SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aime...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. Molecular basis of disease Vol. 1867; no. 12; p. 166260
Main Authors Li, Fei, Li, Jingyao, Wang, Pei-Hui, Yang, Nanyan, Huang, Junyu, Ou, Jinxin, Xu, Ting, Zhao, Xin, Liu, Taoshu, Huang, Xueying, Wang, Qinghuan, Li, Miao, Yang, Le, Lin, Yunchen, Cai, Ying, Chen, Haisheng, Zhang, Qing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2021
The Author(s). Published by Elsevier B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients. •SARS-CoV-2 spike triggers autophagy and apoptosis in ACE2-expressing cells.•SARS-CoV-2 spike induces autophagy through ROS-suppressed PI3K/AKT/mTOR pathway.•SARS-CoV-2 spike-induced autophagy promotes inflammatory responses and apoptosis.
AbstractList Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation.BACKGROUNDSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation.SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses.METHODSSARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses.Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.RESULTSAngiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients. •SARS-CoV-2 spike triggers autophagy and apoptosis in ACE2-expressing cells.•SARS-CoV-2 spike induces autophagy through ROS-suppressed PI3K/AKT/mTOR pathway.•SARS-CoV-2 spike-induced autophagy promotes inflammatory responses and apoptosis.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.
ArticleNumber 166260
Author Yang, Nanyan
Liu, Taoshu
Cai, Ying
Ou, Jinxin
Zhao, Xin
Wang, Qinghuan
Chen, Haisheng
Huang, Xueying
Yang, Le
Lin, Yunchen
Wang, Pei-Hui
Huang, Junyu
Li, Fei
Li, Jingyao
Zhang, Qing
Xu, Ting
Li, Miao
Author_xml – sequence: 1
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Jingyao
  surname: Li
  fullname: Li, Jingyao
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Pei-Hui
  surname: Wang
  fullname: Wang, Pei-Hui
  organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
– sequence: 4
  givenname: Nanyan
  surname: Yang
  fullname: Yang, Nanyan
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Junyu
  surname: Huang
  fullname: Huang, Junyu
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 6
  givenname: Jinxin
  surname: Ou
  fullname: Ou, Jinxin
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 7
  givenname: Ting
  surname: Xu
  fullname: Xu, Ting
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 8
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 9
  givenname: Taoshu
  surname: Liu
  fullname: Liu, Taoshu
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 10
  givenname: Xueying
  surname: Huang
  fullname: Huang, Xueying
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 11
  givenname: Qinghuan
  surname: Wang
  fullname: Wang, Qinghuan
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 12
  givenname: Miao
  surname: Li
  fullname: Li, Miao
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 13
  givenname: Le
  surname: Yang
  fullname: Yang, Le
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 14
  givenname: Yunchen
  surname: Lin
  fullname: Lin, Yunchen
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 15
  givenname: Ying
  surname: Cai
  fullname: Cai, Ying
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 16
  givenname: Haisheng
  surname: Chen
  fullname: Chen, Haisheng
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
– sequence: 17
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  email: lsszq@mail.sysu.edu.cn
  organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34461258$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFv0zAYxS00xLrCf4CQj1zS2o6dOByQqgrYtElFbUHcLDtxWpfENrYzqf_9Mtoh4AC-2JK_93uf3rsCF9ZZDcBrjGYY4WJ-mCklGxNnBBE8w0VBCvQMTDAvq2x8frsAE1QRllGaV5fgKsYDGk9RohfgMqe0wITxCfCbxXqTLd3XjMDozXcNfXC9SzpCY9tO9r1MxlkobQOldz65aCJM--CG3R7KITm_l7sjVEe4Xm2yOHgfdIy6gZ9v8tv54nY777erNYxmZ2Vn7O4leN7KLupX53sKvnz8sF1eZ3erTzfLxV1WM1KlrOSSM4rrQkskqawwp7lSbUW5ZqzMVZ4rSktJmpKwBpWKY6baQnOF2pwVDcun4P2J6wfV66bWNgXZCR9ML8NROGnEnz_W7MXO3QueV4hSPgLengHB_Rh0TKI3sdZdJ612QxSEFWXFCRq3mYI3v3v9MnmKeRx4dxqog4sx6FbUJv0MdrQ2ncBIPHYqDuLUqXjsVJw6HcX0L_ET_z-ycwB6TPne6CBibbStdWOCrpNonPk34AFd4L2M
CitedBy_id crossref_primary_10_3390_cells13020123
crossref_primary_10_1016_j_intimp_2022_109473
crossref_primary_10_3389_fphys_2022_1023758
crossref_primary_10_3389_fcell_2021_766142
crossref_primary_10_3389_fcimb_2024_1457617
crossref_primary_10_1186_s40659_023_00468_9
crossref_primary_10_1016_j_intimp_2023_111155
crossref_primary_10_1038_s41598_022_26657_2
crossref_primary_10_3390_ani12182438
crossref_primary_10_1002_ptr_8302
crossref_primary_10_3390_ijms232315098
crossref_primary_10_1186_s12014_023_09394_0
crossref_primary_10_1038_s41392_023_01580_8
crossref_primary_10_1016_j_vaccine_2025_126744
crossref_primary_10_3390_biomedicines11123160
crossref_primary_10_1186_s12985_023_02194_w
crossref_primary_10_1038_s41419_022_05250_5
crossref_primary_10_3390_pathogens12020233
crossref_primary_10_1038_s41392_022_01043_6
crossref_primary_10_1016_j_chemosphere_2024_143451
crossref_primary_10_18632_aging_204740
crossref_primary_10_3389_fimmu_2024_1352479
crossref_primary_10_1128_jvi_00049_24
crossref_primary_10_3390_antiox11010097
crossref_primary_10_1111_acel_13727
crossref_primary_10_1128_mbio_00971_22
crossref_primary_10_1016_j_gendis_2023_01_014
crossref_primary_10_1007_s11481_023_10089_4
crossref_primary_10_1186_s12929_024_01062_1
crossref_primary_10_1038_s41418_023_01204_2
crossref_primary_10_1038_s41420_023_01566_z
crossref_primary_10_3389_fimmu_2024_1332440
crossref_primary_10_3389_fimmu_2022_870216
crossref_primary_10_1038_s41420_023_01715_4
crossref_primary_10_1016_j_bbrc_2023_08_063
crossref_primary_10_3389_fimmu_2023_1196350
crossref_primary_10_1002_advs_202305554
crossref_primary_10_1016_j_compbiomed_2022_105601
crossref_primary_10_1016_j_biopha_2021_112420
crossref_primary_10_1002_jmr_70002
crossref_primary_10_1038_s41401_022_00998_0
crossref_primary_10_1016_j_compbiomed_2023_106651
crossref_primary_10_3390_molecules26247459
crossref_primary_10_1080_15287394_2024_2368618
crossref_primary_10_1016_j_aquaculture_2023_739927
crossref_primary_10_1111_cbdd_14034
crossref_primary_10_3389_fnins_2024_1490099
crossref_primary_10_1016_j_ejphar_2023_175929
crossref_primary_10_3390_cells12091282
crossref_primary_10_1128_spectrum_01921_23
crossref_primary_10_1016_j_isci_2023_107118
crossref_primary_10_1021_acschemneuro_2c00610
crossref_primary_10_1002_ptr_8073
crossref_primary_10_3390_diagnostics12092051
crossref_primary_10_1152_ajpendo_00287_2023
crossref_primary_10_1128_jvi_02049_24
crossref_primary_10_3389_fmolb_2023_1158133
crossref_primary_10_1007_s11010_023_04842_9
crossref_primary_10_3389_fimmu_2021_782731
crossref_primary_10_1186_s12864_025_11473_5
crossref_primary_10_3390_antiox11091838
crossref_primary_10_3389_fphar_2022_832750
crossref_primary_10_1007_s12020_024_03891_4
crossref_primary_10_1016_j_ejphar_2024_176856
crossref_primary_10_1089_vim_2023_0012
crossref_primary_10_7554_eLife_84790
crossref_primary_10_1007_s12223_024_01130_x
crossref_primary_10_1016_j_cbpc_2023_109551
crossref_primary_10_1183_13993003_00133_2024
crossref_primary_10_3390_separations9030073
crossref_primary_10_1186_s13567_023_01174_w
crossref_primary_10_1371_journal_pone_0283728
crossref_primary_10_3390_v16091491
crossref_primary_10_3390_biology13070491
crossref_primary_10_1177_09603271231180864
crossref_primary_10_2147_JIR_S436147
crossref_primary_10_3389_av_2024_12136
crossref_primary_10_3389_fendo_2023_1187882
crossref_primary_10_3389_fphar_2022_988153
crossref_primary_10_1128_mbio_01020_23
crossref_primary_10_3390_ijms24054928
crossref_primary_10_1080_15548627_2022_2116677
crossref_primary_10_2147_IJN_S482652
crossref_primary_10_3390_pathogens12020163
crossref_primary_10_1093_jmcb_mjad048
crossref_primary_10_1016_j_cjac_2025_100527
crossref_primary_10_3389_fnmol_2023_1123955
crossref_primary_10_3389_fmicb_2023_1251705
crossref_primary_10_3390_md22050190
crossref_primary_10_1186_s12967_024_05355_9
crossref_primary_10_1002_dmrr_3607
crossref_primary_10_1016_j_virusres_2022_198990
crossref_primary_10_1016_j_jds_2022_08_016
crossref_primary_10_1186_s11658_024_00659_6
crossref_primary_10_3390_biomedicines10123085
crossref_primary_10_1038_s44298_024_00076_8
crossref_primary_10_1016_j_ijbiomac_2024_134329
crossref_primary_10_1093_hmg_ddad111
crossref_primary_10_1109_ACCESS_2023_3308225
crossref_primary_10_1515_med_2023_0779
crossref_primary_10_2174_1381612829666230510124716
crossref_primary_10_1016_j_clim_2022_109093
crossref_primary_10_1002_jmv_28959
crossref_primary_10_3390_ijms26010084
crossref_primary_10_3389_fcimb_2022_911313
crossref_primary_10_3389_fimmu_2023_1269451
crossref_primary_10_1002_iid3_875
crossref_primary_10_3389_fimmu_2022_827146
crossref_primary_10_1007_s12013_024_01588_z
crossref_primary_10_1016_j_molmed_2022_04_007
crossref_primary_10_1093_jmcb_mjae004
crossref_primary_10_3390_cells13050432
crossref_primary_10_4014_jmb_2206_06064
crossref_primary_10_1016_j_crneur_2023_100112
crossref_primary_10_1016_j_jds_2022_03_009
crossref_primary_10_3390_cells12020262
crossref_primary_10_1155_2023_6685251
crossref_primary_10_1016_j_phymed_2023_154833
crossref_primary_10_1016_j_cell_2022_04_022
crossref_primary_10_1007_s12672_024_01483_2
crossref_primary_10_1016_j_phymed_2024_156231
crossref_primary_10_1186_s12890_023_02784_y
crossref_primary_10_18632_aging_205735
crossref_primary_10_3389_fmedt_2022_979768
crossref_primary_10_1016_j_fct_2024_114538
crossref_primary_10_1186_s13054_025_05278_x
crossref_primary_10_1016_j_jbc_2022_101695
Cites_doi 10.1158/1541-7786.MCR-14-0487
10.1007/s00705-012-1270-6
10.1083/jcb.201002021
10.4161/auto.5.8.10219
10.1159/000346388
10.1056/NEJMoa2001017
10.1038/s41598-020-76404-8
10.3390/cells6030021
10.1016/j.chom.2009.09.005
10.3892/ol_00000051
10.1016/j.cell.2020.06.010
10.1016/j.cell.2020.02.052
10.1038/s41392-020-00438-7
10.1038/s41467-020-18159-4
10.1016/j.chom.2020.04.017
10.1038/s41569-020-0360-5
10.1523/JNEUROSCI.6189-11.2012
10.1016/j.devcel.2020.12.010
10.1038/s41569-020-0413-9
10.1001/jamaneurol.2020.1127
10.1038/s41577-020-0311-8
10.1111/j.1476-5381.2009.00563.x
10.1093/carcin/bgv126
10.4161/auto.22791
10.4161/auto.5.3.7406
10.1183/13993003.01634-2020
10.1016/j.redox.2020.101456
10.1039/C9FO00109C
10.4161/auto.7.1.13883
10.1016/S0140-6736(20)30628-0
10.1007/s00281-017-0629-x
10.1080/15548627.2017.1356950
10.1080/15548627.2018.1458804
10.1186/s12917-019-1926-5
10.1080/15548627.2016.1196315
10.3390/molecules24234264
10.1016/j.cmet.2020.04.021
10.1080/15548627.2016.1235124
10.1177/1535370216686221
10.1371/journal.ppat.1009128
10.4161/auto.29309
10.1038/srep28715
10.1186/s13099-020-00361-w
10.1038/s41586-020-2012-7
10.1128/JVI.02193-17
10.1038/s41467-019-10360-4
10.1038/nrc.2017.53
10.1038/nature02145
10.4049/jimmunol.2000413
10.1038/s41467-020-15562-9
10.1164/rccm.200603-319OC
10.1038/emboj.2011.398
10.3390/cancers3022630
10.1080/15548627.2017.1402992
10.3389/fphar.2016.00182
10.1042/BJ20081386
10.1172/JCI26390
10.1007/s10571-015-0166-x
10.3390/ijms19061763
10.3892/ol.2016.4989
10.1038/s41419-020-02742-0
10.1186/s12879-020-05485-7
10.1016/j.ebiom.2016.08.011
10.1038/s41598-020-74492-0
10.1186/s13054-020-03062-7
10.3389/fpls.2019.00468
10.1038/cddis.2014.288
10.1093/hmg/ddq253
10.1016/j.immuni.2020.06.017
10.1002/jev2.12003
10.1038/s41419-019-1661-7
10.1038/cdd.2009.33
10.1038/s41586-020-2312-y
10.1371/journal.pone.0224632
10.1056/NEJMoa2001316
10.1038/s41419-020-03252-9
10.1073/pnas.1804932115
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bbadis.2021.166260
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-260X
EndPage 166260
ExternalDocumentID PMC8390448
34461258
10_1016_j_bbadis_2021_166260
S0925443921001939
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABGSF
ABLVK
ABMAC
ABMZM
ABUDA
ABVKL
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AEXQZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IXB
J1W
KOM
LCYCR
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
~G-
3O-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACIEU
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
IHE
R2-
SBG
SEW
UQL
WUQ
XJT
XPP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c529t-78a8541c6ea0a4a91843bbf948e5573b33b447a2d725d07b815bf6e8b0f356d53
IEDL.DBID .~1
ISSN 0925-4439
1879-260X
IngestDate Thu Aug 21 14:33:00 EDT 2025
Tue Aug 05 10:40:44 EDT 2025
Thu Apr 03 07:06:41 EDT 2025
Tue Jul 01 01:17:00 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Fri Feb 23 02:43:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Reactive oxygen species
IL
Inflammation
MERS-CoV
Co-IP
Autophagy
COVID-19
ACE2
SARS-CoV-2
DEGs
TUNEL
TNF-α
RT-PCR
ROS
KEGG
3-MA
Apoptosis
ELISA
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-78a8541c6ea0a4a91843bbf948e5573b33b447a2d725d07b815bf6e8b0f356d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally to this work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925443921001939
PMID 34461258
PQID 2567982057
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8390448
proquest_miscellaneous_2567982057
pubmed_primary_34461258
crossref_citationtrail_10_1016_j_bbadis_2021_166260
crossref_primary_10_1016_j_bbadis_2021_166260
elsevier_sciencedirect_doi_10_1016_j_bbadis_2021_166260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. Molecular basis of disease
PublicationTitleAlternate Biochim Biophys Acta Mol Basis Dis
PublicationYear 2021
Publisher Elsevier B.V
The Author(s). Published by Elsevier B.V
Publisher_xml – name: Elsevier B.V
– name: The Author(s). Published by Elsevier B.V
References Sridharan, Jain, Basu (bb0040) 2011; 3
Li, Moore, Vasilieva (bb0190) 2003; 426
Dong, Levine (bb0300) 2013; 5
Mangalmurti, Hunter (bb0105) 2020; 53
Zhong, Wang, Pan, Li, Kuang, Su (bb0385) 2016; 12
Tan, Young, Lye, Chew, Dalan (bb0090) 2020; 10
Zheng, Ma, Zhang, Xie (bb0285) 2020; 17
Tay, Poh, Renia, MacAry, Ng (bb0250) 2020; 20
Miao, Zhao, Li (bb0325) 2021; 56
Zhou, Yang, Wang (bb0240) 2020; 579
Cortes, Qin, Cook, Solanki, Mastrianni (bb0035) 2012; 32
Fragoso-Saavedra, Iruegas-Nunez, Quintero-Villegas (bb0100) 2020; 20
Levy, Towers, Thorburn (bb0045) 2017; 17
Huertas, Montani, Savale (bb0335) 2020; 56
Noy-Porat, Makdasi, Alcalay (bb0015) 2020; 11
Niu, Zhang, Wang (bb0310) 2019; 15
Spengler, Kincses, Mosolygo (bb0370) 2019; 24
Han, Bae, Choi (bb0125) 2016; 12
Meng, Zhou, Jiang (bb0205) 2012; 157
Zhou, Jiang, Liu (bb0320) 2009; 5
Park, Lee, Cho, Cho, Cho (bb0165) 2010; 1
Pons, Fodil, Azoulay, Zafrani (bb0330) 2020; 24
Radi (bb0365) 2018; 115
Murphy (bb0350) 2009; 417
Sung, Huang, Hsieh (bb0080) 2019; 10
Sun, Zhuang, Zheng (bb0345) 2020; 182
Li, Li, Zeng (bb0150) 2018; 92
Signorello, Ravera, Leoncini (bb0355) 2020; 32
Hwang, Lee, Lee (bb0395) 2010; 159
Saitoh, Akira (bb0115) 2010; 189
Liang, Ma, Peng, He, Hu, Wang (bb0185) 2016; 6
Panga, Kallor, Nair, Harshan, Raghunathan (bb0390) 2019; 14
Mehta, McAuley, Brown (bb0085) 2020; 395
Marullo, Werner, Zhang, Chen, Shin, Doetsch (bb0210) 2015; 36
Flores-Bellver, Bonet-Ponce, Barcia (bb0065) 2014; 5
Zheng, Zhuang, Han (bb0175) 2020; 5
Ou, Liu, Lei (bb0170) 2020; 11
Maycotte, Jones, Goodall, Thorburn, Thorburn (bb0130) 2015; 13
Peng, Zhu, Hu (bb0265) 2016; 12
Nishiga, Wang, Han, Lewis, Wu (bb0245) 2020; 17
Bao, Deng, Huang (bb0340) 2020; 583
Vucicevic, Misirkic, Janjetovic (bb0230) 2011; 7
Underwood, Imarisio, Fleming (bb0235) 2010; 19
Eisenberg-Lerner, Bialik, Simon, Kimchi (bb0260) 2009; 16
Wang, Cheng, Zhang, Xu, Zhang, Lu (bb0400) 2019; 10
Cottam, Whelband, Wileman (bb0305) 2014; 10
Chang, Bai, Tian (bb0055) 2017; 242
Dupont, Jiang, Pilli, Ornatowski, Bhattacharya, Deretic (bb0135) 2011; 30
Song, Li, Xia (bb0255) 2016; 7
Levine, Yuan (bb0050) 2005; 115
Wang, Luo, Zhang (bb0095) 2020; 11
Zhou, Ren, Zhang (bb0275) 2020; 27
Castro, Guerrero-Plata, Suarez-Real (bb0360) 2006; 174
High, Cho, Marzec (bb0075) 2016; 11
Channappanavar, Perlman (bb0070) 2017; 39
Li, Zhao, Sun (bb0180) 2020; 10
Guan, Lin, Liu (bb0380) 2019; 10
Zhai, Lin, Feng (bb0120) 2018; 14
Manjili, Zarei, Habibi, Manjili (bb0110) 2020; 205
Zhu, Zhang, Wang (bb0020) 2020; 382
Dreux, Chisari (bb0295) 2009; 5
Patra, Meyer, Geerling (bb0290) 2020; 16
Gannage, Dormann, Albrecht (bb0315) 2009; 6
Li, Tan, Miao, Lei, Zhang (bb0375) 2015; 35
Mathai, Meijer, Simonsen (bb0030) 2017; 6
Deretic, Levine (bb0145) 2018; 14
Hou, Wei, Zhu (bb0200) 2017; 13
Zhu, She, Cheng (bb0010) 2020; 31
Li, Guan, Wu (bb0005) 2020; 382
Deng, Huang, Liao, Liu, Li, Xu (bb0025) 2020; 11
Sun, Feng, Wang (bb0060) 2019; 54
Huang, Kang, Wang, Luo, Yang, Zhao (bb0155) 2013; 9
Zhang, Luk, Wei (bb0160) 2019; 10
Lin, Chen, Hsiang (bb0220) 2018; 19
Mao, Jin, Wang (bb0280) 2020; 77
Zhang, Kenny, Ge, Xu, Schekman (bb0140) 2015
Hoffmann, Kleine-Weber, Schroeder (bb0195) 2020; 181
Jiang, Kou, Han (bb0225) 2017
Islam, Khan (bb0270) 2020; 10
Bai, Zhao, Li, Sheng, Li (bb0215) 2020; 12
Mathai (10.1016/j.bbadis.2021.166260_bb0030) 2017; 6
Mangalmurti (10.1016/j.bbadis.2021.166260_bb0105) 2020; 53
Tay (10.1016/j.bbadis.2021.166260_bb0250) 2020; 20
Castro (10.1016/j.bbadis.2021.166260_bb0360) 2006; 174
Zhou (10.1016/j.bbadis.2021.166260_bb0275) 2020; 27
Ou (10.1016/j.bbadis.2021.166260_bb0170) 2020; 11
Bai (10.1016/j.bbadis.2021.166260_bb0215) 2020; 12
Pons (10.1016/j.bbadis.2021.166260_bb0330) 2020; 24
Hou (10.1016/j.bbadis.2021.166260_bb0200) 2017; 13
Fragoso-Saavedra (10.1016/j.bbadis.2021.166260_bb0100) 2020; 20
Han (10.1016/j.bbadis.2021.166260_bb0125) 2016; 12
Signorello (10.1016/j.bbadis.2021.166260_bb0355) 2020; 32
Li (10.1016/j.bbadis.2021.166260_bb0005) 2020; 382
Levine (10.1016/j.bbadis.2021.166260_bb0050) 2005; 115
Li (10.1016/j.bbadis.2021.166260_bb0150) 2018; 92
Li (10.1016/j.bbadis.2021.166260_bb0375) 2015; 35
Bao (10.1016/j.bbadis.2021.166260_bb0340) 2020; 583
Wang (10.1016/j.bbadis.2021.166260_bb0400) 2019; 10
Huang (10.1016/j.bbadis.2021.166260_bb0155) 2013; 9
Dreux (10.1016/j.bbadis.2021.166260_bb0295) 2009; 5
Zhang (10.1016/j.bbadis.2021.166260_bb0140) 2015
Underwood (10.1016/j.bbadis.2021.166260_bb0235) 2010; 19
Deretic (10.1016/j.bbadis.2021.166260_bb0145) 2018; 14
Liang (10.1016/j.bbadis.2021.166260_bb0185) 2016; 6
Peng (10.1016/j.bbadis.2021.166260_bb0265) 2016; 12
Miao (10.1016/j.bbadis.2021.166260_bb0325) 2021; 56
Zhang (10.1016/j.bbadis.2021.166260_bb0160) 2019; 10
Zhou (10.1016/j.bbadis.2021.166260_bb0320) 2009; 5
Mehta (10.1016/j.bbadis.2021.166260_bb0085) 2020; 395
Panga (10.1016/j.bbadis.2021.166260_bb0390) 2019; 14
Sun (10.1016/j.bbadis.2021.166260_bb0060) 2019; 54
Saitoh (10.1016/j.bbadis.2021.166260_bb0115) 2010; 189
Radi (10.1016/j.bbadis.2021.166260_bb0365) 2018; 115
Tan (10.1016/j.bbadis.2021.166260_bb0090) 2020; 10
Vucicevic (10.1016/j.bbadis.2021.166260_bb0230) 2011; 7
Niu (10.1016/j.bbadis.2021.166260_bb0310) 2019; 15
Flores-Bellver (10.1016/j.bbadis.2021.166260_bb0065) 2014; 5
Hwang (10.1016/j.bbadis.2021.166260_bb0395) 2010; 159
Chang (10.1016/j.bbadis.2021.166260_bb0055) 2017; 242
Marullo (10.1016/j.bbadis.2021.166260_bb0210) 2015; 36
Noy-Porat (10.1016/j.bbadis.2021.166260_bb0015) 2020; 11
Zheng (10.1016/j.bbadis.2021.166260_bb0285) 2020; 17
Spengler (10.1016/j.bbadis.2021.166260_bb0370) 2019; 24
Sung (10.1016/j.bbadis.2021.166260_bb0080) 2019; 10
Lin (10.1016/j.bbadis.2021.166260_bb0220) 2018; 19
Patra (10.1016/j.bbadis.2021.166260_bb0290) 2020; 16
Cortes (10.1016/j.bbadis.2021.166260_bb0035) 2012; 32
Wang (10.1016/j.bbadis.2021.166260_bb0095) 2020; 11
Dupont (10.1016/j.bbadis.2021.166260_bb0135) 2011; 30
Li (10.1016/j.bbadis.2021.166260_bb0180) 2020; 10
Guan (10.1016/j.bbadis.2021.166260_bb0380) 2019; 10
Islam (10.1016/j.bbadis.2021.166260_bb0270) 2020; 10
Levy (10.1016/j.bbadis.2021.166260_bb0045) 2017; 17
Eisenberg-Lerner (10.1016/j.bbadis.2021.166260_bb0260) 2009; 16
Manjili (10.1016/j.bbadis.2021.166260_bb0110) 2020; 205
Mao (10.1016/j.bbadis.2021.166260_bb0280) 2020; 77
Sun (10.1016/j.bbadis.2021.166260_bb0345) 2020; 182
Li (10.1016/j.bbadis.2021.166260_bb0190) 2003; 426
Zhou (10.1016/j.bbadis.2021.166260_bb0240) 2020; 579
Maycotte (10.1016/j.bbadis.2021.166260_bb0130) 2015; 13
Zhong (10.1016/j.bbadis.2021.166260_bb0385) 2016; 12
Zhai (10.1016/j.bbadis.2021.166260_bb0120) 2018; 14
Meng (10.1016/j.bbadis.2021.166260_bb0205) 2012; 157
Zhu (10.1016/j.bbadis.2021.166260_bb0010) 2020; 31
Park (10.1016/j.bbadis.2021.166260_bb0165) 2010; 1
Dong (10.1016/j.bbadis.2021.166260_bb0300) 2013; 5
Huertas (10.1016/j.bbadis.2021.166260_bb0335) 2020; 56
Gannage (10.1016/j.bbadis.2021.166260_bb0315) 2009; 6
Deng (10.1016/j.bbadis.2021.166260_bb0025) 2020; 11
Channappanavar (10.1016/j.bbadis.2021.166260_bb0070) 2017; 39
Zheng (10.1016/j.bbadis.2021.166260_bb0175) 2020; 5
Hoffmann (10.1016/j.bbadis.2021.166260_bb0195) 2020; 181
Murphy (10.1016/j.bbadis.2021.166260_bb0350) 2009; 417
Song (10.1016/j.bbadis.2021.166260_bb0255) 2016; 7
Sridharan (10.1016/j.bbadis.2021.166260_bb0040) 2011; 3
Nishiga (10.1016/j.bbadis.2021.166260_bb0245) 2020; 17
Jiang (10.1016/j.bbadis.2021.166260_bb0225) 2017
High (10.1016/j.bbadis.2021.166260_bb0075) 2016; 11
Cottam (10.1016/j.bbadis.2021.166260_bb0305) 2014; 10
Zhu (10.1016/j.bbadis.2021.166260_bb0020) 2020; 382
References_xml – volume: 13
  start-page: 651
  year: 2015
  end-page: 658
  ident: bb0130
  article-title: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion
  publication-title: Mol. Cancer Res.
– volume: 13
  start-page: 1709
  year: 2017
  end-page: 1721
  ident: bb0200
  article-title: Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway
  publication-title: Autophagy.
– volume: 159
  start-page: 586
  year: 2010
  end-page: 603
  ident: bb0395
  article-title: Gangliosides induce autophagic cell death in astrocytes
  publication-title: Br. J. Pharmacol.
– volume: 6
  start-page: 367
  year: 2009
  end-page: 380
  ident: bb0315
  article-title: Matrix protein 2 of influenza a virus blocks autophagosome fusion with lysosomes
  publication-title: Cell Host Microbe
– volume: 3
  start-page: 2630
  year: 2011
  end-page: 2654
  ident: bb0040
  article-title: Regulation of autophagy by kinases
  publication-title: Cancers (Basel)
– volume: 19
  start-page: 3413
  year: 2010
  end-page: 3429
  ident: bb0235
  article-title: Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease
  publication-title: Hum. Mol. Genet.
– volume: 6
  year: 2017
  ident: bb0030
  article-title: Studying autophagy in zebrafish
  publication-title: Cells.
– volume: 10
  year: 2020
  ident: bb0180
  article-title: EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS
  publication-title: J. Extracell. Vesicles
– volume: 10
  start-page: 19395
  year: 2020
  ident: bb0270
  article-title: Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy
  publication-title: Sci. Rep.
– volume: 20
  start-page: 363
  year: 2020
  end-page: 374
  ident: bb0250
  article-title: The trinity of COVID-19: immunity, inflammation and intervention
  publication-title: Nat. Rev. Immunol.
– volume: 15
  start-page: 173
  year: 2019
  ident: bb0310
  article-title: Autophagy induced by avian reovirus enhances viral replication in chickens at the early stage of infection
  publication-title: BMC Vet. Res.
– volume: 10
  start-page: 1426
  year: 2014
  end-page: 1441
  ident: bb0305
  article-title: Coronavirus NSP6 restricts autophagosome expansion
  publication-title: Autophagy.
– volume: 35
  start-page: 615
  year: 2015
  end-page: 621
  ident: bb0375
  article-title: ROS and autophagy: interactions and molecular regulatory mechanisms
  publication-title: Cell. Mol. Neurobiol.
– volume: 56
  year: 2021
  ident: bb0325
  article-title: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation
  publication-title: Dev. Cell
– volume: 115
  start-page: 5839
  year: 2018
  end-page: 5848
  ident: bb0365
  article-title: Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 1620
  year: 2020
  ident: bb0170
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
– volume: 5
  start-page: 480
  year: 2013
  end-page: 493
  ident: bb0300
  article-title: Autophagy and viruses: adversaries or allies?
  publication-title: J. Innate Immun.
– volume: 54
  start-page: 1601
  year: 2019
  end-page: 1612
  ident: bb0060
  article-title: alpha-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation
  publication-title: Int. J. Oncol.
– volume: 395
  start-page: 1033
  year: 2020
  end-page: 1034
  ident: bb0085
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet.
– volume: 12
  start-page: 1704
  year: 2016
  end-page: 1720
  ident: bb0265
  article-title: Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines
  publication-title: Autophagy.
– volume: 17
  start-page: 543
  year: 2020
  end-page: 558
  ident: bb0245
  article-title: COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives
  publication-title: Nat. Rev. Cardiol.
– volume: 14
  start-page: 243
  year: 2018
  end-page: 251
  ident: bb0145
  article-title: Autophagy balances inflammation in innate immunity
  publication-title: Autophagy.
– volume: 24
  year: 2019
  ident: bb0370
  article-title: Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides
  publication-title: Molecules.
– volume: 242
  start-page: 1025
  year: 2017
  end-page: 1033
  ident: bb0055
  article-title: Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway
  publication-title: Exp. Biol. Med.
– volume: 12
  start-page: 22
  year: 2020
  ident: bb0215
  article-title: EV71 virus reduces Nrf2 activation to promote production of reactive oxygen species in infected cells
  publication-title: Gut Pathog.
– start-page: 2017
  year: 2017
  ident: bb0225
  article-title: ROS-dependent activation of autophagy through the PI3K/Akt/mTOR pathway is induced by Hydroxysafflor yellow A-Sonodynamic therapy in THP-1 macrophages
  publication-title: Oxidative Med. Cell. Longev.
– volume: 39
  start-page: 529
  year: 2017
  end-page: 539
  ident: bb0070
  article-title: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology
  publication-title: Semin. Immunopathol.
– volume: 205
  start-page: 12
  year: 2020
  end-page: 19
  ident: bb0110
  article-title: COVID-19 as an acute inflammatory disease
  publication-title: J. Immunol.
– volume: 32
  start-page: 12396
  year: 2012
  end-page: 12405
  ident: bb0035
  article-title: Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease
  publication-title: J. Neurosci.
– volume: 30
  start-page: 4701
  year: 2011
  end-page: 4711
  ident: bb0135
  article-title: Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta
  publication-title: EMBO J.
– volume: 6
  start-page: 28715
  year: 2016
  ident: bb0185
  article-title: CXCL16 deficiency attenuates renal injury and fibrosis in salt-sensitive hypertension
  publication-title: Sci. Rep.
– volume: 53
  start-page: 19
  year: 2020
  end-page: 25
  ident: bb0105
  article-title: Cytokine storms: understanding COVID-19
  publication-title: Immunity.
– volume: 10
  start-page: 419
  year: 2019
  ident: bb0160
  article-title: Selective cell death of latently HIV-infected CD4(+) T cells mediated by autosis inducing nanopeptides
  publication-title: Cell Death Dis.
– volume: 5
  start-page: 299
  year: 2020
  ident: bb0175
  article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling
  publication-title: Signal Transduct. Target Ther.
– volume: 10
  start-page: 4102
  year: 2019
  end-page: 4112
  ident: bb0400
  article-title: A surface-layer protein from lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of mTOR and JNK signaling pathways
  publication-title: Food Funct.
– volume: 181
  year: 2020
  ident: bb0195
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bb0020
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
– volume: 5
  start-page: 321
  year: 2009
  end-page: 328
  ident: bb0320
  article-title: Autophagy is involved in influenza A virus replication
  publication-title: Autophagy.
– volume: 157
  start-page: 1011
  year: 2012
  end-page: 1018
  ident: bb0205
  article-title: Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication
  publication-title: Arch. Virol.
– volume: 5
  year: 2014
  ident: bb0065
  article-title: Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal
  publication-title: Cell Death Dis.
– volume: 17
  start-page: 528
  year: 2017
  end-page: 542
  ident: bb0045
  article-title: Targeting autophagy in cancer
  publication-title: Nat. Rev. Cancer
– volume: 10
  start-page: 17458
  year: 2020
  ident: bb0090
  article-title: Statin use is associated with lower disease severity in COVID-19 infection
  publication-title: Sci. Rep.
– volume: 20
  start-page: 765
  year: 2020
  ident: bb0100
  article-title: A parallel-group, multicenter randomized, double-blinded, placebo-controlled, phase 2/3, clinical trial to test the efficacy of pyridostigmine bromide at low doses to reduce mortality or invasive mechanical ventilation in adults with severe SARS-CoV-2 infection: the Pyridostigmine In Severe COvid-19 (PISCO) trial protocol
  publication-title: BMC Infect. Dis.
– volume: 92
  year: 2018
  ident: bb0150
  article-title: Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis
  publication-title: J. Virol.
– volume: 182
  year: 2020
  ident: bb0345
  article-title: Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment
  publication-title: Cell.
– volume: 11
  start-page: 73
  year: 2016
  end-page: 84
  ident: bb0075
  article-title: Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants
  publication-title: EBioMedicine.
– volume: 11
  start-page: 4303
  year: 2020
  ident: bb0015
  article-title: A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes
  publication-title: Nat. Commun.
– start-page: 4
  year: 2015
  ident: bb0140
  article-title: Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion
  publication-title: Elife
– volume: 115
  start-page: 2679
  year: 2005
  end-page: 2688
  ident: bb0050
  article-title: Autophagy in cell death: an innocent convict?
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 1042
  year: 2020
  ident: bb0095
  article-title: A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection
  publication-title: Cell Death Dis.
– volume: 16
  year: 2020
  ident: bb0290
  article-title: SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells
  publication-title: PLoS Pathog.
– volume: 31
  year: 2020
  ident: bb0010
  article-title: Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes
  publication-title: Cell Metab.
– volume: 10
  start-page: 468
  year: 2019
  ident: bb0380
  article-title: Effect of waterlogging-induced autophagy on programmed cell death in arabidopsis roots
  publication-title: Front. Plant Sci.
– volume: 382
  start-page: 1199
  year: 2020
  end-page: 1207
  ident: bb0005
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia
  publication-title: N. Engl. J. Med.
– volume: 36
  start-page: 1397
  year: 2015
  end-page: 1406
  ident: bb0210
  article-title: HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells
  publication-title: Carcinogenesis.
– volume: 32
  start-page: 101456
  year: 2020
  ident: bb0355
  article-title: Lectin-induced oxidative stress in human platelets
  publication-title: Redox Biol.
– volume: 14
  start-page: 1629
  year: 2018
  end-page: 1643
  ident: bb0120
  article-title: TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes
  publication-title: Autophagy.
– volume: 7
  start-page: 40
  year: 2011
  end-page: 50
  ident: bb0230
  article-title: Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway
  publication-title: Autophagy.
– volume: 12
  start-page: 2894
  year: 2016
  end-page: 2899
  ident: bb0385
  article-title: Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways
  publication-title: Oncol. Lett.
– volume: 10
  start-page: 2402
  year: 2019
  ident: bb0080
  article-title: Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2
  publication-title: Nat. Commun.
– volume: 16
  start-page: 966
  year: 2009
  end-page: 975
  ident: bb0260
  article-title: Life and death partners: apoptosis, autophagy and the cross-talk between them
  publication-title: Cell Death Differ.
– volume: 583
  start-page: 830
  year: 2020
  end-page: 833
  ident: bb0340
  article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice
  publication-title: Nature.
– volume: 56
  year: 2020
  ident: bb0335
  article-title: Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?
  publication-title: Eur. Respir. J.
– volume: 1
  start-page: 289
  year: 2010
  end-page: 292
  ident: bb0165
  article-title: Down-regulation of IL-6, IL-8, TNF-alpha and IL-1beta by glucosamine in HaCaT cells, but not in the presence of TNF-alpha
  publication-title: Oncol. Lett.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bb0240
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature.
– volume: 27
  year: 2020
  ident: bb0275
  article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients
  publication-title: Cell Host Microbe
– volume: 24
  start-page: 353
  year: 2020
  ident: bb0330
  article-title: The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection
  publication-title: Crit. Care
– volume: 14
  year: 2019
  ident: bb0390
  article-title: Mitochondrial dysfunction in rheumatoid arthritis: a comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data
  publication-title: PLoS One
– volume: 11
  start-page: 539
  year: 2020
  ident: bb0025
  article-title: Itraconazole inhibits the hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells
  publication-title: Cell Death Dis.
– volume: 77
  start-page: 683
  year: 2020
  end-page: 690
  ident: bb0280
  article-title: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China
  publication-title: JAMA Neurol.
– volume: 417
  start-page: 1
  year: 2009
  end-page: 13
  ident: bb0350
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem. J.
– volume: 12
  start-page: 2326
  year: 2016
  end-page: 2343
  ident: bb0125
  article-title: Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice
  publication-title: Autophagy.
– volume: 9
  start-page: 175
  year: 2013
  end-page: 195
  ident: bb0155
  article-title: Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy
  publication-title: Autophagy.
– volume: 7
  start-page: 182
  year: 2016
  ident: bb0255
  article-title: Arctigenin treatment protects against brain damage through an anti-inflammatory and anti-apoptotic mechanism after needle insertion
  publication-title: Front. Pharmacol.
– volume: 19
  year: 2018
  ident: bb0220
  article-title: Chrysin attenuates cell viability of human colorectal cancer cells through autophagy induction unlike 5-Fluorouracil/Oxaliplatin
  publication-title: Int. J. Mol. Sci.
– volume: 5
  start-page: 1224
  year: 2009
  end-page: 1225
  ident: bb0295
  article-title: Autophagy proteins promote hepatitis C virus replication
  publication-title: Autophagy.
– volume: 189
  start-page: 925
  year: 2010
  end-page: 935
  ident: bb0115
  article-title: Regulation of innate immune responses by autophagy-related proteins
  publication-title: J. Cell Biol.
– volume: 174
  start-page: 1361
  year: 2006
  end-page: 1369
  ident: bb0360
  article-title: Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 17
  start-page: 259
  year: 2020
  end-page: 260
  ident: bb0285
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nat. Rev. Cardiol.
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: bb0190
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature.
– volume: 13
  start-page: 651
  issue: 4
  year: 2015
  ident: 10.1016/j.bbadis.2021.166260_bb0130
  article-title: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-14-0487
– volume: 157
  start-page: 1011
  issue: 6
  year: 2012
  ident: 10.1016/j.bbadis.2021.166260_bb0205
  article-title: Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-012-1270-6
– volume: 189
  start-page: 925
  issue: 6
  year: 2010
  ident: 10.1016/j.bbadis.2021.166260_bb0115
  article-title: Regulation of innate immune responses by autophagy-related proteins
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201002021
– volume: 5
  start-page: 1224
  issue: 8
  year: 2009
  ident: 10.1016/j.bbadis.2021.166260_bb0295
  article-title: Autophagy proteins promote hepatitis C virus replication
  publication-title: Autophagy.
  doi: 10.4161/auto.5.8.10219
– volume: 5
  start-page: 480
  issue: 5
  year: 2013
  ident: 10.1016/j.bbadis.2021.166260_bb0300
  article-title: Autophagy and viruses: adversaries or allies?
  publication-title: J. Innate Immun.
  doi: 10.1159/000346388
– volume: 382
  start-page: 727
  issue: 8
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0020
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 10
  start-page: 19395
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0270
  article-title: Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76404-8
– volume: 6
  issue: 3
  year: 2017
  ident: 10.1016/j.bbadis.2021.166260_bb0030
  article-title: Studying autophagy in zebrafish
  publication-title: Cells.
  doi: 10.3390/cells6030021
– volume: 6
  start-page: 367
  issue: 4
  year: 2009
  ident: 10.1016/j.bbadis.2021.166260_bb0315
  article-title: Matrix protein 2 of influenza a virus blocks autophagosome fusion with lysosomes
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.09.005
– volume: 1
  start-page: 289
  issue: 2
  year: 2010
  ident: 10.1016/j.bbadis.2021.166260_bb0165
  article-title: Down-regulation of IL-6, IL-8, TNF-alpha and IL-1beta by glucosamine in HaCaT cells, but not in the presence of TNF-alpha
  publication-title: Oncol. Lett.
  doi: 10.3892/ol_00000051
– volume: 182
  issue: 3
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0345
  article-title: Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment
  publication-title: Cell.
  doi: 10.1016/j.cell.2020.06.010
– volume: 181
  issue: 2
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0195
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell.
  doi: 10.1016/j.cell.2020.02.052
– volume: 5
  start-page: 299
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0175
  article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling
  publication-title: Signal Transduct. Target Ther.
  doi: 10.1038/s41392-020-00438-7
– volume: 11
  start-page: 4303
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0015
  article-title: A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18159-4
– volume: 27
  issue: 6
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0275
  article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.017
– volume: 17
  start-page: 259
  issue: 5
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0285
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-0360-5
– volume: 32
  start-page: 12396
  issue: 36
  year: 2012
  ident: 10.1016/j.bbadis.2021.166260_bb0035
  article-title: Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6189-11.2012
– volume: 56
  issue: 4
  year: 2021
  ident: 10.1016/j.bbadis.2021.166260_bb0325
  article-title: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.12.010
– volume: 17
  start-page: 543
  issue: 9
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0245
  article-title: COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-0413-9
– volume: 77
  start-page: 683
  issue: 6
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0280
  article-title: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2020.1127
– volume: 20
  start-page: 363
  issue: 6
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0250
  article-title: The trinity of COVID-19: immunity, inflammation and intervention
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0311-8
– volume: 159
  start-page: 586
  issue: 3
  year: 2010
  ident: 10.1016/j.bbadis.2021.166260_bb0395
  article-title: Gangliosides induce autophagic cell death in astrocytes
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2009.00563.x
– volume: 36
  start-page: 1397
  issue: 11
  year: 2015
  ident: 10.1016/j.bbadis.2021.166260_bb0210
  article-title: HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgv126
– volume: 9
  start-page: 175
  issue: 2
  year: 2013
  ident: 10.1016/j.bbadis.2021.166260_bb0155
  article-title: Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy
  publication-title: Autophagy.
  doi: 10.4161/auto.22791
– volume: 5
  start-page: 321
  issue: 3
  year: 2009
  ident: 10.1016/j.bbadis.2021.166260_bb0320
  article-title: Autophagy is involved in influenza A virus replication
  publication-title: Autophagy.
  doi: 10.4161/auto.5.3.7406
– volume: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0335
  article-title: Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.01634-2020
– volume: 32
  start-page: 101456
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0355
  article-title: Lectin-induced oxidative stress in human platelets
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101456
– volume: 10
  start-page: 4102
  issue: 7
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0400
  article-title: A surface-layer protein from lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of mTOR and JNK signaling pathways
  publication-title: Food Funct.
  doi: 10.1039/C9FO00109C
– volume: 7
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.bbadis.2021.166260_bb0230
  article-title: Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway
  publication-title: Autophagy.
  doi: 10.4161/auto.7.1.13883
– volume: 395
  start-page: 1033
  issue: 10229
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0085
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(20)30628-0
– volume: 54
  start-page: 1601
  issue: 5
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0060
  article-title: alpha-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation
  publication-title: Int. J. Oncol.
– volume: 39
  start-page: 529
  issue: 5
  year: 2017
  ident: 10.1016/j.bbadis.2021.166260_bb0070
  article-title: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-017-0629-x
– volume: 13
  start-page: 1709
  issue: 10
  year: 2017
  ident: 10.1016/j.bbadis.2021.166260_bb0200
  article-title: Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway
  publication-title: Autophagy.
  doi: 10.1080/15548627.2017.1356950
– volume: 14
  start-page: 1629
  issue: 9
  year: 2018
  ident: 10.1016/j.bbadis.2021.166260_bb0120
  article-title: TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes
  publication-title: Autophagy.
  doi: 10.1080/15548627.2018.1458804
– volume: 15
  start-page: 173
  issue: 1
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0310
  article-title: Autophagy induced by avian reovirus enhances viral replication in chickens at the early stage of infection
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-019-1926-5
– volume: 12
  start-page: 1704
  issue: 10
  year: 2016
  ident: 10.1016/j.bbadis.2021.166260_bb0265
  article-title: Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines
  publication-title: Autophagy.
  doi: 10.1080/15548627.2016.1196315
– volume: 24
  issue: 23
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0370
  article-title: Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides
  publication-title: Molecules.
  doi: 10.3390/molecules24234264
– volume: 31
  issue: 6
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0010
  article-title: Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.04.021
– volume: 12
  start-page: 2326
  issue: 12
  year: 2016
  ident: 10.1016/j.bbadis.2021.166260_bb0125
  article-title: Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice
  publication-title: Autophagy.
  doi: 10.1080/15548627.2016.1235124
– volume: 242
  start-page: 1025
  issue: 10
  year: 2017
  ident: 10.1016/j.bbadis.2021.166260_bb0055
  article-title: Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370216686221
– volume: 16
  issue: 12
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0290
  article-title: SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009128
– volume: 10
  start-page: 1426
  issue: 8
  year: 2014
  ident: 10.1016/j.bbadis.2021.166260_bb0305
  article-title: Coronavirus NSP6 restricts autophagosome expansion
  publication-title: Autophagy.
  doi: 10.4161/auto.29309
– volume: 6
  start-page: 28715
  year: 2016
  ident: 10.1016/j.bbadis.2021.166260_bb0185
  article-title: CXCL16 deficiency attenuates renal injury and fibrosis in salt-sensitive hypertension
  publication-title: Sci. Rep.
  doi: 10.1038/srep28715
– volume: 12
  start-page: 22
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0215
  article-title: EV71 virus reduces Nrf2 activation to promote production of reactive oxygen species in infected cells
  publication-title: Gut Pathog.
  doi: 10.1186/s13099-020-00361-w
– volume: 579
  start-page: 270
  issue: 7798
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0240
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature.
  doi: 10.1038/s41586-020-2012-7
– volume: 92
  issue: 8
  year: 2018
  ident: 10.1016/j.bbadis.2021.166260_bb0150
  article-title: Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis
  publication-title: J. Virol.
  doi: 10.1128/JVI.02193-17
– volume: 10
  start-page: 2402
  issue: 1
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0080
  article-title: Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10360-4
– volume: 17
  start-page: 528
  issue: 9
  year: 2017
  ident: 10.1016/j.bbadis.2021.166260_bb0045
  article-title: Targeting autophagy in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.53
– volume: 426
  start-page: 450
  issue: 6965
  year: 2003
  ident: 10.1016/j.bbadis.2021.166260_bb0190
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature.
  doi: 10.1038/nature02145
– volume: 205
  start-page: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0110
  article-title: COVID-19 as an acute inflammatory disease
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.2000413
– volume: 11
  start-page: 1620
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0170
  article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15562-9
– volume: 174
  start-page: 1361
  issue: 12
  year: 2006
  ident: 10.1016/j.bbadis.2021.166260_bb0360
  article-title: Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200603-319OC
– volume: 30
  start-page: 4701
  issue: 23
  year: 2011
  ident: 10.1016/j.bbadis.2021.166260_bb0135
  article-title: Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.398
– volume: 3
  start-page: 2630
  issue: 2
  year: 2011
  ident: 10.1016/j.bbadis.2021.166260_bb0040
  article-title: Regulation of autophagy by kinases
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers3022630
– volume: 14
  start-page: 243
  issue: 2
  year: 2018
  ident: 10.1016/j.bbadis.2021.166260_bb0145
  article-title: Autophagy balances inflammation in innate immunity
  publication-title: Autophagy.
  doi: 10.1080/15548627.2017.1402992
– volume: 7
  start-page: 182
  year: 2016
  ident: 10.1016/j.bbadis.2021.166260_bb0255
  article-title: Arctigenin treatment protects against brain damage through an anti-inflammatory and anti-apoptotic mechanism after needle insertion
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00182
– volume: 417
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.bbadis.2021.166260_bb0350
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081386
– volume: 115
  start-page: 2679
  issue: 10
  year: 2005
  ident: 10.1016/j.bbadis.2021.166260_bb0050
  article-title: Autophagy in cell death: an innocent convict?
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI26390
– volume: 35
  start-page: 615
  issue: 5
  year: 2015
  ident: 10.1016/j.bbadis.2021.166260_bb0375
  article-title: ROS and autophagy: interactions and molecular regulatory mechanisms
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-015-0166-x
– volume: 19
  issue: 6
  year: 2018
  ident: 10.1016/j.bbadis.2021.166260_bb0220
  article-title: Chrysin attenuates cell viability of human colorectal cancer cells through autophagy induction unlike 5-Fluorouracil/Oxaliplatin
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19061763
– volume: 12
  start-page: 2894
  issue: 4
  year: 2016
  ident: 10.1016/j.bbadis.2021.166260_bb0385
  article-title: Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.4989
– volume: 11
  start-page: 539
  issue: 7
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0025
  article-title: Itraconazole inhibits the hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-02742-0
– start-page: 2017
  year: 2017
  ident: 10.1016/j.bbadis.2021.166260_bb0225
  article-title: ROS-dependent activation of autophagy through the PI3K/Akt/mTOR pathway is induced by Hydroxysafflor yellow A-Sonodynamic therapy in THP-1 macrophages
  publication-title: Oxidative Med. Cell. Longev.
– volume: 20
  start-page: 765
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0100
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-020-05485-7
– volume: 11
  start-page: 73
  year: 2016
  ident: 10.1016/j.bbadis.2021.166260_bb0075
  article-title: Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants
  publication-title: EBioMedicine.
  doi: 10.1016/j.ebiom.2016.08.011
– volume: 10
  start-page: 17458
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0090
  article-title: Statin use is associated with lower disease severity in COVID-19 infection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74492-0
– volume: 24
  start-page: 353
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0330
  article-title: The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03062-7
– volume: 10
  start-page: 468
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0380
  article-title: Effect of waterlogging-induced autophagy on programmed cell death in arabidopsis roots
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00468
– volume: 5
  year: 2014
  ident: 10.1016/j.bbadis.2021.166260_bb0065
  article-title: Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.288
– start-page: 4
  year: 2015
  ident: 10.1016/j.bbadis.2021.166260_bb0140
  article-title: Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion
  publication-title: Elife
– volume: 19
  start-page: 3413
  issue: 17
  year: 2010
  ident: 10.1016/j.bbadis.2021.166260_bb0235
  article-title: Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq253
– volume: 53
  start-page: 19
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0105
  article-title: Cytokine storms: understanding COVID-19
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2020.06.017
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0180
  article-title: EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS
  publication-title: J. Extracell. Vesicles
  doi: 10.1002/jev2.12003
– volume: 10
  start-page: 419
  issue: 6
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0160
  article-title: Selective cell death of latently HIV-infected CD4(+) T cells mediated by autosis inducing nanopeptides
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1661-7
– volume: 16
  start-page: 966
  issue: 7
  year: 2009
  ident: 10.1016/j.bbadis.2021.166260_bb0260
  article-title: Life and death partners: apoptosis, autophagy and the cross-talk between them
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.33
– volume: 583
  start-page: 830
  issue: 7818
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0340
  article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice
  publication-title: Nature.
  doi: 10.1038/s41586-020-2312-y
– volume: 14
  issue: 11
  year: 2019
  ident: 10.1016/j.bbadis.2021.166260_bb0390
  article-title: Mitochondrial dysfunction in rheumatoid arthritis: a comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0224632
– volume: 382
  start-page: 1199
  issue: 13
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0005
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001316
– volume: 11
  start-page: 1042
  issue: 12
  year: 2020
  ident: 10.1016/j.bbadis.2021.166260_bb0095
  article-title: A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-03252-9
– volume: 115
  start-page: 5839
  issue: 23
  year: 2018
  ident: 10.1016/j.bbadis.2021.166260_bb0365
  article-title: Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1804932115
SSID ssj0000670
Score 2.6527526
Snippet Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 166260
SubjectTerms Animals
Apoptosis
Apoptosis - immunology
Autophagy
Autophagy - physiology
Cell Line
Chlorocebus aethiops
COVID-19 - metabolism
Endothelial Cells - metabolism
HEK293 Cells
Humans
Inflammation
Inflammation - immunology
Inflammation - metabolism
Phosphatidylinositol 3-Kinases - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
SARS-CoV-2
SARS-CoV-2 - pathogenicity
Signal Transduction - immunology
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
TOR Serine-Threonine Kinases - metabolism
Vero Cells
Title SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling
URI https://dx.doi.org/10.1016/j.bbadis.2021.166260
https://www.ncbi.nlm.nih.gov/pubmed/34461258
https://www.proquest.com/docview/2567982057
https://pubmed.ncbi.nlm.nih.gov/PMC8390448
Volume 1867
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaiRFV7idL0tX1ErtSrA9gYzHGLGu02bRLtJtXekA0mJUkBld3DXvrbO8NjlW1VReoJYcbC8gyez3jmG0I-cB6CI8tzpk0YMD-LDDMqT5l1I5UpJDw3mDv89SyYXPmfF3KxQ-IhFwbDKvu1v1vT29W6b3H62XTqonDmboT0WuDfkUYoEpjE5_shWvnxL-_-atz-ZwFhhtJD-lwb42WMzgok7ebesRcgtv-Xe_obfv4ZRXnPLZ0ckP0eT9JxN-SnZMeWh-RRV2FyfUgex0NBt2ekno9ncxZX3xinTV3cWlq3sXi2oWBmYBldFiPVZUZ1XdXLqika2hfyoXqFFAT6ek3Nms7O56xZ1W0Qrc3oxVScOoAWnR-X5zOKISEas9yfk6uTT5fxhPUFF1gqebRkodJK-l4aWO1qX0dYC8aYPPKVlTIURggDM6x5FnKZuaFRnjR5YJVxcyGDTIoXZLesSvuKUN9aLYyVqQfb3iizRqXccuQh5QbMIx0RMcxzkvZs5FgU4y4Zws5ukk47CWon6bQzImzTq-7YOB6QDwcVJltWlYDDeKDn-0HjCagJT1F0aasVCEk8uOKAc0fkZWcBm7EI2FwDYlTw3i3b2Aggmff2k7L43pJ6A1B1Yav8-r9H_IY8wbsu1OYt2V3-XNl3AJiW5qj9Io7I3jiefbnA6_R0cgat08XH36H8GBU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESqXCsprKQ8jcXWT2HHiHKsV1Za-0O4W9RbZsVPCI4nI7mEv_e2dyWPVBaFKXOOxYmXGM5_jmW8I-ch5DIEsz5k2ccRCmxhmVJ4x5yfKKiQ8N1g7fHYeTS7Dz1fyaouMh1oYTKvsfX_n01tv3T_x-q_p1UXhzfwE6bUgviONUCKSB-RhCNsX2xgc3AR33XH7owWkGYoP9XNtkpcx2hbI2s2DgyBCcP-v-PQ3_vwzjfJOXDp6QnZ7QEkPuzU_JVuu3COPuhaTqz2yMx46uj0j9exwOmPj6ivjtKmLH47WbTKeayjYGZhGV8ZIdWmprqt6UTVFQ_tOPlQvkYNAX6-oWdHpxYw1y7rNonWWfjkWJx7ARe_X_GJKMSdEY5n7c3J59Gk-nrC-4wLLJE8WLFZayTDIIqd9HeoEm8EYkyehclLGwghhwjDW3MZcWj82KpAmj5wyfi5kZKV4QbbLqnSvCA2d08I4mQVw7k2sMyrjjiMRKTdgH9mIiOE7p1lPR45dMX6mQ97Z97TTToraSTvtjAhbz6o7Oo575ONBhemGWaUQMe6Z-WHQeApqwmsUXbpqCUISb644AN0RedlZwHotAk7XABkVvHfDNtYCyOa9OVIW31pWb0CqPpyVX__3it-Tncn87DQ9PT4_2SePcaTLu3lDthe_l-4toKeFedfujluQ1xcK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+spike+promotes+inflammation+and+apoptosis+through+autophagy+by+ROS-suppressed+PI3K%2FAKT%2FmTOR+signaling&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Li%2C+Fei&rft.au=Li%2C+Jingyao&rft.au=Wang%2C+Pei-Hui&rft.au=Yang%2C+Nanyan&rft.date=2021-12-01&rft.issn=0925-4439&rft.volume=1867&rft.issue=12&rft.spage=166260&rft_id=info:doi/10.1016%2Fj.bbadis.2021.166260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbadis_2021_166260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon