Machine learning in chemoinformatics and drug discovery
•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, proce...
Saved in:
Published in | Drug discovery today Vol. 23; no. 8; pp. 1538 - 1546 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery.
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field. |
---|---|
AbstractList | Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field. •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical 'big' data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical 'big' data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field. |
Author | Rensi, Stefano E. Lo, Yu-Chen Altman, Russ B. Torng, Wen |
Author_xml | – sequence: 1 givenname: Yu-Chen surname: Lo fullname: Lo, Yu-Chen – sequence: 2 givenname: Stefano E. surname: Rensi fullname: Rensi, Stefano E. – sequence: 3 givenname: Wen surname: Torng fullname: Torng, Wen – sequence: 4 givenname: Russ B. orcidid: 0000-0003-3859-2905 surname: Altman fullname: Altman, Russ B. email: rbaltman@stanford.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29750902$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1r3DAQFSWl-Wj_QQk-9mJnJEuW1UOhLG0SSOmlPQutNN7VYkup5F3Iv4-W3YSmh_Q0gnkfo_fOyUmIAQn5SKGhQLurTePS1vncMKB9A6IBCm_IGe1lX4u-ZSfl3QpVd5x3p-Q85w0AZUp078gpU1KAAnZG5A9j1z5gNaJJwYdV5UNl1zhFH4aYJjN7mysTXFXcVlXxs3GH6eE9eTuYMeOH47wgv79_-7W4qe9-Xt8uvt7VVjA11xKNFNaIgfdmoEowyxyn0rklMCeFUd3AmGQ959A5aQS3Ui3bpeTUgrXctBfky0H3fruc0FkMczKjvk9-MulBR-P1y03wa72KO92B7KXiReDTUSDFP1vMs57KH3AcTcC4zZpB2zPZdqAK9PJvr2eTp7QKgB8ANsWcEw7PEAp6X4re6EMpel-KBqFLKYX2-R-a9XMJNu4v9uP_yMcAsKS885h0th6DRecT2lm76F8XeATTnast |
CitedBy_id | crossref_primary_10_1590_s2175_97902025e24510 crossref_primary_10_1093_bib_bbab377 crossref_primary_10_1093_bib_bbaa044 crossref_primary_10_1016_j_jmgm_2023_108466 crossref_primary_10_1007_s11030_022_10590_7 crossref_primary_10_1016_j_jaerosci_2020_105621 crossref_primary_10_1016_j_drudis_2021_02_007 crossref_primary_10_1016_j_fmre_2024_02_011 crossref_primary_10_1016_j_knosys_2024_112282 crossref_primary_10_1080_17460441_2020_1758664 crossref_primary_10_1002_minf_202200232 crossref_primary_10_1021_acs_jmedchem_9b01101 crossref_primary_10_1093_bib_bbab127 crossref_primary_10_1016_j_seppur_2024_126762 crossref_primary_10_1016_j_rechem_2023_100905 crossref_primary_10_1093_bib_bbac577 crossref_primary_10_1021_acs_jcim_2c01251 crossref_primary_10_3389_fmicb_2021_640787 crossref_primary_10_1016_j_drudis_2021_10_005 crossref_primary_10_1021_acs_jcim_1c00619 crossref_primary_10_1016_j_csbj_2019_08_008 crossref_primary_10_1093_bib_bbaa034 crossref_primary_10_1093_bib_bbab484 crossref_primary_10_1186_s13321_021_00499_y crossref_primary_10_1016_j_drudis_2020_01_020 crossref_primary_10_7717_peerj_13163 crossref_primary_10_1016_j_eswa_2022_117287 crossref_primary_10_1186_s13321_024_00935_9 crossref_primary_10_1080_17460441_2021_1909567 crossref_primary_10_1371_journal_pone_0237747 crossref_primary_10_1021_acs_jcim_0c01294 crossref_primary_10_4103_1735_5362_323919 crossref_primary_10_3389_fchem_2023_1292027 crossref_primary_10_1007_s11030_021_10256_w crossref_primary_10_1186_s13321_019_0380_5 crossref_primary_10_3390_pathogens10081048 crossref_primary_10_1080_17460441_2021_1866535 crossref_primary_10_1002_cmdc_202200693 crossref_primary_10_1186_s12859_020_3378_0 crossref_primary_10_3892_wasj_2021_136 crossref_primary_10_1089_omi_2020_0141 crossref_primary_10_3390_philosophies8020017 crossref_primary_10_1016_j_chroma_2024_465650 crossref_primary_10_1021_acs_jmedchem_1c00020 crossref_primary_10_1186_s13321_024_00804_5 crossref_primary_10_1021_acs_chemrestox_9b00227 crossref_primary_10_1016_j_compbiolchem_2020_107377 crossref_primary_10_1002_minf_202200214 crossref_primary_10_1007_s00894_021_04674_8 crossref_primary_10_3389_fbinf_2022_885983 crossref_primary_10_1002_jcc_70074 crossref_primary_10_1002_minf_202200210 crossref_primary_10_1142_S0219720022500160 crossref_primary_10_1007_s00521_021_05991_y crossref_primary_10_1016_j_ejmech_2024_116933 crossref_primary_10_1016_j_ailsci_2022_100048 crossref_primary_10_1080_17460441_2020_1770223 crossref_primary_10_3389_fchem_2021_753002 crossref_primary_10_1038_s41467_022_34807_3 crossref_primary_10_1093_bib_bbac231 crossref_primary_10_1021_acsomega_1c06805 crossref_primary_10_1038_s41598_023_43046_5 crossref_primary_10_1021_acsenergylett_0c00899 crossref_primary_10_1088_1361_651X_abd042 crossref_primary_10_1016_j_addr_2023_114772 crossref_primary_10_1021_acsomega_1c01247 crossref_primary_10_1053_j_semnuclmed_2023_03_003 crossref_primary_10_1093_bib_bbab136 crossref_primary_10_1016_j_comtox_2022_100213 crossref_primary_10_1016_j_fbio_2024_104608 crossref_primary_10_1039_D2RA01057G crossref_primary_10_1016_j_jii_2024_100562 crossref_primary_10_1016_j_compchemeng_2024_108805 crossref_primary_10_1142_S0219519422500725 crossref_primary_10_3389_fgene_2021_744170 crossref_primary_10_1039_D1EE00641J crossref_primary_10_1016_j_jmgm_2021_107848 crossref_primary_10_1007_s12011_020_02150_7 crossref_primary_10_1109_ACCESS_2023_3338735 crossref_primary_10_1007_s10114_022_2326_5 crossref_primary_10_1016_j_jmgm_2021_107844 crossref_primary_10_1007_s40259_023_00611_8 crossref_primary_10_1039_C9CS00786E crossref_primary_10_1002_adfm_202309844 crossref_primary_10_1016_j_laa_2021_05_019 crossref_primary_10_1002_btpr_3291 crossref_primary_10_1038_s42003_021_02393_7 crossref_primary_10_1109_ACCESS_2020_3046190 crossref_primary_10_1007_s11224_024_02279_4 crossref_primary_10_1021_acs_jcim_1c00439 crossref_primary_10_1007_s11030_021_10288_2 crossref_primary_10_3390_ijms20112783 crossref_primary_10_1039_C9CP06869D crossref_primary_10_3389_frai_2023_1069353 crossref_primary_10_1177_2472630320962716 crossref_primary_10_1021_acscentsci_1c00535 crossref_primary_10_1021_acs_jcim_4c00676 crossref_primary_10_1115_1_4062189 crossref_primary_10_1016_j_compbiolchem_2024_108146 crossref_primary_10_1093_bib_bbz171 crossref_primary_10_3390_pr9081456 crossref_primary_10_1016_j_foodchem_2021_129531 crossref_primary_10_3390_molecules25235704 crossref_primary_10_1039_D0CP03620J crossref_primary_10_1080_10590501_2018_1537563 crossref_primary_10_1038_s41598_021_93070_6 crossref_primary_10_3389_fphar_2019_00031 crossref_primary_10_1002_adma_202105063 crossref_primary_10_1002_cmdc_202200291 crossref_primary_10_3389_fbinf_2022_906644 crossref_primary_10_1007_s10489_021_02495_z crossref_primary_10_1038_s41585_021_00465_1 crossref_primary_10_2174_1874471015666220831091403 crossref_primary_10_3390_ph18030297 crossref_primary_10_1021_acsomega_8b02419 crossref_primary_10_1021_acsomega_9b02663 crossref_primary_10_1093_bib_bbab111 crossref_primary_10_1186_s13065_024_01302_3 crossref_primary_10_1038_s41598_021_88939_5 crossref_primary_10_1016_j_compbiomed_2020_104197 crossref_primary_10_1016_j_compbiomed_2022_105403 crossref_primary_10_3390_agriengineering6030168 crossref_primary_10_3389_fchem_2021_662688 crossref_primary_10_1093_database_baab068 crossref_primary_10_1021_acs_jcim_1c00691 crossref_primary_10_1016_j_chempr_2023_12_018 crossref_primary_10_3389_fendo_2019_00519 crossref_primary_10_1007_s10822_020_00314_0 crossref_primary_10_1021_acs_jcim_1c00699 crossref_primary_10_1021_acs_jcim_4c01980 crossref_primary_10_1038_s41467_019_13680_7 crossref_primary_10_1016_j_ejps_2019_104967 crossref_primary_10_1038_s41598_022_22324_8 crossref_primary_10_1016_j_parint_2021_102366 crossref_primary_10_1021_acschembio_9b00173 crossref_primary_10_1063_5_0088019 crossref_primary_10_1021_acs_jcim_4c00898 crossref_primary_10_1016_j_compbiomed_2021_104249 crossref_primary_10_1111_cbdd_13701 crossref_primary_10_2144_fsoa_2022_0033 crossref_primary_10_3390_molecules25143250 crossref_primary_10_2174_2213337209666220728094248 crossref_primary_10_3390_molecules23102520 crossref_primary_10_1016_j_addr_2021_114098 crossref_primary_10_1093_bib_bbz150 crossref_primary_10_1109_ACCESS_2020_2979833 crossref_primary_10_3390_ph18030282 crossref_primary_10_1016_j_comtox_2022_100251 crossref_primary_10_1021_acsmacrolett_1c00521 crossref_primary_10_1021_acs_molpharmaceut_2c00029 crossref_primary_10_1016_j_procs_2019_11_145 crossref_primary_10_1080_07391102_2019_1704881 crossref_primary_10_1021_acs_jcim_0c01100 crossref_primary_10_1021_acsomega_2c02854 crossref_primary_10_1021_acs_jcim_0c00250 crossref_primary_10_1016_j_compchemeng_2019_106656 crossref_primary_10_1093_bib_bbab527 crossref_primary_10_53879_id_58_08_12930 crossref_primary_10_1016_j_drudis_2020_02_002 crossref_primary_10_1016_j_drudis_2020_10_007 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_2174_0929867328666210504114351 crossref_primary_10_1021_acsmedchemlett_9b00489 crossref_primary_10_3389_fdgth_2022_939292 crossref_primary_10_1021_acs_jcim_4c00071 crossref_primary_10_4236_pp_2022_137018 crossref_primary_10_1038_s41598_021_93771_y crossref_primary_10_3390_molecules28145601 crossref_primary_10_1126_sciadv_abc5329 crossref_primary_10_7717_peerj_cs_515 crossref_primary_10_3390_jpm10020021 crossref_primary_10_1021_acs_chemrestox_0c00316 crossref_primary_10_1021_acscombsci_9b00166 crossref_primary_10_1186_s13020_020_00313_1 crossref_primary_10_1021_acs_jcim_8b00803 crossref_primary_10_1016_j_apsb_2024_03_002 crossref_primary_10_2147_IDR_S395203 crossref_primary_10_1016_j_bpc_2024_107179 crossref_primary_10_1002_smll_202004182 crossref_primary_10_1016_j_biotechadv_2022_107937 crossref_primary_10_1002_pca_3239 crossref_primary_10_2174_1568026622666220701091339 crossref_primary_10_3390_molecules26226761 crossref_primary_10_1007_s10822_020_00287_0 crossref_primary_10_3389_fbioe_2019_00065 crossref_primary_10_1021_acs_jcim_4c00046 crossref_primary_10_1155_2022_3212738 crossref_primary_10_1093_bib_bbaa218 crossref_primary_10_1162_dint_a_00109 crossref_primary_10_1016_j_drudis_2022_103356 crossref_primary_10_1021_acs_jcim_2c00580 crossref_primary_10_1080_07391102_2023_2196701 crossref_primary_10_1016_j_actbio_2021_05_053 crossref_primary_10_4155_fmc_2020_0156 crossref_primary_10_1002_ail2_31 crossref_primary_10_1039_D0CE00111B crossref_primary_10_1021_acs_chemrestox_2c00384 crossref_primary_10_1002_cbic_201800751 crossref_primary_10_1002_mef2_18 crossref_primary_10_1002_advs_202405404 crossref_primary_10_1021_acs_jctc_1c00810 crossref_primary_10_1039_D0NP00043D crossref_primary_10_3389_frobt_2019_00143 crossref_primary_10_1002_slct_202003573 crossref_primary_10_1021_acs_est_4c01017 crossref_primary_10_1371_journal_pone_0267471 crossref_primary_10_1021_acsomega_2c00664 crossref_primary_10_1021_acs_jpcc_3c03392 crossref_primary_10_1016_j_asoc_2021_108199 crossref_primary_10_1002_ange_202008366 crossref_primary_10_1080_08839514_2021_1966882 crossref_primary_10_1109_TCBB_2024_3402675 crossref_primary_10_1371_journal_pcbi_1010029 crossref_primary_10_1016_j_molstruc_2019_127529 crossref_primary_10_1109_ACCESS_2022_3195218 crossref_primary_10_2174_1574893614666191119123935 crossref_primary_10_1016_j_compbiomed_2024_109279 crossref_primary_10_1038_s41467_020_18671_7 crossref_primary_10_1016_j_pscia_2024_100050 crossref_primary_10_1039_D0SC00129E crossref_primary_10_1007_s00204_024_03866_4 crossref_primary_10_1039_D0BM01672A crossref_primary_10_1016_j_ejps_2020_105538 crossref_primary_10_1039_D1SC01713F crossref_primary_10_1021_acs_jcim_9b01096 crossref_primary_10_3390_ijms20092175 crossref_primary_10_1093_bib_bbz103 crossref_primary_10_1021_acsptsci_1c00118 crossref_primary_10_1021_acsomega_8b03693 crossref_primary_10_3390_sym13040546 crossref_primary_10_1016_j_fluid_2023_113966 crossref_primary_10_1111_cbdd_14057 crossref_primary_10_1021_acsomega_3c01641 crossref_primary_10_2174_0113816128322226240815063730 crossref_primary_10_3390_biom10111486 crossref_primary_10_2174_1381612826666200317125956 crossref_primary_10_3389_fntpr_2023_1252092 crossref_primary_10_3390_ijms20174191 crossref_primary_10_1021_acs_jpclett_3c01709 crossref_primary_10_3389_fimmu_2021_642383 crossref_primary_10_1021_acs_jcim_2c00258 crossref_primary_10_1007_s13042_019_01050_0 crossref_primary_10_2174_1568026620666200128160454 crossref_primary_10_1038_s41598_021_97962_5 crossref_primary_10_1093_bioinformatics_btaa170 crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1016_j_chempr_2020_02_017 crossref_primary_10_3389_fchem_2019_00809 crossref_primary_10_1186_s13321_021_00537_9 crossref_primary_10_1016_j_drudis_2021_11_023 crossref_primary_10_1002_anie_202204647 crossref_primary_10_1111_cbdd_14062 crossref_primary_10_1002_jat_4586 crossref_primary_10_1039_D0NJ03314F crossref_primary_10_1007_s43440_023_00508_x crossref_primary_10_1016_j_crmeth_2023_100621 crossref_primary_10_1021_acs_jcim_4c00366 crossref_primary_10_1039_D2DD00090C crossref_primary_10_1016_j_reprotox_2020_05_004 crossref_primary_10_1021_acs_jcim_0c01164 crossref_primary_10_1016_j_fmre_2023_03_008 crossref_primary_10_1016_j_drudis_2019_01_008 crossref_primary_10_1021_acs_jctc_9b00986 crossref_primary_10_1093_bib_bbaa411 crossref_primary_10_1016_j_laa_2024_08_008 crossref_primary_10_1021_acs_jcim_4c01583 crossref_primary_10_1039_D0CS00098A crossref_primary_10_1002_pep2_24305 crossref_primary_10_1021_acs_jcim_3c01232 crossref_primary_10_3390_ijms231911003 crossref_primary_10_1021_acs_jmedchem_1c01789 crossref_primary_10_3390_ph13110409 crossref_primary_10_1016_j_atmosenv_2024_120775 crossref_primary_10_1021_acs_jcim_4c01101 crossref_primary_10_1007_s11427_020_1959_5 crossref_primary_10_1063_5_0213317 crossref_primary_10_3390_ijms22094435 crossref_primary_10_1039_D0SC00445F crossref_primary_10_1016_j_molstruc_2020_127732 crossref_primary_10_1021_acs_jcim_4c02309 crossref_primary_10_1007_s11030_021_10329_w crossref_primary_10_2174_1389557520666200204123156 crossref_primary_10_1371_journal_pone_0282924 crossref_primary_10_4081_jphia_2023_2517 crossref_primary_10_1021_acsomega_3c06225 crossref_primary_10_1002_minf_202100190 crossref_primary_10_1016_j_ijpharm_2021_120705 crossref_primary_10_3390_ijms241411488 crossref_primary_10_1016_j_chemolab_2024_105145 crossref_primary_10_2174_1574893617666220329181607 crossref_primary_10_1021_acs_jctc_2c01024 crossref_primary_10_1002_wcms_1429 crossref_primary_10_1088_2632_2153_acb900 crossref_primary_10_1016_j_compbiomed_2019_01_008 crossref_primary_10_1039_D0CP00305K crossref_primary_10_1111_cbdd_13674 crossref_primary_10_1177_11779322221090349 crossref_primary_10_3390_ijms24087139 crossref_primary_10_1021_acs_jcim_9b01174 crossref_primary_10_1080_17460441_2020_1696307 crossref_primary_10_1016_j_omtn_2024_102295 crossref_primary_10_30699_ijmm_18_3_135 crossref_primary_10_1021_acs_jpca_0c01280 crossref_primary_10_1002_anie_202008366 crossref_primary_10_1002_cpe_6242 crossref_primary_10_1021_acs_jcim_0c00884 crossref_primary_10_1021_acsomega_2c06944 crossref_primary_10_1039_C9CP06554G crossref_primary_10_1093_bioinformatics_btad234 crossref_primary_10_1002_ange_202204647 crossref_primary_10_1208_s12249_020_01747_4 crossref_primary_10_3390_molecules25225277 crossref_primary_10_1039_C9RE00116F crossref_primary_10_1080_17460441_2019_1613368 crossref_primary_10_1016_j_phrs_2020_105077 crossref_primary_10_1002_ps_7700 crossref_primary_10_3389_fmicb_2019_03097 crossref_primary_10_1021_acs_chemrev_1c00107 crossref_primary_10_1021_acs_chemrev_8b00728 crossref_primary_10_1021_acs_jcim_8b00768 crossref_primary_10_1016_j_patter_2021_100390 crossref_primary_10_3390_molecules27227986 crossref_primary_10_34172_bi_2021_40 crossref_primary_10_1021_acs_jcim_3c00594 crossref_primary_10_3390_molecules26133800 crossref_primary_10_3390_molecules26175124 crossref_primary_10_1039_D4SC03921A crossref_primary_10_1021_acsomega_2c02554 crossref_primary_10_1016_j_cej_2024_153274 crossref_primary_10_1016_j_ijpharm_2022_122263 crossref_primary_10_1002_wcms_1567 crossref_primary_10_1155_and_8165541 crossref_primary_10_3390_app14020921 crossref_primary_10_1038_s41598_024_79377_0 crossref_primary_10_1021_acs_jcim_8b00434 crossref_primary_10_1021_acs_molpharmaceut_2c00680 crossref_primary_10_1016_j_ailsci_2024_100121 crossref_primary_10_1080_17460441_2021_1858793 crossref_primary_10_3389_fddsv_2024_1336025 crossref_primary_10_1038_s41598_023_37853_z crossref_primary_10_1002_ange_202420204 crossref_primary_10_1055_a_2131_2843 crossref_primary_10_4155_fdd_2021_0009 crossref_primary_10_1021_acs_jmedchem_0c00385 crossref_primary_10_1007_s10822_020_00279_0 crossref_primary_10_1021_acs_jcim_3c01796 crossref_primary_10_1021_acs_jpca_0c05969 crossref_primary_10_1016_j_ejmech_2024_116360 crossref_primary_10_2174_0109298673266470231023110841 crossref_primary_10_1016_j_bmcl_2020_127349 crossref_primary_10_3390_ijms21155576 crossref_primary_10_1016_j_enmf_2021_10_004 crossref_primary_10_1016_j_tips_2020_12_004 crossref_primary_10_1016_j_asoc_2023_110104 crossref_primary_10_1021_acs_jcim_9b01184 crossref_primary_10_1016_j_drudis_2020_12_003 crossref_primary_10_1016_j_tips_2019_07_005 crossref_primary_10_1021_acs_jcim_9b01068 crossref_primary_10_1021_acs_molpharmaceut_4c00946 crossref_primary_10_1093_narcan_zcad010 crossref_primary_10_1186_s12859_020_03643_x crossref_primary_10_1021_acs_jmedchem_2c00254 crossref_primary_10_1002_ange_201909987 crossref_primary_10_1080_17460441_2020_1776696 crossref_primary_10_1093_jxb_erae156 crossref_primary_10_1186_s13321_022_00630_7 crossref_primary_10_1016_j_jbi_2018_07_005 crossref_primary_10_1016_j_csbj_2024_07_003 crossref_primary_10_1016_j_sbi_2019_03_022 crossref_primary_10_1016_j_toxlet_2021_01_002 crossref_primary_10_1159_000518572 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_3390_biom14010072 crossref_primary_10_1002_nme_7323 crossref_primary_10_1039_D2FO03466B crossref_primary_10_1080_1062936X_2020_1723136 crossref_primary_10_1016_j_jddst_2023_104751 crossref_primary_10_1038_s41598_023_28416_3 crossref_primary_10_3103_S0027131421020127 crossref_primary_10_1007_s13318_023_00832_w crossref_primary_10_1186_s13321_019_0397_9 crossref_primary_10_1021_acs_jcim_0c01415 crossref_primary_10_3390_biom12091279 crossref_primary_10_2174_1570180819666220420092723 crossref_primary_10_1021_acs_jcim_0c00443 crossref_primary_10_1021_acs_jcim_3c00685 crossref_primary_10_1021_acs_jcim_0c00321 crossref_primary_10_1093_bib_bbac099 crossref_primary_10_3390_ijms25084303 crossref_primary_10_1021_acsomega_1c01865 crossref_primary_10_1186_s13321_021_00510_6 crossref_primary_10_3390_membranes13110851 crossref_primary_10_1007_s11030_021_10326_z crossref_primary_10_1063_5_0017229 crossref_primary_10_1016_j_molliq_2023_123708 crossref_primary_10_1021_acs_jcim_9b01123 crossref_primary_10_1111_coin_12515 crossref_primary_10_1007_s00726_023_03245_w crossref_primary_10_3389_fchem_2024_1380266 crossref_primary_10_1016_j_ijpharm_2025_125385 crossref_primary_10_1016_j_isci_2023_108756 crossref_primary_10_1021_acs_jcim_0c00113 crossref_primary_10_1021_acs_jcim_3c00307 crossref_primary_10_1186_s13321_021_00500_8 crossref_primary_10_3390_ijms24119289 crossref_primary_10_3389_fchem_2019_00779 crossref_primary_10_1371_journal_pone_0277873 crossref_primary_10_2139_ssrn_3746801 crossref_primary_10_1063_5_0016005 crossref_primary_10_3390_ijms20153633 crossref_primary_10_1039_D1TA06772A crossref_primary_10_3390_ijms22083944 crossref_primary_10_1007_s11030_024_10819_7 crossref_primary_10_1002_minf_202100264 crossref_primary_10_1063_5_0157644 crossref_primary_10_1016_j_jmgm_2022_108401 crossref_primary_10_1021_acs_jcim_2c01526 crossref_primary_10_1002_mco2_115 crossref_primary_10_3390_cells8101286 crossref_primary_10_1021_acs_jcim_9b00295 crossref_primary_10_1007_s10822_019_00221_z crossref_primary_10_1002_minf_202300210 crossref_primary_10_1021_acsomega_0c03356 crossref_primary_10_3390_pharmaceutics12090879 crossref_primary_10_1016_j_chemolab_2022_104574 crossref_primary_10_3390_biom12091246 crossref_primary_10_1002_anie_202420204 crossref_primary_10_3389_fphar_2020_00639 crossref_primary_10_1021_acs_jctc_2c01308 crossref_primary_10_1088_1757_899X_1110_1_012015 crossref_primary_10_1002_jcc_27061 crossref_primary_10_1016_j_scib_2020_04_006 crossref_primary_10_1016_j_cma_2021_113933 crossref_primary_10_1515_pac_2022_0202 crossref_primary_10_1002_minf_202060017 crossref_primary_10_1002_trc2_12445 crossref_primary_10_1016_j_jbc_2021_100559 crossref_primary_10_4018_IJQSPR_294900 crossref_primary_10_1016_j_tifs_2021_05_031 crossref_primary_10_1021_acs_jcim_9b01212 crossref_primary_10_2751_jcac_23_25 crossref_primary_10_3389_fgene_2024_1483490 crossref_primary_10_2174_1573406419666230601092358 crossref_primary_10_1007_s10822_021_00376_8 crossref_primary_10_1080_17460441_2021_1901685 crossref_primary_10_1093_bib_bbad142 crossref_primary_10_1093_comjnl_bxaa160 crossref_primary_10_2174_1381612826666200515131245 crossref_primary_10_3390_ma14216455 crossref_primary_10_1016_j_jbc_2021_100562 crossref_primary_10_1371_journal_pcbi_1009943 crossref_primary_10_1038_s41401_025_01513_x crossref_primary_10_1080_07391102_2023_2234039 crossref_primary_10_3390_molecules24213909 crossref_primary_10_1186_s13040_019_0196_x crossref_primary_10_1016_j_cej_2021_131810 crossref_primary_10_1016_j_fpc_2023_12_004 crossref_primary_10_3389_fphar_2019_00071 crossref_primary_10_1002_aic_17971 crossref_primary_10_1038_s41598_024_82981_9 crossref_primary_10_1016_j_cofs_2020_09_008 crossref_primary_10_1021_acs_molpharmaceut_2c00962 crossref_primary_10_1021_acsomega_4c05768 crossref_primary_10_1021_acs_jmedchem_0c02033 crossref_primary_10_1016_j_bmcl_2023_129171 crossref_primary_10_2144_fsoa_2022_0085 crossref_primary_10_1002_asia_202200203 crossref_primary_10_3390_cimb46030165 crossref_primary_10_1038_s42256_024_00855_1 crossref_primary_10_1080_17460441_2021_1929921 crossref_primary_10_1017_S0031182020000207 crossref_primary_10_53982_aijnas_2021_0101_05_j crossref_primary_10_1021_acs_jcim_9b00266 crossref_primary_10_1002_anie_201909987 crossref_primary_10_1021_acs_jafc_4c08587 crossref_primary_10_3390_ph16071050 crossref_primary_10_3389_fcimb_2022_882995 crossref_primary_10_3389_fphar_2022_833099 crossref_primary_10_1093_bib_bbad046 crossref_primary_10_7855_IJHE_2024_26_6_001 crossref_primary_10_1515_psr_2018_0115 crossref_primary_10_2174_1389450122999210104205732 crossref_primary_10_1080_17460441_2021_1918098 crossref_primary_10_1002_ps_5820 crossref_primary_10_25259_SRJHS_16_2024 crossref_primary_10_1080_08927022_2020_1764552 crossref_primary_10_1021_acs_iecr_3c02775 crossref_primary_10_1093_bib_bbab291 crossref_primary_10_3389_fcell_2022_794413 crossref_primary_10_1039_D4MD00869C crossref_primary_10_1016_j_cmpb_2024_108163 crossref_primary_10_1093_bib_bbac024 crossref_primary_10_1111_cbdd_13750 crossref_primary_10_3390_metabo14020093 crossref_primary_10_1038_s41467_024_55707_8 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_3390_molecules27051496 crossref_primary_10_1016_j_ipha_2024_09_001 crossref_primary_10_3390_molecules28041663 crossref_primary_10_3390_life12091407 crossref_primary_10_1021_acs_jcim_8b00459 crossref_primary_10_4236_cc_2020_81001 crossref_primary_10_2174_1570163817666200316104404 crossref_primary_10_1016_j_commatsci_2023_112740 crossref_primary_10_3390_molecules24112115 crossref_primary_10_1093_bib_bbac257 crossref_primary_10_4155_fmc_2021_0243 crossref_primary_10_1021_acs_jpca_2c08563 crossref_primary_10_1016_j_csbj_2021_03_004 crossref_primary_10_1186_s40537_021_00465_3 crossref_primary_10_1007_s40203_025_00305_9 crossref_primary_10_1016_j_isci_2022_105023 crossref_primary_10_1021_acs_jafc_4c08527 crossref_primary_10_1002_adts_201800129 crossref_primary_10_1038_s41388_024_03077_2 crossref_primary_10_1016_j_scitotenv_2022_154849 crossref_primary_10_1007_s40142_019_00177_4 crossref_primary_10_1021_acs_jcim_0c00517 crossref_primary_10_1016_j_bmc_2021_116301 crossref_primary_10_1016_j_compbiolchem_2022_107778 crossref_primary_10_1016_j_drudis_2019_12_014 crossref_primary_10_2174_0115748936276510231123121404 crossref_primary_10_1021_acs_jcim_0c00993 crossref_primary_10_1016_j_chemolab_2022_104637 crossref_primary_10_1093_bib_bbac288 crossref_primary_10_1155_2021_5548157 crossref_primary_10_1002_minf_202400274 crossref_primary_10_1021_acs_jpclett_1c02361 crossref_primary_10_1142_S2737416521500526 crossref_primary_10_1016_j_ejmech_2019_111981 crossref_primary_10_1021_acs_jcim_1c00733 crossref_primary_10_1039_D1NJ02261J crossref_primary_10_1038_s41598_022_12877_z crossref_primary_10_1515_cmb_2020_0108 crossref_primary_10_2174_1573409915666190716143601 crossref_primary_10_1007_s10462_023_10585_2 crossref_primary_10_31083_j_fbl2706188 crossref_primary_10_1007_s10822_021_00440_3 crossref_primary_10_1039_D2DD00045H crossref_primary_10_1002_pro_3732 crossref_primary_10_1021_acs_iecr_3c02305 crossref_primary_10_1111_cbdd_13663 crossref_primary_10_1093_bib_bbad120 crossref_primary_10_1002_minf_202200088 crossref_primary_10_1016_j_compeleceng_2022_108475 crossref_primary_10_1063_5_0088784 crossref_primary_10_3390_ijms24065316 crossref_primary_10_1080_17460441_2021_1915982 crossref_primary_10_2139_ssrn_4399415 crossref_primary_10_1021_acs_jctc_0c00236 crossref_primary_10_1038_s41598_020_71502_z crossref_primary_10_1016_j_drudis_2019_12_009 crossref_primary_10_1103_PhysRevMaterials_4_064414 crossref_primary_10_1273_cbij_19_19 crossref_primary_10_1021_acs_jafc_1c07018 |
Cites_doi | 10.1007/s10822-016-9938-8 10.2174/156802610790232260 10.1021/acs.jcim.6b00694 10.1016/j.ejmech.2012.10.035 10.1021/js950433d 10.1007/s00044-015-1354-4 10.1117/1.2819119 10.1002/minf.201000100 10.1186/s13321-017-0235-x 10.1021/ci800038f 10.1021/ci980140g 10.1016/S0893-6080(00)00026-5 10.1007/s10822-012-9604-8 10.1021/ci800110p 10.1002/minf.201400066 10.1021/ci000383k 10.1038/nbt1284 10.1186/1758-2946-5-27 10.1016/j.drudis.2018.01.039 10.1371/journal.pcbi.1004153 10.1016/j.drudis.2016.06.013 10.1080/00401706.1993.10485033 10.1186/s12859-017-1702-0 10.1109/ICASSP.2013.6638947 10.1021/ci940128y 10.1289/ehp.5758 10.1021/jm4004285 10.1007/s10822-015-9893-9 10.1021/jm040163o 10.1002/qsar.19880070303 10.1021/ci200615h 10.1016/j.csbj.2017.03.003 10.1021/mp300237z 10.1080/10629360412331297443 10.1021/jm060902w 10.1038/s41598-017-11508-2 10.1038/nrd1608 10.3390/ijms151018162 10.1021/acs.jmedchem.6b01437 10.1023/A:1016387816342 10.3390/molecules15053281 10.1016/j.cbpa.2010.03.017 10.1021/ci300030u 10.1021/acschembio.6b00253 10.1038/nature14236 10.1142/S0129065704001899 10.1021/cr950202r 10.1007/s11030-006-8697-1 10.1038/nbt1206-1565 10.1016/j.cbi.2006.12.006 10.1021/jm00145a002 10.1021/ci600197y 10.1021/ci200199u 10.1002/minf.201000061 10.1007/s10822-013-9656-4 10.1021/ci4003798 10.1021/ci034160g 10.1016/j.ejmech.2006.08.005 10.1371/journal.pcbi.1000937 10.12688/f1000research.3788.1 10.1186/s12859-017-1586-z 10.1021/acs.jcim.7b00048 10.1002/minf.201300076 10.1016/S1359-6446(02)02411-X 10.1002/cem.2741 10.1021/cr0780006 10.1002/minf.201200135 10.1021/ci900464s 10.1021/ci200409x 10.1021/ja00226a005 10.1021/ci050348j 10.1021/jm960505t 10.12688/f1000research.2-199.v1 10.1197/j.aem.2003.09.006 10.1021/ci900450m 10.1007/978-1-4939-6613-4_13 10.1021/acs.molpharmaceut.7b00346 10.1080/17460441.2016.1201262 10.1021/ci1004042 10.1002/wcms.1152 10.1021/ci0340355 10.1038/nature14539 10.1080/00401706.1970.10488634 10.1002/(SICI)1099-128X(199603)10:2<119::AID-CEM409>3.0.CO;2-4 10.1186/1758-2946-1-21 10.1021/ci0001482 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.drudis.2018.05.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1878-5832 |
EndPage | 1546 |
ExternalDocumentID | PMC6078794 29750902 10_1016_j_drudis_2018_05_010 S1359644617304695 |
Genre | Research Support, U.S. Gov't, P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U01 GM061374 – fundername: FDA HHS grantid: U01 FD004979 – fundername: NLM NIH HHS grantid: R01 LM005652 – fundername: NIGMS NIH HHS grantid: R01 GM102365 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABGSF ABJNI ABMAC ABOCM ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IH2 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SPCBC SSP SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3 |
IEDL.DBID | .~1 |
ISSN | 1359-6446 1878-5832 |
IngestDate | Thu Aug 21 13:57:20 EDT 2025 Thu Jul 10 22:20:26 EDT 2025 Mon Jul 21 06:01:17 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Tue Jul 01 04:30:56 EDT 2025 Fri Feb 23 02:30:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3859-2905 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1359644617304695 |
PMID | 29750902 |
PQID | 2038273609 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078794 proquest_miscellaneous_2038273609 pubmed_primary_29750902 crossref_primary_10_1016_j_drudis_2018_05_010 crossref_citationtrail_10_1016_j_drudis_2018_05_010 elsevier_sciencedirect_doi_10_1016_j_drudis_2018_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Drug discovery today |
PublicationTitleAlternate | Drug Discov Today |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Garcia-Domenech (bib0050) 2008; 108 Akella, DeCaprio (bib0275) 2010; 14 Nekoei (bib0400) 2015; 24 Kearnes (bib0460) 2016; 30 Sahigara (bib0365) 2013; 5 Marill (bib0305) 2004; 11 Gao (bib0345) 1999; 39 (2014) Neural machine translation by jointly learning to align and translate. Graves (bib0475) 2013 Cramer (bib0175) 1988; 110 Yeo (bib0150) 2012; 26 Maldonado (bib0190) 2006; 10 Tropsha (bib0515) 2010; 29 Owen (bib0340) 2011; 51 (bib0025) 2003 (2017) A generalization of convolutional neural networks to graph-structured data. Available at Baskin (bib0425) 2016; 11 Hechtlinger, Y. Devillers (bib0415) 2004; 15 Raymond, Willett (bib0145) 2002; 16 Hu (bib0210) 2012; 52 Kubinyi (bib0310) 1996; 10 (bib0085) 2000 Cherkasov (bib0015) 2014; 57 Sheridan, Kearsley (bib0185) 2002; 7 Andrade (bib0135) 2010; 15 Krizhevsky (bib0440) 2012 (bib0035) 2011 Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes. Hong (bib0095) 2008; 48 Bahdanau, D. Verma (bib0165) 2010; 10 Ferreira, Couto (bib0235) 2010; 6 Hoerl, Kennard (bib0320) 1970; 12 Kondratovich (bib0255) 2013; 32 Chen (bib0300) 2012; 52 Sawada (bib0100) 2014; 33 Ali (bib0010) 1997; 40 Ash, Fourches (bib0140) 2017; 57 Varnek, Baskin (bib0030) 2011; 30 Khanfar, Taha (bib0360) 2013; 53 Mnih (bib0495) 2015; 518 Chen (bib0530) 2018 Kusner, M.J. Searls (bib0525) 2005; 4 Eriksson (bib0355) 2003; 111 Fourches, Tropsha (bib0065) 2013; 32 Hyvarinen, Oja (bib0260) 2000; 13 Szegedy (bib0445) 2014; 1409 Kadurin (bib0505) 2017; 14 Rensi, Altman (bib0245) 2017; 15 Olivecrona (bib0510) 2017; 9 Bajorath (bib0195) 2017; 1526 Svetnik (bib0385) 2003; 43 Chuprina (bib0265) 2010; 50 Myint (bib0410) 2012; 9 (bib0055) 1983 Helguera (bib0335) 2013; 59 Noble (bib0390) 2006; 24 Schierz (bib0285) 2009; 1 MacCuish, MacCuish (bib0270) 2014; 4 Liu (bib0395) 2003; 43 Rush (bib0215) 2005; 48 Baskin (bib0455) 1997; 37 Chavan (bib0105) 2014; 15 Huang (bib0380) 2017; 18 Cheeseright (bib0230) 2008; 48 (bib0045) 1991 Karelson (bib0115) 1996; 96 Frank, Friedman (bib0315) 1993; 35 (bib0405) 1992 Hu (bib0130) 2017; 60 Goodfellow (bib0490) 2014 Heikamp, Bajorath (bib0155) 2011; 51 Stumpfe (bib0205) 2014; 3 Nasrabadi (bib0250) 2007; 16 Varnek, Baskin (bib0005) 2012; 52 Baskin, Zhokhova (bib0180) 2013; 27 Rensi, Altman (bib0350) 2017; 57 Lo (bib0225) 2017; 7 (bib0120) 1998 Nettles (bib0520) 2006; 49 Algamal (bib0330) 2015; 29 Kapetanovic (bib0040) 2008; 171 Duvenaud (bib0160) 2015 (2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. Available at Saiz-Urra (bib0110) 2007; 42 Hert (bib0290) 2006; 46 Khan (bib0070) 2016; 21 LeCun (bib0435) 1990 Segler, M.H. LeCun (bib0430) 2015; 521 Keiser (bib0370) 2007; 25 Bajorath (bib0090) 2001; 41 Torng, Altman (bib0450) 2017; 18 Seeger (bib0325) 2004; 14 Hussain, Rea (bib0240) 2010; 50 Bender (bib0280) 2006; 46 Hu (bib0200) 2013; 2 Lo (bib0220) 2016; 11 Gobburu, Chen (bib0420) 1996; 85 (2017) Grammar variational autoencoder. Poroikov (bib0295) 2000; 40 (bib0060) 2001 Kubinyi (bib0020) 1988; 7 Testa, Seiler (bib0075) 1981; 31 (bib0080) 1995 Sliwoski (bib0125) 2016; 30 Lo (bib0375) 2015; 11 Goodford (bib0170) 1985; 28 Garcia-Domenech (10.1016/j.drudis.2018.05.010_bib0050) 2008; 108 Rush (10.1016/j.drudis.2018.05.010_bib0215) 2005; 48 Chuprina (10.1016/j.drudis.2018.05.010_bib0265) 2010; 50 Khan (10.1016/j.drudis.2018.05.010_bib0070) 2016; 21 Raymond (10.1016/j.drudis.2018.05.010_bib0145) 2002; 16 10.1016/j.drudis.2018.05.010_bib0470 Rensi (10.1016/j.drudis.2018.05.010_bib0245) 2017; 15 Hu (10.1016/j.drudis.2018.05.010_bib0210) 2012; 52 Kubinyi (10.1016/j.drudis.2018.05.010_bib0020) 1988; 7 Ferreira (10.1016/j.drudis.2018.05.010_bib0235) 2010; 6 Andrade (10.1016/j.drudis.2018.05.010_bib0135) 2010; 15 Chavan (10.1016/j.drudis.2018.05.010_bib0105) 2014; 15 Hussain (10.1016/j.drudis.2018.05.010_bib0240) 2010; 50 Karelson (10.1016/j.drudis.2018.05.010_bib0115) 1996; 96 Bajorath (10.1016/j.drudis.2018.05.010_bib0195) 2017; 1526 Huang (10.1016/j.drudis.2018.05.010_bib0380) 2017; 18 Cherkasov (10.1016/j.drudis.2018.05.010_bib0015) 2014; 57 10.1016/j.drudis.2018.05.010_bib0500 Olivecrona (10.1016/j.drudis.2018.05.010_bib0510) 2017; 9 (10.1016/j.drudis.2018.05.010_bib0085) 2000 Hert (10.1016/j.drudis.2018.05.010_bib0290) 2006; 46 10.1016/j.drudis.2018.05.010_bib0465 Heikamp (10.1016/j.drudis.2018.05.010_bib0155) 2011; 51 Goodford (10.1016/j.drudis.2018.05.010_bib0170) 1985; 28 Myint (10.1016/j.drudis.2018.05.010_bib0410) 2012; 9 Hyvarinen (10.1016/j.drudis.2018.05.010_bib0260) 2000; 13 Kearnes (10.1016/j.drudis.2018.05.010_bib0460) 2016; 30 Graves (10.1016/j.drudis.2018.05.010_bib0475) 2013 Eriksson (10.1016/j.drudis.2018.05.010_bib0355) 2003; 111 Torng (10.1016/j.drudis.2018.05.010_bib0450) 2017; 18 Baskin (10.1016/j.drudis.2018.05.010_bib0455) 1997; 37 Akella (10.1016/j.drudis.2018.05.010_bib0275) 2010; 14 Goodfellow (10.1016/j.drudis.2018.05.010_bib0490) 2014 Liu (10.1016/j.drudis.2018.05.010_bib0395) 2003; 43 Ash (10.1016/j.drudis.2018.05.010_bib0140) 2017; 57 Gobburu (10.1016/j.drudis.2018.05.010_bib0420) 1996; 85 MacCuish (10.1016/j.drudis.2018.05.010_bib0270) 2014; 4 Nettles (10.1016/j.drudis.2018.05.010_bib0520) 2006; 49 Fourches (10.1016/j.drudis.2018.05.010_bib0065) 2013; 32 Saiz-Urra (10.1016/j.drudis.2018.05.010_bib0110) 2007; 42 Tropsha (10.1016/j.drudis.2018.05.010_bib0515) 2010; 29 Rensi (10.1016/j.drudis.2018.05.010_bib0350) 2017; 57 Hu (10.1016/j.drudis.2018.05.010_bib0130) 2017; 60 Baskin (10.1016/j.drudis.2018.05.010_bib0425) 2016; 11 Kubinyi (10.1016/j.drudis.2018.05.010_bib0310) 1996; 10 Noble (10.1016/j.drudis.2018.05.010_bib0390) 2006; 24 Chen (10.1016/j.drudis.2018.05.010_bib0530) 2018 LeCun (10.1016/j.drudis.2018.05.010_bib0435) 1990 Bender (10.1016/j.drudis.2018.05.010_bib0280) 2006; 46 Frank (10.1016/j.drudis.2018.05.010_bib0315) 1993; 35 (10.1016/j.drudis.2018.05.010_bib0055) 1983 Owen (10.1016/j.drudis.2018.05.010_bib0340) 2011; 51 Sawada (10.1016/j.drudis.2018.05.010_bib0100) 2014; 33 Sliwoski (10.1016/j.drudis.2018.05.010_bib0125) 2016; 30 Testa (10.1016/j.drudis.2018.05.010_bib0075) 1981; 31 Seeger (10.1016/j.drudis.2018.05.010_bib0325) 2004; 14 Chen (10.1016/j.drudis.2018.05.010_bib0300) 2012; 52 Hong (10.1016/j.drudis.2018.05.010_bib0095) 2008; 48 Maldonado (10.1016/j.drudis.2018.05.010_bib0190) 2006; 10 Bajorath (10.1016/j.drudis.2018.05.010_bib0090) 2001; 41 Keiser (10.1016/j.drudis.2018.05.010_bib0370) 2007; 25 LeCun (10.1016/j.drudis.2018.05.010_bib0430) 2015; 521 Algamal (10.1016/j.drudis.2018.05.010_bib0330) 2015; 29 Krizhevsky (10.1016/j.drudis.2018.05.010_bib0440) 2012 Hoerl (10.1016/j.drudis.2018.05.010_bib0320) 1970; 12 Verma (10.1016/j.drudis.2018.05.010_bib0165) 2010; 10 Sheridan (10.1016/j.drudis.2018.05.010_bib0185) 2002; 7 Marill (10.1016/j.drudis.2018.05.010_bib0305) 2004; 11 Yeo (10.1016/j.drudis.2018.05.010_bib0150) 2012; 26 Cheeseright (10.1016/j.drudis.2018.05.010_bib0230) 2008; 48 Searls (10.1016/j.drudis.2018.05.010_bib0525) 2005; 4 Gao (10.1016/j.drudis.2018.05.010_bib0345) 1999; 39 (10.1016/j.drudis.2018.05.010_bib0035) 2011 Devillers (10.1016/j.drudis.2018.05.010_bib0415) 2004; 15 Szegedy (10.1016/j.drudis.2018.05.010_bib0445) 2014; 1409 Sahigara (10.1016/j.drudis.2018.05.010_bib0365) 2013; 5 Ali (10.1016/j.drudis.2018.05.010_bib0010) 1997; 40 Baskin (10.1016/j.drudis.2018.05.010_bib0180) 2013; 27 Hu (10.1016/j.drudis.2018.05.010_bib0200) 2013; 2 (10.1016/j.drudis.2018.05.010_bib0045) 1991 Varnek (10.1016/j.drudis.2018.05.010_bib0030) 2011; 30 Mnih (10.1016/j.drudis.2018.05.010_bib0495) 2015; 518 Kapetanovic (10.1016/j.drudis.2018.05.010_bib0040) 2008; 171 Poroikov (10.1016/j.drudis.2018.05.010_bib0295) 2000; 40 (10.1016/j.drudis.2018.05.010_bib0025) 2003 Stumpfe (10.1016/j.drudis.2018.05.010_bib0205) 2014; 3 (10.1016/j.drudis.2018.05.010_bib0120) 1998 Helguera (10.1016/j.drudis.2018.05.010_bib0335) 2013; 59 Nasrabadi (10.1016/j.drudis.2018.05.010_bib0250) 2007; 16 Varnek (10.1016/j.drudis.2018.05.010_bib0005) 2012; 52 (10.1016/j.drudis.2018.05.010_bib0080) 1995 Schierz (10.1016/j.drudis.2018.05.010_bib0285) 2009; 1 Nekoei (10.1016/j.drudis.2018.05.010_bib0400) 2015; 24 Kondratovich (10.1016/j.drudis.2018.05.010_bib0255) 2013; 32 (10.1016/j.drudis.2018.05.010_bib0060) 2001 10.1016/j.drudis.2018.05.010_bib0480 (10.1016/j.drudis.2018.05.010_bib0405) 1992 Cramer (10.1016/j.drudis.2018.05.010_bib0175) 1988; 110 10.1016/j.drudis.2018.05.010_bib0485 Duvenaud (10.1016/j.drudis.2018.05.010_bib0160) 2015 Khanfar (10.1016/j.drudis.2018.05.010_bib0360) 2013; 53 Svetnik (10.1016/j.drudis.2018.05.010_bib0385) 2003; 43 Lo (10.1016/j.drudis.2018.05.010_bib0375) 2015; 11 Lo (10.1016/j.drudis.2018.05.010_bib0220) 2016; 11 Lo (10.1016/j.drudis.2018.05.010_bib0225) 2017; 7 Kadurin (10.1016/j.drudis.2018.05.010_bib0505) 2017; 14 |
References_xml | – volume: 14 start-page: 3098 year: 2017 end-page: 3104 ident: bib0505 article-title: druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties publication-title: Mol. Pharm. – volume: 33 start-page: 719 year: 2014 end-page: 731 ident: bib0100 article-title: Benchmarking a wide range of chemical descriptors for drug–target interaction prediction using a chemogenomic approach publication-title: Mol. Inf. – volume: 43 start-page: 1288 year: 2003 end-page: 1296 ident: bib0395 article-title: QSAR study of ethyl 2-[(3-methyl-2, 5-dioxo (3-pyrrolinyl)) amino]-4-(trifluoromethyl) pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression based on support vector machines publication-title: J. Chem. Inf. Comput. Sci. – volume: 57 start-page: 1286 year: 2017 end-page: 1299 ident: bib0140 article-title: Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories publication-title: J. Chem. Inf. Model. – volume: 43 start-page: 1947 year: 2003 end-page: 1958 ident: bib0385 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Comput. Sci. – year: 1995 ident: bib0080 publication-title: Exploring QSAR – volume: 4 start-page: 45 year: 2005 end-page: 58 ident: bib0525 article-title: Data integration: challenges for drug discovery publication-title: Nat. Rev. Drug Discov. – volume: 57 start-page: 4977 year: 2014 end-page: 5010 ident: bib0015 article-title: QSAR modeling: where have you been? Where are you going to? publication-title: J. Med. Chem. – volume: 48 start-page: 1489 year: 2005 end-page: 1495 ident: bib0215 article-title: A shape-based 3-D scaffold hopping method and its application to a bacterial protein?protein interactio publication-title: J. Med. Chem. – volume: 57 start-page: 1859 year: 2017 end-page: 1867 ident: bib0350 article-title: Shallow representation learning via kernel PCA improves QSAR modelability publication-title: J. Chem. Inf. Model. – start-page: 2224 year: 2015 end-page: 2232 ident: bib0160 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Advances in Neural Information Processing Systems – volume: 28 start-page: 849 year: 1985 end-page: 857 ident: bib0170 article-title: A computational procedure for determining energetically favorable binding sites on biologically important macromolecules publication-title: J. Med. Chem. – volume: 40 start-page: 1349 year: 2000 end-page: 1355 ident: bib0295 article-title: Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds publication-title: J. Chem. Inf. Comput. Sci. – volume: 5 start-page: 27 year: 2013 ident: bib0365 article-title: Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions publication-title: J. Cheminformatics – volume: 15 start-page: 501 year: 2004 end-page: 510 ident: bib0415 article-title: Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling publication-title: SAR QSAR Environ. Res. – reference: . (2014) Neural machine translation by jointly learning to align and translate. – year: 1992 ident: bib0405 publication-title: Introduction to Artificial Neural Systems – volume: 11 year: 2015 ident: bib0375 article-title: Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens publication-title: PLoS Comput. Biol. – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: bib0390 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. – volume: 9 start-page: 48 year: 2017 ident: bib0510 article-title: Molecular publication-title: J. Cheminf. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0430 article-title: Deep learning publication-title: Nature – volume: 10 start-page: 95 year: 2010 end-page: 115 ident: bib0165 article-title: 3D-QSAR in drug design—a review publication-title: Curr. Top. Med. Chem. – year: 2011 ident: bib0035 publication-title: Chemoinformatics and Computational Chemical Biology – volume: 9 start-page: 2912 year: 2012 end-page: 2923 ident: bib0410 article-title: Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions publication-title: Mol. Pharm. – start-page: 6645 year: 2013 end-page: 6649 ident: bib0475 article-title: Speech recognition with deep recurrent neural networks publication-title: Acoustics, Speech and Signal Processing, 2013 IEEE International Conference – volume: 3 start-page: 75 year: 2014 ident: bib0205 article-title: Advancing the activity cliff concept, part II publication-title: F1000Res – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib0260 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. – volume: 26 start-page: 1127 year: 2012 end-page: 1141 ident: bib0150 article-title: Extraction and validation of substructure profiles for enriching compound libraries publication-title: J. Comput. Aided Mol. Des. – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: bib0320 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 50 start-page: 470 year: 2010 end-page: 479 ident: bib0265 article-title: Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers publication-title: J. Chem. Inf. Model. – volume: 18 start-page: 165 year: 2017 ident: bib0380 article-title: MOST: most-similar ligand based approach to target prediction publication-title: BMC Bioinf. – volume: 37 start-page: 715 year: 1997 end-page: 721 ident: bib0455 article-title: A neural device for searching direct correlations between structures and properties of chemical compounds publication-title: J. Chem. Inf. Comput. Sci. – volume: 10 start-page: 119 year: 1996 end-page: 133 ident: bib0310 article-title: Evolutionary variable selection in regression and PLS analyses publication-title: J. Chemom. – volume: 48 start-page: 2108 year: 2008 end-page: 2117 ident: bib0230 article-title: FieldScreen: virtual screening using molecular fields: application to the DUD data set publication-title: J. Chem. Inf. Model. – volume: 46 start-page: 2445 year: 2006 end-page: 2456 ident: bib0280 article-title: Bayes affinity fingerprints improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept? publication-title: J. Chem. Inf. Model. – volume: 39 start-page: 164 year: 1999 end-page: 168 ident: bib0345 article-title: Binary quantitative structure–activity relationship (QSAR) analysis of estrogen receptor ligands publication-title: J. Chem. Inf. Comput. Sci. – volume: 6 year: 2010 ident: bib0235 article-title: Semantic similarity for automatic classification of chemical compounds publication-title: PLoS Comput. Biol. – volume: 29 start-page: 547 year: 2015 end-page: 556 ident: bib0330 article-title: High-dimensional QSAR prediction of anticancer potency of imidazo [4,5-b] pyridine derivatives using adjusted adaptive LASSO publication-title: J. Chemometrics – volume: 15 start-page: 320 year: 2017 end-page: 327 ident: bib0245 article-title: Flexible analog search with kernel PCA embedded molecule vectors publication-title: Comput. Struct. Biotechnol. J. – volume: 1409 start-page: 4842 year: 2014 ident: bib0445 article-title: Going deeper with convolutions publication-title: arXiv – reference: Kusner, M.J. – volume: 111 start-page: 1361 year: 2003 end-page: 1375 ident: bib0355 article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs publication-title: Environ. Health Perspect. – volume: 10 start-page: 39 year: 2006 end-page: 79 ident: bib0190 article-title: Molecular similarity and diversity in chemoinformatics: from theory to applications publication-title: Mol. Divers. – year: 1998 ident: bib0120 publication-title: 3D QSAR in Drug Design – volume: 29 start-page: 476 year: 2010 end-page: 488 ident: bib0515 article-title: Best practices for QSAR model development, validation, and exploitation publication-title: Mol. Inf. – volume: 11 start-page: 2244 year: 2016 end-page: 2253 ident: bib0220 article-title: 3D chemical similarity networks for structure-based target prediction and scaffold hopping publication-title: ACS Chem. Biol. – volume: 24 start-page: 3037 year: 2015 end-page: 3046 ident: bib0400 article-title: QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach publication-title: Med. Chem. Res. – volume: 27 start-page: 427 year: 2013 end-page: 442 ident: bib0180 article-title: The continuous molecular fields approach to building 3D-QSAR models publication-title: J. Comput. Aided Mol. Des. – volume: 46 start-page: 462 year: 2006 end-page: 470 ident: bib0290 article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching publication-title: J. Chem. Inf. Model. – volume: 4 start-page: 34 year: 2014 end-page: 48 ident: bib0270 article-title: Chemoinformatics applications of cluster analysis publication-title: Comput. Mol. Sci. – start-page: 2672 year: 2014 end-page: 2680 ident: bib0490 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 60 start-page: 1238 year: 2017 end-page: 1246 ident: bib0130 article-title: Recent advances in scaffold hopping publication-title: J. Med. Chem. – volume: 49 start-page: 6802 year: 2006 end-page: 6810 ident: bib0520 article-title: Bridging chemical and biological space: target fishing using 2D and 3D molecular descriptors publication-title: J. Med. Chem. – reference: . (2017) Grammar variational autoencoder. – volume: 7 start-page: 903 year: 2002 end-page: 911 ident: bib0185 article-title: Why do we need so many chemical similarity search methods? publication-title: Drug Discov. Today – start-page: 1097 year: 2012 end-page: 1105 ident: bib0440 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 108 start-page: 1127 year: 2008 end-page: 1169 ident: bib0050 article-title: Some new trends in chemical graph theory publication-title: Chem. Rev. – year: 2001 ident: bib0060 publication-title: Introduction to Algorithms – volume: 7 start-page: 121 year: 1988 end-page: 133 ident: bib0020 article-title: Free Wilson analysis. Theory, applications and its relationship to Hansch analysis publication-title: Quant. Struct. Act. Relat. – year: 1991 ident: bib0045 publication-title: Chemical Graph Theory: Introduction and Fundamentals – volume: 85 start-page: 505 year: 1996 end-page: 510 ident: bib0420 article-title: Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis publication-title: J. Pharm. Sci. – volume: 518 start-page: 529 year: 2015 ident: bib0495 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 11 start-page: 94 year: 2004 end-page: 102 ident: bib0305 article-title: Advanced statistics: linear regression, part II: multiple linear regression publication-title: Acad. Emerg. Med. – volume: 40 start-page: 236 year: 1997 end-page: 241 ident: bib0010 article-title: Butitaxel analogues: synthesis and structure-activity relationships publication-title: J. Med. Chem. – volume: 41 start-page: 233 year: 2001 end-page: 245 ident: bib0090 article-title: Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening publication-title: J. Chem. Inf. Comput. Sci. – reference: . (2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. Available at: – volume: 15 start-page: 3281 year: 2010 end-page: 3294 ident: bib0135 article-title: 4D-QSAR: perspectives in drug design publication-title: Molecules – volume: 51 start-page: 1552 year: 2011 end-page: 1563 ident: bib0340 article-title: Visualization of molecular fingerprints publication-title: J. Chem. Inf. Model. – year: 2000 ident: bib0085 publication-title: Handbook of Molecular Descriptors – volume: 30 start-page: 20 year: 2011 end-page: 32 ident: bib0030 article-title: Chemoinformatics as a theoretical chemistry discipline publication-title: Mol. Inf. – volume: 48 start-page: 1337 year: 2008 end-page: 1344 ident: bib0095 article-title: Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics publication-title: J. Chem. Inf. Model. – volume: 51 start-page: 1831 year: 2011 end-page: 1839 ident: bib0155 article-title: Large-scale similarity search profiling of ChEMBL compound data sets publication-title: J. Chem. Inf. Model. – volume: 1 start-page: 21 year: 2009 ident: bib0285 article-title: Virtual screening of bioassay data publication-title: J. Cheminf. – volume: 1526 start-page: 231 year: 2017 end-page: 245 ident: bib0195 article-title: Molecular similarity concepts for informatics applications publication-title: Methods Mol. Biol. – volume: 50 start-page: 339 year: 2010 end-page: 348 ident: bib0240 article-title: Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets publication-title: J. Chem. Inf. Model. – volume: 21 start-page: 1291 year: 2016 end-page: 1302 ident: bib0070 article-title: Descriptors and their selection methods in QSAR analysis: paradigm for drug design publication-title: Drug Discov. Today – volume: 42 start-page: 64 year: 2007 end-page: 70 ident: bib0110 article-title: Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors publication-title: Eur. J. Med. Chem. – volume: 96 start-page: 1027 year: 1996 end-page: 1044 ident: bib0115 article-title: Quantum-chemical descriptors in QSAR/QSPR studies publication-title: Chem. Rev. – volume: 30 start-page: 209 year: 2016 end-page: 217 ident: bib0125 article-title: Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign publication-title: J. Comput. Aided Mol. Des. – volume: 32 start-page: 827 year: 2013 end-page: 842 ident: bib0065 article-title: Using graph indices for the analysis and comparison of chemical datasets publication-title: Mol. Inf. – volume: 52 start-page: 1103 year: 2012 end-page: 1113 ident: bib0210 article-title: Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening publication-title: J. Chem. Inf. Model. – reference: Hechtlinger, Y. – volume: 25 start-page: 197 year: 2007 end-page: 206 ident: bib0370 article-title: Relating protein pharmacology by ligand chemistry publication-title: Nat. Biotechnol. – volume: 18 start-page: 302 year: 2017 ident: bib0450 article-title: 3D deep convolutional neural networks for amino acid environment similarity analysis publication-title: BMC Bioinf. – reference: . (2017) A generalization of convolutional neural networks to graph-structured data. Available at: – reference: Segler, M.H. – volume: 16 start-page: 59 year: 2002 end-page: 71 ident: bib0145 article-title: Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases publication-title: J. Comput. Aided Mol. Des. – volume: 11 start-page: 785 year: 2016 end-page: 795 ident: bib0425 article-title: A renaissance of neural networks in drug discovery publication-title: Expert Opin. Drug Discov. – volume: 2 start-page: 199 year: 2013 ident: bib0200 article-title: Advancing the activity cliff concept publication-title: F1000Res – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: bib0325 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 52 start-page: 792 year: 2012 end-page: 803 ident: bib0300 article-title: Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions publication-title: J. Chem. Inf. Model. – volume: 52 start-page: 1413 year: 2012 end-page: 1437 ident: bib0005 article-title: Machine learning methods for property prediction in chemoinformatics: Quo Vadis? publication-title: J. Chem. Inf. Model. – volume: 32 start-page: 261 year: 2013 end-page: 266 ident: bib0255 article-title: Transductive support vector machines: promising approach to model small and unbalanced datasets publication-title: Mol. Inf. – reference: Bahdanau, D. – volume: 171 start-page: 165 year: 2008 end-page: 176 ident: bib0040 article-title: Computer-aided drug discovery and development (CADDD): publication-title: Chem. Biol. Interact. – volume: 30 start-page: 595 year: 2016 end-page: 608 ident: bib0460 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J. Comput. Aided Mol. Des. – year: 1983 ident: bib0055 publication-title: Chemical Graph Theory – volume: 31 start-page: 1053 year: 1981 end-page: 1058 ident: bib0075 article-title: Steric and lipophobic components of the hydrophobic fragmental constant publication-title: Arzneimittelforschung. – volume: 59 start-page: 75 year: 2013 end-page: 90 ident: bib0335 article-title: Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors publication-title: Eur. J. Med. Chem. – year: 2018 ident: bib0530 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today – volume: 110 start-page: 5959 year: 1988 end-page: 5967 ident: bib0175 article-title: Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 325 year: 2010 end-page: 330 ident: bib0275 article-title: Cheminformatics approaches to analyze diversity in compound screening libraries publication-title: Curr. Opin. Chem. Biol. – year: 2003 ident: bib0025 publication-title: Handbook of Chemoinformatics: from Data to Knowledge – volume: 15 start-page: 18162 year: 2014 end-page: 18174 ident: bib0105 article-title: Towards global QSAR model building for acute toxicity: Munro database case study publication-title: Int. J. Mol. Sci. – volume: 7 start-page: 11261 year: 2017 ident: bib0225 article-title: Computational cell cycle profiling of cancer cells for prioritizing FDA-approved drugs with repurposing potential publication-title: Sci. Rep. – volume: 16 start-page: 049901 year: 2007 ident: bib0250 article-title: Pattern recognition and machine learning publication-title: J. Electron. Imag. – volume: 35 start-page: 109 year: 1993 end-page: 135 ident: bib0315 article-title: A statistical view of some chemometrics regression tools publication-title: Technometrics – reference: Kingma, D.P. and Welling, M. (2013) Auto-encoding variational bayes. – start-page: 396 year: 1990 end-page: 404 ident: bib0435 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in Neural Information Processing Systems – volume: 53 start-page: 2587 year: 2013 end-page: 2612 ident: bib0360 article-title: Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors publication-title: J. Chem. Inf. Model. – year: 2000 ident: 10.1016/j.drudis.2018.05.010_bib0085 – volume: 30 start-page: 595 year: 2016 ident: 10.1016/j.drudis.2018.05.010_bib0460 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-016-9938-8 – volume: 10 start-page: 95 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0165 article-title: 3D-QSAR in drug design—a review publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802610790232260 – volume: 57 start-page: 1859 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0350 article-title: Shallow representation learning via kernel PCA improves QSAR modelability publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00694 – volume: 59 start-page: 75 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0335 article-title: Combining QSAR classification models for predictive modeling of human monoamine oxidase inhibitors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2012.10.035 – volume: 85 start-page: 505 year: 1996 ident: 10.1016/j.drudis.2018.05.010_bib0420 article-title: Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis publication-title: J. Pharm. Sci. doi: 10.1021/js950433d – volume: 24 start-page: 3037 year: 2015 ident: 10.1016/j.drudis.2018.05.010_bib0400 article-title: QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach publication-title: Med. Chem. Res. doi: 10.1007/s00044-015-1354-4 – volume: 16 start-page: 049901 year: 2007 ident: 10.1016/j.drudis.2018.05.010_bib0250 article-title: Pattern recognition and machine learning publication-title: J. Electron. Imag. doi: 10.1117/1.2819119 – volume: 30 start-page: 20 year: 2011 ident: 10.1016/j.drudis.2018.05.010_bib0030 article-title: Chemoinformatics as a theoretical chemistry discipline publication-title: Mol. Inf. doi: 10.1002/minf.201000100 – year: 1998 ident: 10.1016/j.drudis.2018.05.010_bib0120 – year: 1991 ident: 10.1016/j.drudis.2018.05.010_bib0045 – volume: 9 start-page: 48 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0510 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J. Cheminf. doi: 10.1186/s13321-017-0235-x – volume: 1409 start-page: 4842 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0445 article-title: Going deeper with convolutions publication-title: arXiv – volume: 48 start-page: 1337 year: 2008 ident: 10.1016/j.drudis.2018.05.010_bib0095 article-title: Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics publication-title: J. Chem. Inf. Model. doi: 10.1021/ci800038f – volume: 39 start-page: 164 year: 1999 ident: 10.1016/j.drudis.2018.05.010_bib0345 article-title: Binary quantitative structure–activity relationship (QSAR) analysis of estrogen receptor ligands publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci980140g – ident: 10.1016/j.drudis.2018.05.010_bib0465 – volume: 13 start-page: 411 year: 2000 ident: 10.1016/j.drudis.2018.05.010_bib0260 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – year: 2011 ident: 10.1016/j.drudis.2018.05.010_bib0035 – volume: 26 start-page: 1127 year: 2012 ident: 10.1016/j.drudis.2018.05.010_bib0150 article-title: Extraction and validation of substructure profiles for enriching compound libraries publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-012-9604-8 – volume: 48 start-page: 2108 year: 2008 ident: 10.1016/j.drudis.2018.05.010_bib0230 article-title: FieldScreen: virtual screening using molecular fields: application to the DUD data set publication-title: J. Chem. Inf. Model. doi: 10.1021/ci800110p – volume: 33 start-page: 719 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0100 article-title: Benchmarking a wide range of chemical descriptors for drug–target interaction prediction using a chemogenomic approach publication-title: Mol. Inf. doi: 10.1002/minf.201400066 – start-page: 2224 year: 2015 ident: 10.1016/j.drudis.2018.05.010_bib0160 article-title: Convolutional networks on graphs for learning molecular fingerprints – volume: 40 start-page: 1349 year: 2000 ident: 10.1016/j.drudis.2018.05.010_bib0295 article-title: Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci000383k – year: 2003 ident: 10.1016/j.drudis.2018.05.010_bib0025 – volume: 25 start-page: 197 year: 2007 ident: 10.1016/j.drudis.2018.05.010_bib0370 article-title: Relating protein pharmacology by ligand chemistry publication-title: Nat. Biotechnol. doi: 10.1038/nbt1284 – volume: 5 start-page: 27 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0365 article-title: Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions publication-title: J. Cheminformatics doi: 10.1186/1758-2946-5-27 – year: 2018 ident: 10.1016/j.drudis.2018.05.010_bib0530 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.01.039 – volume: 11 year: 2015 ident: 10.1016/j.drudis.2018.05.010_bib0375 article-title: Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004153 – volume: 21 start-page: 1291 year: 2016 ident: 10.1016/j.drudis.2018.05.010_bib0070 article-title: Descriptors and their selection methods in QSAR analysis: paradigm for drug design publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.06.013 – volume: 35 start-page: 109 year: 1993 ident: 10.1016/j.drudis.2018.05.010_bib0315 article-title: A statistical view of some chemometrics regression tools publication-title: Technometrics doi: 10.1080/00401706.1993.10485033 – ident: 10.1016/j.drudis.2018.05.010_bib0485 – volume: 18 start-page: 302 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0450 article-title: 3D deep convolutional neural networks for amino acid environment similarity analysis publication-title: BMC Bioinf. doi: 10.1186/s12859-017-1702-0 – start-page: 6645 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0475 article-title: Speech recognition with deep recurrent neural networks publication-title: Acoustics, Speech and Signal Processing, 2013 IEEE International Conference doi: 10.1109/ICASSP.2013.6638947 – year: 2001 ident: 10.1016/j.drudis.2018.05.010_bib0060 – volume: 37 start-page: 715 year: 1997 ident: 10.1016/j.drudis.2018.05.010_bib0455 article-title: A neural device for searching direct correlations between structures and properties of chemical compounds publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci940128y – ident: 10.1016/j.drudis.2018.05.010_bib0500 – volume: 111 start-page: 1361 year: 2003 ident: 10.1016/j.drudis.2018.05.010_bib0355 article-title: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs publication-title: Environ. Health Perspect. doi: 10.1289/ehp.5758 – volume: 57 start-page: 4977 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0015 article-title: QSAR modeling: where have you been? Where are you going to? publication-title: J. Med. Chem. doi: 10.1021/jm4004285 – volume: 30 start-page: 209 year: 2016 ident: 10.1016/j.drudis.2018.05.010_bib0125 article-title: Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-015-9893-9 – volume: 48 start-page: 1489 year: 2005 ident: 10.1016/j.drudis.2018.05.010_bib0215 article-title: A shape-based 3-D scaffold hopping method and its application to a bacterial protein?protein interactio publication-title: J. Med. Chem. doi: 10.1021/jm040163o – volume: 7 start-page: 121 year: 1988 ident: 10.1016/j.drudis.2018.05.010_bib0020 article-title: Free Wilson analysis. Theory, applications and its relationship to Hansch analysis publication-title: Quant. Struct. Act. Relat. doi: 10.1002/qsar.19880070303 – volume: 52 start-page: 792 year: 2012 ident: 10.1016/j.drudis.2018.05.010_bib0300 article-title: Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200615h – volume: 15 start-page: 320 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0245 article-title: Flexible analog search with kernel PCA embedded molecule vectors publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2017.03.003 – volume: 9 start-page: 2912 year: 2012 ident: 10.1016/j.drudis.2018.05.010_bib0410 article-title: Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions publication-title: Mol. Pharm. doi: 10.1021/mp300237z – volume: 15 start-page: 501 year: 2004 ident: 10.1016/j.drudis.2018.05.010_bib0415 article-title: Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling publication-title: SAR QSAR Environ. Res. doi: 10.1080/10629360412331297443 – volume: 49 start-page: 6802 year: 2006 ident: 10.1016/j.drudis.2018.05.010_bib0520 article-title: Bridging chemical and biological space: target fishing using 2D and 3D molecular descriptors publication-title: J. Med. Chem. doi: 10.1021/jm060902w – year: 1992 ident: 10.1016/j.drudis.2018.05.010_bib0405 – ident: 10.1016/j.drudis.2018.05.010_bib0480 – volume: 7 start-page: 11261 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0225 article-title: Computational cell cycle profiling of cancer cells for prioritizing FDA-approved drugs with repurposing potential publication-title: Sci. Rep. doi: 10.1038/s41598-017-11508-2 – volume: 4 start-page: 45 year: 2005 ident: 10.1016/j.drudis.2018.05.010_bib0525 article-title: Data integration: challenges for drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1608 – volume: 15 start-page: 18162 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0105 article-title: Towards global QSAR model building for acute toxicity: Munro database case study publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151018162 – volume: 60 start-page: 1238 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0130 article-title: Recent advances in scaffold hopping publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01437 – start-page: 2672 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0490 article-title: Generative adversarial nets – volume: 16 start-page: 59 year: 2002 ident: 10.1016/j.drudis.2018.05.010_bib0145 article-title: Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases publication-title: J. Comput. Aided Mol. Des. doi: 10.1023/A:1016387816342 – start-page: 396 year: 1990 ident: 10.1016/j.drudis.2018.05.010_bib0435 article-title: Handwritten digit recognition with a back-propagation network – volume: 15 start-page: 3281 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0135 article-title: 4D-QSAR: perspectives in drug design publication-title: Molecules doi: 10.3390/molecules15053281 – volume: 14 start-page: 325 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0275 article-title: Cheminformatics approaches to analyze diversity in compound screening libraries publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.03.017 – volume: 52 start-page: 1103 year: 2012 ident: 10.1016/j.drudis.2018.05.010_bib0210 article-title: Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300030u – volume: 11 start-page: 2244 year: 2016 ident: 10.1016/j.drudis.2018.05.010_bib0220 article-title: 3D chemical similarity networks for structure-based target prediction and scaffold hopping publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00253 – volume: 518 start-page: 529 year: 2015 ident: 10.1016/j.drudis.2018.05.010_bib0495 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 14 start-page: 69 year: 2004 ident: 10.1016/j.drudis.2018.05.010_bib0325 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 96 start-page: 1027 year: 1996 ident: 10.1016/j.drudis.2018.05.010_bib0115 article-title: Quantum-chemical descriptors in QSAR/QSPR studies publication-title: Chem. Rev. doi: 10.1021/cr950202r – volume: 10 start-page: 39 year: 2006 ident: 10.1016/j.drudis.2018.05.010_bib0190 article-title: Molecular similarity and diversity in chemoinformatics: from theory to applications publication-title: Mol. Divers. doi: 10.1007/s11030-006-8697-1 – volume: 24 start-page: 1565 year: 2006 ident: 10.1016/j.drudis.2018.05.010_bib0390 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 171 start-page: 165 year: 2008 ident: 10.1016/j.drudis.2018.05.010_bib0040 article-title: Computer-aided drug discovery and development (CADDD): in-silico-chemico-biological approach publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2006.12.006 – volume: 28 start-page: 849 year: 1985 ident: 10.1016/j.drudis.2018.05.010_bib0170 article-title: A computational procedure for determining energetically favorable binding sites on biologically important macromolecules publication-title: J. Med. Chem. doi: 10.1021/jm00145a002 – volume: 46 start-page: 2445 year: 2006 ident: 10.1016/j.drudis.2018.05.010_bib0280 article-title: Bayes affinity fingerprints improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept? publication-title: J. Chem. Inf. Model. doi: 10.1021/ci600197y – volume: 51 start-page: 1831 year: 2011 ident: 10.1016/j.drudis.2018.05.010_bib0155 article-title: Large-scale similarity search profiling of ChEMBL compound data sets publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200199u – volume: 29 start-page: 476 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0515 article-title: Best practices for QSAR model development, validation, and exploitation publication-title: Mol. Inf. doi: 10.1002/minf.201000061 – volume: 27 start-page: 427 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0180 article-title: The continuous molecular fields approach to building 3D-QSAR models publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-013-9656-4 – ident: 10.1016/j.drudis.2018.05.010_bib0470 – volume: 31 start-page: 1053 year: 1981 ident: 10.1016/j.drudis.2018.05.010_bib0075 article-title: Steric and lipophobic components of the hydrophobic fragmental constant publication-title: Arzneimittelforschung. – volume: 53 start-page: 2587 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0360 article-title: Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors publication-title: J. Chem. Inf. Model. doi: 10.1021/ci4003798 – volume: 43 start-page: 1947 year: 2003 ident: 10.1016/j.drudis.2018.05.010_bib0385 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034160g – volume: 42 start-page: 64 year: 2007 ident: 10.1016/j.drudis.2018.05.010_bib0110 article-title: Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2006.08.005 – volume: 6 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0235 article-title: Semantic similarity for automatic classification of chemical compounds publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000937 – volume: 3 start-page: 75 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0205 article-title: Advancing the activity cliff concept, part II publication-title: F1000Res doi: 10.12688/f1000research.3788.1 – volume: 18 start-page: 165 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0380 article-title: MOST: most-similar ligand based approach to target prediction publication-title: BMC Bioinf. doi: 10.1186/s12859-017-1586-z – volume: 57 start-page: 1286 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0140 article-title: Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00048 – volume: 32 start-page: 827 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0065 article-title: Using graph indices for the analysis and comparison of chemical datasets publication-title: Mol. Inf. doi: 10.1002/minf.201300076 – volume: 7 start-page: 903 year: 2002 ident: 10.1016/j.drudis.2018.05.010_bib0185 article-title: Why do we need so many chemical similarity search methods? publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(02)02411-X – volume: 29 start-page: 547 year: 2015 ident: 10.1016/j.drudis.2018.05.010_bib0330 article-title: High-dimensional QSAR prediction of anticancer potency of imidazo [4,5-b] pyridine derivatives using adjusted adaptive LASSO publication-title: J. Chemometrics doi: 10.1002/cem.2741 – volume: 108 start-page: 1127 year: 2008 ident: 10.1016/j.drudis.2018.05.010_bib0050 article-title: Some new trends in chemical graph theory publication-title: Chem. Rev. doi: 10.1021/cr0780006 – volume: 32 start-page: 261 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0255 article-title: Transductive support vector machines: promising approach to model small and unbalanced datasets publication-title: Mol. Inf. doi: 10.1002/minf.201200135 – volume: 50 start-page: 470 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0265 article-title: Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers publication-title: J. Chem. Inf. Model. doi: 10.1021/ci900464s – volume: 52 start-page: 1413 year: 2012 ident: 10.1016/j.drudis.2018.05.010_bib0005 article-title: Machine learning methods for property prediction in chemoinformatics: Quo Vadis? publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200409x – year: 1995 ident: 10.1016/j.drudis.2018.05.010_bib0080 – volume: 110 start-page: 5959 year: 1988 ident: 10.1016/j.drudis.2018.05.010_bib0175 article-title: Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00226a005 – volume: 46 start-page: 462 year: 2006 ident: 10.1016/j.drudis.2018.05.010_bib0290 article-title: New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050348j – volume: 40 start-page: 236 year: 1997 ident: 10.1016/j.drudis.2018.05.010_bib0010 article-title: Butitaxel analogues: synthesis and structure-activity relationships publication-title: J. Med. Chem. doi: 10.1021/jm960505t – start-page: 1097 year: 2012 ident: 10.1016/j.drudis.2018.05.010_bib0440 article-title: Imagenet classification with deep convolutional neural networks – volume: 2 start-page: 199 year: 2013 ident: 10.1016/j.drudis.2018.05.010_bib0200 article-title: Advancing the activity cliff concept publication-title: F1000Res doi: 10.12688/f1000research.2-199.v1 – volume: 11 start-page: 94 year: 2004 ident: 10.1016/j.drudis.2018.05.010_bib0305 article-title: Advanced statistics: linear regression, part II: multiple linear regression publication-title: Acad. Emerg. Med. doi: 10.1197/j.aem.2003.09.006 – volume: 50 start-page: 339 year: 2010 ident: 10.1016/j.drudis.2018.05.010_bib0240 article-title: Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets publication-title: J. Chem. Inf. Model. doi: 10.1021/ci900450m – volume: 1526 start-page: 231 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0195 article-title: Molecular similarity concepts for informatics applications publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6613-4_13 – volume: 14 start-page: 3098 year: 2017 ident: 10.1016/j.drudis.2018.05.010_bib0505 article-title: druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00346 – volume: 11 start-page: 785 year: 2016 ident: 10.1016/j.drudis.2018.05.010_bib0425 article-title: A renaissance of neural networks in drug discovery publication-title: Expert Opin. Drug Discov. doi: 10.1080/17460441.2016.1201262 – volume: 51 start-page: 1552 year: 2011 ident: 10.1016/j.drudis.2018.05.010_bib0340 article-title: Visualization of molecular fingerprints publication-title: J. Chem. Inf. Model. doi: 10.1021/ci1004042 – year: 1983 ident: 10.1016/j.drudis.2018.05.010_bib0055 – volume: 4 start-page: 34 year: 2014 ident: 10.1016/j.drudis.2018.05.010_bib0270 article-title: Chemoinformatics applications of cluster analysis publication-title: Comput. Mol. Sci. doi: 10.1002/wcms.1152 – volume: 43 start-page: 1288 year: 2003 ident: 10.1016/j.drudis.2018.05.010_bib0395 article-title: QSAR study of ethyl 2-[(3-methyl-2, 5-dioxo (3-pyrrolinyl)) amino]-4-(trifluoromethyl) pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression based on support vector machines publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci0340355 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.drudis.2018.05.010_bib0430 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.drudis.2018.05.010_bib0320 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 10 start-page: 119 year: 1996 ident: 10.1016/j.drudis.2018.05.010_bib0310 article-title: Evolutionary variable selection in regression and PLS analyses publication-title: J. Chemom. doi: 10.1002/(SICI)1099-128X(199603)10:2<119::AID-CEM409>3.0.CO;2-4 – volume: 1 start-page: 21 year: 2009 ident: 10.1016/j.drudis.2018.05.010_bib0285 article-title: Virtual screening of bioassay data publication-title: J. Cheminf. doi: 10.1186/1758-2946-1-21 – volume: 41 start-page: 233 year: 2001 ident: 10.1016/j.drudis.2018.05.010_bib0090 article-title: Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci0001482 |
SSID | ssj0012956 |
Score | 2.688093 |
SecondaryResourceType | review_article |
Snippet | •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future... Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1538 |
SubjectTerms | Animals Diffusion of Innovation Drug Discovery - methods High-Throughput Screening Assays Humans Informatics Machine Learning Molecular Structure Pattern Recognition, Automated Pharmaceutical Preparations - chemistry Quantitative Structure-Activity Relationship |
Title | Machine learning in chemoinformatics and drug discovery |
URI | https://dx.doi.org/10.1016/j.drudis.2018.05.010 https://www.ncbi.nlm.nih.gov/pubmed/29750902 https://www.proquest.com/docview/2038273609 https://pubmed.ncbi.nlm.nih.gov/PMC6078794 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLYQXOCAFlh2hwUUJMSJ7vSRNM0RIdAAAiEBErcoTVK2CDqInTnMZX87dh8DswghcWzrtGns2q7y-TPArk1EVCjlUQNeBZx7_KSMCzGRy0RcgypTKk4-v0gHN_z0VtzOwWFXC0Owytb3Nz699tbtmX67mv2nsuxfRYlQGM0xBNPunqJCc84lWfnvf1OYB4azuoMrCQck3ZXP1Rgv9zx2JZF2R1nD3xl-FJ7ep5__oyjfhKXjb7Dc5pPsoJnyCsz5ahWW3rAMrsLeZUNPPdln16_VVn_32R67fCWunqyBPK-RlZ61rSTuWFkxVOrjsKVXpWHMVI7hG90xKuglAOjkO9wcH10fDoK2sUJgRaxGgfRGCmtEwTNTRErENnY8ks7lYeykMCot4lhi4MJo76QR3EqVJzkmHza0lptkHearYeV_AguLJDGZKrIiFTxPVYY_5zzDm6fKEDFMD5JuPbVtWcep-cWD7uBl97rRgiYt6FBo1EIPgumop4Z14xN52alKz1iPxsDwycidTrMaPyzaLTGVH45JKMkwt0tD1YMfjaanc6FyZAK04nNnbGAqQKTds1eq8k9N3p1iToY-cOPLM_4Fi3TUgBA3YX70PPZbmBiN8u3a8rdh4eDkbHDxApaLDjo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LD1MGzdo9lTA4aeasQPybKORbEiXZugwFKgN0GW5NbD5hRdcsi_H2nLabNhKLCrTdqyKJE09PEjwGebiaRSyqMFvIo497iljIsxkStE2oIqcypOnkzz8QX_eikut-Cor4UhWGXw_Z1Pb711uDIKszm6qevRtyQTCqM5hmA63VPiEWwTO5UYwPbhyel4uj5MSFXbxJXkI1LoK-hamJe7XbqaeLuToqPwjP8Vof7OQP8EUt6LTMfP4GlIKdlhN-rnsOWbXdi5RzS4C_vnHUP16oDN7gqufh2wfXZ-x129egFy0oIrPQvdJK5Y3TC06895YFglNWYax_CLrhjV9BIGdPUSLo6_zI7GUeitEFmRqkUkvZHCGlHxwlSJEqlNHU-kc2WcOimMyqs0lRi7MOA7aQS3UpVZifmHja3lJnsFg2be-D1gcZVlplBVUeWCl7kq8P-cF_jwXBnihhlC1s-ntoF4nPpf_NA9wuy77qygyQo6FhqtMIRorXXTEW88IC97U-mNBaQxNjyg-am3rMa9RQcmpvHzJQllBaZ3eayG8Lqz9HosVJFMmFZ878YaWAsQb_fmnaa-bvm7c0zL0A2--e8Rf4TH49nkTJ-dTE_fwhO602ES38Fgcbv07zFPWpQfwj74DciFEOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+chemoinformatics+and+drug+discovery&rft.jtitle=Drug+discovery+today&rft.au=Lo%2C+Yu-Chen&rft.au=Rensi%2C+Stefano+E.&rft.au=Torng%2C+Wen&rft.au=Altman%2C+Russ+B.&rft.date=2018-08-01&rft.issn=1359-6446&rft.eissn=1878-5832&rft.volume=23&rft.issue=8&rft.spage=1538&rft.epage=1546&rft_id=info:doi/10.1016%2Fj.drudis.2018.05.010&rft_id=info%3Apmid%2F29750902&rft.externalDocID=PMC6078794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6446&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6446&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6446&client=summon |