SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aime...
Saved in:
Published in | Biochimica et biophysica acta. Molecular basis of disease Vol. 1867; no. 12; p. 166260 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2021
The Author(s). Published by Elsevier B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation.
SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses.
Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.
•SARS-CoV-2 spike triggers autophagy and apoptosis in ACE2-expressing cells.•SARS-CoV-2 spike induces autophagy through ROS-suppressed PI3K/AKT/mTOR pathway.•SARS-CoV-2 spike-induced autophagy promotes inflammatory responses and apoptosis. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation.BACKGROUNDSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation.SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses.METHODSSARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses.Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.RESULTSAngiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients. •SARS-CoV-2 spike triggers autophagy and apoptosis in ACE2-expressing cells.•SARS-CoV-2 spike induces autophagy through ROS-suppressed PI3K/AKT/mTOR pathway.•SARS-CoV-2 spike-induced autophagy promotes inflammatory responses and apoptosis. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients. |
ArticleNumber | 166260 |
Author | Yang, Nanyan Liu, Taoshu Cai, Ying Ou, Jinxin Zhao, Xin Wang, Qinghuan Chen, Haisheng Huang, Xueying Yang, Le Lin, Yunchen Wang, Pei-Hui Huang, Junyu Li, Fei Li, Jingyao Zhang, Qing Xu, Ting Li, Miao |
Author_xml | – sequence: 1 givenname: Fei surname: Li fullname: Li, Fei organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Jingyao surname: Li fullname: Li, Jingyao organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Pei-Hui surname: Wang fullname: Wang, Pei-Hui organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China – sequence: 4 givenname: Nanyan surname: Yang fullname: Yang, Nanyan organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Junyu surname: Huang fullname: Huang, Junyu organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 6 givenname: Jinxin surname: Ou fullname: Ou, Jinxin organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 7 givenname: Ting surname: Xu fullname: Xu, Ting organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 8 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 9 givenname: Taoshu surname: Liu fullname: Liu, Taoshu organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 10 givenname: Xueying surname: Huang fullname: Huang, Xueying organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 11 givenname: Qinghuan surname: Wang fullname: Wang, Qinghuan organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 12 givenname: Miao surname: Li fullname: Li, Miao organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 13 givenname: Le surname: Yang fullname: Yang, Le organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 14 givenname: Yunchen surname: Lin fullname: Lin, Yunchen organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 15 givenname: Ying surname: Cai fullname: Cai, Ying organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 16 givenname: Haisheng surname: Chen fullname: Chen, Haisheng organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China – sequence: 17 givenname: Qing surname: Zhang fullname: Zhang, Qing email: lsszq@mail.sysu.edu.cn organization: State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34461258$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFv0zAYxS00xLrCf4CQj1zS2o6dOByQqgrYtElFbUHcLDtxWpfENrYzqf_9Mtoh4AC-2JK_93uf3rsCF9ZZDcBrjGYY4WJ-mCklGxNnBBE8w0VBCvQMTDAvq2x8frsAE1QRllGaV5fgKsYDGk9RohfgMqe0wITxCfCbxXqTLd3XjMDozXcNfXC9SzpCY9tO9r1MxlkobQOldz65aCJM--CG3R7KITm_l7sjVEe4Xm2yOHgfdIy6gZ9v8tv54nY777erNYxmZ2Vn7O4leN7KLupX53sKvnz8sF1eZ3erTzfLxV1WM1KlrOSSM4rrQkskqawwp7lSbUW5ZqzMVZ4rSktJmpKwBpWKY6baQnOF2pwVDcun4P2J6wfV66bWNgXZCR9ML8NROGnEnz_W7MXO3QueV4hSPgLengHB_Rh0TKI3sdZdJ612QxSEFWXFCRq3mYI3v3v9MnmKeRx4dxqog4sx6FbUJv0MdrQ2ncBIPHYqDuLUqXjsVJw6HcX0L_ET_z-ycwB6TPne6CBibbStdWOCrpNonPk34AFd4L2M |
CitedBy_id | crossref_primary_10_3390_cells13020123 crossref_primary_10_1016_j_intimp_2022_109473 crossref_primary_10_3389_fphys_2022_1023758 crossref_primary_10_3389_fcell_2021_766142 crossref_primary_10_3389_fcimb_2024_1457617 crossref_primary_10_1186_s40659_023_00468_9 crossref_primary_10_1016_j_intimp_2023_111155 crossref_primary_10_1038_s41598_022_26657_2 crossref_primary_10_3390_ani12182438 crossref_primary_10_1002_ptr_8302 crossref_primary_10_3390_ijms232315098 crossref_primary_10_1186_s12014_023_09394_0 crossref_primary_10_1038_s41392_023_01580_8 crossref_primary_10_1016_j_vaccine_2025_126744 crossref_primary_10_3390_biomedicines11123160 crossref_primary_10_1186_s12985_023_02194_w crossref_primary_10_1038_s41419_022_05250_5 crossref_primary_10_3390_pathogens12020233 crossref_primary_10_1038_s41392_022_01043_6 crossref_primary_10_1016_j_chemosphere_2024_143451 crossref_primary_10_18632_aging_204740 crossref_primary_10_3389_fimmu_2024_1352479 crossref_primary_10_1128_jvi_00049_24 crossref_primary_10_3390_antiox11010097 crossref_primary_10_1111_acel_13727 crossref_primary_10_1128_mbio_00971_22 crossref_primary_10_1016_j_gendis_2023_01_014 crossref_primary_10_1007_s11481_023_10089_4 crossref_primary_10_1186_s12929_024_01062_1 crossref_primary_10_1038_s41418_023_01204_2 crossref_primary_10_1038_s41420_023_01566_z crossref_primary_10_3389_fimmu_2024_1332440 crossref_primary_10_3389_fimmu_2022_870216 crossref_primary_10_1038_s41420_023_01715_4 crossref_primary_10_1016_j_bbrc_2023_08_063 crossref_primary_10_3389_fimmu_2023_1196350 crossref_primary_10_1002_advs_202305554 crossref_primary_10_1016_j_compbiomed_2022_105601 crossref_primary_10_1016_j_biopha_2021_112420 crossref_primary_10_1002_jmr_70002 crossref_primary_10_1038_s41401_022_00998_0 crossref_primary_10_1016_j_compbiomed_2023_106651 crossref_primary_10_3390_molecules26247459 crossref_primary_10_1080_15287394_2024_2368618 crossref_primary_10_1016_j_aquaculture_2023_739927 crossref_primary_10_1111_cbdd_14034 crossref_primary_10_3389_fnins_2024_1490099 crossref_primary_10_1016_j_ejphar_2023_175929 crossref_primary_10_3390_cells12091282 crossref_primary_10_1128_spectrum_01921_23 crossref_primary_10_1016_j_isci_2023_107118 crossref_primary_10_1021_acschemneuro_2c00610 crossref_primary_10_1002_ptr_8073 crossref_primary_10_3390_diagnostics12092051 crossref_primary_10_1152_ajpendo_00287_2023 crossref_primary_10_1128_jvi_02049_24 crossref_primary_10_3389_fmolb_2023_1158133 crossref_primary_10_1007_s11010_023_04842_9 crossref_primary_10_3389_fimmu_2021_782731 crossref_primary_10_1186_s12864_025_11473_5 crossref_primary_10_3390_antiox11091838 crossref_primary_10_3389_fphar_2022_832750 crossref_primary_10_1007_s12020_024_03891_4 crossref_primary_10_1016_j_ejphar_2024_176856 crossref_primary_10_1089_vim_2023_0012 crossref_primary_10_7554_eLife_84790 crossref_primary_10_1007_s12223_024_01130_x crossref_primary_10_1016_j_cbpc_2023_109551 crossref_primary_10_1183_13993003_00133_2024 crossref_primary_10_3390_separations9030073 crossref_primary_10_1186_s13567_023_01174_w crossref_primary_10_1371_journal_pone_0283728 crossref_primary_10_3390_v16091491 crossref_primary_10_3390_biology13070491 crossref_primary_10_1177_09603271231180864 crossref_primary_10_2147_JIR_S436147 crossref_primary_10_3389_av_2024_12136 crossref_primary_10_3389_fendo_2023_1187882 crossref_primary_10_3389_fphar_2022_988153 crossref_primary_10_1128_mbio_01020_23 crossref_primary_10_3390_ijms24054928 crossref_primary_10_1080_15548627_2022_2116677 crossref_primary_10_2147_IJN_S482652 crossref_primary_10_3390_pathogens12020163 crossref_primary_10_1093_jmcb_mjad048 crossref_primary_10_1016_j_cjac_2025_100527 crossref_primary_10_3389_fnmol_2023_1123955 crossref_primary_10_3389_fmicb_2023_1251705 crossref_primary_10_3390_md22050190 crossref_primary_10_1186_s12967_024_05355_9 crossref_primary_10_1002_dmrr_3607 crossref_primary_10_1016_j_virusres_2022_198990 crossref_primary_10_1016_j_jds_2022_08_016 crossref_primary_10_1186_s11658_024_00659_6 crossref_primary_10_3390_biomedicines10123085 crossref_primary_10_1038_s44298_024_00076_8 crossref_primary_10_1016_j_ijbiomac_2024_134329 crossref_primary_10_1093_hmg_ddad111 crossref_primary_10_1109_ACCESS_2023_3308225 crossref_primary_10_1515_med_2023_0779 crossref_primary_10_2174_1381612829666230510124716 crossref_primary_10_1016_j_clim_2022_109093 crossref_primary_10_1002_jmv_28959 crossref_primary_10_3390_ijms26010084 crossref_primary_10_3389_fcimb_2022_911313 crossref_primary_10_3389_fimmu_2023_1269451 crossref_primary_10_1002_iid3_875 crossref_primary_10_3389_fimmu_2022_827146 crossref_primary_10_1007_s12013_024_01588_z crossref_primary_10_1016_j_molmed_2022_04_007 crossref_primary_10_1093_jmcb_mjae004 crossref_primary_10_3390_cells13050432 crossref_primary_10_4014_jmb_2206_06064 crossref_primary_10_1016_j_crneur_2023_100112 crossref_primary_10_1016_j_jds_2022_03_009 crossref_primary_10_3390_cells12020262 crossref_primary_10_1155_2023_6685251 crossref_primary_10_1016_j_phymed_2023_154833 crossref_primary_10_1016_j_cell_2022_04_022 crossref_primary_10_1007_s12672_024_01483_2 crossref_primary_10_1016_j_phymed_2024_156231 crossref_primary_10_1186_s12890_023_02784_y crossref_primary_10_18632_aging_205735 crossref_primary_10_3389_fmedt_2022_979768 crossref_primary_10_1016_j_fct_2024_114538 crossref_primary_10_1186_s13054_025_05278_x crossref_primary_10_1016_j_jbc_2022_101695 |
Cites_doi | 10.1158/1541-7786.MCR-14-0487 10.1007/s00705-012-1270-6 10.1083/jcb.201002021 10.4161/auto.5.8.10219 10.1159/000346388 10.1056/NEJMoa2001017 10.1038/s41598-020-76404-8 10.3390/cells6030021 10.1016/j.chom.2009.09.005 10.3892/ol_00000051 10.1016/j.cell.2020.06.010 10.1016/j.cell.2020.02.052 10.1038/s41392-020-00438-7 10.1038/s41467-020-18159-4 10.1016/j.chom.2020.04.017 10.1038/s41569-020-0360-5 10.1523/JNEUROSCI.6189-11.2012 10.1016/j.devcel.2020.12.010 10.1038/s41569-020-0413-9 10.1001/jamaneurol.2020.1127 10.1038/s41577-020-0311-8 10.1111/j.1476-5381.2009.00563.x 10.1093/carcin/bgv126 10.4161/auto.22791 10.4161/auto.5.3.7406 10.1183/13993003.01634-2020 10.1016/j.redox.2020.101456 10.1039/C9FO00109C 10.4161/auto.7.1.13883 10.1016/S0140-6736(20)30628-0 10.1007/s00281-017-0629-x 10.1080/15548627.2017.1356950 10.1080/15548627.2018.1458804 10.1186/s12917-019-1926-5 10.1080/15548627.2016.1196315 10.3390/molecules24234264 10.1016/j.cmet.2020.04.021 10.1080/15548627.2016.1235124 10.1177/1535370216686221 10.1371/journal.ppat.1009128 10.4161/auto.29309 10.1038/srep28715 10.1186/s13099-020-00361-w 10.1038/s41586-020-2012-7 10.1128/JVI.02193-17 10.1038/s41467-019-10360-4 10.1038/nrc.2017.53 10.1038/nature02145 10.4049/jimmunol.2000413 10.1038/s41467-020-15562-9 10.1164/rccm.200603-319OC 10.1038/emboj.2011.398 10.3390/cancers3022630 10.1080/15548627.2017.1402992 10.3389/fphar.2016.00182 10.1042/BJ20081386 10.1172/JCI26390 10.1007/s10571-015-0166-x 10.3390/ijms19061763 10.3892/ol.2016.4989 10.1038/s41419-020-02742-0 10.1186/s12879-020-05485-7 10.1016/j.ebiom.2016.08.011 10.1038/s41598-020-74492-0 10.1186/s13054-020-03062-7 10.3389/fpls.2019.00468 10.1038/cddis.2014.288 10.1093/hmg/ddq253 10.1016/j.immuni.2020.06.017 10.1002/jev2.12003 10.1038/s41419-019-1661-7 10.1038/cdd.2009.33 10.1038/s41586-020-2312-y 10.1371/journal.pone.0224632 10.1056/NEJMoa2001316 10.1038/s41419-020-03252-9 10.1073/pnas.1804932115 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bbadis.2021.166260 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-260X |
EndPage | 166260 |
ExternalDocumentID | PMC8390448 34461258 10_1016_j_bbadis_2021_166260 S0925443921001939 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABGSF ABLVK ABMAC ABMZM ABUDA ABVKL ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEHWI AEKER AEXQZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IXB J1W KOM LCYCR LX3 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSU SSZ T5K ~G- 3O- AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACIEU ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGCQF AGHFR AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ IHE R2- SBG SEW UQL WUQ XJT XPP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c529t-78a8541c6ea0a4a91843bbf948e5573b33b447a2d725d07b815bf6e8b0f356d53 |
IEDL.DBID | .~1 |
ISSN | 0925-4439 1879-260X |
IngestDate | Thu Aug 21 14:33:00 EDT 2025 Tue Aug 05 10:40:44 EDT 2025 Thu Apr 03 07:06:41 EDT 2025 Tue Jul 01 01:17:00 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Fri Feb 23 02:43:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Reactive oxygen species IL Inflammation MERS-CoV Co-IP Autophagy COVID-19 ACE2 SARS-CoV-2 DEGs TUNEL TNF-α RT-PCR ROS KEGG 3-MA Apoptosis ELISA |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-78a8541c6ea0a4a91843bbf948e5573b33b447a2d725d07b815bf6e8b0f356d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed equally to this work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925443921001939 |
PMID | 34461258 |
PQID | 2567982057 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8390448 proquest_miscellaneous_2567982057 pubmed_primary_34461258 crossref_citationtrail_10_1016_j_bbadis_2021_166260 crossref_primary_10_1016_j_bbadis_2021_166260 elsevier_sciencedirect_doi_10_1016_j_bbadis_2021_166260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. Molecular basis of disease |
PublicationTitleAlternate | Biochim Biophys Acta Mol Basis Dis |
PublicationYear | 2021 |
Publisher | Elsevier B.V The Author(s). Published by Elsevier B.V |
Publisher_xml | – name: Elsevier B.V – name: The Author(s). Published by Elsevier B.V |
References | Sridharan, Jain, Basu (bb0040) 2011; 3 Li, Moore, Vasilieva (bb0190) 2003; 426 Dong, Levine (bb0300) 2013; 5 Mangalmurti, Hunter (bb0105) 2020; 53 Zhong, Wang, Pan, Li, Kuang, Su (bb0385) 2016; 12 Tan, Young, Lye, Chew, Dalan (bb0090) 2020; 10 Zheng, Ma, Zhang, Xie (bb0285) 2020; 17 Tay, Poh, Renia, MacAry, Ng (bb0250) 2020; 20 Miao, Zhao, Li (bb0325) 2021; 56 Zhou, Yang, Wang (bb0240) 2020; 579 Cortes, Qin, Cook, Solanki, Mastrianni (bb0035) 2012; 32 Fragoso-Saavedra, Iruegas-Nunez, Quintero-Villegas (bb0100) 2020; 20 Levy, Towers, Thorburn (bb0045) 2017; 17 Huertas, Montani, Savale (bb0335) 2020; 56 Noy-Porat, Makdasi, Alcalay (bb0015) 2020; 11 Niu, Zhang, Wang (bb0310) 2019; 15 Spengler, Kincses, Mosolygo (bb0370) 2019; 24 Han, Bae, Choi (bb0125) 2016; 12 Meng, Zhou, Jiang (bb0205) 2012; 157 Zhou, Jiang, Liu (bb0320) 2009; 5 Park, Lee, Cho, Cho, Cho (bb0165) 2010; 1 Pons, Fodil, Azoulay, Zafrani (bb0330) 2020; 24 Radi (bb0365) 2018; 115 Murphy (bb0350) 2009; 417 Sung, Huang, Hsieh (bb0080) 2019; 10 Sun, Zhuang, Zheng (bb0345) 2020; 182 Li, Li, Zeng (bb0150) 2018; 92 Signorello, Ravera, Leoncini (bb0355) 2020; 32 Hwang, Lee, Lee (bb0395) 2010; 159 Saitoh, Akira (bb0115) 2010; 189 Liang, Ma, Peng, He, Hu, Wang (bb0185) 2016; 6 Panga, Kallor, Nair, Harshan, Raghunathan (bb0390) 2019; 14 Mehta, McAuley, Brown (bb0085) 2020; 395 Marullo, Werner, Zhang, Chen, Shin, Doetsch (bb0210) 2015; 36 Flores-Bellver, Bonet-Ponce, Barcia (bb0065) 2014; 5 Zheng, Zhuang, Han (bb0175) 2020; 5 Ou, Liu, Lei (bb0170) 2020; 11 Maycotte, Jones, Goodall, Thorburn, Thorburn (bb0130) 2015; 13 Peng, Zhu, Hu (bb0265) 2016; 12 Nishiga, Wang, Han, Lewis, Wu (bb0245) 2020; 17 Bao, Deng, Huang (bb0340) 2020; 583 Vucicevic, Misirkic, Janjetovic (bb0230) 2011; 7 Underwood, Imarisio, Fleming (bb0235) 2010; 19 Eisenberg-Lerner, Bialik, Simon, Kimchi (bb0260) 2009; 16 Wang, Cheng, Zhang, Xu, Zhang, Lu (bb0400) 2019; 10 Cottam, Whelband, Wileman (bb0305) 2014; 10 Chang, Bai, Tian (bb0055) 2017; 242 Dupont, Jiang, Pilli, Ornatowski, Bhattacharya, Deretic (bb0135) 2011; 30 Song, Li, Xia (bb0255) 2016; 7 Levine, Yuan (bb0050) 2005; 115 Wang, Luo, Zhang (bb0095) 2020; 11 Zhou, Ren, Zhang (bb0275) 2020; 27 Castro, Guerrero-Plata, Suarez-Real (bb0360) 2006; 174 High, Cho, Marzec (bb0075) 2016; 11 Channappanavar, Perlman (bb0070) 2017; 39 Li, Zhao, Sun (bb0180) 2020; 10 Guan, Lin, Liu (bb0380) 2019; 10 Zhai, Lin, Feng (bb0120) 2018; 14 Manjili, Zarei, Habibi, Manjili (bb0110) 2020; 205 Zhu, Zhang, Wang (bb0020) 2020; 382 Dreux, Chisari (bb0295) 2009; 5 Patra, Meyer, Geerling (bb0290) 2020; 16 Gannage, Dormann, Albrecht (bb0315) 2009; 6 Li, Tan, Miao, Lei, Zhang (bb0375) 2015; 35 Mathai, Meijer, Simonsen (bb0030) 2017; 6 Deretic, Levine (bb0145) 2018; 14 Hou, Wei, Zhu (bb0200) 2017; 13 Zhu, She, Cheng (bb0010) 2020; 31 Li, Guan, Wu (bb0005) 2020; 382 Deng, Huang, Liao, Liu, Li, Xu (bb0025) 2020; 11 Sun, Feng, Wang (bb0060) 2019; 54 Huang, Kang, Wang, Luo, Yang, Zhao (bb0155) 2013; 9 Zhang, Luk, Wei (bb0160) 2019; 10 Lin, Chen, Hsiang (bb0220) 2018; 19 Mao, Jin, Wang (bb0280) 2020; 77 Zhang, Kenny, Ge, Xu, Schekman (bb0140) 2015 Hoffmann, Kleine-Weber, Schroeder (bb0195) 2020; 181 Jiang, Kou, Han (bb0225) 2017 Islam, Khan (bb0270) 2020; 10 Bai, Zhao, Li, Sheng, Li (bb0215) 2020; 12 Mathai (10.1016/j.bbadis.2021.166260_bb0030) 2017; 6 Mangalmurti (10.1016/j.bbadis.2021.166260_bb0105) 2020; 53 Tay (10.1016/j.bbadis.2021.166260_bb0250) 2020; 20 Castro (10.1016/j.bbadis.2021.166260_bb0360) 2006; 174 Zhou (10.1016/j.bbadis.2021.166260_bb0275) 2020; 27 Ou (10.1016/j.bbadis.2021.166260_bb0170) 2020; 11 Bai (10.1016/j.bbadis.2021.166260_bb0215) 2020; 12 Pons (10.1016/j.bbadis.2021.166260_bb0330) 2020; 24 Hou (10.1016/j.bbadis.2021.166260_bb0200) 2017; 13 Fragoso-Saavedra (10.1016/j.bbadis.2021.166260_bb0100) 2020; 20 Han (10.1016/j.bbadis.2021.166260_bb0125) 2016; 12 Signorello (10.1016/j.bbadis.2021.166260_bb0355) 2020; 32 Li (10.1016/j.bbadis.2021.166260_bb0005) 2020; 382 Levine (10.1016/j.bbadis.2021.166260_bb0050) 2005; 115 Li (10.1016/j.bbadis.2021.166260_bb0150) 2018; 92 Li (10.1016/j.bbadis.2021.166260_bb0375) 2015; 35 Bao (10.1016/j.bbadis.2021.166260_bb0340) 2020; 583 Wang (10.1016/j.bbadis.2021.166260_bb0400) 2019; 10 Huang (10.1016/j.bbadis.2021.166260_bb0155) 2013; 9 Dreux (10.1016/j.bbadis.2021.166260_bb0295) 2009; 5 Zhang (10.1016/j.bbadis.2021.166260_bb0140) 2015 Underwood (10.1016/j.bbadis.2021.166260_bb0235) 2010; 19 Deretic (10.1016/j.bbadis.2021.166260_bb0145) 2018; 14 Liang (10.1016/j.bbadis.2021.166260_bb0185) 2016; 6 Peng (10.1016/j.bbadis.2021.166260_bb0265) 2016; 12 Miao (10.1016/j.bbadis.2021.166260_bb0325) 2021; 56 Zhang (10.1016/j.bbadis.2021.166260_bb0160) 2019; 10 Zhou (10.1016/j.bbadis.2021.166260_bb0320) 2009; 5 Mehta (10.1016/j.bbadis.2021.166260_bb0085) 2020; 395 Panga (10.1016/j.bbadis.2021.166260_bb0390) 2019; 14 Sun (10.1016/j.bbadis.2021.166260_bb0060) 2019; 54 Saitoh (10.1016/j.bbadis.2021.166260_bb0115) 2010; 189 Radi (10.1016/j.bbadis.2021.166260_bb0365) 2018; 115 Tan (10.1016/j.bbadis.2021.166260_bb0090) 2020; 10 Vucicevic (10.1016/j.bbadis.2021.166260_bb0230) 2011; 7 Niu (10.1016/j.bbadis.2021.166260_bb0310) 2019; 15 Flores-Bellver (10.1016/j.bbadis.2021.166260_bb0065) 2014; 5 Hwang (10.1016/j.bbadis.2021.166260_bb0395) 2010; 159 Chang (10.1016/j.bbadis.2021.166260_bb0055) 2017; 242 Marullo (10.1016/j.bbadis.2021.166260_bb0210) 2015; 36 Noy-Porat (10.1016/j.bbadis.2021.166260_bb0015) 2020; 11 Zheng (10.1016/j.bbadis.2021.166260_bb0285) 2020; 17 Spengler (10.1016/j.bbadis.2021.166260_bb0370) 2019; 24 Sung (10.1016/j.bbadis.2021.166260_bb0080) 2019; 10 Lin (10.1016/j.bbadis.2021.166260_bb0220) 2018; 19 Patra (10.1016/j.bbadis.2021.166260_bb0290) 2020; 16 Cortes (10.1016/j.bbadis.2021.166260_bb0035) 2012; 32 Wang (10.1016/j.bbadis.2021.166260_bb0095) 2020; 11 Dupont (10.1016/j.bbadis.2021.166260_bb0135) 2011; 30 Li (10.1016/j.bbadis.2021.166260_bb0180) 2020; 10 Guan (10.1016/j.bbadis.2021.166260_bb0380) 2019; 10 Islam (10.1016/j.bbadis.2021.166260_bb0270) 2020; 10 Levy (10.1016/j.bbadis.2021.166260_bb0045) 2017; 17 Eisenberg-Lerner (10.1016/j.bbadis.2021.166260_bb0260) 2009; 16 Manjili (10.1016/j.bbadis.2021.166260_bb0110) 2020; 205 Mao (10.1016/j.bbadis.2021.166260_bb0280) 2020; 77 Sun (10.1016/j.bbadis.2021.166260_bb0345) 2020; 182 Li (10.1016/j.bbadis.2021.166260_bb0190) 2003; 426 Zhou (10.1016/j.bbadis.2021.166260_bb0240) 2020; 579 Maycotte (10.1016/j.bbadis.2021.166260_bb0130) 2015; 13 Zhong (10.1016/j.bbadis.2021.166260_bb0385) 2016; 12 Zhai (10.1016/j.bbadis.2021.166260_bb0120) 2018; 14 Meng (10.1016/j.bbadis.2021.166260_bb0205) 2012; 157 Zhu (10.1016/j.bbadis.2021.166260_bb0010) 2020; 31 Park (10.1016/j.bbadis.2021.166260_bb0165) 2010; 1 Dong (10.1016/j.bbadis.2021.166260_bb0300) 2013; 5 Huertas (10.1016/j.bbadis.2021.166260_bb0335) 2020; 56 Gannage (10.1016/j.bbadis.2021.166260_bb0315) 2009; 6 Deng (10.1016/j.bbadis.2021.166260_bb0025) 2020; 11 Channappanavar (10.1016/j.bbadis.2021.166260_bb0070) 2017; 39 Zheng (10.1016/j.bbadis.2021.166260_bb0175) 2020; 5 Hoffmann (10.1016/j.bbadis.2021.166260_bb0195) 2020; 181 Murphy (10.1016/j.bbadis.2021.166260_bb0350) 2009; 417 Song (10.1016/j.bbadis.2021.166260_bb0255) 2016; 7 Sridharan (10.1016/j.bbadis.2021.166260_bb0040) 2011; 3 Nishiga (10.1016/j.bbadis.2021.166260_bb0245) 2020; 17 Jiang (10.1016/j.bbadis.2021.166260_bb0225) 2017 High (10.1016/j.bbadis.2021.166260_bb0075) 2016; 11 Cottam (10.1016/j.bbadis.2021.166260_bb0305) 2014; 10 Zhu (10.1016/j.bbadis.2021.166260_bb0020) 2020; 382 |
References_xml | – volume: 13 start-page: 651 year: 2015 end-page: 658 ident: bb0130 article-title: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion publication-title: Mol. Cancer Res. – volume: 13 start-page: 1709 year: 2017 end-page: 1721 ident: bb0200 article-title: Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway publication-title: Autophagy. – volume: 159 start-page: 586 year: 2010 end-page: 603 ident: bb0395 article-title: Gangliosides induce autophagic cell death in astrocytes publication-title: Br. J. Pharmacol. – volume: 6 start-page: 367 year: 2009 end-page: 380 ident: bb0315 article-title: Matrix protein 2 of influenza a virus blocks autophagosome fusion with lysosomes publication-title: Cell Host Microbe – volume: 3 start-page: 2630 year: 2011 end-page: 2654 ident: bb0040 article-title: Regulation of autophagy by kinases publication-title: Cancers (Basel) – volume: 19 start-page: 3413 year: 2010 end-page: 3429 ident: bb0235 article-title: Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease publication-title: Hum. Mol. Genet. – volume: 6 year: 2017 ident: bb0030 article-title: Studying autophagy in zebrafish publication-title: Cells. – volume: 10 year: 2020 ident: bb0180 article-title: EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS publication-title: J. Extracell. Vesicles – volume: 10 start-page: 19395 year: 2020 ident: bb0270 article-title: Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy publication-title: Sci. Rep. – volume: 20 start-page: 363 year: 2020 end-page: 374 ident: bb0250 article-title: The trinity of COVID-19: immunity, inflammation and intervention publication-title: Nat. Rev. Immunol. – volume: 15 start-page: 173 year: 2019 ident: bb0310 article-title: Autophagy induced by avian reovirus enhances viral replication in chickens at the early stage of infection publication-title: BMC Vet. Res. – volume: 10 start-page: 1426 year: 2014 end-page: 1441 ident: bb0305 article-title: Coronavirus NSP6 restricts autophagosome expansion publication-title: Autophagy. – volume: 35 start-page: 615 year: 2015 end-page: 621 ident: bb0375 article-title: ROS and autophagy: interactions and molecular regulatory mechanisms publication-title: Cell. Mol. Neurobiol. – volume: 56 year: 2021 ident: bb0325 article-title: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation publication-title: Dev. Cell – volume: 115 start-page: 5839 year: 2018 end-page: 5848 ident: bb0365 article-title: Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 1620 year: 2020 ident: bb0170 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. – volume: 5 start-page: 480 year: 2013 end-page: 493 ident: bb0300 article-title: Autophagy and viruses: adversaries or allies? publication-title: J. Innate Immun. – volume: 54 start-page: 1601 year: 2019 end-page: 1612 ident: bb0060 article-title: alpha-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation publication-title: Int. J. Oncol. – volume: 395 start-page: 1033 year: 2020 end-page: 1034 ident: bb0085 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet. – volume: 12 start-page: 1704 year: 2016 end-page: 1720 ident: bb0265 article-title: Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines publication-title: Autophagy. – volume: 17 start-page: 543 year: 2020 end-page: 558 ident: bb0245 article-title: COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives publication-title: Nat. Rev. Cardiol. – volume: 14 start-page: 243 year: 2018 end-page: 251 ident: bb0145 article-title: Autophagy balances inflammation in innate immunity publication-title: Autophagy. – volume: 24 year: 2019 ident: bb0370 article-title: Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides publication-title: Molecules. – volume: 242 start-page: 1025 year: 2017 end-page: 1033 ident: bb0055 article-title: Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway publication-title: Exp. Biol. Med. – volume: 12 start-page: 22 year: 2020 ident: bb0215 article-title: EV71 virus reduces Nrf2 activation to promote production of reactive oxygen species in infected cells publication-title: Gut Pathog. – start-page: 2017 year: 2017 ident: bb0225 article-title: ROS-dependent activation of autophagy through the PI3K/Akt/mTOR pathway is induced by Hydroxysafflor yellow A-Sonodynamic therapy in THP-1 macrophages publication-title: Oxidative Med. Cell. Longev. – volume: 39 start-page: 529 year: 2017 end-page: 539 ident: bb0070 article-title: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology publication-title: Semin. Immunopathol. – volume: 205 start-page: 12 year: 2020 end-page: 19 ident: bb0110 article-title: COVID-19 as an acute inflammatory disease publication-title: J. Immunol. – volume: 32 start-page: 12396 year: 2012 end-page: 12405 ident: bb0035 article-title: Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease publication-title: J. Neurosci. – volume: 30 start-page: 4701 year: 2011 end-page: 4711 ident: bb0135 article-title: Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta publication-title: EMBO J. – volume: 6 start-page: 28715 year: 2016 ident: bb0185 article-title: CXCL16 deficiency attenuates renal injury and fibrosis in salt-sensitive hypertension publication-title: Sci. Rep. – volume: 53 start-page: 19 year: 2020 end-page: 25 ident: bb0105 article-title: Cytokine storms: understanding COVID-19 publication-title: Immunity. – volume: 10 start-page: 419 year: 2019 ident: bb0160 article-title: Selective cell death of latently HIV-infected CD4(+) T cells mediated by autosis inducing nanopeptides publication-title: Cell Death Dis. – volume: 5 start-page: 299 year: 2020 ident: bb0175 article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling publication-title: Signal Transduct. Target Ther. – volume: 10 start-page: 4102 year: 2019 end-page: 4112 ident: bb0400 article-title: A surface-layer protein from lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of mTOR and JNK signaling pathways publication-title: Food Funct. – volume: 181 year: 2020 ident: bb0195 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bb0020 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 5 start-page: 321 year: 2009 end-page: 328 ident: bb0320 article-title: Autophagy is involved in influenza A virus replication publication-title: Autophagy. – volume: 157 start-page: 1011 year: 2012 end-page: 1018 ident: bb0205 article-title: Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication publication-title: Arch. Virol. – volume: 5 year: 2014 ident: bb0065 article-title: Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal publication-title: Cell Death Dis. – volume: 17 start-page: 528 year: 2017 end-page: 542 ident: bb0045 article-title: Targeting autophagy in cancer publication-title: Nat. Rev. Cancer – volume: 10 start-page: 17458 year: 2020 ident: bb0090 article-title: Statin use is associated with lower disease severity in COVID-19 infection publication-title: Sci. Rep. – volume: 20 start-page: 765 year: 2020 ident: bb0100 article-title: A parallel-group, multicenter randomized, double-blinded, placebo-controlled, phase 2/3, clinical trial to test the efficacy of pyridostigmine bromide at low doses to reduce mortality or invasive mechanical ventilation in adults with severe SARS-CoV-2 infection: the Pyridostigmine In Severe COvid-19 (PISCO) trial protocol publication-title: BMC Infect. Dis. – volume: 92 year: 2018 ident: bb0150 article-title: Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis publication-title: J. Virol. – volume: 182 year: 2020 ident: bb0345 article-title: Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment publication-title: Cell. – volume: 11 start-page: 73 year: 2016 end-page: 84 ident: bb0075 article-title: Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants publication-title: EBioMedicine. – volume: 11 start-page: 4303 year: 2020 ident: bb0015 article-title: A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes publication-title: Nat. Commun. – start-page: 4 year: 2015 ident: bb0140 article-title: Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion publication-title: Elife – volume: 115 start-page: 2679 year: 2005 end-page: 2688 ident: bb0050 article-title: Autophagy in cell death: an innocent convict? publication-title: J. Clin. Invest. – volume: 11 start-page: 1042 year: 2020 ident: bb0095 article-title: A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection publication-title: Cell Death Dis. – volume: 16 year: 2020 ident: bb0290 article-title: SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells publication-title: PLoS Pathog. – volume: 31 year: 2020 ident: bb0010 article-title: Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes publication-title: Cell Metab. – volume: 10 start-page: 468 year: 2019 ident: bb0380 article-title: Effect of waterlogging-induced autophagy on programmed cell death in arabidopsis roots publication-title: Front. Plant Sci. – volume: 382 start-page: 1199 year: 2020 end-page: 1207 ident: bb0005 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia publication-title: N. Engl. J. Med. – volume: 36 start-page: 1397 year: 2015 end-page: 1406 ident: bb0210 article-title: HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells publication-title: Carcinogenesis. – volume: 32 start-page: 101456 year: 2020 ident: bb0355 article-title: Lectin-induced oxidative stress in human platelets publication-title: Redox Biol. – volume: 14 start-page: 1629 year: 2018 end-page: 1643 ident: bb0120 article-title: TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes publication-title: Autophagy. – volume: 7 start-page: 40 year: 2011 end-page: 50 ident: bb0230 article-title: Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway publication-title: Autophagy. – volume: 12 start-page: 2894 year: 2016 end-page: 2899 ident: bb0385 article-title: Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways publication-title: Oncol. Lett. – volume: 10 start-page: 2402 year: 2019 ident: bb0080 article-title: Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2 publication-title: Nat. Commun. – volume: 16 start-page: 966 year: 2009 end-page: 975 ident: bb0260 article-title: Life and death partners: apoptosis, autophagy and the cross-talk between them publication-title: Cell Death Differ. – volume: 583 start-page: 830 year: 2020 end-page: 833 ident: bb0340 article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice publication-title: Nature. – volume: 56 year: 2020 ident: bb0335 article-title: Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? publication-title: Eur. Respir. J. – volume: 1 start-page: 289 year: 2010 end-page: 292 ident: bb0165 article-title: Down-regulation of IL-6, IL-8, TNF-alpha and IL-1beta by glucosamine in HaCaT cells, but not in the presence of TNF-alpha publication-title: Oncol. Lett. – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bb0240 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature. – volume: 27 year: 2020 ident: bb0275 article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients publication-title: Cell Host Microbe – volume: 24 start-page: 353 year: 2020 ident: bb0330 article-title: The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection publication-title: Crit. Care – volume: 14 year: 2019 ident: bb0390 article-title: Mitochondrial dysfunction in rheumatoid arthritis: a comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data publication-title: PLoS One – volume: 11 start-page: 539 year: 2020 ident: bb0025 article-title: Itraconazole inhibits the hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells publication-title: Cell Death Dis. – volume: 77 start-page: 683 year: 2020 end-page: 690 ident: bb0280 article-title: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China publication-title: JAMA Neurol. – volume: 417 start-page: 1 year: 2009 end-page: 13 ident: bb0350 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. – volume: 12 start-page: 2326 year: 2016 end-page: 2343 ident: bb0125 article-title: Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice publication-title: Autophagy. – volume: 9 start-page: 175 year: 2013 end-page: 195 ident: bb0155 article-title: Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy publication-title: Autophagy. – volume: 7 start-page: 182 year: 2016 ident: bb0255 article-title: Arctigenin treatment protects against brain damage through an anti-inflammatory and anti-apoptotic mechanism after needle insertion publication-title: Front. Pharmacol. – volume: 19 year: 2018 ident: bb0220 article-title: Chrysin attenuates cell viability of human colorectal cancer cells through autophagy induction unlike 5-Fluorouracil/Oxaliplatin publication-title: Int. J. Mol. Sci. – volume: 5 start-page: 1224 year: 2009 end-page: 1225 ident: bb0295 article-title: Autophagy proteins promote hepatitis C virus replication publication-title: Autophagy. – volume: 189 start-page: 925 year: 2010 end-page: 935 ident: bb0115 article-title: Regulation of innate immune responses by autophagy-related proteins publication-title: J. Cell Biol. – volume: 174 start-page: 1361 year: 2006 end-page: 1369 ident: bb0360 article-title: Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation publication-title: Am. J. Respir. Crit. Care Med. – volume: 17 start-page: 259 year: 2020 end-page: 260 ident: bb0285 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: bb0190 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature. – volume: 13 start-page: 651 issue: 4 year: 2015 ident: 10.1016/j.bbadis.2021.166260_bb0130 article-title: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-14-0487 – volume: 157 start-page: 1011 issue: 6 year: 2012 ident: 10.1016/j.bbadis.2021.166260_bb0205 article-title: Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication publication-title: Arch. Virol. doi: 10.1007/s00705-012-1270-6 – volume: 189 start-page: 925 issue: 6 year: 2010 ident: 10.1016/j.bbadis.2021.166260_bb0115 article-title: Regulation of innate immune responses by autophagy-related proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.201002021 – volume: 5 start-page: 1224 issue: 8 year: 2009 ident: 10.1016/j.bbadis.2021.166260_bb0295 article-title: Autophagy proteins promote hepatitis C virus replication publication-title: Autophagy. doi: 10.4161/auto.5.8.10219 – volume: 5 start-page: 480 issue: 5 year: 2013 ident: 10.1016/j.bbadis.2021.166260_bb0300 article-title: Autophagy and viruses: adversaries or allies? publication-title: J. Innate Immun. doi: 10.1159/000346388 – volume: 382 start-page: 727 issue: 8 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0020 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 10 start-page: 19395 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0270 article-title: Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy publication-title: Sci. Rep. doi: 10.1038/s41598-020-76404-8 – volume: 6 issue: 3 year: 2017 ident: 10.1016/j.bbadis.2021.166260_bb0030 article-title: Studying autophagy in zebrafish publication-title: Cells. doi: 10.3390/cells6030021 – volume: 6 start-page: 367 issue: 4 year: 2009 ident: 10.1016/j.bbadis.2021.166260_bb0315 article-title: Matrix protein 2 of influenza a virus blocks autophagosome fusion with lysosomes publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.09.005 – volume: 1 start-page: 289 issue: 2 year: 2010 ident: 10.1016/j.bbadis.2021.166260_bb0165 article-title: Down-regulation of IL-6, IL-8, TNF-alpha and IL-1beta by glucosamine in HaCaT cells, but not in the presence of TNF-alpha publication-title: Oncol. Lett. doi: 10.3892/ol_00000051 – volume: 182 issue: 3 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0345 article-title: Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment publication-title: Cell. doi: 10.1016/j.cell.2020.06.010 – volume: 181 issue: 2 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0195 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell. doi: 10.1016/j.cell.2020.02.052 – volume: 5 start-page: 299 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0175 article-title: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling publication-title: Signal Transduct. Target Ther. doi: 10.1038/s41392-020-00438-7 – volume: 11 start-page: 4303 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0015 article-title: A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes publication-title: Nat. Commun. doi: 10.1038/s41467-020-18159-4 – volume: 27 issue: 6 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0275 article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.017 – volume: 17 start-page: 259 issue: 5 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0285 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0360-5 – volume: 32 start-page: 12396 issue: 36 year: 2012 ident: 10.1016/j.bbadis.2021.166260_bb0035 article-title: Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6189-11.2012 – volume: 56 issue: 4 year: 2021 ident: 10.1016/j.bbadis.2021.166260_bb0325 article-title: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.12.010 – volume: 17 start-page: 543 issue: 9 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0245 article-title: COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0413-9 – volume: 77 start-page: 683 issue: 6 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0280 article-title: Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2020.1127 – volume: 20 start-page: 363 issue: 6 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0250 article-title: The trinity of COVID-19: immunity, inflammation and intervention publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0311-8 – volume: 159 start-page: 586 issue: 3 year: 2010 ident: 10.1016/j.bbadis.2021.166260_bb0395 article-title: Gangliosides induce autophagic cell death in astrocytes publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2009.00563.x – volume: 36 start-page: 1397 issue: 11 year: 2015 ident: 10.1016/j.bbadis.2021.166260_bb0210 article-title: HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells publication-title: Carcinogenesis. doi: 10.1093/carcin/bgv126 – volume: 9 start-page: 175 issue: 2 year: 2013 ident: 10.1016/j.bbadis.2021.166260_bb0155 article-title: Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy publication-title: Autophagy. doi: 10.4161/auto.22791 – volume: 5 start-page: 321 issue: 3 year: 2009 ident: 10.1016/j.bbadis.2021.166260_bb0320 article-title: Autophagy is involved in influenza A virus replication publication-title: Autophagy. doi: 10.4161/auto.5.3.7406 – volume: 56 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0335 article-title: Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? publication-title: Eur. Respir. J. doi: 10.1183/13993003.01634-2020 – volume: 32 start-page: 101456 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0355 article-title: Lectin-induced oxidative stress in human platelets publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101456 – volume: 10 start-page: 4102 issue: 7 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0400 article-title: A surface-layer protein from lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of mTOR and JNK signaling pathways publication-title: Food Funct. doi: 10.1039/C9FO00109C – volume: 7 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.bbadis.2021.166260_bb0230 article-title: Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway publication-title: Autophagy. doi: 10.4161/auto.7.1.13883 – volume: 395 start-page: 1033 issue: 10229 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0085 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet. doi: 10.1016/S0140-6736(20)30628-0 – volume: 54 start-page: 1601 issue: 5 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0060 article-title: alpha-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation publication-title: Int. J. Oncol. – volume: 39 start-page: 529 issue: 5 year: 2017 ident: 10.1016/j.bbadis.2021.166260_bb0070 article-title: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology publication-title: Semin. Immunopathol. doi: 10.1007/s00281-017-0629-x – volume: 13 start-page: 1709 issue: 10 year: 2017 ident: 10.1016/j.bbadis.2021.166260_bb0200 article-title: Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway publication-title: Autophagy. doi: 10.1080/15548627.2017.1356950 – volume: 14 start-page: 1629 issue: 9 year: 2018 ident: 10.1016/j.bbadis.2021.166260_bb0120 article-title: TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes publication-title: Autophagy. doi: 10.1080/15548627.2018.1458804 – volume: 15 start-page: 173 issue: 1 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0310 article-title: Autophagy induced by avian reovirus enhances viral replication in chickens at the early stage of infection publication-title: BMC Vet. Res. doi: 10.1186/s12917-019-1926-5 – volume: 12 start-page: 1704 issue: 10 year: 2016 ident: 10.1016/j.bbadis.2021.166260_bb0265 article-title: Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines publication-title: Autophagy. doi: 10.1080/15548627.2016.1196315 – volume: 24 issue: 23 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0370 article-title: Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides publication-title: Molecules. doi: 10.3390/molecules24234264 – volume: 31 issue: 6 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0010 article-title: Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.04.021 – volume: 12 start-page: 2326 issue: 12 year: 2016 ident: 10.1016/j.bbadis.2021.166260_bb0125 article-title: Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice publication-title: Autophagy. doi: 10.1080/15548627.2016.1235124 – volume: 242 start-page: 1025 issue: 10 year: 2017 ident: 10.1016/j.bbadis.2021.166260_bb0055 article-title: Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway publication-title: Exp. Biol. Med. doi: 10.1177/1535370216686221 – volume: 16 issue: 12 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0290 article-title: SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009128 – volume: 10 start-page: 1426 issue: 8 year: 2014 ident: 10.1016/j.bbadis.2021.166260_bb0305 article-title: Coronavirus NSP6 restricts autophagosome expansion publication-title: Autophagy. doi: 10.4161/auto.29309 – volume: 6 start-page: 28715 year: 2016 ident: 10.1016/j.bbadis.2021.166260_bb0185 article-title: CXCL16 deficiency attenuates renal injury and fibrosis in salt-sensitive hypertension publication-title: Sci. Rep. doi: 10.1038/srep28715 – volume: 12 start-page: 22 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0215 article-title: EV71 virus reduces Nrf2 activation to promote production of reactive oxygen species in infected cells publication-title: Gut Pathog. doi: 10.1186/s13099-020-00361-w – volume: 579 start-page: 270 issue: 7798 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0240 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature. doi: 10.1038/s41586-020-2012-7 – volume: 92 issue: 8 year: 2018 ident: 10.1016/j.bbadis.2021.166260_bb0150 article-title: Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis publication-title: J. Virol. doi: 10.1128/JVI.02193-17 – volume: 10 start-page: 2402 issue: 1 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0080 article-title: Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10360-4 – volume: 17 start-page: 528 issue: 9 year: 2017 ident: 10.1016/j.bbadis.2021.166260_bb0045 article-title: Targeting autophagy in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.53 – volume: 426 start-page: 450 issue: 6965 year: 2003 ident: 10.1016/j.bbadis.2021.166260_bb0190 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature. doi: 10.1038/nature02145 – volume: 205 start-page: 12 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0110 article-title: COVID-19 as an acute inflammatory disease publication-title: J. Immunol. doi: 10.4049/jimmunol.2000413 – volume: 11 start-page: 1620 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0170 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 174 start-page: 1361 issue: 12 year: 2006 ident: 10.1016/j.bbadis.2021.166260_bb0360 article-title: Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200603-319OC – volume: 30 start-page: 4701 issue: 23 year: 2011 ident: 10.1016/j.bbadis.2021.166260_bb0135 article-title: Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta publication-title: EMBO J. doi: 10.1038/emboj.2011.398 – volume: 3 start-page: 2630 issue: 2 year: 2011 ident: 10.1016/j.bbadis.2021.166260_bb0040 article-title: Regulation of autophagy by kinases publication-title: Cancers (Basel) doi: 10.3390/cancers3022630 – volume: 14 start-page: 243 issue: 2 year: 2018 ident: 10.1016/j.bbadis.2021.166260_bb0145 article-title: Autophagy balances inflammation in innate immunity publication-title: Autophagy. doi: 10.1080/15548627.2017.1402992 – volume: 7 start-page: 182 year: 2016 ident: 10.1016/j.bbadis.2021.166260_bb0255 article-title: Arctigenin treatment protects against brain damage through an anti-inflammatory and anti-apoptotic mechanism after needle insertion publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00182 – volume: 417 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.bbadis.2021.166260_bb0350 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem. J. doi: 10.1042/BJ20081386 – volume: 115 start-page: 2679 issue: 10 year: 2005 ident: 10.1016/j.bbadis.2021.166260_bb0050 article-title: Autophagy in cell death: an innocent convict? publication-title: J. Clin. Invest. doi: 10.1172/JCI26390 – volume: 35 start-page: 615 issue: 5 year: 2015 ident: 10.1016/j.bbadis.2021.166260_bb0375 article-title: ROS and autophagy: interactions and molecular regulatory mechanisms publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-015-0166-x – volume: 19 issue: 6 year: 2018 ident: 10.1016/j.bbadis.2021.166260_bb0220 article-title: Chrysin attenuates cell viability of human colorectal cancer cells through autophagy induction unlike 5-Fluorouracil/Oxaliplatin publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19061763 – volume: 12 start-page: 2894 issue: 4 year: 2016 ident: 10.1016/j.bbadis.2021.166260_bb0385 article-title: Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways publication-title: Oncol. Lett. doi: 10.3892/ol.2016.4989 – volume: 11 start-page: 539 issue: 7 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0025 article-title: Itraconazole inhibits the hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells publication-title: Cell Death Dis. doi: 10.1038/s41419-020-02742-0 – start-page: 2017 year: 2017 ident: 10.1016/j.bbadis.2021.166260_bb0225 article-title: ROS-dependent activation of autophagy through the PI3K/Akt/mTOR pathway is induced by Hydroxysafflor yellow A-Sonodynamic therapy in THP-1 macrophages publication-title: Oxidative Med. Cell. Longev. – volume: 20 start-page: 765 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0100 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-020-05485-7 – volume: 11 start-page: 73 year: 2016 ident: 10.1016/j.bbadis.2021.166260_bb0075 article-title: Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants publication-title: EBioMedicine. doi: 10.1016/j.ebiom.2016.08.011 – volume: 10 start-page: 17458 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0090 article-title: Statin use is associated with lower disease severity in COVID-19 infection publication-title: Sci. Rep. doi: 10.1038/s41598-020-74492-0 – volume: 24 start-page: 353 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0330 article-title: The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection publication-title: Crit. Care doi: 10.1186/s13054-020-03062-7 – volume: 10 start-page: 468 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0380 article-title: Effect of waterlogging-induced autophagy on programmed cell death in arabidopsis roots publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00468 – volume: 5 year: 2014 ident: 10.1016/j.bbadis.2021.166260_bb0065 article-title: Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.288 – start-page: 4 year: 2015 ident: 10.1016/j.bbadis.2021.166260_bb0140 article-title: Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion publication-title: Elife – volume: 19 start-page: 3413 issue: 17 year: 2010 ident: 10.1016/j.bbadis.2021.166260_bb0235 article-title: Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq253 – volume: 53 start-page: 19 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0105 article-title: Cytokine storms: understanding COVID-19 publication-title: Immunity. doi: 10.1016/j.immuni.2020.06.017 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0180 article-title: EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12003 – volume: 10 start-page: 419 issue: 6 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0160 article-title: Selective cell death of latently HIV-infected CD4(+) T cells mediated by autosis inducing nanopeptides publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1661-7 – volume: 16 start-page: 966 issue: 7 year: 2009 ident: 10.1016/j.bbadis.2021.166260_bb0260 article-title: Life and death partners: apoptosis, autophagy and the cross-talk between them publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.33 – volume: 583 start-page: 830 issue: 7818 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0340 article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice publication-title: Nature. doi: 10.1038/s41586-020-2312-y – volume: 14 issue: 11 year: 2019 ident: 10.1016/j.bbadis.2021.166260_bb0390 article-title: Mitochondrial dysfunction in rheumatoid arthritis: a comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data publication-title: PLoS One doi: 10.1371/journal.pone.0224632 – volume: 382 start-page: 1199 issue: 13 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0005 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001316 – volume: 11 start-page: 1042 issue: 12 year: 2020 ident: 10.1016/j.bbadis.2021.166260_bb0095 article-title: A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection publication-title: Cell Death Dis. doi: 10.1038/s41419-020-03252-9 – volume: 115 start-page: 5839 issue: 23 year: 2018 ident: 10.1016/j.bbadis.2021.166260_bb0365 article-title: Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1804932115 |
SSID | ssj0000670 |
Score | 2.6527526 |
Snippet | Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 166260 |
SubjectTerms | Animals Apoptosis Apoptosis - immunology Autophagy Autophagy - physiology Cell Line Chlorocebus aethiops COVID-19 - metabolism Endothelial Cells - metabolism HEK293 Cells Humans Inflammation Inflammation - immunology Inflammation - metabolism Phosphatidylinositol 3-Kinases - metabolism Proto-Oncogene Proteins c-akt - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism SARS-CoV-2 SARS-CoV-2 - pathogenicity Signal Transduction - immunology Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism TOR Serine-Threonine Kinases - metabolism Vero Cells |
Title | SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling |
URI | https://dx.doi.org/10.1016/j.bbadis.2021.166260 https://www.ncbi.nlm.nih.gov/pubmed/34461258 https://www.proquest.com/docview/2567982057 https://pubmed.ncbi.nlm.nih.gov/PMC8390448 |
Volume | 1867 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELaiRFV7idL0tX1ErtSrA9gYzHGLGu02bRLtJtXekA0mJUkBld3DXvrbO8NjlW1VReoJYcbC8gyez3jmG0I-cB6CI8tzpk0YMD-LDDMqT5l1I5UpJDw3mDv89SyYXPmfF3KxQ-IhFwbDKvu1v1vT29W6b3H62XTqonDmboT0WuDfkUYoEpjE5_shWvnxL-_-atz-ZwFhhtJD-lwb42WMzgok7ebesRcgtv-Xe_obfv4ZRXnPLZ0ckP0eT9JxN-SnZMeWh-RRV2FyfUgex0NBt2ekno9ncxZX3xinTV3cWlq3sXi2oWBmYBldFiPVZUZ1XdXLqika2hfyoXqFFAT6ek3Nms7O56xZ1W0Qrc3oxVScOoAWnR-X5zOKISEas9yfk6uTT5fxhPUFF1gqebRkodJK-l4aWO1qX0dYC8aYPPKVlTIURggDM6x5FnKZuaFRnjR5YJVxcyGDTIoXZLesSvuKUN9aLYyVqQfb3iizRqXccuQh5QbMIx0RMcxzkvZs5FgU4y4Zws5ukk47CWon6bQzImzTq-7YOB6QDwcVJltWlYDDeKDn-0HjCagJT1F0aasVCEk8uOKAc0fkZWcBm7EI2FwDYlTw3i3b2Aggmff2k7L43pJ6A1B1Yav8-r9H_IY8wbsu1OYt2V3-XNl3AJiW5qj9Io7I3jiefbnA6_R0cgat08XH36H8GBU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESqXCsprKQ8jcXWT2HHiHKsV1Za-0O4W9RbZsVPCI4nI7mEv_e2dyWPVBaFKXOOxYmXGM5_jmW8I-ch5DIEsz5k2ccRCmxhmVJ4x5yfKKiQ8N1g7fHYeTS7Dz1fyaouMh1oYTKvsfX_n01tv3T_x-q_p1UXhzfwE6bUgviONUCKSB-RhCNsX2xgc3AR33XH7owWkGYoP9XNtkpcx2hbI2s2DgyBCcP-v-PQ3_vwzjfJOXDp6QnZ7QEkPuzU_JVuu3COPuhaTqz2yMx46uj0j9exwOmPj6ivjtKmLH47WbTKeayjYGZhGV8ZIdWmprqt6UTVFQ_tOPlQvkYNAX6-oWdHpxYw1y7rNonWWfjkWJx7ARe_X_GJKMSdEY5n7c3J59Gk-nrC-4wLLJE8WLFZayTDIIqd9HeoEm8EYkyehclLGwghhwjDW3MZcWj82KpAmj5wyfi5kZKV4QbbLqnSvCA2d08I4mQVw7k2sMyrjjiMRKTdgH9mIiOE7p1lPR45dMX6mQ97Z97TTToraSTvtjAhbz6o7Oo575ONBhemGWaUQMe6Z-WHQeApqwmsUXbpqCUISb644AN0RedlZwHotAk7XABkVvHfDNtYCyOa9OVIW31pWb0CqPpyVX__3it-Tncn87DQ9PT4_2SePcaTLu3lDthe_l-4toKeFedfujluQ1xcK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+spike+promotes+inflammation+and+apoptosis+through+autophagy+by+ROS-suppressed+PI3K%2FAKT%2FmTOR+signaling&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Li%2C+Fei&rft.au=Li%2C+Jingyao&rft.au=Wang%2C+Pei-Hui&rft.au=Yang%2C+Nanyan&rft.date=2021-12-01&rft.issn=0925-4439&rft.volume=1867&rft.issue=12&rft.spage=166260&rft_id=info:doi/10.1016%2Fj.bbadis.2021.166260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbadis_2021_166260 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon |