Built to last: lysosome remodeling and repair in health and disease
Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly...
Saved in:
Published in | Trends in cell biology Vol. 32; no. 7; pp. 597 - 610 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly, lysosomes can sustain physical damage and undergo dramatic changes in composition following pathogen infection, accumulation of protein aggregates, or cellular transformation, necessitating dedicated pathways for their repair, remodeling, and restoration. In this review, we focus on emerging molecular mechanisms for piecemeal remodeling of lysosomal components and wholesale repair and discuss their implications in physiological and pathogenic challenges such as cancer, neurodegeneration, and pathogen infection.
The lysosome is a catabolic organelle that is the end point of degradative pathways including endocytosis, phagocytosis, and autophagy.Lysosomal damage can result from accumulation of undigested substrates within the lumen, changes in lipid composition of the membrane, loss of pH and/or membrane potential, and outright rupturing of the lysosomal limiting membrane by mechanical or chemical insults.Lysosomes are subject to continuous remodeling and repair via the action of dedicated signaling pathways, which detect lysosomal stress and dysfunction and trigger both transcriptional and post-translational programs that adjust lysosomal function in a compensatory manner.Prompt repair of lysosomal injury is important for numerous cell types and especially essential for neuronal cells, while enhanced biogenesis and plasticity are emerging as key adaptive mechanisms in cancer cells. |
---|---|
AbstractList | Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly, lysosomes can sustain physical damage and undergo dramatic changes in composition following pathogen infection, accumulation of protein aggregates, or cellular transformation, necessitating dedicated pathways for their repair, remodeling, and restoration. In this review, we focus on emerging molecular mechanisms for piecemeal remodeling of lysosomal components and wholesale repair and discuss their implications in physiological and pathogenic challenges such as cancer, neurodegeneration, and pathogen infection. Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly, lysosomes can sustain physical damage and undergo dramatic changes in composition following pathogen infection, accumulation of protein aggregates, or cellular transformation, necessitating dedicated pathways for their repair, remodeling, and restoration. In this review, we focus on emerging molecular mechanisms for piecemeal remodeling of lysosomal components and wholesale repair and discuss their implications in physiological and pathogenic challenges such as cancer, neurodegeneration, and pathogen infection.Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly, lysosomes can sustain physical damage and undergo dramatic changes in composition following pathogen infection, accumulation of protein aggregates, or cellular transformation, necessitating dedicated pathways for their repair, remodeling, and restoration. In this review, we focus on emerging molecular mechanisms for piecemeal remodeling of lysosomal components and wholesale repair and discuss their implications in physiological and pathogenic challenges such as cancer, neurodegeneration, and pathogen infection. Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the lysosome is itself subjected to extensive remodeling in order to perform specific tasks that meet the changing demands of the cell. Accordingly, lysosomes can sustain physical damage and undergo dramatic changes in composition following pathogen infection, accumulation of protein aggregates, or cellular transformation, necessitating dedicated pathways for their repair, remodeling, and restoration. In this review, we focus on emerging molecular mechanisms for piecemeal remodeling of lysosomal components and wholesale repair and discuss their implications in physiological and pathogenic challenges such as cancer, neurodegeneration, and pathogen infection. The lysosome is a catabolic organelle that is the end point of degradative pathways including endocytosis, phagocytosis, and autophagy.Lysosomal damage can result from accumulation of undigested substrates within the lumen, changes in lipid composition of the membrane, loss of pH and/or membrane potential, and outright rupturing of the lysosomal limiting membrane by mechanical or chemical insults.Lysosomes are subject to continuous remodeling and repair via the action of dedicated signaling pathways, which detect lysosomal stress and dysfunction and trigger both transcriptional and post-translational programs that adjust lysosomal function in a compensatory manner.Prompt repair of lysosomal injury is important for numerous cell types and especially essential for neuronal cells, while enhanced biogenesis and plasticity are emerging as key adaptive mechanisms in cancer cells. |
Author | Perera, Rushika M. Zoncu, Roberto |
AuthorAffiliation | 2 Department of Anatomy, Department of Pathology, and Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143 1 Department of Molecular and Cellular Biology, and Innovative Genomics Institute, University of California at Berkeley, Berkeley, CA 94720 |
AuthorAffiliation_xml | – name: 2 Department of Anatomy, Department of Pathology, and Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143 – name: 1 Department of Molecular and Cellular Biology, and Innovative Genomics Institute, University of California at Berkeley, Berkeley, CA 94720 |
Author_xml | – sequence: 1 givenname: Roberto surname: Zoncu fullname: Zoncu, Roberto email: rzoncu@berkeley.edu organization: Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA – sequence: 2 givenname: Rushika M. orcidid: 0000-0003-2435-2273 surname: Perera fullname: Perera, Rushika M. email: rushika.perera@ucsf.edu organization: Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35123838$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFDEUhYOMOD2jP8CNFLhxU2Ue9UgUBrTxBQNudB1Sya3ptKmkTVID_e9N2zOivRjJIuTmfIeTnAt05oMHhJ4T3BBM-tfbJuuxoZiShtAGY_EIrQgfRM0w52dohUVPay5oe44uUtpijAdK2BN0zjpCGWd8hdbvF-tylUPlVMpvKrdPIYUZqghzMOCsv6mUN-W4UzZW1lcbUC5vfg-NTaASPEWPJ-USPLvbL9H3jx--rT_X118_fVm_u651R0Wue02MwZjQUUy9wuNkKGd4okA5KMG6kUI79IIyykmre6VBdcYIQYYyH1vDLtHV0Xe3jDMYDT5H5eQu2lnFvQzKyn9vvN3Im3ArBeECk6EYvLoziOHnAinL2SYNzikPYUmS9mXRjnSkSF-eSLdhib48r6g4I0OLh76oXvyd6E-U-_8tguEo0DGkFGGS2maVbTgEtE4SLA9Nyq0sTcpDk5JQWZosJDkh780fYt4eGSgt3FqIMmkLXoOxEXSWJtgHaXFC61K_1cr9gP1_2F-4JciJ |
CitedBy_id | crossref_primary_10_1038_s41581_023_00692_2 crossref_primary_10_1016_j_aca_2024_343558 crossref_primary_10_1016_j_stemcr_2024_01_002 crossref_primary_10_1177_13872877241310248 crossref_primary_10_1002_advs_202400446 crossref_primary_10_1038_s41477_025_01907_z crossref_primary_10_1146_annurev_biochem_030222_102505 crossref_primary_10_1016_j_compbiomed_2024_108201 crossref_primary_10_1016_j_tcb_2025_02_007 crossref_primary_10_3389_fcimb_2024_1349221 crossref_primary_10_1016_j_tcb_2023_01_001 crossref_primary_10_1002_wnan_1947 crossref_primary_10_1038_s41467_023_40317_7 crossref_primary_10_1021_acs_analchem_3c04620 crossref_primary_10_1002_adma_202411329 crossref_primary_10_1016_j_bioorg_2023_106832 crossref_primary_10_3389_fmed_2024_1497312 crossref_primary_10_1242_jcs_261765 crossref_primary_10_1016_j_isci_2024_109293 crossref_primary_10_1016_j_chembiol_2025_02_003 crossref_primary_10_1021_acs_est_3c01307 crossref_primary_10_1080_15548627_2025_2469206 crossref_primary_10_15252_embr_202357265 crossref_primary_10_3390_ph16040601 crossref_primary_10_1016_j_chembiol_2024_02_007 crossref_primary_10_1007_s11427_023_2443_9 crossref_primary_10_1016_j_ccr_2024_216383 crossref_primary_10_1158_2159_8290_CD_22_0535 crossref_primary_10_1016_j_bone_2025_117390 crossref_primary_10_1016_j_ijpharm_2025_125439 crossref_primary_10_1038_s41580_023_00676_x crossref_primary_10_1016_j_devcel_2022_09_014 crossref_primary_10_1016_j_csbj_2024_05_049 crossref_primary_10_3389_fendo_2022_887037 crossref_primary_10_1091_mbc_E22_04_0139 crossref_primary_10_1093_nar_gkae863 crossref_primary_10_1038_s41467_025_56294_y crossref_primary_10_1083_jcb_202404152 crossref_primary_10_1080_15548627_2024_2443945 crossref_primary_10_1016_j_molcel_2024_02_029 |
Cites_doi | 10.15252/embj.2020104494 10.1101/gad.324657.119 10.1016/j.devcel.2020.11.016 10.1126/sciadv.abb2454 10.1038/emboj.2013.171 10.1242/jcs.226241 10.1101/gad.269118.115 10.1016/j.cell.2020.02.058 10.15252/embj.201899753 10.1016/j.cmet.2018.10.005 10.1073/pnas.1424576112 10.1093/hmg/9.2.217 10.1016/j.ceb.2020.06.002 10.1111/j.1600-0749.2005.00234.x 10.1038/srep41408 10.18632/oncotarget.11778 10.1016/j.addr.2019.01.010 10.1038/s41586-020-2444-0 10.1146/annurev-micro-020518-115759 10.1126/science.aar5078 10.1016/j.cell.2012.06.040 10.1126/sciadv.1500603 10.1038/nature09076 10.1074/jbc.M411757200 10.1016/j.molcel.2014.12.012 10.1242/jcs.208884 10.1681/ASN.2014090937 10.1074/jbc.RA119.009432 10.1038/s41556-021-00644-7 10.1038/nature01573 10.1073/pnas.1013800108 10.1016/j.tibs.2019.12.007 10.1083/jcb.201902127 10.15252/embj.201798804 10.1126/scisignal.2004754 10.1038/s41556-020-0546-4 10.1242/dmm.038596 10.1016/j.chom.2012.04.012 10.1083/jcb.201304188 10.1007/s00401-015-1475-3 10.1038/s41467-018-05862-6 10.1038/ncomms6646 10.1016/j.molcel.2019.01.041 10.1074/jbc.M114.616714 10.1101/gad.8.22.2770 10.1038/nrc1949 10.1016/j.devcel.2020.06.010 10.1146/annurev-neuro-080317-061804 10.1016/j.cmet.2016.11.003 10.1016/j.molcel.2017.10.028 10.1016/j.devcel.2011.07.016 10.1016/j.molcel.2018.03.009 10.15252/embj.201695148 10.15252/embj.201590992 10.1038/nature12138 10.1080/15548627.2015.1063871 10.1080/15548627.2019.1704104 10.1083/jcb.202012104 10.1242/jcs.146365 10.1038/ncomms3267 10.1126/science.aax0364 10.1038/ncb3114 10.1038/ncb2741 10.1038/onc.2012.292 10.4049/jimmunol.1103158 10.1096/fj.07-8113com 10.7150/jca.44718 10.1016/j.molcel.2018.03.037 10.1172/JCI94130 10.1038/onc.2009.466 10.1038/onc.2008.471 10.1093/hmg/ddw185 10.1038/nature14587 10.1038/s41580-019-0185-4 10.1016/j.cub.2016.06.046 10.1016/j.devcel.2016.08.003 10.1016/j.tcb.2004.03.001 10.1146/annurev-cancerbio-030518-055835 10.1073/pnas.87.1.83 10.1073/pnas.0707206105 10.1016/j.cell.2020.10.039 10.1016/j.cbpa.2019.07.003 10.1111/jnc.14564 10.4161/cc.6.1.3669 10.1128/mBio.01765-18 10.1016/j.tcb.2014.06.006 10.1083/jcb.202102001 10.1172/jci.insight.136676 10.1111/nyas.12953 10.1083/jcb.201505062 10.1038/ncb2718 10.1038/s41580-019-0177-4 10.1080/15548627.2020.1788890 10.1038/s41586-021-03566-4 10.15252/embj.2018101347 10.1083/jcb.202001116 10.1126/science.1204592 10.1146/annurev-physiol-021014-071649 10.15252/embr.201948335 10.1126/science.1174447 10.1093/hmg/ddq100 10.1038/s41580-020-0219-y 10.1073/pnas.1702615114 10.15252/embr.201948014 10.1038/s41556-018-0228-7 10.1093/hmg/ddi458 10.1016/j.devcel.2015.02.011 10.1002/pmic.201000577 10.1007/s10545-016-9919-z 10.1073/pnas.0506461102 10.1038/s41572-018-0025-4 10.1016/j.bbamcr.2008.10.016 10.1093/hmg/ddr306 10.15252/embj.201694491 10.1111/pcmr.12922 10.1002/mc.23105 10.1038/nrm3565 10.15252/embj.201593428 10.1186/s12964-019-0500-x 10.1016/j.ceb.2016.02.009 10.1146/annurev-cellbio-111315-125125 10.1038/s41588-021-00805-2 10.15252/embj.2020106922 10.1038/nrc4027 10.1189/jlb.0310159 10.7554/eLife.72328.sa2 10.1007/s00018-014-1565-8 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jul 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jul 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1016/j.tcb.2021.12.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-3088 |
EndPage | 610 |
ExternalDocumentID | PMC9189017 35123838 10_1016_j_tcb_2021_12_009 S0962892422000010 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: DP2 CA216364 – fundername: NCI NIH HHS grantid: R01 CA260249 – fundername: NIGMS NIH HHS grantid: R01 GM127763 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 186 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IH2 IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XPP Y6R YNT Z5R ~G- AACTN AAIAV ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RCE RIG VQA ZA5 AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QL 7QP 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c529t-6c1dd0012b9f6a0bfd2830f2e28ea935b2e4769232814c6acea5dd9917e47b4d3 |
IEDL.DBID | .~1 |
ISSN | 0962-8924 1879-3088 |
IngestDate | Thu Aug 21 18:37:47 EDT 2025 Mon Jul 21 10:26:10 EDT 2025 Wed Aug 13 06:35:52 EDT 2025 Mon Jul 21 05:26:31 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Tue Jul 01 01:53:45 EDT 2025 Fri Feb 23 02:41:23 EST 2024 Tue Aug 26 16:33:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | neurodegeneration repair infection cancer membrane damage lysosome |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-6c1dd0012b9f6a0bfd2830f2e28ea935b2e4769232814c6acea5dd9917e47b4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2435-2273 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9189017 |
PMID | 35123838 |
PQID | 2683174076 |
PQPubID | 2045389 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9189017 proquest_miscellaneous_2626225151 proquest_journals_2683174076 pubmed_primary_35123838 crossref_citationtrail_10_1016_j_tcb_2021_12_009 crossref_primary_10_1016_j_tcb_2021_12_009 elsevier_sciencedirect_doi_10_1016_j_tcb_2021_12_009 elsevier_clinicalkey_doi_10_1016_j_tcb_2021_12_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Trends in cell biology |
PublicationTitleAlternate | Trends Cell Biol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Kallunki (bb0435) 2013; 32 Bajaj (bb0395) 2020; 130 Lawrence (bb0635) 2019; 366 Machado (bb0475) 2015; 1 Settembre (bb0100) 2013; 15 Lv (bb0480) 2020; 11 Papadopoulos (bb0285) 2017; 36 Radulovic (bb0220) 2018; 37 Ploper (bb0125) 2015; 112 Medina (bb0115) 2015; 17 Jia (bb0310) 2020; 16 Napolitano (bb0640) 2020; 585 Davis (bb0620) 2012; 189 Koerver (bb0270) 2019; 20 Dheer (bb0440) 2019; 151–152 Perera, Zoncu (bb0010) 2016; 32 Shin, Zoncu (bb0030) 2020; 54 Martina (bb0080) 2014; 7 Munson (bb0190) 2015; 34 Zhou (bb0495) 2020; 18 Jia (bb0305) 2018; 70 Clayton (bb0410) 2015; 130 Ballabio, Bonifacino (bb0005) 2020; 21 Puertollano (bb0110) 2018; 37 Chauhan (bb0265) 2016; 39 Mansueto (bb0085) 2017; 25 Settembre, Ballabio (bb0095) 2014; 24 Thurston (bb0300) 2016; 35 Santaguida (bb0180) 2015; 29 Bartolomeo (bb0360) 2017; 127 Li (bb0315) 2015; 57 Braulke, Bonifacino (bb0470) 2009; 1793 Medina (bb0530) 2011; 21 Berger (bb0365) 2006; 15 Yang (bb0335) 2020; 219 Tharkeshwar (bb0385) 2017; 7 Maniaci, Ciulli (bb0630) 2019; 52 O'Rourke, Ruvkun (bb0090) 2013; 15 Sharma (bb0040) 2018; 41 Ghosh (bb0610) 2020; 183 Bonet-Ponce (bb0425) 2020; 6 Hämälistö, Jäättelä (bb0500) 2016; 39 Sardiello (bb0070) 2009; 325 Duclos (bb0625) 2011; 11 Wang (bb0155) 2020; 16 Vu (bb0160) 2021; 34 Watson (bb0585) 2012; 150 Perera (bb0045) 2019; 3 Palmieri (bb0055) 2011; 20 Bohannon, Hanson (bb0245) 2020; 65 Arines (bb0320) 2021; 220 Bajaj (bb0345) 2019; 148 Arora (bb0555) 2021 Napolitano (bb0645) 2018; 9 Wang (bb0135) 2020; 21 Walls (bb0605) 2020; 181 Platt (bb0350) 2018; 4 Pu (bb0525) 2015; 33 di Ronza (bb0400) 2018; 20 Settembre (bb0075) 2013; 14 Uemura (bb0490) 2009; 28 Perera (bb0505) 2015; 524 Bussi (bb0290) 2018; 131 Eapen (bb2005) 2021 Philips (bb0570) 2008; 105 Mohamed, Sloane (bb0450) 2006; 6 Vasanthakumar, Rubinstein (bb0015) 2020; 45 Andrzejewska (bb0355) 2016; 27 Commisso (bb0520) 2013; 497 Goding, Arnheiter (bb0105) 2019; 33 Ravenhill (bb0295) 2019; 74 Vietri (bb0230) 2020; 21 Bansal (bb0545) 2003; 423 Settembre (bb0130) 2011; 332 Gupta (bb0535) 2021; 23 Lundquist (bb0560) 2018; 70 Tattoli (bb0590) 2012; 11 Napolitano, Ballabio (bb0065) 2016; 129 Mercier (bb0240) 2020; 22 Aits (bb0255) 2015; 11 Thiele, Lipsky (bb0215) 1990; 87 Davis, Swanson (bb0615) 2010; 88 Liu, Sabatini (bb0025) 2020; 21 Davis (bb0375) 2021; 56 Bright (bb0210) 2016; 26 Martina (bb0060) 2014; 71 Hemesath (bb0050) 1994; 8 Skowyra (bb0225) 2018; 360 Yang (bb0330) 2021; 220 Pastore (bb0175) 2019; 38 Zhen (bb0035) 2021; 40 Yang, Wang (bb0205) 2021; 220 Boudreau (bb0455) 2007; 21 Cheng (bb0575) 2005; 102 Bansal, Campbell (bb0540) 2004; 14 Liu (bb0390) 2020; 5 Johannes (bb0260) 2018; 131 Gocheva, Joyce (bb0465) 2007; 6 Magalhaes (bb0195) 2016; 25 Herbst (bb0420) 2020; 39 Mittal (bb0565) 2018; 9 Murakami, Arnheiter (bb0150) 2005; 18 Lapierre (bb0165) 2013; 4 Olson, Joyce (bb0445) 2015; 15 Otten (bb0580) 2021; 594 Scheffer (bb0235) 2014; 5 Marchand (bb0120) 2015; 290 Chen (bb0405) 2019; 294 Fung, Liu (bb0600) 2019; 73 Yu (bb0185) 2010; 465 Brown (bb0370) 2019; 12 Du (bb0515) 2019; 58 Xu, Ren (bb0020) 2015; 77 Baggen (bb0595) 2021; 53 Fujita (bb0280) 2013; 203 Urwin (bb0415) 2010; 19 Eichner (bb0510) 2019; 29 Davis (bb0550) 2000; 9 Ivanova (bb0380) 2016; 39 van den Boom, Meyer (bb0430) 2018; 69 Hou (bb0485) 2016; 7 Zhang (bb0140) 2018; 14 Piao, Amaravadi (bb0650) 2016; 1371 Yoshida (bb0275) 2017; 114 Li (bb0325) 2015; 211 Miller (bb0145) 2005; 280 Martina (bb0170) 2016; 35 Maejima (bb0250) 2013; 32 Dennemarker (bb0460) 2010; 29 Rong (bb0200) 2011; 108 Bright (10.1016/j.tcb.2021.12.009_bb0210) 2016; 26 Zhen (10.1016/j.tcb.2021.12.009_bb0035) 2021; 40 Clayton (10.1016/j.tcb.2021.12.009_bb0410) 2015; 130 Fujita (10.1016/j.tcb.2021.12.009_bb0280) 2013; 203 Davis (10.1016/j.tcb.2021.12.009_bb0375) 2021; 56 Andrzejewska (10.1016/j.tcb.2021.12.009_bb0355) 2016; 27 Puertollano (10.1016/j.tcb.2021.12.009_bb0110) 2018; 37 Machado (10.1016/j.tcb.2021.12.009_bb0475) 2015; 1 Ghosh (10.1016/j.tcb.2021.12.009_bb0610) 2020; 183 Yu (10.1016/j.tcb.2021.12.009_bb0185) 2010; 465 Pu (10.1016/j.tcb.2021.12.009_bb0525) 2015; 33 Wang (10.1016/j.tcb.2021.12.009_bb0135) 2020; 21 Murakami (10.1016/j.tcb.2021.12.009_bb0150) 2005; 18 Baggen (10.1016/j.tcb.2021.12.009_bb0595) 2021; 53 Pastore (10.1016/j.tcb.2021.12.009_bb0175) 2019; 38 Gupta (10.1016/j.tcb.2021.12.009_bb0535) 2021; 23 Wang (10.1016/j.tcb.2021.12.009_bb0155) 2020; 16 Platt (10.1016/j.tcb.2021.12.009_bb0350) 2018; 4 Kallunki (10.1016/j.tcb.2021.12.009_bb0435) 2013; 32 Berger (10.1016/j.tcb.2021.12.009_bb0365) 2006; 15 Skowyra (10.1016/j.tcb.2021.12.009_bb0225) 2018; 360 Vasanthakumar (10.1016/j.tcb.2021.12.009_bb0015) 2020; 45 Bonet-Ponce (10.1016/j.tcb.2021.12.009_bb0425) 2020; 6 Magalhaes (10.1016/j.tcb.2021.12.009_bb0195) 2016; 25 Chauhan (10.1016/j.tcb.2021.12.009_bb0265) 2016; 39 Arora (10.1016/j.tcb.2021.12.009_bb0555) 2021 Settembre (10.1016/j.tcb.2021.12.009_bb0100) 2013; 15 Yang (10.1016/j.tcb.2021.12.009_bb0330) 2021; 220 Koerver (10.1016/j.tcb.2021.12.009_bb0270) 2019; 20 Ivanova (10.1016/j.tcb.2021.12.009_bb0380) 2016; 39 Bajaj (10.1016/j.tcb.2021.12.009_bb0395) 2020; 130 Ploper (10.1016/j.tcb.2021.12.009_bb0125) 2015; 112 Papadopoulos (10.1016/j.tcb.2021.12.009_bb0285) 2017; 36 Settembre (10.1016/j.tcb.2021.12.009_bb0095) 2014; 24 Perera (10.1016/j.tcb.2021.12.009_bb0505) 2015; 524 Ravenhill (10.1016/j.tcb.2021.12.009_bb0295) 2019; 74 Arines (10.1016/j.tcb.2021.12.009_bb0320) 2021; 220 Bajaj (10.1016/j.tcb.2021.12.009_bb0345) 2019; 148 Bansal (10.1016/j.tcb.2021.12.009_bb0540) 2004; 14 Scheffer (10.1016/j.tcb.2021.12.009_bb0235) 2014; 5 Tattoli (10.1016/j.tcb.2021.12.009_bb0590) 2012; 11 Liu (10.1016/j.tcb.2021.12.009_bb0390) 2020; 5 Eichner (10.1016/j.tcb.2021.12.009_bb0510) 2019; 29 Gocheva (10.1016/j.tcb.2021.12.009_bb0465) 2007; 6 Settembre (10.1016/j.tcb.2021.12.009_bb0130) 2011; 332 Mansueto (10.1016/j.tcb.2021.12.009_bb0085) 2017; 25 O'Rourke (10.1016/j.tcb.2021.12.009_bb0090) 2013; 15 Li (10.1016/j.tcb.2021.12.009_bb0325) 2015; 211 Otten (10.1016/j.tcb.2021.12.009_bb0580) 2021; 594 Piao (10.1016/j.tcb.2021.12.009_bb0650) 2016; 1371 Lapierre (10.1016/j.tcb.2021.12.009_bb0165) 2013; 4 Davis (10.1016/j.tcb.2021.12.009_bb0615) 2010; 88 Zhou (10.1016/j.tcb.2021.12.009_bb0495) 2020; 18 Fung (10.1016/j.tcb.2021.12.009_bb0600) 2019; 73 Olson (10.1016/j.tcb.2021.12.009_bb0445) 2015; 15 Dennemarker (10.1016/j.tcb.2021.12.009_bb0460) 2010; 29 Santaguida (10.1016/j.tcb.2021.12.009_bb0180) 2015; 29 Napolitano (10.1016/j.tcb.2021.12.009_bb0640) 2020; 585 Miller (10.1016/j.tcb.2021.12.009_bb0145) 2005; 280 Radulovic (10.1016/j.tcb.2021.12.009_bb0220) 2018; 37 Eapen (10.1016/j.tcb.2021.12.009_bb2005) 2021 Martina (10.1016/j.tcb.2021.12.009_bb0060) 2014; 71 Vu (10.1016/j.tcb.2021.12.009_bb0160) 2021; 34 Maniaci (10.1016/j.tcb.2021.12.009_bb0630) 2019; 52 Medina (10.1016/j.tcb.2021.12.009_bb0530) 2011; 21 Li (10.1016/j.tcb.2021.12.009_bb0315) 2015; 57 Liu (10.1016/j.tcb.2021.12.009_bb0025) 2020; 21 Shin (10.1016/j.tcb.2021.12.009_bb0030) 2020; 54 Palmieri (10.1016/j.tcb.2021.12.009_bb0055) 2011; 20 Braulke (10.1016/j.tcb.2021.12.009_bb0470) 2009; 1793 Thurston (10.1016/j.tcb.2021.12.009_bb0300) 2016; 35 Duclos (10.1016/j.tcb.2021.12.009_bb0625) 2011; 11 Lv (10.1016/j.tcb.2021.12.009_bb0480) 2020; 11 Davis (10.1016/j.tcb.2021.12.009_bb0550) 2000; 9 Sardiello (10.1016/j.tcb.2021.12.009_bb0070) 2009; 325 Perera (10.1016/j.tcb.2021.12.009_bb0010) 2016; 32 Tharkeshwar (10.1016/j.tcb.2021.12.009_bb0385) 2017; 7 Marchand (10.1016/j.tcb.2021.12.009_bb0120) 2015; 290 Yoshida (10.1016/j.tcb.2021.12.009_bb0275) 2017; 114 Perera (10.1016/j.tcb.2021.12.009_bb0045) 2019; 3 Ballabio (10.1016/j.tcb.2021.12.009_bb0005) 2020; 21 Thiele (10.1016/j.tcb.2021.12.009_bb0215) 1990; 87 Lundquist (10.1016/j.tcb.2021.12.009_bb0560) 2018; 70 Mercier (10.1016/j.tcb.2021.12.009_bb0240) 2020; 22 Brown (10.1016/j.tcb.2021.12.009_bb0370) 2019; 12 Mohamed (10.1016/j.tcb.2021.12.009_bb0450) 2006; 6 Lawrence (10.1016/j.tcb.2021.12.009_bb0635) 2019; 366 Uemura (10.1016/j.tcb.2021.12.009_bb0490) 2009; 28 Maejima (10.1016/j.tcb.2021.12.009_bb0250) 2013; 32 Hämälistö (10.1016/j.tcb.2021.12.009_bb0500) 2016; 39 Watson (10.1016/j.tcb.2021.12.009_bb0585) 2012; 150 Bansal (10.1016/j.tcb.2021.12.009_bb0545) 2003; 423 Martina (10.1016/j.tcb.2021.12.009_bb0170) 2016; 35 Boudreau (10.1016/j.tcb.2021.12.009_bb0455) 2007; 21 Xu (10.1016/j.tcb.2021.12.009_bb0020) 2015; 77 Du (10.1016/j.tcb.2021.12.009_bb0515) 2019; 58 Urwin (10.1016/j.tcb.2021.12.009_bb0415) 2010; 19 Cheng (10.1016/j.tcb.2021.12.009_bb0575) 2005; 102 Herbst (10.1016/j.tcb.2021.12.009_bb0420) 2020; 39 Chen (10.1016/j.tcb.2021.12.009_bb0405) 2019; 294 Vietri (10.1016/j.tcb.2021.12.009_bb0230) 2020; 21 Davis (10.1016/j.tcb.2021.12.009_bb0620) 2012; 189 Rong (10.1016/j.tcb.2021.12.009_bb0200) 2011; 108 Johannes (10.1016/j.tcb.2021.12.009_bb0260) 2018; 131 Bohannon (10.1016/j.tcb.2021.12.009_bb0245) 2020; 65 van den Boom (10.1016/j.tcb.2021.12.009_bb0430) 2018; 69 Sharma (10.1016/j.tcb.2021.12.009_bb0040) 2018; 41 Yang (10.1016/j.tcb.2021.12.009_bb0335) 2020; 219 Settembre (10.1016/j.tcb.2021.12.009_bb0075) 2013; 14 Dheer (10.1016/j.tcb.2021.12.009_bb0440) 2019; 151–152 Hemesath (10.1016/j.tcb.2021.12.009_bb0050) 1994; 8 Commisso (10.1016/j.tcb.2021.12.009_bb0520) 2013; 497 Martina (10.1016/j.tcb.2021.12.009_bb0080) 2014; 7 Mittal (10.1016/j.tcb.2021.12.009_bb0565) 2018; 9 Medina (10.1016/j.tcb.2021.12.009_bb0115) 2015; 17 Bartolomeo (10.1016/j.tcb.2021.12.009_bb0360) 2017; 127 Yang (10.1016/j.tcb.2021.12.009_bb0205) 2021; 220 Jia (10.1016/j.tcb.2021.12.009_bb0305) 2018; 70 Walls (10.1016/j.tcb.2021.12.009_bb0605) 2020; 181 Napolitano (10.1016/j.tcb.2021.12.009_bb0065) 2016; 129 Goding (10.1016/j.tcb.2021.12.009_bb0105) 2019; 33 di Ronza (10.1016/j.tcb.2021.12.009_bb0400) 2018; 20 Zhang (10.1016/j.tcb.2021.12.009_bb0140) 2018; 14 Philips (10.1016/j.tcb.2021.12.009_bb0570) 2008; 105 Munson (10.1016/j.tcb.2021.12.009_bb0190) 2015; 34 Jia (10.1016/j.tcb.2021.12.009_bb0310) 2020; 16 Napolitano (10.1016/j.tcb.2021.12.009_bb0645) 2018; 9 Aits (10.1016/j.tcb.2021.12.009_bb0255) 2015; 11 Bussi (10.1016/j.tcb.2021.12.009_bb0290) 2018; 131 Hou (10.1016/j.tcb.2021.12.009_bb0485) 2016; 7 |
References_xml | – volume: 70 start-page: 531 year: 2018 end-page: 544.e9 ident: bb0560 article-title: Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy publication-title: Mol. Cell – volume: 20 start-page: 1370 year: 2018 end-page: 1377 ident: bb0400 article-title: CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis publication-title: Nat. Cell Biol. – volume: 1371 start-page: 45 year: 2016 end-page: 54 ident: bb0650 article-title: Targeting the lysosome in cancer publication-title: Ann. N. Y. Acad. Sci. – volume: 15 start-page: 433 year: 2006 end-page: 442 ident: bb0365 article-title: Rapamycin alleviates toxicity of different aggregate-prone proteins publication-title: Hum. Mol. Genet. – volume: 189 start-page: 4488 year: 2012 end-page: 4495 ident: bb0620 article-title: Inducible renitence limits publication-title: J. Immunol. – volume: 40 year: 2021 ident: bb0035 article-title: Sealing holes in cellular membranes publication-title: EMBO J. – volume: 280 start-page: 146 year: 2005 end-page: 155 ident: bb0145 article-title: Sumoylation of MITF and its related family members TFE3 and TFEB publication-title: J. Biol. Chem. – volume: 423 start-page: 168 year: 2003 end-page: 172 ident: bb0545 article-title: Defective membrane repair in dysferlin-deficient muscular dystrophy publication-title: Nature – volume: 20 start-page: 3852 year: 2011 end-page: 3866 ident: bb0055 article-title: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways publication-title: Hum. Mol. Genet. – volume: 112 start-page: E420 year: 2015 end-page: E429 ident: bb0125 article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 2267 year: 2013 ident: bb0165 article-title: The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans publication-title: Nat. Commun. – volume: 70 start-page: 120 year: 2018 end-page: 135.e8 ident: bb0305 article-title: Galectins control mTOR in response to endomembrane damage publication-title: Mol. Cell – volume: 32 start-page: 2336 year: 2013 end-page: 2347 ident: bb0250 article-title: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury publication-title: EMBO J. – volume: 18 start-page: 265 year: 2005 end-page: 277 ident: bb0150 article-title: Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner publication-title: Pigment Cell Res. – volume: 33 start-page: 176 year: 2015 end-page: 188 ident: bb0525 article-title: BORC, a multisubunit complex that regulates lysosome positioning publication-title: Dev. Cell – volume: 15 start-page: 668 year: 2013 end-page: 676 ident: bb0090 article-title: MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability publication-title: Nat. Cell Biol. – volume: 21 start-page: 3853 year: 2007 end-page: 3865 ident: bb0455 article-title: Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia publication-title: FASEB J. – volume: 6 start-page: 60 year: 2007 end-page: 64 ident: bb0465 article-title: Cysteine cathepsins and the cutting edge of cancer invasion publication-title: Cell Cycle – volume: 21 start-page: 246 year: 2020 ident: bb0025 article-title: Author correction: mTOR at the nexus of nutrition, growth, ageing and disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 3 start-page: 203 year: 2019 end-page: 222 ident: bb0045 article-title: MiT/TFE family of transcription factors, lysosomes, and cancer publication-title: Annu. Rev. Cancer Biol. – volume: 7 start-page: 41408 year: 2017 ident: bb0385 article-title: A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency publication-title: Sci. Rep. – volume: 4 start-page: 27 year: 2018 ident: bb0350 article-title: Lysosomal storage diseases publication-title: Nat. Rev. Dis. Primers – volume: 25 start-page: 182 year: 2017 end-page: 196 ident: bb0085 article-title: Transcription factor EB controls metabolic flexibility during exercise publication-title: Cell Metab. – volume: 220 year: 2021 ident: bb0320 article-title: A selective transmembrane recognition mechanism by a membrane-anchored ubiquitin ligase adaptor publication-title: J. Cell Biol. – volume: 131 start-page: jcs226241 year: 2018 ident: bb0290 article-title: Alpha-synuclein fibrils recruit TBK1 and OPTN to lysosomal damage sites and induce autophagy in microglial cells publication-title: J. Cell Sci. – volume: 465 start-page: 942 year: 2010 end-page: 946 ident: bb0185 article-title: Termination of autophagy and reformation of lysosomes regulated by mTOR publication-title: Nature – volume: 108 start-page: 7826 year: 2011 end-page: 7831 ident: bb0200 article-title: Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 year: 2020 ident: bb0390 article-title: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain publication-title: JCI Insight – volume: 77 start-page: 57 year: 2015 end-page: 80 ident: bb0020 article-title: Lysosomal physiology publication-title: Annu. Rev. Physiol. – volume: 1793 start-page: 605 year: 2009 end-page: 614 ident: bb0470 article-title: Sorting of lysosomal proteins publication-title: Biochim. Biophys. Acta – volume: 220 year: 2021 ident: bb0330 article-title: ESCRT, not intralumenal fragments, sorts ubiquitinated vacuole membrane proteins for degradation publication-title: J. Cell Biol. – volume: 16 start-page: 1683 year: 2020 end-page: 1696 ident: bb0155 article-title: Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis publication-title: Autophagy – volume: 17 start-page: 288 year: 2015 end-page: 299 ident: bb0115 article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB publication-title: Nat. Cell Biol. – volume: 29 start-page: 2010 year: 2015 end-page: 2021 ident: bb0180 article-title: Aneuploidy-induced cellular stresses limit autophagic degradation publication-title: Genes Dev. – volume: 33 start-page: 983 year: 2019 end-page: 1007 ident: bb0105 article-title: MITF-the first 25 years publication-title: Genes Dev. – volume: 41 start-page: 255 year: 2018 end-page: 276 ident: bb0040 article-title: Lysosomes and brain health publication-title: Annu. Rev. Neurosci. – volume: 34 start-page: 13 year: 2021 end-page: 27 ident: bb0160 article-title: User guide to MiT-TFE isoforms and post-translational modifications publication-title: Pigment Cell Melanoma Res. – volume: 183 start-page: 1520 year: 2020 end-page: 1535.e14 ident: bb0610 article-title: β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway publication-title: Cell – volume: 39 start-page: 69 year: 2016 end-page: 76 ident: bb0500 article-title: Lysosomes in cancer-living on the edge (of the cell) publication-title: Curr. Opin. Cell Biol. – volume: 56 start-page: 260 year: 2021 end-page: 276.e7 ident: bb0375 article-title: NPC1-mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann-Pick type C publication-title: Dev. Cell – volume: 45 start-page: 295 year: 2020 end-page: 307 ident: bb0015 article-title: Structure and roles of V-type ATPases publication-title: Trends Biochem. Sci. – volume: 87 start-page: 83 year: 1990 end-page: 87 ident: bb0215 article-title: Mechanism of L-leucyl-L-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 year: 2019 ident: bb0270 article-title: The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage publication-title: EMBO Rep. – volume: 211 start-page: 639 year: 2015 end-page: 652 ident: bb0325 article-title: Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins publication-title: J. Cell Biol. – volume: 8 start-page: 2770 year: 1994 end-page: 2780 ident: bb0050 article-title: Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family publication-title: Genes Dev. – volume: 11 start-page: 563 year: 2012 end-page: 575 ident: bb0590 article-title: Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program publication-title: Cell Host Microbe – volume: 32 start-page: 223 year: 2016 end-page: 253 ident: bb0010 article-title: The lysosome as a regulatory hub publication-title: Annu. Rev. Cell Dev. Biol. – volume: 37 year: 2018 ident: bb0220 article-title: ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival publication-title: EMBO J. – volume: 39 start-page: 13 year: 2016 end-page: 27 ident: bb0265 article-title: TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis publication-title: Dev. Cell – year: 2021 ident: bb0555 article-title: Expanding role of PI5P4Ks in cancer: a promising druggable target publication-title: FEBS Lett. – volume: 594 start-page: 111 year: 2021 end-page: 116 ident: bb0580 article-title: Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection publication-title: Nature – volume: 71 start-page: 2483 year: 2014 end-page: 2497 ident: bb0060 article-title: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis publication-title: Cell. Mol. Life Sci. – volume: 131 year: 2018 ident: bb0260 article-title: Galectins at a glance publication-title: J. Cell Sci. – volume: 74 start-page: 320 year: 2019 end-page: 329.e6 ident: bb0295 article-title: The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria publication-title: Mol. Cell – volume: 585 start-page: 597 year: 2020 end-page: 602 ident: bb0640 article-title: A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome publication-title: Nature – volume: 129 start-page: 2475 year: 2016 end-page: 2481 ident: bb0065 article-title: TFEB at a glance publication-title: J. Cell Sci. – volume: 151–152 start-page: 130 year: 2019 end-page: 151 ident: bb0440 article-title: Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases publication-title: Adv. Drug Deliv. Rev. – volume: 105 start-page: 3070 year: 2008 end-page: 3075 ident: bb0570 article-title: ESCRT factors restrict mycobacterial growth publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 44 year: 2020 ident: bb0495 article-title: Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin alpha5beta1 interaction and Akt signaling pathway publication-title: Cell Commun. Signal. – volume: 21 start-page: 25 year: 2020 end-page: 42 ident: bb0230 article-title: The many functions of ESCRTs publication-title: Nat. Rev. Mol. Cell Biol. – volume: 332 start-page: 1429 year: 2011 end-page: 1433 ident: bb0130 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science – volume: 38 year: 2019 ident: bb0175 article-title: Nutrient-sensitive transcription factors TFEB and TFE3 couple autophagy and metabolism to the peripheral clock publication-title: EMBO J. – volume: 36 start-page: 135 year: 2017 end-page: 150 ident: bb0285 article-title: VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy publication-title: EMBO J. – volume: 14 start-page: 206 year: 2004 end-page: 213 ident: bb0540 article-title: Dysferlin and the plasma membrane repair in muscular dystrophy publication-title: Trends Cell Biol. – volume: 54 start-page: 226 year: 2020 end-page: 238 ident: bb0030 article-title: The lysosome at the intersection of cellular growth and destruction publication-title: Dev. Cell – volume: 57 start-page: 467 year: 2015 end-page: 478 ident: bb0315 article-title: Ubiquitin-dependent lysosomal membrane protein sorting and degradation publication-title: Mol. Cell – volume: 102 start-page: 13646 year: 2005 end-page: 13651 ident: bb0575 article-title: Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 217 year: 2000 end-page: 226 ident: bb0550 article-title: Myoferlin, a candidate gene and potential modifier of muscular dystrophy publication-title: Hum. Mol. Genet. – volume: 24 start-page: 743 year: 2014 end-page: 750 ident: bb0095 article-title: Lysosome: regulator of lipid degradation pathways publication-title: Trends Cell Biol. – volume: 130 start-page: 511 year: 2015 end-page: 523 ident: bb0410 article-title: Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology publication-title: Acta Neuropathol. – volume: 11 start-page: 6874 year: 2020 end-page: 6882 ident: bb0480 article-title: p53-R273H promotes cancer cell migration via upregulation of neuraminidase-1 publication-title: J. Cancer – volume: 366 start-page: 971 year: 2019 end-page: 977 ident: bb0635 article-title: Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex publication-title: Science – volume: 9 start-page: 3312 year: 2018 ident: bb0645 article-title: mTOR-dependent phosphorylation controls TFEB nuclear export publication-title: Nat. Commun. – volume: 325 start-page: 473 year: 2009 end-page: 477 ident: bb0070 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science – volume: 130 start-page: 4118 year: 2020 end-page: 4132 ident: bb0395 article-title: A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer publication-title: J. Clin. Invest. – volume: 35 start-page: 1779 year: 2016 end-page: 1792 ident: bb0300 article-title: Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy publication-title: EMBO J. – volume: 150 start-page: 803 year: 2012 end-page: 815 ident: bb0585 article-title: Extracellular publication-title: Cell – volume: 21 start-page: 421 year: 2011 end-page: 430 ident: bb0530 article-title: Transcriptional activation of lysosomal exocytosis promotes cellular clearance publication-title: Dev. Cell – volume: 27 start-page: 1678 year: 2016 end-page: 1688 ident: bb0355 article-title: Cystinosin is a component of the vacuolar H+-ATPase-Ragulator-Rag complex controlling mammalian target of rapamycin complex 1 signaling publication-title: J. Am. Soc. Nephrol. – volume: 28 start-page: 1218 year: 2009 end-page: 1229 ident: bb0490 article-title: Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4 publication-title: Oncogene – volume: 524 start-page: 361 year: 2015 end-page: 365 ident: bb0505 article-title: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism publication-title: Nature – volume: 23 start-page: 232 year: 2021 end-page: 242 ident: bb0535 article-title: Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth publication-title: Nat. Cell Biol. – volume: 25 start-page: 3432 year: 2016 end-page: 3445 ident: bb0195 article-title: Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease publication-title: Hum. Mol. Genet. – volume: 19 start-page: 2228 year: 2010 end-page: 2238 ident: bb0415 article-title: Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations publication-title: Hum. Mol. Genet. – volume: 73 start-page: 529 year: 2019 end-page: 557 ident: bb0600 article-title: Human coronavirus: host-pathogen interaction publication-title: Annu. Rev. Microbiol. – volume: 69 start-page: 182 year: 2018 end-page: 194 ident: bb0430 article-title: VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling publication-title: Mol. Cell – volume: 22 start-page: 947 year: 2020 end-page: 959 ident: bb0240 article-title: Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation publication-title: Nat. Cell Biol. – volume: 1 year: 2015 ident: bb0475 article-title: Regulated lysosomal exocytosis mediates cancer progression publication-title: Sci. Adv. – volume: 21 year: 2020 ident: bb0135 article-title: Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB publication-title: EMBO Rep. – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bb0605 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 5 start-page: 5646 year: 2014 ident: bb0235 article-title: Mechanism of Ca publication-title: Nat. Commun. – volume: 14 start-page: 1043 year: 2018 end-page: 1059 ident: bb0140 article-title: Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors publication-title: Autophagy – volume: 114 start-page: 8574 year: 2017 end-page: 8579 ident: bb0275 article-title: Ubiquitination of exposed glycoproteins by SCF(FBXO27) directs damaged lysosomes for autophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 283 year: 2013 end-page: 296 ident: bb0075 article-title: Signals from the lysosome: a control centre for cellular clearance and energy metabolism publication-title: Nat. Rev. Mol. Cell Biol. – volume: 127 start-page: 3717 year: 2017 end-page: 3729 ident: bb0360 article-title: mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy publication-title: J. Clin. Invest. – volume: 29 start-page: 1611 year: 2010 end-page: 1621 ident: bb0460 article-title: Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis publication-title: Oncogene – volume: 53 start-page: 435 year: 2021 end-page: 444 ident: bb0595 article-title: Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2 publication-title: Nat. Genet. – volume: 11 start-page: 854 year: 2011 end-page: 864 ident: bb0625 article-title: The endosomal proteome of macrophage and dendritic cells publication-title: Proteomics – volume: 6 year: 2020 ident: bb0425 article-title: LRRK2 mediates tubulation and vesicle sorting from lysosomes publication-title: Sci. Adv. – volume: 360 year: 2018 ident: bb0225 article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair publication-title: Science – volume: 39 start-page: 457 year: 2016 end-page: 464 ident: bb0380 article-title: Altered mTOR signalling in nephropathic cystinosis publication-title: J. Inherit. Metab. Dis. – volume: 7 start-page: 64957 year: 2016 end-page: 64966 ident: bb0485 article-title: Neuraminidase 1 (NEU1) promotes proliferation and migration as a diagnostic and prognostic biomarker of hepatocellular carcinoma publication-title: Oncotarget – volume: 290 start-page: 5592 year: 2015 end-page: 5605 ident: bb0120 article-title: Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells publication-title: J. Biol. Chem. – volume: 32 start-page: 1995 year: 2013 end-page: 2004 ident: bb0435 article-title: Cancer-associated lysosomal changes: friends or foes? publication-title: Oncogene – volume: 65 start-page: 122 year: 2020 end-page: 130 ident: bb0245 article-title: ESCRT puts its thumb on the nanoscale: fixing tiny holes in endolysosomes publication-title: Curr. Opin. Cell Biol. – volume: 39 year: 2020 ident: bb0420 article-title: LRRK2 activation controls the repair of damaged endomembranes in macrophages publication-title: EMBO J. – volume: 148 start-page: 573 year: 2019 end-page: 589 ident: bb0345 article-title: Lysosome biogenesis in health and disease publication-title: J. Neurochem. – volume: 37 year: 2018 ident: bb0110 article-title: The complex relationship between TFEB transcription factor phosphorylation and subcellular localization publication-title: EMBO J. – volume: 9 year: 2018 ident: bb0565 article-title: Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response publication-title: mBio – year: 2021 ident: bb2005 article-title: Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy publication-title: Elife – volume: 497 start-page: 633 year: 2013 end-page: 637 ident: bb0520 article-title: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells publication-title: Nature – volume: 26 start-page: 2233 year: 2016 end-page: 2245 ident: bb0210 article-title: Endolysosomes are the principal intracellular sites of acid hydrolase activity publication-title: Curr. Biol. – volume: 7 start-page: ra9 year: 2014 ident: bb0080 article-title: The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris publication-title: Sci. Signal. – volume: 15 start-page: 647 year: 2013 end-page: 658 ident: bb0100 article-title: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop publication-title: Nat. Cell Biol. – volume: 52 start-page: 145 year: 2019 end-page: 156 ident: bb0630 article-title: Bifunctional chemical probes inducing protein–protein interactions publication-title: Curr. Opin. Chem. Biol. – volume: 294 start-page: 18952 year: 2019 end-page: 18966 ident: bb0405 article-title: Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation publication-title: J. Biol. Chem. – volume: 34 start-page: 2272 year: 2015 end-page: 2290 ident: bb0190 article-title: mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival publication-title: EMBO J. – volume: 16 start-page: 1550 year: 2020 end-page: 1552 ident: bb0310 article-title: AMPK is activated during lysosomal damage via a galectin-ubiquitin signal transduction system publication-title: Autophagy – volume: 220 year: 2021 ident: bb0205 article-title: Lysosome biogenesis: regulation and functions publication-title: J. Cell Biol. – volume: 11 start-page: 1408 year: 2015 end-page: 1424 ident: bb0255 article-title: Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay publication-title: Autophagy – volume: 58 start-page: 2149 year: 2019 end-page: 2160 ident: bb0515 article-title: YY1 cooperates with TFEB to regulate autophagy and lysosomal biogenesis in melanoma publication-title: Mol. Carcinog. – volume: 35 start-page: 479 year: 2016 end-page: 495 ident: bb0170 article-title: TFEB and TFE3 are novel components of the integrated stress response publication-title: EMBO J. – volume: 219 year: 2020 ident: bb0335 article-title: TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy publication-title: J. Cell Biol. – volume: 29 start-page: 285 year: 2019 end-page: 302.e7 ident: bb0510 article-title: Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models publication-title: Cell Metab. – volume: 88 start-page: 813 year: 2010 end-page: 822 ident: bb0615 article-title: Technical advance: caspase-1 activation and IL-1β release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage publication-title: J. Leukoc. Biol. – volume: 203 start-page: 115 year: 2013 end-page: 128 ident: bb0280 article-title: Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin publication-title: J. Cell Biol. – volume: 21 start-page: 101 year: 2020 end-page: 118 ident: bb0005 article-title: Lysosomes as dynamic regulators of cell and organismal homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 12 year: 2019 ident: bb0370 article-title: mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells publication-title: Dis. Model. Mech. – volume: 6 start-page: 764 year: 2006 end-page: 775 ident: bb0450 article-title: Cysteine cathepsins: multifunctional enzymes in cancer publication-title: Nat. Rev. Cancer – volume: 15 start-page: 712 year: 2015 end-page: 729 ident: bb0445 article-title: Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response publication-title: Nat. Rev. Cancer – volume: 39 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0420 article-title: LRRK2 activation controls the repair of damaged endomembranes in macrophages publication-title: EMBO J. doi: 10.15252/embj.2020104494 – volume: 33 start-page: 983 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0105 article-title: MITF-the first 25 years publication-title: Genes Dev. doi: 10.1101/gad.324657.119 – volume: 56 start-page: 260 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0375 article-title: NPC1-mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann-Pick type C publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.11.016 – volume: 6 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0425 article-title: LRRK2 mediates tubulation and vesicle sorting from lysosomes publication-title: Sci. Adv. doi: 10.1126/sciadv.abb2454 – volume: 32 start-page: 2336 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0250 article-title: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury publication-title: EMBO J. doi: 10.1038/emboj.2013.171 – volume: 131 start-page: jcs226241 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0290 article-title: Alpha-synuclein fibrils recruit TBK1 and OPTN to lysosomal damage sites and induce autophagy in microglial cells publication-title: J. Cell Sci. doi: 10.1242/jcs.226241 – volume: 29 start-page: 2010 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0180 article-title: Aneuploidy-induced cellular stresses limit autophagic degradation publication-title: Genes Dev. doi: 10.1101/gad.269118.115 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0605 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 37 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0220 article-title: ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival publication-title: EMBO J. doi: 10.15252/embj.201899753 – volume: 29 start-page: 285 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0510 article-title: Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.10.005 – volume: 112 start-page: E420 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0125 article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1424576112 – volume: 9 start-page: 217 year: 2000 ident: 10.1016/j.tcb.2021.12.009_bb0550 article-title: Myoferlin, a candidate gene and potential modifier of muscular dystrophy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.2.217 – volume: 65 start-page: 122 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0245 article-title: ESCRT puts its thumb on the nanoscale: fixing tiny holes in endolysosomes publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2020.06.002 – volume: 18 start-page: 265 year: 2005 ident: 10.1016/j.tcb.2021.12.009_bb0150 article-title: Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner publication-title: Pigment Cell Res. doi: 10.1111/j.1600-0749.2005.00234.x – volume: 7 start-page: 41408 year: 2017 ident: 10.1016/j.tcb.2021.12.009_bb0385 article-title: A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency publication-title: Sci. Rep. doi: 10.1038/srep41408 – volume: 7 start-page: 64957 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0485 article-title: Neuraminidase 1 (NEU1) promotes proliferation and migration as a diagnostic and prognostic biomarker of hepatocellular carcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.11778 – volume: 151–152 start-page: 130 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0440 article-title: Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.01.010 – volume: 585 start-page: 597 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0640 article-title: A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome publication-title: Nature doi: 10.1038/s41586-020-2444-0 – volume: 73 start-page: 529 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0600 article-title: Human coronavirus: host-pathogen interaction publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-020518-115759 – volume: 360 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0225 article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair publication-title: Science doi: 10.1126/science.aar5078 – volume: 150 start-page: 803 year: 2012 ident: 10.1016/j.tcb.2021.12.009_bb0585 article-title: Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway publication-title: Cell doi: 10.1016/j.cell.2012.06.040 – volume: 1 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0475 article-title: Regulated lysosomal exocytosis mediates cancer progression publication-title: Sci. Adv. doi: 10.1126/sciadv.1500603 – volume: 465 start-page: 942 year: 2010 ident: 10.1016/j.tcb.2021.12.009_bb0185 article-title: Termination of autophagy and reformation of lysosomes regulated by mTOR publication-title: Nature doi: 10.1038/nature09076 – volume: 280 start-page: 146 year: 2005 ident: 10.1016/j.tcb.2021.12.009_bb0145 article-title: Sumoylation of MITF and its related family members TFE3 and TFEB publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411757200 – volume: 57 start-page: 467 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0315 article-title: Ubiquitin-dependent lysosomal membrane protein sorting and degradation publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.12.012 – volume: 131 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0260 article-title: Galectins at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.208884 – volume: 27 start-page: 1678 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0355 article-title: Cystinosin is a component of the vacuolar H+-ATPase-Ragulator-Rag complex controlling mammalian target of rapamycin complex 1 signaling publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2014090937 – volume: 294 start-page: 18952 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0405 article-title: Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009432 – volume: 23 start-page: 232 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0535 article-title: Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00644-7 – volume: 423 start-page: 168 year: 2003 ident: 10.1016/j.tcb.2021.12.009_bb0545 article-title: Defective membrane repair in dysferlin-deficient muscular dystrophy publication-title: Nature doi: 10.1038/nature01573 – volume: 108 start-page: 7826 year: 2011 ident: 10.1016/j.tcb.2021.12.009_bb0200 article-title: Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1013800108 – volume: 45 start-page: 295 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0015 article-title: Structure and roles of V-type ATPases publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2019.12.007 – volume: 219 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0335 article-title: TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.201902127 – volume: 37 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0110 article-title: The complex relationship between TFEB transcription factor phosphorylation and subcellular localization publication-title: EMBO J. doi: 10.15252/embj.201798804 – volume: 7 start-page: ra9 year: 2014 ident: 10.1016/j.tcb.2021.12.009_bb0080 article-title: The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris publication-title: Sci. Signal. doi: 10.1126/scisignal.2004754 – volume: 22 start-page: 947 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0240 article-title: Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0546-4 – volume: 12 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0370 article-title: mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells publication-title: Dis. Model. Mech. doi: 10.1242/dmm.038596 – volume: 11 start-page: 563 year: 2012 ident: 10.1016/j.tcb.2021.12.009_bb0590 article-title: Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.04.012 – volume: 203 start-page: 115 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0280 article-title: Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin publication-title: J. Cell Biol. doi: 10.1083/jcb.201304188 – volume: 130 start-page: 511 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0410 article-title: Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology publication-title: Acta Neuropathol. doi: 10.1007/s00401-015-1475-3 – volume: 9 start-page: 3312 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0645 article-title: mTOR-dependent phosphorylation controls TFEB nuclear export publication-title: Nat. Commun. doi: 10.1038/s41467-018-05862-6 – volume: 5 start-page: 5646 year: 2014 ident: 10.1016/j.tcb.2021.12.009_bb0235 article-title: Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair publication-title: Nat. Commun. doi: 10.1038/ncomms6646 – volume: 74 start-page: 320 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0295 article-title: The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.01.041 – volume: 290 start-page: 5592 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0120 article-title: Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.616714 – volume: 8 start-page: 2770 year: 1994 ident: 10.1016/j.tcb.2021.12.009_bb0050 article-title: Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family publication-title: Genes Dev. doi: 10.1101/gad.8.22.2770 – volume: 6 start-page: 764 year: 2006 ident: 10.1016/j.tcb.2021.12.009_bb0450 article-title: Cysteine cathepsins: multifunctional enzymes in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1949 – volume: 54 start-page: 226 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0030 article-title: The lysosome at the intersection of cellular growth and destruction publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.06.010 – volume: 41 start-page: 255 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0040 article-title: Lysosomes and brain health publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-080317-061804 – volume: 25 start-page: 182 year: 2017 ident: 10.1016/j.tcb.2021.12.009_bb0085 article-title: Transcription factor EB controls metabolic flexibility during exercise publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.11.003 – volume: 69 start-page: 182 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0430 article-title: VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.10.028 – volume: 21 start-page: 421 year: 2011 ident: 10.1016/j.tcb.2021.12.009_bb0530 article-title: Transcriptional activation of lysosomal exocytosis promotes cellular clearance publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.07.016 – volume: 70 start-page: 120 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0305 article-title: Galectins control mTOR in response to endomembrane damage publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.03.009 – volume: 36 start-page: 135 year: 2017 ident: 10.1016/j.tcb.2021.12.009_bb0285 article-title: VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy publication-title: EMBO J. doi: 10.15252/embj.201695148 – volume: 34 start-page: 2272 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0190 article-title: mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival publication-title: EMBO J. doi: 10.15252/embj.201590992 – volume: 497 start-page: 633 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0520 article-title: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells publication-title: Nature doi: 10.1038/nature12138 – volume: 11 start-page: 1408 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0255 article-title: Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay publication-title: Autophagy doi: 10.1080/15548627.2015.1063871 – volume: 16 start-page: 1683 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0155 article-title: Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis publication-title: Autophagy doi: 10.1080/15548627.2019.1704104 – volume: 130 start-page: 4118 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0395 article-title: A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer publication-title: J. Clin. Invest. – volume: 220 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0330 article-title: ESCRT, not intralumenal fragments, sorts ubiquitinated vacuole membrane proteins for degradation publication-title: J. Cell Biol. doi: 10.1083/jcb.202012104 – volume: 129 start-page: 2475 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0065 article-title: TFEB at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.146365 – volume: 4 start-page: 2267 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0165 article-title: The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans publication-title: Nat. Commun. doi: 10.1038/ncomms3267 – volume: 366 start-page: 971 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0635 article-title: Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex publication-title: Science doi: 10.1126/science.aax0364 – volume: 17 start-page: 288 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0115 article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB publication-title: Nat. Cell Biol. doi: 10.1038/ncb3114 – volume: 15 start-page: 668 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0090 article-title: MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability publication-title: Nat. Cell Biol. doi: 10.1038/ncb2741 – volume: 32 start-page: 1995 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0435 article-title: Cancer-associated lysosomal changes: friends or foes? publication-title: Oncogene doi: 10.1038/onc.2012.292 – volume: 189 start-page: 4488 year: 2012 ident: 10.1016/j.tcb.2021.12.009_bb0620 article-title: Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.1103158 – volume: 21 start-page: 3853 year: 2007 ident: 10.1016/j.tcb.2021.12.009_bb0455 article-title: Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia publication-title: FASEB J. doi: 10.1096/fj.07-8113com – volume: 11 start-page: 6874 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0480 article-title: p53-R273H promotes cancer cell migration via upregulation of neuraminidase-1 publication-title: J. Cancer doi: 10.7150/jca.44718 – volume: 70 start-page: 531 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0560 article-title: Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.03.037 – volume: 127 start-page: 3717 year: 2017 ident: 10.1016/j.tcb.2021.12.009_bb0360 article-title: mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy publication-title: J. Clin. Invest. doi: 10.1172/JCI94130 – volume: 29 start-page: 1611 year: 2010 ident: 10.1016/j.tcb.2021.12.009_bb0460 article-title: Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis publication-title: Oncogene doi: 10.1038/onc.2009.466 – volume: 28 start-page: 1218 year: 2009 ident: 10.1016/j.tcb.2021.12.009_bb0490 article-title: Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4 publication-title: Oncogene doi: 10.1038/onc.2008.471 – volume: 25 start-page: 3432 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0195 article-title: Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw185 – volume: 524 start-page: 361 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0505 article-title: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism publication-title: Nature doi: 10.1038/nature14587 – volume: 21 start-page: 101 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0005 article-title: Lysosomes as dynamic regulators of cell and organismal homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0185-4 – volume: 26 start-page: 2233 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0210 article-title: Endolysosomes are the principal intracellular sites of acid hydrolase activity publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.06.046 – volume: 14 start-page: 1043 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0140 article-title: Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors publication-title: Autophagy – volume: 39 start-page: 13 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0265 article-title: TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.08.003 – volume: 14 start-page: 206 year: 2004 ident: 10.1016/j.tcb.2021.12.009_bb0540 article-title: Dysferlin and the plasma membrane repair in muscular dystrophy publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.03.001 – volume: 3 start-page: 203 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0045 article-title: MiT/TFE family of transcription factors, lysosomes, and cancer publication-title: Annu. Rev. Cancer Biol. doi: 10.1146/annurev-cancerbio-030518-055835 – volume: 87 start-page: 83 year: 1990 ident: 10.1016/j.tcb.2021.12.009_bb0215 article-title: Mechanism of L-leucyl-L-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.87.1.83 – volume: 105 start-page: 3070 year: 2008 ident: 10.1016/j.tcb.2021.12.009_bb0570 article-title: ESCRT factors restrict mycobacterial growth publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0707206105 – volume: 183 start-page: 1520 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0610 article-title: β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway publication-title: Cell doi: 10.1016/j.cell.2020.10.039 – volume: 52 start-page: 145 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0630 article-title: Bifunctional chemical probes inducing protein–protein interactions publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2019.07.003 – volume: 148 start-page: 573 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0345 article-title: Lysosome biogenesis in health and disease publication-title: J. Neurochem. doi: 10.1111/jnc.14564 – volume: 6 start-page: 60 year: 2007 ident: 10.1016/j.tcb.2021.12.009_bb0465 article-title: Cysteine cathepsins and the cutting edge of cancer invasion publication-title: Cell Cycle doi: 10.4161/cc.6.1.3669 – volume: 9 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0565 article-title: Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response publication-title: mBio doi: 10.1128/mBio.01765-18 – volume: 24 start-page: 743 year: 2014 ident: 10.1016/j.tcb.2021.12.009_bb0095 article-title: Lysosome: regulator of lipid degradation pathways publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.06.006 – volume: 220 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0205 article-title: Lysosome biogenesis: regulation and functions publication-title: J. Cell Biol. doi: 10.1083/jcb.202102001 – volume: 5 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0390 article-title: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain publication-title: JCI Insight doi: 10.1172/jci.insight.136676 – volume: 1371 start-page: 45 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0650 article-title: Targeting the lysosome in cancer publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12953 – volume: 211 start-page: 639 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0325 article-title: Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.201505062 – volume: 15 start-page: 647 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0100 article-title: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop publication-title: Nat. Cell Biol. doi: 10.1038/ncb2718 – volume: 21 start-page: 25 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0230 article-title: The many functions of ESCRTs publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0177-4 – volume: 16 start-page: 1550 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0310 article-title: AMPK is activated during lysosomal damage via a galectin-ubiquitin signal transduction system publication-title: Autophagy doi: 10.1080/15548627.2020.1788890 – volume: 594 start-page: 111 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0580 article-title: Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection publication-title: Nature doi: 10.1038/s41586-021-03566-4 – volume: 38 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0175 article-title: Nutrient-sensitive transcription factors TFEB and TFE3 couple autophagy and metabolism to the peripheral clock publication-title: EMBO J. doi: 10.15252/embj.2018101347 – volume: 220 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0320 article-title: A selective transmembrane recognition mechanism by a membrane-anchored ubiquitin ligase adaptor publication-title: J. Cell Biol. doi: 10.1083/jcb.202001116 – volume: 332 start-page: 1429 year: 2011 ident: 10.1016/j.tcb.2021.12.009_bb0130 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science doi: 10.1126/science.1204592 – volume: 77 start-page: 57 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0020 article-title: Lysosomal physiology publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021014-071649 – volume: 21 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0135 article-title: Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB publication-title: EMBO Rep. doi: 10.15252/embr.201948335 – volume: 325 start-page: 473 year: 2009 ident: 10.1016/j.tcb.2021.12.009_bb0070 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science doi: 10.1126/science.1174447 – volume: 19 start-page: 2228 year: 2010 ident: 10.1016/j.tcb.2021.12.009_bb0415 article-title: Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq100 – volume: 21 start-page: 246 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0025 article-title: Author correction: mTOR at the nexus of nutrition, growth, ageing and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0219-y – volume: 114 start-page: 8574 year: 2017 ident: 10.1016/j.tcb.2021.12.009_bb0275 article-title: Ubiquitination of exposed glycoproteins by SCF(FBXO27) directs damaged lysosomes for autophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1702615114 – volume: 20 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0270 article-title: The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage publication-title: EMBO Rep. doi: 10.15252/embr.201948014 – volume: 20 start-page: 1370 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0400 article-title: CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0228-7 – volume: 15 start-page: 433 year: 2006 ident: 10.1016/j.tcb.2021.12.009_bb0365 article-title: Rapamycin alleviates toxicity of different aggregate-prone proteins publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi458 – volume: 33 start-page: 176 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0525 article-title: BORC, a multisubunit complex that regulates lysosome positioning publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.02.011 – volume: 11 start-page: 854 year: 2011 ident: 10.1016/j.tcb.2021.12.009_bb0625 article-title: The endosomal proteome of macrophage and dendritic cells publication-title: Proteomics doi: 10.1002/pmic.201000577 – volume: 39 start-page: 457 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0380 article-title: Altered mTOR signalling in nephropathic cystinosis publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-016-9919-z – volume: 102 start-page: 13646 year: 2005 ident: 10.1016/j.tcb.2021.12.009_bb0575 article-title: Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506461102 – volume: 4 start-page: 27 year: 2018 ident: 10.1016/j.tcb.2021.12.009_bb0350 article-title: Lysosomal storage diseases publication-title: Nat. Rev. Dis. Primers doi: 10.1038/s41572-018-0025-4 – volume: 1793 start-page: 605 year: 2009 ident: 10.1016/j.tcb.2021.12.009_bb0470 article-title: Sorting of lysosomal proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.10.016 – volume: 20 start-page: 3852 year: 2011 ident: 10.1016/j.tcb.2021.12.009_bb0055 article-title: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr306 – volume: 35 start-page: 1779 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0300 article-title: Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy publication-title: EMBO J. doi: 10.15252/embj.201694491 – year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0555 article-title: Expanding role of PI5P4Ks in cancer: a promising druggable target publication-title: FEBS Lett. – volume: 34 start-page: 13 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0160 article-title: User guide to MiT-TFE isoforms and post-translational modifications publication-title: Pigment Cell Melanoma Res. doi: 10.1111/pcmr.12922 – volume: 58 start-page: 2149 year: 2019 ident: 10.1016/j.tcb.2021.12.009_bb0515 article-title: YY1 cooperates with TFEB to regulate autophagy and lysosomal biogenesis in melanoma publication-title: Mol. Carcinog. doi: 10.1002/mc.23105 – volume: 14 start-page: 283 year: 2013 ident: 10.1016/j.tcb.2021.12.009_bb0075 article-title: Signals from the lysosome: a control centre for cellular clearance and energy metabolism publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3565 – volume: 35 start-page: 479 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0170 article-title: TFEB and TFE3 are novel components of the integrated stress response publication-title: EMBO J. doi: 10.15252/embj.201593428 – volume: 18 start-page: 44 year: 2020 ident: 10.1016/j.tcb.2021.12.009_bb0495 article-title: Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin alpha5beta1 interaction and Akt signaling pathway publication-title: Cell Commun. Signal. doi: 10.1186/s12964-019-0500-x – volume: 39 start-page: 69 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0500 article-title: Lysosomes in cancer-living on the edge (of the cell) publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.02.009 – volume: 32 start-page: 223 year: 2016 ident: 10.1016/j.tcb.2021.12.009_bb0010 article-title: The lysosome as a regulatory hub publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-111315-125125 – volume: 53 start-page: 435 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0595 article-title: Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00805-2 – volume: 40 year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb0035 article-title: Sealing holes in cellular membranes publication-title: EMBO J. doi: 10.15252/embj.2020106922 – volume: 15 start-page: 712 year: 2015 ident: 10.1016/j.tcb.2021.12.009_bb0445 article-title: Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response publication-title: Nat. Rev. Cancer doi: 10.1038/nrc4027 – volume: 88 start-page: 813 year: 2010 ident: 10.1016/j.tcb.2021.12.009_bb0615 article-title: Technical advance: caspase-1 activation and IL-1β release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0310159 – year: 2021 ident: 10.1016/j.tcb.2021.12.009_bb2005 article-title: Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy publication-title: Elife doi: 10.7554/eLife.72328.sa2 – volume: 71 start-page: 2483 year: 2014 ident: 10.1016/j.tcb.2021.12.009_bb0060 article-title: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-014-1565-8 |
SSID | ssj0007213 |
Score | 2.5708637 |
SecondaryResourceType | review_article |
Snippet | Lysosomes play major roles in growth regulation and catabolism and are recognized as critical mediators of cellular remodeling. An emerging theme is how the... Lysosomes play major roles in growth regulation and catabolism, and are recognized as critical mediators of cellular remodeling. An emerging theme is how the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 597 |
SubjectTerms | cancer Catabolism Damage accumulation Humans infection lysosome Lysosomes Lysosomes - metabolism membrane damage Molecular modelling Neoplasms - pathology Neurodegeneration Pathogens Repair |
Title | Built to last: lysosome remodeling and repair in health and disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0962892422000010 https://dx.doi.org/10.1016/j.tcb.2021.12.009 https://www.ncbi.nlm.nih.gov/pubmed/35123838 https://www.proquest.com/docview/2683174076 https://www.proquest.com/docview/2626225151 https://pubmed.ncbi.nlm.nih.gov/PMC9189017 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuCMortFRG4oQUtrEdx-FWVlQLK3oAKnqz_FSDlmS1mz300t_O2HnAtlWRUA5RbI-UjD3jb-J5IPSmoFxRIUyqRelTRrVONdUlADnvPfHMehHinb-c8tkZ-3yen--g6RALE9wqe93f6fSorfuWSc_NybKqJt8AfIO1AFsMib-og93OWBFW-burP24eYOF05eQ5SD6MHk42o49XazSYiCSLfwSDT-Lte9NN7HndhfKvPenkEXrYg0l83L3vY7Tj6j10vysvefkETT9sqkWL2wYDRG7f48Xlulk3vxxeuVgAB3YtrGoLj0tVrXBV4y4qMjb2JzdP0dnJx-_TWdoXTUhNTso25SazNoAYXXqujrS3IcWXJ44Ip0qaa-KASQDriMiY4co4lVsLKLGAds0sfYZ266Z2LxAGYkMLBlILQgvAQFleWmJzE5LEAxBM0NHALmn6jOKhsMVCDq5jPyVwWAYOy4xI4HCC3o4kyy6dxl2DyTAHcogTBc0mQdnfRcRGoq2F9C-yg2GSZS_Fa0m4AHgFJi9P0OuxG-QvHKqo2jWbMAYuAIl5lqDn3ZoYv4wC06igIkHF1moZB4Tc3ts9dXURc3yXmQCkVrz8v6_ZRw9ICNOIbsUHaLddbdwrAE-tPozScYjuHX-az07Dff71x_w3_GoZWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguiDeBAkbihBS2sR3H4QYrqgXaXmil3iw7tkXQkqx2s4de-O2MnQcsoCKhnGJ7pHjiGX9jzwPgZcGEZlJWqZGlTzkzJjXMlAjkvPfUc-tliHc-ORWLc_7xIr_Yg_kYCxPcKgfd3-v0qK2HltnAzdmqrmefEXyjtYBbDI1H1Gi3X-MovqGMwevvP_080MTp68kLFH0cPl5tRievrjJoI9IsHgkGp8S_b05_gs_ffSh_2ZSObsOtAU2St_0H34E919yF6319yct7MH-3rZcd6VqCGLl7Q5aXm3bTfnNk7WIFHNy2iG4svq50vSZ1Q_qwyNg4XN3ch_Oj92fzRTpUTUirnJZdKqrM2oBiTOmFPjTehhxfnjoqnS5ZbqjjhUBcR2XGK6Erp3NrESYW2G64ZQ9gv2kb9wgIEles4Ci2KLWIDLQVpaU2r0KWeESCCRyO7FLVkFI8VLZYqtF37KtCDqvAYZVRhRxO4NVEsurzaVw1mI7_QI2BoqjaFGr7q4j4RLSzkv5FdjD-ZDWI8UZRIRFfoc0rEngxdaMAhlsV3bh2G8bggygxzxJ42K-JaWYMmcYkkwkUO6tlGhCSe-_2NPWXmOS7zCRCteLx_83mOdxYnJ0cq-MPp5-ewE0aYjaij_EB7HfrrXuKSKozz6Kk_ABx0hlF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Built+to+last%3A+lysosome+remodeling+and+repair+in+health+and+disease&rft.jtitle=Trends+in+cell+biology&rft.au=Zoncu%2C+Roberto&rft.au=Perera%2C+Rushika+M&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0962-8924&rft.eissn=1879-3088&rft.volume=32&rft.issue=7&rft.spage=597&rft_id=info:doi/10.1016%2Fj.tcb.2021.12.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8924&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8924&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8924&client=summon |