: 739
  issue: 10
  year: 2009
  ident: 10.1016/j.media.2015.04.004_bib0016
  article-title: Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis
  publication-title: Comput.-Aid. Des.
  doi: 10.1016/j.cad.2009.02.007
– volume: 18
  start-page: 684
  issue: 4
  year: 2014
  ident: 10.1016/j.media.2015.04.004_bib0008
  article-title: Statistical atlas construction via weighted functional boxplots
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.03.001
– reference: 24753006 - Hum Brain Mapp. 2014 Oct;35(10):4965-78
– reference: 20161035 - Comput Aided Des. 2009 Oct 1;41(10):739-755
– reference: 15450215 - Med Image Anal. 2004 Sep;8(3):197-203
– reference: 25014938 - IEEE J Biomed Health Inform. 2014 Jul;18(4):1337-54
– reference: 23142194 - Psychiatry Res. 2013 Jan 30;211(1):1-10
– reference: 25320780 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):41-8
– reference: 18979781 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):477-85
– reference: 25320783 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):65-72
– reference: 24505809 - Med Image Comput Comput Assist Interv. 2013;16(Pt 3):584-91
– reference: 18672431 - IEEE Trans Med Imaging. 2008 Aug;27(8):1143-51
– reference: 24051838 - IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2713-22
– reference: 24683976 - Inf Process Med Imaging. 2013;23:280-91
– reference: 24747271 - Med Image Anal. 2014 May;18(4):684-98
– reference: 15501089 - Neuroimage. 2004;23 Suppl 1:S19-33
– reference: 25320777 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):17-24
SSID ssj0007440
Score 2.1279826
Snippet •We propose using depth-ordering on shapes for statistical shape analysis.•We develop an algorithm for the fast computation of band-depth for shapes as binary...
In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Algorithms
Brain - pathology
Case-Control Studies
Depth-ordering of shape
Female
Global analysis
Humans
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Local analysis
Magnetic Resonance Imaging
Male
Neuroimaging - methods
Reproducibility of Results
Schizophrenia - pathology
Sensitivity and Specificity
Shape analysis
Title Shape analysis based on depth-ordering
URI https://dx.doi.org/10.1016/j.media.2015.04.004
https://www.ncbi.nlm.nih.gov/pubmed/25980389
https://www.proquest.com/docview/1705001396
https://pubmed.ncbi.nlm.nih.gov/PMC4540634
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sE0QPovNX_UUF8WRdm7ZJexRxTMVdVPAWmiZlE-mGdlf_dvPSdGwqHry1TR6EL-l7X8jL9wDOQpKHuS9SLzMlzHTI1k-5JnKFioQOn9IvcKP4MKSD5-juJX5pwXVzFwbTKq3vr3268db2S8-i2ZuOx73HIMRiJRiQDfFgbVghYUrjDqxc3d4PhnOHjBp49fWrwEODRnzIpHmZCxqY4hUbyVNbsO2XAPWTgH7Po1wITP1N2LCM0r2qB70FLVV2YX1BZ7ALqw_2BH0bzh9H2VS5mdUicTGKSXdSulJNq5FnlDi1zQ4892-ergeerZXg5TFJK4-pQoWFT1WQ66gkRa4SQYRkKlGxDPJCkSQWEaWJ1PsHXyhCpYYqkyzVhsyPwl3olJNS7YObpCyjGdNUhGk6RzLhSxri-VlEZKBE7ABpAOK5FRLHehZvvMkYe-UGVY6ocj_iGlUHLuZG01pH4-_utEGeLy0Hrj3934anzTxx_aPg6UdWqsnsg6NukCG81IG9et7mI9F7wASVBh1gSzM674Ai3Mst5XhkxLhRwZCG0cF_B3wIa_hW5wceQad6n6ljzXMqcQLty8_gxK7mLww2-yw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSCwHBGULa5AQJ0Kz2skRIVCBlgutxM2KY0ctQmkF6ZVvx-M4pQXUA7co9kjW2J55lp_fAJwHfhZkLk-cVJcwUylbfWUKyOUy5Cp9CjfHg2LnibR64cNL9LIAN_VbGKRVmthfxXQdrc2fpvFmczQYNJ-9AIuVYELWwIMuwnIYBRR5fVef3zwPVMCrHl95DnavpYc0yUs_z0CCV6QFT025tj_S02_4-ZNFOZWW7jZhw-BJ-7oa8hYsyKIB61Mqgw1Y6Zj78224eO6nI2mnRonExhwm7GFhCzkq-47W4VQ2O9C7u-3etBxTKcHJIj8pHSpzGeQukV6mcpLgmYy5zwWVsYyEl-XSjyMeEhILdXpwufSJSEiUCpooQ-qGwS4sFcNC7oMdJzQlKVVAhCow56fcFSTA27PQF57kkQV-7SCWGRlxrGbxxmq-2CvTXmXoVeaGTHnVgsuJ0ahS0ZjfndSeZzOLgak4P9_wrJ4nprYJ3n2khRyOPxiqBmm4SyzYq-ZtMhJ1AoxRZ9ACOjOjkw4owT3bUgz6Woob9QtJEB78d8CnsNrqdtqsff_0eAhr2FIxBY9gqXwfy2OFeEp-olf0FytZ-_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+analysis+based+on+depth-ordering&rft.jtitle=Medical+image+analysis&rft.au=Hong%2C+Yi&rft.au=Gao%2C+Yi&rft.au=Niethammer%2C+Marc&rft.au=Bouix%2C+Sylvain&rft.date=2015-10-01&rft.issn=1361-8415&rft.volume=25&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.1016%2Fj.media.2015.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2015_04_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon