Machine learning in chemoinformatics and drug discovery

•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, proce...

Full description

Saved in:
Bibliographic Details
Published inDrug discovery today Vol. 23; no. 8; pp. 1538 - 1546
Main Authors Lo, Yu-Chen, Rensi, Stefano E., Torng, Wen, Altman, Russ B.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.
AbstractList Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.
•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical 'big' data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical 'big' data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.
Author Rensi, Stefano E.
Lo, Yu-Chen
Altman, Russ B.
Torng, Wen
Author_xml – sequence: 1
  givenname: Yu-Chen
  surname: Lo
  fullname: Lo, Yu-Chen
– sequence: 2
  givenname: Stefano E.
  surname: Rensi
  fullname: Rensi, Stefano E.
– sequence: 3
  givenname: Wen
  surname: Torng
  fullname: Torng, Wen
– sequence: 4
  givenname: Russ B.
  orcidid: 0000-0003-3859-2905
  surname: Altman
  fullname: Altman, Russ B.
  email: rbaltman@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29750902$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1r3DAQFSWl-Wj_QQk-9mJnJEuW1UOhLG0SSOmlPQutNN7VYkup5F3Iv4-W3YSmh_Q0gnkfo_fOyUmIAQn5SKGhQLurTePS1vncMKB9A6IBCm_IGe1lX4u-ZSfl3QpVd5x3p-Q85w0AZUp078gpU1KAAnZG5A9j1z5gNaJJwYdV5UNl1zhFH4aYJjN7mysTXFXcVlXxs3GH6eE9eTuYMeOH47wgv79_-7W4qe9-Xt8uvt7VVjA11xKNFNaIgfdmoEowyxyn0rklMCeFUd3AmGQ959A5aQS3Ui3bpeTUgrXctBfky0H3fruc0FkMczKjvk9-MulBR-P1y03wa72KO92B7KXiReDTUSDFP1vMs57KH3AcTcC4zZpB2zPZdqAK9PJvr2eTp7QKgB8ANsWcEw7PEAp6X4re6EMpel-KBqFLKYX2-R-a9XMJNu4v9uP_yMcAsKS885h0th6DRecT2lm76F8XeATTnast
CitedBy_id crossref_primary_10_1590_s2175_97902025e24510
crossref_primary_10_1093_bib_bbab377
crossref_primary_10_1093_bib_bbaa044
crossref_primary_10_1016_j_jmgm_2023_108466
crossref_primary_10_1007_s11030_022_10590_7
crossref_primary_10_1016_j_jaerosci_2020_105621
crossref_primary_10_1016_j_drudis_2021_02_007
crossref_primary_10_1016_j_fmre_2024_02_011
crossref_primary_10_1016_j_knosys_2024_112282
crossref_primary_10_1080_17460441_2020_1758664
crossref_primary_10_1002_minf_202200232
crossref_primary_10_1021_acs_jmedchem_9b01101
crossref_primary_10_1093_bib_bbab127
crossref_primary_10_1016_j_seppur_2024_126762
crossref_primary_10_1016_j_rechem_2023_100905
crossref_primary_10_1093_bib_bbac577
crossref_primary_10_1021_acs_jcim_2c01251
crossref_primary_10_3389_fmicb_2021_640787
crossref_primary_10_1016_j_drudis_2021_10_005
crossref_primary_10_1021_acs_jcim_1c00619
crossref_primary_10_1016_j_csbj_2019_08_008
crossref_primary_10_1093_bib_bbaa034
crossref_primary_10_1093_bib_bbab484
crossref_primary_10_1186_s13321_021_00499_y
crossref_primary_10_1016_j_drudis_2020_01_020
crossref_primary_10_7717_peerj_13163
crossref_primary_10_1016_j_eswa_2022_117287
crossref_primary_10_1186_s13321_024_00935_9
crossref_primary_10_1080_17460441_2021_1909567
crossref_primary_10_1371_journal_pone_0237747
crossref_primary_10_1021_acs_jcim_0c01294
crossref_primary_10_4103_1735_5362_323919
crossref_primary_10_3389_fchem_2023_1292027
crossref_primary_10_1007_s11030_021_10256_w
crossref_primary_10_1186_s13321_019_0380_5
crossref_primary_10_3390_pathogens10081048
crossref_primary_10_1080_17460441_2021_1866535
crossref_primary_10_1002_cmdc_202200693
crossref_primary_10_1186_s12859_020_3378_0
crossref_primary_10_3892_wasj_2021_136
crossref_primary_10_1089_omi_2020_0141
crossref_primary_10_3390_philosophies8020017
crossref_primary_10_1016_j_chroma_2024_465650
crossref_primary_10_1021_acs_jmedchem_1c00020
crossref_primary_10_1186_s13321_024_00804_5
crossref_primary_10_1021_acs_chemrestox_9b00227
crossref_primary_10_1016_j_compbiolchem_2020_107377
crossref_primary_10_1002_minf_202200214
crossref_primary_10_1007_s00894_021_04674_8
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1002_jcc_70074
crossref_primary_10_1002_minf_202200210
crossref_primary_10_1142_S0219720022500160
crossref_primary_10_1007_s00521_021_05991_y
crossref_primary_10_1016_j_ejmech_2024_116933
crossref_primary_10_1016_j_ailsci_2022_100048
crossref_primary_10_1080_17460441_2020_1770223
crossref_primary_10_3389_fchem_2021_753002
crossref_primary_10_1038_s41467_022_34807_3
crossref_primary_10_1093_bib_bbac231
crossref_primary_10_1021_acsomega_1c06805
crossref_primary_10_1038_s41598_023_43046_5
crossref_primary_10_1021_acsenergylett_0c00899
crossref_primary_10_1088_1361_651X_abd042
crossref_primary_10_1016_j_addr_2023_114772
crossref_primary_10_1021_acsomega_1c01247
crossref_primary_10_1053_j_semnuclmed_2023_03_003
crossref_primary_10_1093_bib_bbab136
crossref_primary_10_1016_j_comtox_2022_100213
crossref_primary_10_1016_j_fbio_2024_104608
crossref_primary_10_1039_D2RA01057G
crossref_primary_10_1016_j_jii_2024_100562
crossref_primary_10_1016_j_compchemeng_2024_108805
crossref_primary_10_1142_S0219519422500725
crossref_primary_10_3389_fgene_2021_744170
crossref_primary_10_1039_D1EE00641J
crossref_primary_10_1016_j_jmgm_2021_107848
crossref_primary_10_1007_s12011_020_02150_7
crossref_primary_10_1109_ACCESS_2023_3338735
crossref_primary_10_1007_s10114_022_2326_5
crossref_primary_10_1016_j_jmgm_2021_107844
crossref_primary_10_1007_s40259_023_00611_8
crossref_primary_10_1039_C9CS00786E
crossref_primary_10_1002_adfm_202309844
crossref_primary_10_1016_j_laa_2021_05_019
crossref_primary_10_1002_btpr_3291
crossref_primary_10_1038_s42003_021_02393_7
crossref_primary_10_1109_ACCESS_2020_3046190
crossref_primary_10_1007_s11224_024_02279_4
crossref_primary_10_1021_acs_jcim_1c00439
crossref_primary_10_1007_s11030_021_10288_2
crossref_primary_10_3390_ijms20112783
crossref_primary_10_1039_C9CP06869D
crossref_primary_10_3389_frai_2023_1069353
crossref_primary_10_1177_2472630320962716
crossref_primary_10_1021_acscentsci_1c00535
crossref_primary_10_1021_acs_jcim_4c00676
crossref_primary_10_1115_1_4062189
crossref_primary_10_1016_j_compbiolchem_2024_108146
crossref_primary_10_1093_bib_bbz171
crossref_primary_10_3390_pr9081456
crossref_primary_10_1016_j_foodchem_2021_129531
crossref_primary_10_3390_molecules25235704
crossref_primary_10_1039_D0CP03620J
crossref_primary_10_1080_10590501_2018_1537563
crossref_primary_10_1038_s41598_021_93070_6
crossref_primary_10_3389_fphar_2019_00031
crossref_primary_10_1002_adma_202105063
crossref_primary_10_1002_cmdc_202200291
crossref_primary_10_3389_fbinf_2022_906644
crossref_primary_10_1007_s10489_021_02495_z
crossref_primary_10_1038_s41585_021_00465_1
crossref_primary_10_2174_1874471015666220831091403
crossref_primary_10_3390_ph18030297
crossref_primary_10_1021_acsomega_8b02419
crossref_primary_10_1021_acsomega_9b02663
crossref_primary_10_1093_bib_bbab111
crossref_primary_10_1186_s13065_024_01302_3
crossref_primary_10_1038_s41598_021_88939_5
crossref_primary_10_1016_j_compbiomed_2020_104197
crossref_primary_10_1016_j_compbiomed_2022_105403
crossref_primary_10_3390_agriengineering6030168
crossref_primary_10_3389_fchem_2021_662688
crossref_primary_10_1093_database_baab068
crossref_primary_10_1021_acs_jcim_1c00691
crossref_primary_10_1016_j_chempr_2023_12_018
crossref_primary_10_3389_fendo_2019_00519
crossref_primary_10_1007_s10822_020_00314_0
crossref_primary_10_1021_acs_jcim_1c00699
crossref_primary_10_1021_acs_jcim_4c01980
crossref_primary_10_1038_s41467_019_13680_7
crossref_primary_10_1016_j_ejps_2019_104967
crossref_primary_10_1038_s41598_022_22324_8
crossref_primary_10_1016_j_parint_2021_102366
crossref_primary_10_1021_acschembio_9b00173
crossref_primary_10_1063_5_0088019
crossref_primary_10_1021_acs_jcim_4c00898
crossref_primary_10_1016_j_compbiomed_2021_104249
crossref_primary_10_1111_cbdd_13701
crossref_primary_10_2144_fsoa_2022_0033
crossref_primary_10_3390_molecules25143250
crossref_primary_10_2174_2213337209666220728094248
crossref_primary_10_3390_molecules23102520
crossref_primary_10_1016_j_addr_2021_114098
crossref_primary_10_1093_bib_bbz150
crossref_primary_10_1109_ACCESS_2020_2979833
crossref_primary_10_3390_ph18030282
crossref_primary_10_1016_j_comtox_2022_100251
crossref_primary_10_1021_acsmacrolett_1c00521
crossref_primary_10_1021_acs_molpharmaceut_2c00029
crossref_primary_10_1016_j_procs_2019_11_145
crossref_primary_10_1080_07391102_2019_1704881
crossref_primary_10_1021_acs_jcim_0c01100
crossref_primary_10_1021_acsomega_2c02854
crossref_primary_10_1021_acs_jcim_0c00250
crossref_primary_10_1016_j_compchemeng_2019_106656
crossref_primary_10_1093_bib_bbab527
crossref_primary_10_53879_id_58_08_12930
crossref_primary_10_1016_j_drudis_2020_02_002
crossref_primary_10_1016_j_drudis_2020_10_007
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_2174_0929867328666210504114351
crossref_primary_10_1021_acsmedchemlett_9b00489
crossref_primary_10_3389_fdgth_2022_939292
crossref_primary_10_1021_acs_jcim_4c00071
crossref_primary_10_4236_pp_2022_137018
crossref_primary_10_1038_s41598_021_93771_y
crossref_primary_10_3390_molecules28145601
crossref_primary_10_1126_sciadv_abc5329
crossref_primary_10_7717_peerj_cs_515
crossref_primary_10_3390_jpm10020021
crossref_primary_10_1021_acs_chemrestox_0c00316
crossref_primary_10_1021_acscombsci_9b00166
crossref_primary_10_1186_s13020_020_00313_1
crossref_primary_10_1021_acs_jcim_8b00803
crossref_primary_10_1016_j_apsb_2024_03_002
crossref_primary_10_2147_IDR_S395203
crossref_primary_10_1016_j_bpc_2024_107179
crossref_primary_10_1002_smll_202004182
crossref_primary_10_1016_j_biotechadv_2022_107937
crossref_primary_10_1002_pca_3239
crossref_primary_10_2174_1568026622666220701091339
crossref_primary_10_3390_molecules26226761
crossref_primary_10_1007_s10822_020_00287_0
crossref_primary_10_3389_fbioe_2019_00065
crossref_primary_10_1021_acs_jcim_4c00046
crossref_primary_10_1155_2022_3212738
crossref_primary_10_1093_bib_bbaa218
crossref_primary_10_1162_dint_a_00109
crossref_primary_10_1016_j_drudis_2022_103356
crossref_primary_10_1021_acs_jcim_2c00580
crossref_primary_10_1080_07391102_2023_2196701
crossref_primary_10_1016_j_actbio_2021_05_053
crossref_primary_10_4155_fmc_2020_0156
crossref_primary_10_1002_ail2_31
crossref_primary_10_1039_D0CE00111B
crossref_primary_10_1021_acs_chemrestox_2c00384
crossref_primary_10_1002_cbic_201800751
crossref_primary_10_1002_mef2_18
crossref_primary_10_1002_advs_202405404
crossref_primary_10_1021_acs_jctc_1c00810
crossref_primary_10_1039_D0NP00043D
crossref_primary_10_3389_frobt_2019_00143
crossref_primary_10_1002_slct_202003573
crossref_primary_10_1021_acs_est_4c01017
crossref_primary_10_1371_journal_pone_0267471
crossref_primary_10_1021_acsomega_2c00664
crossref_primary_10_1021_acs_jpcc_3c03392
crossref_primary_10_1016_j_asoc_2021_108199
crossref_primary_10_1002_ange_202008366
crossref_primary_10_1080_08839514_2021_1966882
crossref_primary_10_1109_TCBB_2024_3402675
crossref_primary_10_1371_journal_pcbi_1010029
crossref_primary_10_1016_j_molstruc_2019_127529
crossref_primary_10_1109_ACCESS_2022_3195218
crossref_primary_10_2174_1574893614666191119123935
crossref_primary_10_1016_j_compbiomed_2024_109279
crossref_primary_10_1038_s41467_020_18671_7
crossref_primary_10_1016_j_pscia_2024_100050
crossref_primary_10_1039_D0SC00129E
crossref_primary_10_1007_s00204_024_03866_4
crossref_primary_10_1039_D0BM01672A
crossref_primary_10_1016_j_ejps_2020_105538
crossref_primary_10_1039_D1SC01713F
crossref_primary_10_1021_acs_jcim_9b01096
crossref_primary_10_3390_ijms20092175
crossref_primary_10_1093_bib_bbz103
crossref_primary_10_1021_acsptsci_1c00118
crossref_primary_10_1021_acsomega_8b03693
crossref_primary_10_3390_sym13040546
crossref_primary_10_1016_j_fluid_2023_113966
crossref_primary_10_1111_cbdd_14057
crossref_primary_10_1021_acsomega_3c01641
crossref_primary_10_2174_0113816128322226240815063730
crossref_primary_10_3390_biom10111486
crossref_primary_10_2174_1381612826666200317125956
crossref_primary_10_3389_fntpr_2023_1252092
crossref_primary_10_3390_ijms20174191
crossref_primary_10_1021_acs_jpclett_3c01709
crossref_primary_10_3389_fimmu_2021_642383
crossref_primary_10_1021_acs_jcim_2c00258
crossref_primary_10_1007_s13042_019_01050_0
crossref_primary_10_2174_1568026620666200128160454
crossref_primary_10_1038_s41598_021_97962_5
crossref_primary_10_1093_bioinformatics_btaa170
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1016_j_chempr_2020_02_017
crossref_primary_10_3389_fchem_2019_00809
crossref_primary_10_1186_s13321_021_00537_9
crossref_primary_10_1016_j_drudis_2021_11_023
crossref_primary_10_1002_anie_202204647
crossref_primary_10_1111_cbdd_14062
crossref_primary_10_1002_jat_4586
crossref_primary_10_1039_D0NJ03314F
crossref_primary_10_1007_s43440_023_00508_x
crossref_primary_10_1016_j_crmeth_2023_100621
crossref_primary_10_1021_acs_jcim_4c00366
crossref_primary_10_1039_D2DD00090C
crossref_primary_10_1016_j_reprotox_2020_05_004
crossref_primary_10_1021_acs_jcim_0c01164
crossref_primary_10_1016_j_fmre_2023_03_008
crossref_primary_10_1016_j_drudis_2019_01_008
crossref_primary_10_1021_acs_jctc_9b00986
crossref_primary_10_1093_bib_bbaa411
crossref_primary_10_1016_j_laa_2024_08_008
crossref_primary_10_1021_acs_jcim_4c01583
crossref_primary_10_1039_D0CS00098A
crossref_primary_10_1002_pep2_24305
crossref_primary_10_1021_acs_jcim_3c01232
crossref_primary_10_3390_ijms231911003
crossref_primary_10_1021_acs_jmedchem_1c01789
crossref_primary_10_3390_ph13110409
crossref_primary_10_1016_j_atmosenv_2024_120775
crossref_primary_10_1021_acs_jcim_4c01101
crossref_primary_10_1007_s11427_020_1959_5
crossref_primary_10_1063_5_0213317
crossref_primary_10_3390_ijms22094435
crossref_primary_10_1039_D0SC00445F
crossref_primary_10_1016_j_molstruc_2020_127732
crossref_primary_10_1021_acs_jcim_4c02309
crossref_primary_10_1007_s11030_021_10329_w
crossref_primary_10_2174_1389557520666200204123156
crossref_primary_10_1371_journal_pone_0282924
crossref_primary_10_4081_jphia_2023_2517
crossref_primary_10_1021_acsomega_3c06225
crossref_primary_10_1002_minf_202100190
crossref_primary_10_1016_j_ijpharm_2021_120705
crossref_primary_10_3390_ijms241411488
crossref_primary_10_1016_j_chemolab_2024_105145
crossref_primary_10_2174_1574893617666220329181607
crossref_primary_10_1021_acs_jctc_2c01024
crossref_primary_10_1002_wcms_1429
crossref_primary_10_1088_2632_2153_acb900
crossref_primary_10_1016_j_compbiomed_2019_01_008
crossref_primary_10_1039_D0CP00305K
crossref_primary_10_1111_cbdd_13674
crossref_primary_10_1177_11779322221090349
crossref_primary_10_3390_ijms24087139
crossref_primary_10_1021_acs_jcim_9b01174
crossref_primary_10_1080_17460441_2020_1696307
crossref_primary_10_1016_j_omtn_2024_102295
crossref_primary_10_30699_ijmm_18_3_135
crossref_primary_10_1021_acs_jpca_0c01280
crossref_primary_10_1002_anie_202008366
crossref_primary_10_1002_cpe_6242
crossref_primary_10_1021_acs_jcim_0c00884
crossref_primary_10_1021_acsomega_2c06944
crossref_primary_10_1039_C9CP06554G
crossref_primary_10_1093_bioinformatics_btad234
crossref_primary_10_1002_ange_202204647
crossref_primary_10_1208_s12249_020_01747_4
crossref_primary_10_3390_molecules25225277
crossref_primary_10_1039_C9RE00116F
crossref_primary_10_1080_17460441_2019_1613368
crossref_primary_10_1016_j_phrs_2020_105077
crossref_primary_10_1002_ps_7700
crossref_primary_10_3389_fmicb_2019_03097
crossref_primary_10_1021_acs_chemrev_1c00107
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1021_acs_jcim_8b00768
crossref_primary_10_1016_j_patter_2021_100390
crossref_primary_10_3390_molecules27227986
crossref_primary_10_34172_bi_2021_40
crossref_primary_10_1021_acs_jcim_3c00594
crossref_primary_10_3390_molecules26133800
crossref_primary_10_3390_molecules26175124
crossref_primary_10_1039_D4SC03921A
crossref_primary_10_1021_acsomega_2c02554
crossref_primary_10_1016_j_cej_2024_153274
crossref_primary_10_1016_j_ijpharm_2022_122263
crossref_primary_10_1002_wcms_1567
crossref_primary_10_1155_and_8165541
crossref_primary_10_3390_app14020921
crossref_primary_10_1038_s41598_024_79377_0
crossref_primary_10_1021_acs_jcim_8b00434
crossref_primary_10_1021_acs_molpharmaceut_2c00680
crossref_primary_10_1016_j_ailsci_2024_100121
crossref_primary_10_1080_17460441_2021_1858793
crossref_primary_10_3389_fddsv_2024_1336025
crossref_primary_10_1038_s41598_023_37853_z
crossref_primary_10_1002_ange_202420204
crossref_primary_10_1055_a_2131_2843
crossref_primary_10_4155_fdd_2021_0009
crossref_primary_10_1021_acs_jmedchem_0c00385
crossref_primary_10_1007_s10822_020_00279_0
crossref_primary_10_1021_acs_jcim_3c01796
crossref_primary_10_1021_acs_jpca_0c05969
crossref_primary_10_1016_j_ejmech_2024_116360
crossref_primary_10_2174_0109298673266470231023110841
crossref_primary_10_1016_j_bmcl_2020_127349
crossref_primary_10_3390_ijms21155576
crossref_primary_10_1016_j_enmf_2021_10_004
crossref_primary_10_1016_j_tips_2020_12_004
crossref_primary_10_1016_j_asoc_2023_110104
crossref_primary_10_1021_acs_jcim_9b01184
crossref_primary_10_1016_j_drudis_2020_12_003
crossref_primary_10_1016_j_tips_2019_07_005
crossref_primary_10_1021_acs_jcim_9b01068
crossref_primary_10_1021_acs_molpharmaceut_4c00946
crossref_primary_10_1093_narcan_zcad010
crossref_primary_10_1186_s12859_020_03643_x
crossref_primary_10_1021_acs_jmedchem_2c00254
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1080_17460441_2020_1776696
crossref_primary_10_1093_jxb_erae156
crossref_primary_10_1186_s13321_022_00630_7
crossref_primary_10_1016_j_jbi_2018_07_005
crossref_primary_10_1016_j_csbj_2024_07_003
crossref_primary_10_1016_j_sbi_2019_03_022
crossref_primary_10_1016_j_toxlet_2021_01_002
crossref_primary_10_1159_000518572
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_3390_biom14010072
crossref_primary_10_1002_nme_7323
crossref_primary_10_1039_D2FO03466B
crossref_primary_10_1080_1062936X_2020_1723136
crossref_primary_10_1016_j_jddst_2023_104751
crossref_primary_10_1038_s41598_023_28416_3
crossref_primary_10_3103_S0027131421020127
crossref_primary_10_1007_s13318_023_00832_w
crossref_primary_10_1186_s13321_019_0397_9
crossref_primary_10_1021_acs_jcim_0c01415
crossref_primary_10_3390_biom12091279
crossref_primary_10_2174_1570180819666220420092723
crossref_primary_10_1021_acs_jcim_0c00443
crossref_primary_10_1021_acs_jcim_3c00685
crossref_primary_10_1021_acs_jcim_0c00321
crossref_primary_10_1093_bib_bbac099
crossref_primary_10_3390_ijms25084303
crossref_primary_10_1021_acsomega_1c01865
crossref_primary_10_1186_s13321_021_00510_6
crossref_primary_10_3390_membranes13110851
crossref_primary_10_1007_s11030_021_10326_z
crossref_primary_10_1063_5_0017229
crossref_primary_10_1016_j_molliq_2023_123708
crossref_primary_10_1021_acs_jcim_9b01123
crossref_primary_10_1111_coin_12515
crossref_primary_10_1007_s00726_023_03245_w
crossref_primary_10_3389_fchem_2024_1380266
crossref_primary_10_1016_j_ijpharm_2025_125385
crossref_primary_10_1016_j_isci_2023_108756
crossref_primary_10_1021_acs_jcim_0c00113
crossref_primary_10_1021_acs_jcim_3c00307
crossref_primary_10_1186_s13321_021_00500_8
crossref_primary_10_3390_ijms24119289
crossref_primary_10_3389_fchem_2019_00779
crossref_primary_10_1371_journal_pone_0277873
crossref_primary_10_2139_ssrn_3746801
crossref_primary_10_1063_5_0016005
crossref_primary_10_3390_ijms20153633
crossref_primary_10_1039_D1TA06772A
crossref_primary_10_3390_ijms22083944
crossref_primary_10_1007_s11030_024_10819_7
crossref_primary_10_1002_minf_202100264
crossref_primary_10_1063_5_0157644
crossref_primary_10_1016_j_jmgm_2022_108401
crossref_primary_10_1021_acs_jcim_2c01526
crossref_primary_10_1002_mco2_115
crossref_primary_10_3390_cells8101286
crossref_primary_10_1021_acs_jcim_9b00295
crossref_primary_10_1007_s10822_019_00221_z
crossref_primary_10_1002_minf_202300210
crossref_primary_10_1021_acsomega_0c03356
crossref_primary_10_3390_pharmaceutics12090879
crossref_primary_10_1016_j_chemolab_2022_104574
crossref_primary_10_3390_biom12091246
crossref_primary_10_1002_anie_202420204
crossref_primary_10_3389_fphar_2020_00639
crossref_primary_10_1021_acs_jctc_2c01308
crossref_primary_10_1088_1757_899X_1110_1_012015
crossref_primary_10_1002_jcc_27061
crossref_primary_10_1016_j_scib_2020_04_006
crossref_primary_10_1016_j_cma_2021_113933
crossref_primary_10_1515_pac_2022_0202
crossref_primary_10_1002_minf_202060017
crossref_primary_10_1002_trc2_12445
crossref_primary_10_1016_j_jbc_2021_100559
crossref_primary_10_4018_IJQSPR_294900
crossref_primary_10_1016_j_tifs_2021_05_031
crossref_primary_10_1021_acs_jcim_9b01212
crossref_primary_10_2751_jcac_23_25
crossref_primary_10_3389_fgene_2024_1483490
crossref_primary_10_2174_1573406419666230601092358
crossref_primary_10_1007_s10822_021_00376_8
crossref_primary_10_1080_17460441_2021_1901685
crossref_primary_10_1093_bib_bbad142
crossref_primary_10_1093_comjnl_bxaa160
crossref_primary_10_2174_1381612826666200515131245
crossref_primary_10_3390_ma14216455
crossref_primary_10_1016_j_jbc_2021_100562
crossref_primary_10_1371_journal_pcbi_1009943
crossref_primary_10_1038_s41401_025_01513_x
crossref_primary_10_1080_07391102_2023_2234039
crossref_primary_10_3390_molecules24213909
crossref_primary_10_1186_s13040_019_0196_x
crossref_primary_10_1016_j_cej_2021_131810
crossref_primary_10_1016_j_fpc_2023_12_004
crossref_primary_10_3389_fphar_2019_00071
crossref_primary_10_1002_aic_17971
crossref_primary_10_1038_s41598_024_82981_9
crossref_primary_10_1016_j_cofs_2020_09_008
crossref_primary_10_1021_acs_molpharmaceut_2c00962
crossref_primary_10_1021_acsomega_4c05768
crossref_primary_10_1021_acs_jmedchem_0c02033
crossref_primary_10_1016_j_bmcl_2023_129171
crossref_primary_10_2144_fsoa_2022_0085
crossref_primary_10_1002_asia_202200203
crossref_primary_10_3390_cimb46030165
crossref_primary_10_1038_s42256_024_00855_1
crossref_primary_10_1080_17460441_2021_1929921
crossref_primary_10_1017_S0031182020000207
crossref_primary_10_53982_aijnas_2021_0101_05_j
crossref_primary_10_1021_acs_jcim_9b00266
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1021_acs_jafc_4c08587
crossref_primary_10_3390_ph16071050
crossref_primary_10_3389_fcimb_2022_882995
crossref_primary_10_3389_fphar_2022_833099
crossref_primary_10_1093_bib_bbad046
crossref_primary_10_7855_IJHE_2024_26_6_001
crossref_primary_10_1515_psr_2018_0115
crossref_primary_10_2174_1389450122999210104205732
crossref_primary_10_1080_17460441_2021_1918098
crossref_primary_10_1002_ps_5820
crossref_primary_10_25259_SRJHS_16_2024
crossref_primary_10_1080_08927022_2020_1764552
crossref_primary_10_1021_acs_iecr_3c02775
crossref_primary_10_1093_bib_bbab291
crossref_primary_10_3389_fcell_2022_794413
crossref_primary_10_1039_D4MD00869C
crossref_primary_10_1016_j_cmpb_2024_108163
crossref_primary_10_1093_bib_bbac024
crossref_primary_10_1111_cbdd_13750
crossref_primary_10_3390_metabo14020093
crossref_primary_10_1038_s41467_024_55707_8
crossref_primary_10_1093_bioadv_vbad001
crossref_primary_10_3390_molecules27051496
crossref_primary_10_1016_j_ipha_2024_09_001
crossref_primary_10_3390_molecules28041663
crossref_primary_10_3390_life12091407
crossref_primary_10_1021_acs_jcim_8b00459
crossref_primary_10_4236_cc_2020_81001
crossref_primary_10_2174_1570163817666200316104404
crossref_primary_10_1016_j_commatsci_2023_112740
crossref_primary_10_3390_molecules24112115
crossref_primary_10_1093_bib_bbac257
crossref_primary_10_4155_fmc_2021_0243
crossref_primary_10_1021_acs_jpca_2c08563
crossref_primary_10_1016_j_csbj_2021_03_004
crossref_primary_10_1186_s40537_021_00465_3
crossref_primary_10_1007_s40203_025_00305_9
crossref_primary_10_1016_j_isci_2022_105023
crossref_primary_10_1021_acs_jafc_4c08527
crossref_primary_10_1002_adts_201800129
crossref_primary_10_1038_s41388_024_03077_2
crossref_primary_10_1016_j_scitotenv_2022_154849
crossref_primary_10_1007_s40142_019_00177_4
crossref_primary_10_1021_acs_jcim_0c00517
crossref_primary_10_1016_j_bmc_2021_116301
crossref_primary_10_1016_j_compbiolchem_2022_107778
crossref_primary_10_1016_j_drudis_2019_12_014
crossref_primary_10_2174_0115748936276510231123121404
crossref_primary_10_1021_acs_jcim_0c00993
crossref_primary_10_1016_j_chemolab_2022_104637
crossref_primary_10_1093_bib_bbac288
crossref_primary_10_1155_2021_5548157
crossref_primary_10_1002_minf_202400274
crossref_primary_10_1021_acs_jpclett_1c02361
crossref_primary_10_1142_S2737416521500526
crossref_primary_10_1016_j_ejmech_2019_111981
crossref_primary_10_1021_acs_jcim_1c00733
crossref_primary_10_1039_D1NJ02261J
crossref_primary_10_1038_s41598_022_12877_z
crossref_primary_10_1515_cmb_2020_0108
crossref_primary_10_2174_1573409915666190716143601
crossref_primary_10_1007_s10462_023_10585_2
crossref_primary_10_31083_j_fbl2706188
crossref_primary_10_1007_s10822_021_00440_3
crossref_primary_10_1039_D2DD00045H
crossref_primary_10_1002_pro_3732
crossref_primary_10_1021_acs_iecr_3c02305
crossref_primary_10_1111_cbdd_13663
crossref_primary_10_1093_bib_bbad120
crossref_primary_10_1002_minf_202200088
crossref_primary_10_1016_j_compeleceng_2022_108475
crossref_primary_10_1063_5_0088784
crossref_primary_10_3390_ijms24065316
crossref_primary_10_1080_17460441_2021_1915982
crossref_primary_10_2139_ssrn_4399415
crossref_primary_10_1021_acs_jctc_0c00236
crossref_primary_10_1038_s41598_020_71502_z
crossref_primary_10_1016_j_drudis_2019_12_009
crossref_primary_10_1103_PhysRevMaterials_4_064414
crossref_primary_10_1273_cbij_19_19
crossref_primary_10_1021_acs_jafc_1c07018
Cites_doi 10.1007/s10822-016-9938-8
10.2174/156802610790232260
10.1021/acs.jcim.6b00694
10.1016/j.ejmech.2012.10.035
10.1021/js950433d
10.1007/s00044-015-1354-4
10.1117/1.2819119
10.1002/minf.201000100
10.1186/s13321-017-0235-x
10.1021/ci800038f
10.1021/ci980140g
10.1016/S0893-6080(00)00026-5
10.1007/s10822-012-9604-8
10.1021/ci800110p
10.1002/minf.201400066
10.1021/ci000383k
10.1038/nbt1284
10.1186/1758-2946-5-27
10.1016/j.drudis.2018.01.039
10.1371/journal.pcbi.1004153
10.1016/j.drudis.2016.06.013
10.1080/00401706.1993.10485033
10.1186/s12859-017-1702-0
10.1109/ICASSP.2013.6638947
10.1021/ci940128y
10.1289/ehp.5758
10.1021/jm4004285
10.1007/s10822-015-9893-9
10.1021/jm040163o
10.1002/qsar.19880070303
10.1021/ci200615h
10.1016/j.csbj.2017.03.003
10.1021/mp300237z
10.1080/10629360412331297443
10.1021/jm060902w
10.1038/s41598-017-11508-2
10.1038/nrd1608
10.3390/ijms151018162
10.1021/acs.jmedchem.6b01437
10.1023/A:1016387816342
10.3390/molecules15053281
10.1016/j.cbpa.2010.03.017
10.1021/ci300030u
10.1021/acschembio.6b00253
10.1038/nature14236
10.1142/S0129065704001899
10.1021/cr950202r
10.1007/s11030-006-8697-1
10.1038/nbt1206-1565
10.1016/j.cbi.2006.12.006
10.1021/jm00145a002
10.1021/ci600197y
10.1021/ci200199u
10.1002/minf.201000061
10.1007/s10822-013-9656-4
10.1021/ci4003798
10.1021/ci034160g
10.1016/j.ejmech.2006.08.005
10.1371/journal.pcbi.1000937
10.12688/f1000research.3788.1
10.1186/s12859-017-1586-z
10.1021/acs.jcim.7b00048
10.1002/minf.201300076
10.1016/S1359-6446(02)02411-X
10.1002/cem.2741
10.1021/cr0780006
10.1002/minf.201200135
10.1021/ci900464s
10.1021/ci200409x
10.1021/ja00226a005
10.1021/ci050348j
10.1021/jm960505t
10.12688/f1000research.2-199.v1
10.1197/j.aem.2003.09.006
10.1021/ci900450m
10.1007/978-1-4939-6613-4_13
10.1021/acs.molpharmaceut.7b00346
10.1080/17460441.2016.1201262
10.1021/ci1004042
10.1002/wcms.1152
10.1021/ci0340355
10.1038/nature14539
10.1080/00401706.1970.10488634
10.1002/(SICI)1099-128X(199603)10:2<119::AID-CEM409>3.0.CO;2-4
10.1186/1758-2946-1-21
10.1021/ci0001482
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.drudis.2018.05.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-5832
EndPage 1546
ExternalDocumentID PMC6078794
29750902
10_1016_j_drudis_2018_05_010
S1359644617304695
Genre Research Support, U.S. Gov't, P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U01 GM061374
– fundername: FDA HHS
  grantid: U01 FD004979
– fundername: NLM NIH HHS
  grantid: R01 LM005652
– fundername: NIGMS NIH HHS
  grantid: R01 GM102365
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IH2
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPCBC
SSP
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3
IEDL.DBID .~1
ISSN 1359-6446
1878-5832
IngestDate Thu Aug 21 13:57:20 EDT 2025
Thu Jul 10 22:20:26 EDT 2025
Mon Jul 21 06:01:17 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Tue Jul 01 04:30:56 EDT 2025
Fri Feb 23 02:30:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3859-2905
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1359644617304695
PMID 29750902
PQID 2038273609
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078794
proquest_miscellaneous_2038273609
pubmed_primary_29750902
crossref_primary_10_1016_j_drudis_2018_05_010
crossref_citationtrail_10_1016_j_drudis_2018_05_010
elsevier_sciencedirect_doi_10_1016_j_drudis_2018_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Drug discovery today
PublicationTitleAlternate Drug Discov Today
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Garcia-Domenech (bib0050) 2008; 108
Akella, DeCaprio (bib0275) 2010; 14
Nekoei (bib0400) 2015; 24
Kearnes (bib0460) 2016; 30
Sahigara (bib0365) 2013; 5
Marill (bib0305) 2004; 11
Gao (bib0345) 1999; 39
(2014) Neural machine translation by jointly learning to align and translate.
Graves (bib0475) 2013
Cramer (bib0175) 1988; 110
Yeo (bib0150) 2012; 26
Maldonado (bib0190) 2006; 10
Tropsha (bib0515) 2010; 29
Owen (bib0340) 2011; 51
(bib0025) 2003
(2017) A generalization of convolutional neural networks to graph-structured data. Available at
Baskin (bib0425) 2016; 11
Hechtlinger, Y.
Devillers (bib0415) 2004; 15
Raymond, Willett (bib0145) 2002; 16
Hu (bib0210) 2012; 52
Kubinyi (bib0310) 1996; 10
(bib0085) 2000
Cherkasov (bib0015) 2014; 57
Sheridan, Kearsley (bib0185) 2002; 7
Andrade (bib0135) 2010; 15
Krizhevsky (bib0440) 2012
(bib0035) 2011
Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes.
Hong (bib0095) 2008; 48
Bahdanau, D.
Verma (bib0165) 2010; 10
Ferreira, Couto (bib0235) 2010; 6
Hoerl, Kennard (bib0320) 1970; 12
Kondratovich (bib0255) 2013; 32
Chen (bib0300) 2012; 52
Sawada (bib0100) 2014; 33
Ali (bib0010) 1997; 40
Ash, Fourches (bib0140) 2017; 57
Varnek, Baskin (bib0030) 2011; 30
Khanfar, Taha (bib0360) 2013; 53
Mnih (bib0495) 2015; 518
Chen (bib0530) 2018
Kusner, M.J.
Searls (bib0525) 2005; 4
Eriksson (bib0355) 2003; 111
Fourches, Tropsha (bib0065) 2013; 32
Hyvarinen, Oja (bib0260) 2000; 13
Szegedy (bib0445) 2014; 1409
Kadurin (bib0505) 2017; 14
Rensi, Altman (bib0245) 2017; 15
Olivecrona (bib0510) 2017; 9
Bajorath (bib0195) 2017; 1526
Svetnik (bib0385) 2003; 43
Chuprina (bib0265) 2010; 50
Myint (bib0410) 2012; 9
(bib0055) 1983
Helguera (bib0335) 2013; 59
Noble (bib0390) 2006; 24
Schierz (bib0285) 2009; 1
MacCuish, MacCuish (bib0270) 2014; 4
Liu (bib0395) 2003; 43
Rush (bib0215) 2005; 48
Baskin (bib0455) 1997; 37
Chavan (bib0105) 2014; 15
Huang (bib0380) 2017; 18
Cheeseright (bib0230) 2008; 48
(bib0045) 1991
Karelson (bib0115) 1996; 96
Frank, Friedman (bib0315) 1993; 35
(bib0405) 1992
Hu (bib0130) 2017; 60
Goodfellow (bib0490) 2014
Heikamp, Bajorath (bib0155) 2011; 51
Stumpfe (bib0205) 2014; 3
Nasrabadi (bib0250) 2007; 16
Varnek, Baskin (bib0005) 2012; 52
Baskin, Zhokhova (bib0180) 2013; 27
Rensi, Altman (bib0350) 2017; 57
Lo (bib0225) 2017; 7
(bib0120) 1998
Nettles (bib0520) 2006; 49
Algamal (bib0330) 2015; 29
Kapetanovic (bib0040) 2008; 171
Duvenaud (bib0160) 2015
(2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. Available at
Saiz-Urra (bib0110) 2007; 42
Hert (bib0290) 2006; 46
Khan (bib0070) 2016; 21
LeCun (bib0435) 1990
Segler, M.H.
LeCun (bib0430) 2015; 521
Keiser (bib0370) 2007; 25
Bajorath (bib0090) 2001; 41
Torng, Altman (bib0450) 2017; 18
Seeger (bib0325) 2004; 14
Hussain, Rea (bib0240) 2010; 50
Bender (bib0280) 2006; 46
Hu (bib0200) 2013; 2
Lo (bib0220) 2016; 11
Gobburu, Chen (bib0420) 1996; 85
(2017) Grammar variational autoencoder.
Poroikov (bib0295) 2000; 40
(bib0060) 2001
Kubinyi (bib0020) 1988; 7
Testa, Seiler (bib0075) 1981; 31
(bib0080) 1995
Sliwoski (bib0125) 2016; 30
Lo (bib0375) 2015; 11
Goodford (bib0170) 1985; 28
Garcia-Domenech (10.1016/j.drudis.2018.05.010_bib0050) 2008; 108
Rush (10.1016/j.drudis.2018.05.010_bib0215) 2005; 48
Chuprina (10.1016/j.drudis.2018.05.010_bib0265) 2010; 50
Khan (10.1016/j.drudis.2018.05.010_bib0070) 2016; 21
Raymond (10.1016/j.drudis.2018.05.010_bib0145) 2002; 16
10.1016/j.drudis.2018.05.010_bib0470
Rensi (10.1016/j.drudis.2018.05.010_bib0245) 2017; 15
Hu (10.1016/j.drudis.2018.05.010_bib0210) 2012; 52
Kubinyi (10.1016/j.drudis.2018.05.010_bib0020) 1988; 7
Ferreira (10.1016/j.drudis.2018.05.010_bib0235) 2010; 6
Andrade (10.1016/j.drudis.2018.05.010_bib0135) 2010; 15
Chavan (10.1016/j.drudis.2018.05.010_bib0105) 2014; 15
Hussain (10.1016/j.drudis.2018.05.010_bib0240) 2010; 50
Karelson (10.1016/j.drudis.2018.05.010_bib0115) 1996; 96
Bajorath (10.1016/j.drudis.2018.05.010_bib0195) 2017; 1526
Huang (10.1016/j.drudis.2018.05.010_bib0380) 2017; 18
Cherkasov (10.1016/j.drudis.2018.05.010_bib0015) 2014; 57
10.1016/j.drudis.2018.05.010_bib0500
Olivecrona (10.1016/j.drudis.2018.05.010_bib0510) 2017; 9
(10.1016/j.drudis.2018.05.010_bib0085) 2000
Hert (10.1016/j.drudis.2018.05.010_bib0290) 2006; 46
10.1016/j.drudis.2018.05.010_bib0465
Heikamp (10.1016/j.drudis.2018.05.010_bib0155) 2011; 51
Goodford (10.1016/j.drudis.2018.05.010_bib0170) 1985; 28
Myint (10.1016/j.drudis.2018.05.010_bib0410) 2012; 9
Hyvarinen (10.1016/j.drudis.2018.05.010_bib0260) 2000; 13
Kearnes (10.1016/j.drudis.2018.05.010_bib0460) 2016; 30
Graves (10.1016/j.drudis.2018.05.010_bib0475) 2013
Eriksson (10.1016/j.drudis.2018.05.010_bib0355) 2003; 111
Torng (10.1016/j.drudis.2018.05.010_bib0450) 2017; 18
Baskin (10.1016/j.drudis.2018.05.010_bib0455) 1997; 37
Akella (10.1016/j.drudis.2018.05.010_bib0275) 2010; 14
Goodfellow (10.1016/j.drudis.2018.05.010_bib0490) 2014
Liu (10.1016/j.drudis.2018.05.010_bib0395) 2003; 43
Ash (10.1016/j.drudis.2018.05.010_bib0140) 2017; 57
Gobburu (10.1016/j.drudis.2018.05.010_bib0420) 1996; 85
MacCuish (10.1016/j.drudis.2018.05.010_bib0270) 2014; 4
Nettles (10.1016/j.drudis.2018.05.010_bib0520) 2006; 49
Fourches (10.1016/j.drudis.2018.05.010_bib0065) 2013; 32
Saiz-Urra (10.1016/j.drudis.2018.05.010_bib0110) 2007; 42
Tropsha (10.1016/j.drudis.2018.05.010_bib0515) 2010; 29
Rensi (10.1016/j.drudis.2018.05.010_bib0350) 2017; 57
Hu (10.1016/j.drudis.2018.05.010_bib0130) 2017; 60
Baskin (10.1016/j.drudis.2018.05.010_bib0425) 2016; 11
Kubinyi (10.1016/j.drudis.2018.05.010_bib0310) 1996; 10
Noble (10.1016/j.drudis.2018.05.010_bib0390) 2006; 24
Chen (10.1016/j.drudis.2018.05.010_bib0530) 2018
LeCun (10.1016/j.drudis.2018.05.010_bib0435) 1990
Bender (10.1016/j.drudis.2018.05.010_bib0280) 2006; 46
Frank (10.1016/j.drudis.2018.05.010_bib0315) 1993; 35
(10.1016/j.drudis.2018.05.010_bib0055) 1983
Owen (10.1016/j.drudis.2018.05.010_bib0340) 2011; 51
Sawada (10.1016/j.drudis.2018.05.010_bib0100) 2014; 33
Sliwoski (10.1016/j.drudis.2018.05.010_bib0125) 2016; 30
Testa (10.1016/j.drudis.2018.05.010_bib0075) 1981; 31
Seeger (10.1016/j.drudis.2018.05.010_bib0325) 2004; 14
Chen (10.1016/j.drudis.2018.05.010_bib0300) 2012; 52
Hong (10.1016/j.drudis.2018.05.010_bib0095) 2008; 48
Maldonado (10.1016/j.drudis.2018.05.010_bib0190) 2006; 10
Bajorath (10.1016/j.drudis.2018.05.010_bib0090) 2001; 41
Keiser (10.1016/j.drudis.2018.05.010_bib0370) 2007; 25
LeCun (10.1016/j.drudis.2018.05.010_bib0430) 2015; 521
Algamal (10.1016/j.drudis.2018.05.010_bib0330) 2015; 29
Krizhevsky (10.1016/j.drudis.2018.05.010_bib0440) 2012
Hoerl (10.1016/j.drudis.2018.05.010_bib0320) 1970; 12
Verma (10.1016/j.drudis.2018.05.010_bib0165) 2010; 10
Sheridan (10.1016/j.drudis.2018.05.010_bib0185) 2002; 7
Marill (10.1016/j.drudis.2018.05.010_bib0305) 2004; 11
Yeo (10.1016/j.drudis.2018.05.010_bib0150) 2012; 26
Cheeseright (10.1016/j.drudis.2018.05.010_bib0230) 2008; 48
Searls (10.1016/j.drudis.2018.05.010_bib0525) 2005; 4
Gao (10.1016/j.drudis.2018.05.010_bib0345) 1999; 39
(10.1016/j.drudis.2018.05.010_bib0035) 2011
Devillers (10.1016/j.drudis.2018.05.010_bib0415) 2004; 15
Szegedy (10.1016/j.drudis.2018.05.010_bib0445) 2014; 1409
Sahigara (10.1016/j.drudis.2018.05.010_bib0365) 2013; 5
Ali (10.1016/j.drudis.2018.05.010_bib0010) 1997; 40
Baskin (10.1016/j.drudis.2018.05.010_bib0180) 2013; 27
Hu (10.1016/j.drudis.2018.05.010_bib0200) 2013; 2
(10.1016/j.drudis.2018.05.010_bib0045) 1991
Varnek (10.1016/j.drudis.2018.05.010_bib0030) 2011; 30
Mnih (10.1016/j.drudis.2018.05.010_bib0495) 2015; 518
Kapetanovic (10.1016/j.drudis.2018.05.010_bib0040) 2008; 171
Poroikov (10.1016/j.drudis.2018.05.010_bib0295) 2000; 40
(10.1016/j.drudis.2018.05.010_bib0025) 2003
Stumpfe (10.1016/j.drudis.2018.05.010_bib0205) 2014; 3
(10.1016/j.drudis.2018.05.010_bib0120) 1998
Helguera (10.1016/j.drudis.2018.05.010_bib0335) 2013; 59
Nasrabadi (10.1016/j.drudis.2018.05.010_bib0250) 2007; 16
Varnek (10.1016/j.drudis.2018.05.010_bib0005) 2012; 52
(10.1016/j.drudis.2018.05.010_bib0080) 1995
Schierz (10.1016/j.drudis.2018.05.010_bib0285) 2009; 1
Nekoei (10.1016/j.drudis.2018.05.010_bib0400) 2015; 24
Kondratovich (10.1016/j.drudis.2018.05.010_bib0255) 2013; 32
(10.1016/j.drudis.2018.05.010_bib0060) 2001
10.1016/j.drudis.2018.05.010_bib0480
(10.1016/j.drudis.2018.05.010_bib0405) 1992
Cramer (10.1016/j.drudis.2018.05.010_bib0175) 1988; 110
10.1016/j.drudis.2018.05.010_bib0485
Duvenaud (10.1016/j.drudis.2018.05.010_bib0160) 2015
Khanfar (10.1016/j.drudis.2018.05.010_bib0360) 2013; 53
Svetnik (10.1016/j.drudis.2018.05.010_bib0385) 2003; 43
Lo (10.1016/j.drudis.2018.05.010_bib0375) 2015; 11
Lo (10.1016/j.drudis.2018.05.010_bib0220) 2016; 11
Lo (10.1016/j.drudis.2018.05.010_bib0225) 2017; 7
Kadurin (10.1016/j.drudis.2018.05.010_bib0505) 2017; 14
References_xml – volume: 14
  start-page: 3098
  year: 2017
  end-page: 3104
  ident: bib0505
  article-title: druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties
  publication-title: Mol. Pharm.
– volume: 33
  start-page: 719
  year: 2014
  end-page: 731
  ident: bib0100
  article-title: Benchmarking a wide range of chemical descriptors for drug–target interaction prediction using a chemogenomic approach
  publication-title: Mol. Inf.
– volume: 43
  start-page: 1288
  year: 2003
  end-page: 1296
  ident: bib0395
  article-title: QSAR study of ethyl 2-[(3-methyl-2, 5-dioxo (3-pyrrolinyl)) amino]-4-(trifluoromethyl) pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression based on support vector machines
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 57
  start-page: 1286
  year: 2017
  end-page: 1299
  ident: bib0140
  article-title: Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories
  publication-title: J. Chem. Inf. Model.
– volume: 43
  start-page: 1947
  year: 2003
  end-page: 1958
  ident: bib0385
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
– year: 1995
  ident: bib0080
  publication-title: Exploring QSAR
– volume: 4
  start-page: 45
  year: 2005
  end-page: 58
  ident: bib0525
  article-title: Data integration: challenges for drug discovery
  publication-title: Nat. Rev. Drug Discov.
– volume: 57
  start-page: 4977
  year: 2014
  end-page: 5010
  ident: bib0015
  article-title: QSAR modeling: where have you been? Where are you going to?
  publication-title: J. Med. Chem.
– volume: 48
  start-page: 1489
  year: 2005
  end-page: 1495
  ident: bib0215
  article-title: A shape-based 3-D scaffold hopping method and its application to a bacterial protein?protein interactio
  publication-title: J. Med. Chem.
– volume: 57
  start-page: 1859
  year: 2017
  end-page: 1867
  ident: bib0350
  article-title: Shallow representation learning via kernel PCA improves QSAR modelability
  publication-title: J. Chem. Inf. Model.
– start-page: 2224
  year: 2015
  end-page: 2232
  ident: bib0160
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Advances in Neural Information Processing Systems
– volume: 28
  start-page: 849
  year: 1985
  end-page: 857
  ident: bib0170
  article-title: A computational procedure for determining energetically favorable binding sites on biologically important macromolecules
  publication-title: J. Med. Chem.
– volume: 40
  start-page: 1349
  year: 2000
  end-page: 1355
  ident: bib0295
  article-title: Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 5
  start-page: 27
  year: 2013
  ident: bib0365
  article-title: Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions
  publication-title: J. Cheminformatics
– volume: 15
  start-page: 501
  year: 2004
  end-page: 510
  ident: bib0415
  article-title: Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling
  publication-title: SAR QSAR Environ. Res.
– reference: . (2014) Neural machine translation by jointly learning to align and translate.
– year: 1992
  ident: bib0405
  publication-title: Introduction to Artificial Neural Systems
– volume: 11
  year: 2015
  ident: bib0375
  article-title: Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens
  publication-title: PLoS Comput. Biol.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: bib0390
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 48
  year: 2017
  ident: bib0510
  article-title: Molecular
  publication-title: J. Cheminf.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0430
  article-title: Deep learning
  publication-title: Nature
– volume: 10
  start-page: 95
  year: 2010
  end-page: 115
  ident: bib0165
  article-title: 3D-QSAR in drug design—a review
  publication-title: Curr. Top. Med. Chem.
– year: 2011
  ident: bib0035
  publication-title: Chemoinformatics and Computational Chemical Biology
– volume: 9
  start-page: 2912
  year: 2012
  end-page: 2923
  ident: bib0410
  article-title: Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions
  publication-title: Mol. Pharm.
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: bib0475
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: Acoustics, Speech and Signal Processing, 2013 IEEE International Conference
– volume: 3
  start-page: 75
  year: 2014
  ident: bib0205
  article-title: Advancing the activity cliff concept, part II
  publication-title: F1000Res
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0260
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– volume: 26
  start-page: 1127
  year: 2012
  end-page: 1141
  ident: bib0150
  article-title: Extraction and validation of substructure profiles for enriching compound libraries
  publication-title: J. Comput. Aided Mol. Des.
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: bib0320
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 50
  start-page: 470
  year: 2010
  end-page: 479
  ident: bib0265
  article-title: Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers
  publication-title: J. Chem. Inf. Model.
– volume: 18
  start-page: 165
  year: 2017
  ident: bib0380
  article-title: MOST: most-similar ligand based approach to target prediction
  publication-title: BMC Bioinf.
– volume: 37
  start-page: 715
  year: 1997
  end-page: 721
  ident: bib0455
  article-title: A neural device for searching direct correlations between structures and properties of chemical compounds
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 10
  start-page: 119
  year: 1996
  end-page: 133
  ident: bib0310
  article-title: Evolutionary variable selection in regression and PLS analyses
  publication-title: J. Chemom.
– volume: 48
  start-page: 2108
  year: 2008
  end-page: 2117
  ident: bib0230
  article-title: FieldScreen: virtual screening using molecular fields: application to the DUD data set
  publication-title: J. Chem. Inf. Model.
– volume: 46
  start-page: 2445
  year: 2006
  end-page: 2456
  ident: bib0280
  article-title: Bayes affinity fingerprints improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
  publication-title: J. Chem. Inf. Model.
– volume: 39
  start-page: 164
  year: 1999
  end-page: 168
  ident: bib0345
  article-title: Binary quantitative structure–activity relationship (QSAR) analysis of estrogen receptor ligands
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 6
  year: 2010
  ident: bib0235
  article-title: Semantic similarity for automatic classification of chemical compounds
  publication-title: PLoS Comput. Biol.
– volume: 29
  start-page: 547
  year: 2015
  end-page: 556
  ident: bib0330
  article-title: High-dimensional QSAR prediction of anticancer potency of imidazo [4,5-b] pyridine derivatives using adjusted adaptive LASSO
  publication-title: J. Chemometrics
– volume: 15
  start-page: 320
  year: 2017
  end-page: 327
  ident: bib0245
  article-title: Flexible analog search with kernel PCA embedded molecule vectors
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 1409
  start-page: 4842
  year: 2014
  ident: bib0445
  article-title: Going deeper with convolutions
  publication-title: arXiv
– reference: Kusner, M.J.
– volume: 111
  start-page: 1361
  year: 2003
  end-page: 1375
  ident: bib0355
  article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs
  publication-title: Environ. Health Perspect.
– volume: 10
  start-page: 39
  year: 2006
  end-page: 79
  ident: bib0190
  article-title: Molecular similarity and diversity in chemoinformatics: from theory to applications
  publication-title: Mol. Divers.
– year: 1998
  ident: bib0120
  publication-title: 3D QSAR in Drug Design
– volume: 29
  start-page: 476
  year: 2010
  end-page: 488
  ident: bib0515
  article-title: Best practices for QSAR model development, validation, and exploitation
  publication-title: Mol. Inf.
– volume: 11
  start-page: 2244
  year: 2016
  end-page: 2253
  ident: bib0220
  article-title: 3D chemical similarity networks for structure-based target prediction and scaffold hopping
  publication-title: ACS Chem. Biol.
– volume: 24
  start-page: 3037
  year: 2015
  end-page: 3046
  ident: bib0400
  article-title: QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach
  publication-title: Med. Chem. Res.
– volume: 27
  start-page: 427
  year: 2013
  end-page: 442
  ident: bib0180
  article-title: The continuous molecular fields approach to building 3D-QSAR models
  publication-title: J. Comput. Aided Mol. Des.
– volume: 46
  start-page: 462
  year: 2006
  end-page: 470
  ident: bib0290
  article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching
  publication-title: J. Chem. Inf. Model.
– volume: 4
  start-page: 34
  year: 2014
  end-page: 48
  ident: bib0270
  article-title: Chemoinformatics applications of cluster analysis
  publication-title: Comput. Mol. Sci.
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0490
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 60
  start-page: 1238
  year: 2017
  end-page: 1246
  ident: bib0130
  article-title: Recent advances in scaffold hopping
  publication-title: J. Med. Chem.
– volume: 49
  start-page: 6802
  year: 2006
  end-page: 6810
  ident: bib0520
  article-title: Bridging chemical and biological space: target fishing using 2D and 3D molecular descriptors
  publication-title: J. Med. Chem.
– reference: . (2017) Grammar variational autoencoder.
– volume: 7
  start-page: 903
  year: 2002
  end-page: 911
  ident: bib0185
  article-title: Why do we need so many chemical similarity search methods?
  publication-title: Drug Discov. Today
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0440
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 108
  start-page: 1127
  year: 2008
  end-page: 1169
  ident: bib0050
  article-title: Some new trends in chemical graph theory
  publication-title: Chem. Rev.
– year: 2001
  ident: bib0060
  publication-title: Introduction to Algorithms
– volume: 7
  start-page: 121
  year: 1988
  end-page: 133
  ident: bib0020
  article-title: Free Wilson analysis. Theory, applications and its relationship to Hansch analysis
  publication-title: Quant. Struct. Act. Relat.
– year: 1991
  ident: bib0045
  publication-title: Chemical Graph Theory: Introduction and Fundamentals
– volume: 85
  start-page: 505
  year: 1996
  end-page: 510
  ident: bib0420
  article-title: Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis
  publication-title: J. Pharm. Sci.
– volume: 518
  start-page: 529
  year: 2015
  ident: bib0495
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 11
  start-page: 94
  year: 2004
  end-page: 102
  ident: bib0305
  article-title: Advanced statistics: linear regression, part II: multiple linear regression
  publication-title: Acad. Emerg. Med.
– volume: 40
  start-page: 236
  year: 1997
  end-page: 241
  ident: bib0010
  article-title: Butitaxel analogues: synthesis and structure-activity relationships
  publication-title: J. Med. Chem.
– volume: 41
  start-page: 233
  year: 2001
  end-page: 245
  ident: bib0090
  article-title: Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening
  publication-title: J. Chem. Inf. Comput. Sci.
– reference: . (2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. Available at:
– volume: 15
  start-page: 3281
  year: 2010
  end-page: 3294
  ident: bib0135
  article-title: 4D-QSAR: perspectives in drug design
  publication-title: Molecules
– volume: 51
  start-page: 1552
  year: 2011
  end-page: 1563
  ident: bib0340
  article-title: Visualization of molecular fingerprints
  publication-title: J. Chem. Inf. Model.
– year: 2000
  ident: bib0085
  publication-title: Handbook of Molecular Descriptors
– volume: 30
  start-page: 20
  year: 2011
  end-page: 32
  ident: bib0030
  article-title: Chemoinformatics as a theoretical chemistry discipline
  publication-title: Mol. Inf.
– volume: 48
  start-page: 1337
  year: 2008
  end-page: 1344
  ident: bib0095
  article-title: Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
  publication-title: J. Chem. Inf. Model.
– volume: 51
  start-page: 1831
  year: 2011
  end-page: 1839
  ident: bib0155
  article-title: Large-scale similarity search profiling of ChEMBL compound data sets
  publication-title: J. Chem. Inf. Model.
– volume: 1
  start-page: 21
  year: 2009
  ident: bib0285
  article-title: Virtual screening of bioassay data
  publication-title: J. Cheminf.
– volume: 1526
  start-page: 231
  year: 2017
  end-page: 245
  ident: bib0195
  article-title: Molecular similarity concepts for informatics applications
  publication-title: Methods Mol. Biol.
– volume: 50
  start-page: 339
  year: 2010
  end-page: 348
  ident: bib0240
  article-title: Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets
  publication-title: J. Chem. Inf. Model.
– volume: 21
  start-page: 1291
  year: 2016
  end-page: 1302
  ident: bib0070
  article-title: Descriptors and their selection methods in QSAR analysis: paradigm for drug design
  publication-title: Drug Discov. Today
– volume: 42
  start-page: 64
  year: 2007
  end-page: 70
  ident: bib0110
  article-title: Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors
  publication-title: Eur. J. Med. Chem.
– volume: 96
  start-page: 1027
  year: 1996
  end-page: 1044
  ident: bib0115
  article-title: Quantum-chemical descriptors in QSAR/QSPR studies
  publication-title: Chem. Rev.
– volume: 30
  start-page: 209
  year: 2016
  end-page: 217
  ident: bib0125
  article-title: Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign
  publication-title: J. Comput. Aided Mol. Des.
– volume: 32
  start-page: 827
  year: 2013
  end-page: 842
  ident: bib0065
  article-title: Using graph indices for the analysis and comparison of chemical datasets
  publication-title: Mol. Inf.
– volume: 52
  start-page: 1103
  year: 2012
  end-page: 1113
  ident: bib0210
  article-title: Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening
  publication-title: J. Chem. Inf. Model.
– reference: Hechtlinger, Y.
– volume: 25
  start-page: 197
  year: 2007
  end-page: 206
  ident: bib0370
  article-title: Relating protein pharmacology by ligand chemistry
  publication-title: Nat. Biotechnol.
– volume: 18
  start-page: 302
  year: 2017
  ident: bib0450
  article-title: 3D deep convolutional neural networks for amino acid environment similarity analysis
  publication-title: BMC Bioinf.
– reference: . (2017) A generalization of convolutional neural networks to graph-structured data. Available at:
– reference: Segler, M.H.
– volume: 16
  start-page: 59
  year: 2002
  end-page: 71
  ident: bib0145
  article-title: Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases
  publication-title: J. Comput. Aided Mol. Des.
– volume: 11
  start-page: 785
  year: 2016
  end-page: 795
  ident: bib0425
  article-title: A renaissance of neural networks in drug discovery
  publication-title: Expert Opin. Drug Discov.
– volume: 2
  start-page: 199
  year: 2013
  ident: bib0200
  article-title: Advancing the activity cliff concept
  publication-title: F1000Res
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: bib0325
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– volume: 52
  start-page: 792
  year: 2012
  end-page: 803
  ident: bib0300
  article-title: Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions
  publication-title: J. Chem. Inf. Model.
– volume: 52
  start-page: 1413
  year: 2012
  end-page: 1437
  ident: bib0005
  article-title: Machine learning methods for property prediction in chemoinformatics: Quo Vadis?
  publication-title: J. Chem. Inf. Model.
– volume: 32
  start-page: 261
  year: 2013
  end-page: 266
  ident: bib0255
  article-title: Transductive support vector machines: promising approach to model small and unbalanced datasets
  publication-title: Mol. Inf.
– reference: Bahdanau, D.
– volume: 171
  start-page: 165
  year: 2008
  end-page: 176
  ident: bib0040
  article-title: Computer-aided drug discovery and development (CADDD):
  publication-title: Chem. Biol. Interact.
– volume: 30
  start-page: 595
  year: 2016
  end-page: 608
  ident: bib0460
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J. Comput. Aided Mol. Des.
– year: 1983
  ident: bib0055
  publication-title: Chemical Graph Theory
– volume: 31
  start-page: 1053
  year: 1981
  end-page: 1058
  ident: bib0075
  article-title: Steric and lipophobic components of the hydrophobic fragmental constant
  publication-title: Arzneimittelforschung.
– volume: 59
  start-page: 75
  year: 2013
  end-page: 90
  ident: bib0335
  article-title: Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors
  publication-title: Eur. J. Med. Chem.
– year: 2018
  ident: bib0530
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
– volume: 110
  start-page: 5959
  year: 1988
  end-page: 5967
  ident: bib0175
  article-title: Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 325
  year: 2010
  end-page: 330
  ident: bib0275
  article-title: Cheminformatics approaches to analyze diversity in compound screening libraries
  publication-title: Curr. Opin. Chem. Biol.
– year: 2003
  ident: bib0025
  publication-title: Handbook of Chemoinformatics: from Data to Knowledge
– volume: 15
  start-page: 18162
  year: 2014
  end-page: 18174
  ident: bib0105
  article-title: Towards global QSAR model building for acute toxicity: Munro database case study
  publication-title: Int. J. Mol. Sci.
– volume: 7
  start-page: 11261
  year: 2017
  ident: bib0225
  article-title: Computational cell cycle profiling of cancer cells for prioritizing FDA-approved drugs with repurposing potential
  publication-title: Sci. Rep.
– volume: 16
  start-page: 049901
  year: 2007
  ident: bib0250
  article-title: Pattern recognition and machine learning
  publication-title: J. Electron. Imag.
– volume: 35
  start-page: 109
  year: 1993
  end-page: 135
  ident: bib0315
  article-title: A statistical view of some chemometrics regression tools
  publication-title: Technometrics
– reference: Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes.
– start-page: 396
  year: 1990
  end-page: 404
  ident: bib0435
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Advances in Neural Information Processing Systems
– volume: 53
  start-page: 2587
  year: 2013
  end-page: 2612
  ident: bib0360
  article-title: Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors
  publication-title: J. Chem. Inf. Model.
– year: 2000
  ident: 10.1016/j.drudis.2018.05.010_bib0085
– volume: 30
  start-page: 595
  year: 2016
  ident: 10.1016/j.drudis.2018.05.010_bib0460
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-016-9938-8
– volume: 10
  start-page: 95
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0165
  article-title: 3D-QSAR in drug design—a review
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802610790232260
– volume: 57
  start-page: 1859
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0350
  article-title: Shallow representation learning via kernel PCA improves QSAR modelability
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00694
– volume: 59
  start-page: 75
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0335
  article-title: Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2012.10.035
– volume: 85
  start-page: 505
  year: 1996
  ident: 10.1016/j.drudis.2018.05.010_bib0420
  article-title: Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis
  publication-title: J. Pharm. Sci.
  doi: 10.1021/js950433d
– volume: 24
  start-page: 3037
  year: 2015
  ident: 10.1016/j.drudis.2018.05.010_bib0400
  article-title: QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach
  publication-title: Med. Chem. Res.
  doi: 10.1007/s00044-015-1354-4
– volume: 16
  start-page: 049901
  year: 2007
  ident: 10.1016/j.drudis.2018.05.010_bib0250
  article-title: Pattern recognition and machine learning
  publication-title: J. Electron. Imag.
  doi: 10.1117/1.2819119
– volume: 30
  start-page: 20
  year: 2011
  ident: 10.1016/j.drudis.2018.05.010_bib0030
  article-title: Chemoinformatics as a theoretical chemistry discipline
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201000100
– year: 1998
  ident: 10.1016/j.drudis.2018.05.010_bib0120
– year: 1991
  ident: 10.1016/j.drudis.2018.05.010_bib0045
– volume: 9
  start-page: 48
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0510
  article-title: Molecular de-novo design through deep reinforcement learning
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-017-0235-x
– volume: 1409
  start-page: 4842
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0445
  article-title: Going deeper with convolutions
  publication-title: arXiv
– volume: 48
  start-page: 1337
  year: 2008
  ident: 10.1016/j.drudis.2018.05.010_bib0095
  article-title: Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci800038f
– volume: 39
  start-page: 164
  year: 1999
  ident: 10.1016/j.drudis.2018.05.010_bib0345
  article-title: Binary quantitative structure–activity relationship (QSAR) analysis of estrogen receptor ligands
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci980140g
– ident: 10.1016/j.drudis.2018.05.010_bib0465
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.drudis.2018.05.010_bib0260
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– year: 2011
  ident: 10.1016/j.drudis.2018.05.010_bib0035
– volume: 26
  start-page: 1127
  year: 2012
  ident: 10.1016/j.drudis.2018.05.010_bib0150
  article-title: Extraction and validation of substructure profiles for enriching compound libraries
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-012-9604-8
– volume: 48
  start-page: 2108
  year: 2008
  ident: 10.1016/j.drudis.2018.05.010_bib0230
  article-title: FieldScreen: virtual screening using molecular fields: application to the DUD data set
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci800110p
– volume: 33
  start-page: 719
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0100
  article-title: Benchmarking a wide range of chemical descriptors for drug–target interaction prediction using a chemogenomic approach
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201400066
– start-page: 2224
  year: 2015
  ident: 10.1016/j.drudis.2018.05.010_bib0160
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: 40
  start-page: 1349
  year: 2000
  ident: 10.1016/j.drudis.2018.05.010_bib0295
  article-title: Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci000383k
– year: 2003
  ident: 10.1016/j.drudis.2018.05.010_bib0025
– volume: 25
  start-page: 197
  year: 2007
  ident: 10.1016/j.drudis.2018.05.010_bib0370
  article-title: Relating protein pharmacology by ligand chemistry
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1284
– volume: 5
  start-page: 27
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0365
  article-title: Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions
  publication-title: J. Cheminformatics
  doi: 10.1186/1758-2946-5-27
– year: 2018
  ident: 10.1016/j.drudis.2018.05.010_bib0530
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 11
  year: 2015
  ident: 10.1016/j.drudis.2018.05.010_bib0375
  article-title: Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004153
– volume: 21
  start-page: 1291
  year: 2016
  ident: 10.1016/j.drudis.2018.05.010_bib0070
  article-title: Descriptors and their selection methods in QSAR analysis: paradigm for drug design
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.06.013
– volume: 35
  start-page: 109
  year: 1993
  ident: 10.1016/j.drudis.2018.05.010_bib0315
  article-title: A statistical view of some chemometrics regression tools
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485033
– ident: 10.1016/j.drudis.2018.05.010_bib0485
– volume: 18
  start-page: 302
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0450
  article-title: 3D deep convolutional neural networks for amino acid environment similarity analysis
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1702-0
– start-page: 6645
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0475
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: Acoustics, Speech and Signal Processing, 2013 IEEE International Conference
  doi: 10.1109/ICASSP.2013.6638947
– year: 2001
  ident: 10.1016/j.drudis.2018.05.010_bib0060
– volume: 37
  start-page: 715
  year: 1997
  ident: 10.1016/j.drudis.2018.05.010_bib0455
  article-title: A neural device for searching direct correlations between structures and properties of chemical compounds
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci940128y
– ident: 10.1016/j.drudis.2018.05.010_bib0500
– volume: 111
  start-page: 1361
  year: 2003
  ident: 10.1016/j.drudis.2018.05.010_bib0355
  article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.5758
– volume: 57
  start-page: 4977
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0015
  article-title: QSAR modeling: where have you been? Where are you going to?
  publication-title: J. Med. Chem.
  doi: 10.1021/jm4004285
– volume: 30
  start-page: 209
  year: 2016
  ident: 10.1016/j.drudis.2018.05.010_bib0125
  article-title: Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-015-9893-9
– volume: 48
  start-page: 1489
  year: 2005
  ident: 10.1016/j.drudis.2018.05.010_bib0215
  article-title: A shape-based 3-D scaffold hopping method and its application to a bacterial protein?protein interactio
  publication-title: J. Med. Chem.
  doi: 10.1021/jm040163o
– volume: 7
  start-page: 121
  year: 1988
  ident: 10.1016/j.drudis.2018.05.010_bib0020
  article-title: Free Wilson analysis. Theory, applications and its relationship to Hansch analysis
  publication-title: Quant. Struct. Act. Relat.
  doi: 10.1002/qsar.19880070303
– volume: 52
  start-page: 792
  year: 2012
  ident: 10.1016/j.drudis.2018.05.010_bib0300
  article-title: Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200615h
– volume: 15
  start-page: 320
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0245
  article-title: Flexible analog search with kernel PCA embedded molecule vectors
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2017.03.003
– volume: 9
  start-page: 2912
  year: 2012
  ident: 10.1016/j.drudis.2018.05.010_bib0410
  article-title: Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300237z
– volume: 15
  start-page: 501
  year: 2004
  ident: 10.1016/j.drudis.2018.05.010_bib0415
  article-title: Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling
  publication-title: SAR QSAR Environ. Res.
  doi: 10.1080/10629360412331297443
– volume: 49
  start-page: 6802
  year: 2006
  ident: 10.1016/j.drudis.2018.05.010_bib0520
  article-title: Bridging chemical and biological space: target fishing using 2D and 3D molecular descriptors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060902w
– year: 1992
  ident: 10.1016/j.drudis.2018.05.010_bib0405
– ident: 10.1016/j.drudis.2018.05.010_bib0480
– volume: 7
  start-page: 11261
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0225
  article-title: Computational cell cycle profiling of cancer cells for prioritizing FDA-approved drugs with repurposing potential
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11508-2
– volume: 4
  start-page: 45
  year: 2005
  ident: 10.1016/j.drudis.2018.05.010_bib0525
  article-title: Data integration: challenges for drug discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1608
– volume: 15
  start-page: 18162
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0105
  article-title: Towards global QSAR model building for acute toxicity: Munro database case study
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151018162
– volume: 60
  start-page: 1238
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0130
  article-title: Recent advances in scaffold hopping
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01437
– start-page: 2672
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0490
  article-title: Generative adversarial nets
– volume: 16
  start-page: 59
  year: 2002
  ident: 10.1016/j.drudis.2018.05.010_bib0145
  article-title: Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1023/A:1016387816342
– start-page: 396
  year: 1990
  ident: 10.1016/j.drudis.2018.05.010_bib0435
  article-title: Handwritten digit recognition with a back-propagation network
– volume: 15
  start-page: 3281
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0135
  article-title: 4D-QSAR: perspectives in drug design
  publication-title: Molecules
  doi: 10.3390/molecules15053281
– volume: 14
  start-page: 325
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0275
  article-title: Cheminformatics approaches to analyze diversity in compound screening libraries
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.03.017
– volume: 52
  start-page: 1103
  year: 2012
  ident: 10.1016/j.drudis.2018.05.010_bib0210
  article-title: Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300030u
– volume: 11
  start-page: 2244
  year: 2016
  ident: 10.1016/j.drudis.2018.05.010_bib0220
  article-title: 3D chemical similarity networks for structure-based target prediction and scaffold hopping
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00253
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.drudis.2018.05.010_bib0495
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 14
  start-page: 69
  year: 2004
  ident: 10.1016/j.drudis.2018.05.010_bib0325
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 96
  start-page: 1027
  year: 1996
  ident: 10.1016/j.drudis.2018.05.010_bib0115
  article-title: Quantum-chemical descriptors in QSAR/QSPR studies
  publication-title: Chem. Rev.
  doi: 10.1021/cr950202r
– volume: 10
  start-page: 39
  year: 2006
  ident: 10.1016/j.drudis.2018.05.010_bib0190
  article-title: Molecular similarity and diversity in chemoinformatics: from theory to applications
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-006-8697-1
– volume: 24
  start-page: 1565
  year: 2006
  ident: 10.1016/j.drudis.2018.05.010_bib0390
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 171
  start-page: 165
  year: 2008
  ident: 10.1016/j.drudis.2018.05.010_bib0040
  article-title: Computer-aided drug discovery and development (CADDD): in-silico-chemico-biological approach
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2006.12.006
– volume: 28
  start-page: 849
  year: 1985
  ident: 10.1016/j.drudis.2018.05.010_bib0170
  article-title: A computational procedure for determining energetically favorable binding sites on biologically important macromolecules
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00145a002
– volume: 46
  start-page: 2445
  year: 2006
  ident: 10.1016/j.drudis.2018.05.010_bib0280
  article-title: Bayes affinity fingerprints improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci600197y
– volume: 51
  start-page: 1831
  year: 2011
  ident: 10.1016/j.drudis.2018.05.010_bib0155
  article-title: Large-scale similarity search profiling of ChEMBL compound data sets
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200199u
– volume: 29
  start-page: 476
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0515
  article-title: Best practices for QSAR model development, validation, and exploitation
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201000061
– volume: 27
  start-page: 427
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0180
  article-title: The continuous molecular fields approach to building 3D-QSAR models
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-013-9656-4
– ident: 10.1016/j.drudis.2018.05.010_bib0470
– volume: 31
  start-page: 1053
  year: 1981
  ident: 10.1016/j.drudis.2018.05.010_bib0075
  article-title: Steric and lipophobic components of the hydrophobic fragmental constant
  publication-title: Arzneimittelforschung.
– volume: 53
  start-page: 2587
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0360
  article-title: Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci4003798
– volume: 43
  start-page: 1947
  year: 2003
  ident: 10.1016/j.drudis.2018.05.010_bib0385
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– volume: 42
  start-page: 64
  year: 2007
  ident: 10.1016/j.drudis.2018.05.010_bib0110
  article-title: Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2006.08.005
– volume: 6
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0235
  article-title: Semantic similarity for automatic classification of chemical compounds
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000937
– volume: 3
  start-page: 75
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0205
  article-title: Advancing the activity cliff concept, part II
  publication-title: F1000Res
  doi: 10.12688/f1000research.3788.1
– volume: 18
  start-page: 165
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0380
  article-title: MOST: most-similar ligand based approach to target prediction
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1586-z
– volume: 57
  start-page: 1286
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0140
  article-title: Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00048
– volume: 32
  start-page: 827
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0065
  article-title: Using graph indices for the analysis and comparison of chemical datasets
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201300076
– volume: 7
  start-page: 903
  year: 2002
  ident: 10.1016/j.drudis.2018.05.010_bib0185
  article-title: Why do we need so many chemical similarity search methods?
  publication-title: Drug Discov. Today
  doi: 10.1016/S1359-6446(02)02411-X
– volume: 29
  start-page: 547
  year: 2015
  ident: 10.1016/j.drudis.2018.05.010_bib0330
  article-title: High-dimensional QSAR prediction of anticancer potency of imidazo [4,5-b] pyridine derivatives using adjusted adaptive LASSO
  publication-title: J. Chemometrics
  doi: 10.1002/cem.2741
– volume: 108
  start-page: 1127
  year: 2008
  ident: 10.1016/j.drudis.2018.05.010_bib0050
  article-title: Some new trends in chemical graph theory
  publication-title: Chem. Rev.
  doi: 10.1021/cr0780006
– volume: 32
  start-page: 261
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0255
  article-title: Transductive support vector machines: promising approach to model small and unbalanced datasets
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201200135
– volume: 50
  start-page: 470
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0265
  article-title: Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci900464s
– volume: 52
  start-page: 1413
  year: 2012
  ident: 10.1016/j.drudis.2018.05.010_bib0005
  article-title: Machine learning methods for property prediction in chemoinformatics: Quo Vadis?
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200409x
– year: 1995
  ident: 10.1016/j.drudis.2018.05.010_bib0080
– volume: 110
  start-page: 5959
  year: 1988
  ident: 10.1016/j.drudis.2018.05.010_bib0175
  article-title: Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00226a005
– volume: 46
  start-page: 462
  year: 2006
  ident: 10.1016/j.drudis.2018.05.010_bib0290
  article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050348j
– volume: 40
  start-page: 236
  year: 1997
  ident: 10.1016/j.drudis.2018.05.010_bib0010
  article-title: Butitaxel analogues: synthesis and structure-activity relationships
  publication-title: J. Med. Chem.
  doi: 10.1021/jm960505t
– start-page: 1097
  year: 2012
  ident: 10.1016/j.drudis.2018.05.010_bib0440
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 2
  start-page: 199
  year: 2013
  ident: 10.1016/j.drudis.2018.05.010_bib0200
  article-title: Advancing the activity cliff concept
  publication-title: F1000Res
  doi: 10.12688/f1000research.2-199.v1
– volume: 11
  start-page: 94
  year: 2004
  ident: 10.1016/j.drudis.2018.05.010_bib0305
  article-title: Advanced statistics: linear regression, part II: multiple linear regression
  publication-title: Acad. Emerg. Med.
  doi: 10.1197/j.aem.2003.09.006
– volume: 50
  start-page: 339
  year: 2010
  ident: 10.1016/j.drudis.2018.05.010_bib0240
  article-title: Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci900450m
– volume: 1526
  start-page: 231
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0195
  article-title: Molecular similarity concepts for informatics applications
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6613-4_13
– volume: 14
  start-page: 3098
  year: 2017
  ident: 10.1016/j.drudis.2018.05.010_bib0505
  article-title: druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00346
– volume: 11
  start-page: 785
  year: 2016
  ident: 10.1016/j.drudis.2018.05.010_bib0425
  article-title: A renaissance of neural networks in drug discovery
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1080/17460441.2016.1201262
– volume: 51
  start-page: 1552
  year: 2011
  ident: 10.1016/j.drudis.2018.05.010_bib0340
  article-title: Visualization of molecular fingerprints
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci1004042
– year: 1983
  ident: 10.1016/j.drudis.2018.05.010_bib0055
– volume: 4
  start-page: 34
  year: 2014
  ident: 10.1016/j.drudis.2018.05.010_bib0270
  article-title: Chemoinformatics applications of cluster analysis
  publication-title: Comput. Mol. Sci.
  doi: 10.1002/wcms.1152
– volume: 43
  start-page: 1288
  year: 2003
  ident: 10.1016/j.drudis.2018.05.010_bib0395
  article-title: QSAR study of ethyl 2-[(3-methyl-2, 5-dioxo (3-pyrrolinyl)) amino]-4-(trifluoromethyl) pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression based on support vector machines
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci0340355
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.drudis.2018.05.010_bib0430
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.drudis.2018.05.010_bib0320
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 10
  start-page: 119
  year: 1996
  ident: 10.1016/j.drudis.2018.05.010_bib0310
  article-title: Evolutionary variable selection in regression and PLS analyses
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199603)10:2<119::AID-CEM409>3.0.CO;2-4
– volume: 1
  start-page: 21
  year: 2009
  ident: 10.1016/j.drudis.2018.05.010_bib0285
  article-title: Virtual screening of bioassay data
  publication-title: J. Cheminf.
  doi: 10.1186/1758-2946-1-21
– volume: 41
  start-page: 233
  year: 2001
  ident: 10.1016/j.drudis.2018.05.010_bib0090
  article-title: Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci0001482
SSID ssj0012956
Score 2.688093
SecondaryResourceType review_article
Snippet •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future...
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1538
SubjectTerms Animals
Diffusion of Innovation
Drug Discovery - methods
High-Throughput Screening Assays
Humans
Informatics
Machine Learning
Molecular Structure
Pattern Recognition, Automated
Pharmaceutical Preparations - chemistry
Quantitative Structure-Activity Relationship
Title Machine learning in chemoinformatics and drug discovery
URI https://dx.doi.org/10.1016/j.drudis.2018.05.010
https://www.ncbi.nlm.nih.gov/pubmed/29750902
https://www.proquest.com/docview/2038273609
https://pubmed.ncbi.nlm.nih.gov/PMC6078794
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLYQXOCAFlh2hwUUJMSJ7vSRNM0RIdAAAiEBErcoTVK2CDqInTnMZX87dh8DswghcWzrtGns2q7y-TPArk1EVCjlUQNeBZx7_KSMCzGRy0RcgypTKk4-v0gHN_z0VtzOwWFXC0Owytb3Nz699tbtmX67mv2nsuxfRYlQGM0xBNPunqJCc84lWfnvf1OYB4azuoMrCQck3ZXP1Rgv9zx2JZF2R1nD3xl-FJ7ep5__oyjfhKXjb7Dc5pPsoJnyCsz5ahWW3rAMrsLeZUNPPdln16_VVn_32R67fCWunqyBPK-RlZ61rSTuWFkxVOrjsKVXpWHMVI7hG90xKuglAOjkO9wcH10fDoK2sUJgRaxGgfRGCmtEwTNTRErENnY8ks7lYeykMCot4lhi4MJo76QR3EqVJzkmHza0lptkHearYeV_AguLJDGZKrIiFTxPVYY_5zzDm6fKEDFMD5JuPbVtWcep-cWD7uBl97rRgiYt6FBo1EIPgumop4Z14xN52alKz1iPxsDwycidTrMaPyzaLTGVH45JKMkwt0tD1YMfjaanc6FyZAK04nNnbGAqQKTds1eq8k9N3p1iToY-cOPLM_4Fi3TUgBA3YX70PPZbmBiN8u3a8rdh4eDkbHDxApaLDjo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LD1MGzdo9lTA4aeasQPybKORbEiXZugwFKgN0GW5NbD5hRdcsi_H2nLabNhKLCrTdqyKJE09PEjwGebiaRSyqMFvIo497iljIsxkStE2oIqcypOnkzz8QX_eikut-Cor4UhWGXw_Z1Pb711uDIKszm6qevRtyQTCqM5hmA63VPiEWwTO5UYwPbhyel4uj5MSFXbxJXkI1LoK-hamJe7XbqaeLuToqPwjP8Vof7OQP8EUt6LTMfP4GlIKdlhN-rnsOWbXdi5RzS4C_vnHUP16oDN7gqufh2wfXZ-x129egFy0oIrPQvdJK5Y3TC06895YFglNWYax_CLrhjV9BIGdPUSLo6_zI7GUeitEFmRqkUkvZHCGlHxwlSJEqlNHU-kc2WcOimMyqs0lRi7MOA7aQS3UpVZifmHja3lJnsFg2be-D1gcZVlplBVUeWCl7kq8P-cF_jwXBnihhlC1s-ntoF4nPpf_NA9wuy77qygyQo6FhqtMIRorXXTEW88IC97U-mNBaQxNjyg-am3rMa9RQcmpvHzJQllBaZ3eayG8Lqz9HosVJFMmFZ878YaWAsQb_fmnaa-bvm7c0zL0A2--e8Rf4TH49nkTJ-dTE_fwhO602ES38Fgcbv07zFPWpQfwj74DciFEOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+chemoinformatics+and+drug+discovery&rft.jtitle=Drug+discovery+today&rft.au=Lo%2C+Yu-Chen&rft.au=Rensi%2C+Stefano+E.&rft.au=Torng%2C+Wen&rft.au=Altman%2C+Russ+B.&rft.date=2018-08-01&rft.issn=1359-6446&rft.eissn=1878-5832&rft.volume=23&rft.issue=8&rft.spage=1538&rft.epage=1546&rft_id=info:doi/10.1016%2Fj.drudis.2018.05.010&rft_id=info%3Apmid%2F29750902&rft.externalDocID=PMC6078794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6446&client=summon