A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and...
Saved in:
Published in | Cell reports methods Vol. 1; no. 5; p. 100071 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.09.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.
[Display omitted]
•scMM learns low-dimensional joint representations from single-cell multiomics data•scMM detects previously overlooked cell populations in single-cell multimodal data•Pseudocell generation enables scMM to learn interpretable latent dimensions•scMM accurately predicts missing modalities by crossmodal generation
Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. However, computational methods for integrated analysis of complex and high-dimensional multimodal single-cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representations from multimodal single-cell data. In addition, scMM learns underlying relationships across modalities, enabling crossmodal generation of single-cell data.
Minoura et al. report the development of scMM, a multimodal deep generative model-based framework for analyzing single-cell multiomics data. scMM extracts biologically interpretable joint representations from high-dimensional multimodal data that can be used for downstream analyses. In addition, it learns relationships among single-cell modalities, enabling many-to-many prediction of missing modalities. |
---|---|
AbstractList | The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. • scMM learns low-dimensional joint representations from single-cell multiomics data • scMM detects previously overlooked cell populations in single-cell multimodal data • Pseudocell generation enables scMM to learn interpretable latent dimensions • scMM accurately predicts missing modalities by crossmodal generation Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. However, computational methods for integrated analysis of complex and high-dimensional multimodal single-cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representations from multimodal single-cell data. In addition, scMM learns underlying relationships across modalities, enabling crossmodal generation of single-cell data. Minoura et al. report the development of scMM, a multimodal deep generative model-based framework for analyzing single-cell multiomics data. scMM extracts biologically interpretable joint representations from high-dimensional multimodal data that can be used for downstream analyses. In addition, it learns relationships among single-cell modalities, enabling many-to-many prediction of missing modalities. The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. [Display omitted] •scMM learns low-dimensional joint representations from single-cell multiomics data•scMM detects previously overlooked cell populations in single-cell multimodal data•Pseudocell generation enables scMM to learn interpretable latent dimensions•scMM accurately predicts missing modalities by crossmodal generation Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. However, computational methods for integrated analysis of complex and high-dimensional multimodal single-cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representations from multimodal single-cell data. In addition, scMM learns underlying relationships across modalities, enabling crossmodal generation of single-cell data. Minoura et al. report the development of scMM, a multimodal deep generative model-based framework for analyzing single-cell multiomics data. scMM extracts biologically interpretable joint representations from high-dimensional multimodal data that can be used for downstream analyses. In addition, it learns relationships among single-cell modalities, enabling many-to-many prediction of missing modalities. |
ArticleNumber | 100071 |
Author | Nishikawa, Hiroyoshi Shimamura, Teppei Nam, Hyunha Minoura, Kodai Abe, Ko |
Author_xml | – sequence: 1 givenname: Kodai orcidid: 0000-0003-3221-329X surname: Minoura fullname: Minoura, Kodai organization: Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan – sequence: 2 givenname: Ko surname: Abe fullname: Abe, Ko organization: Laboratory of Medical Statistics, Kobe Pharmaceutical University – sequence: 3 givenname: Hyunha surname: Nam fullname: Nam, Hyunha organization: Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan – sequence: 4 givenname: Hiroyoshi orcidid: 0000-0001-6563-9807 surname: Nishikawa fullname: Nishikawa, Hiroyoshi organization: Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan – sequence: 5 givenname: Teppei orcidid: 0000-0003-2994-872X surname: Shimamura fullname: Shimamura, Teppei email: shimamura@med.nagoya-u.ac.jp organization: Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35474667$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctOGzEUtSqqQil_gCovu5ng5wzuohJCfSAhddOuLce-Do5m7NT2RPD3dZRQQRewsn3vecjnvEdHMUVA6JySBSW0v1gvbJ6g3i0YYbSNCBnoG3TC-n7oGB_k0ZP7MTorZd0gTFLOFX2HjrkUg2j7E2Su8BTu65yhS76D-w3kWrAD2OAVRMimhi3gKTkYsU8Zh1hh1abgsIlmfCih4ORxCXE1QmdhHPE0jzWkKdimY6r5gN56MxY4O5yn6Pe3r7-uf3S3P7_fXF_ddlYyVbteDR6kAs-FIEvBiZCGS-cVl1wAo_zStzdxfqB2qcAZZ5VjwjnOPJfQ81P0Za-7mZcTOAuxZjPqTQ6TyQ86maCfb2K406u01YrQgSrZBD4dBHL6M0Opegpl9yMTIc1Fs172VF32RDTox6de_0wec22Az3uAzamUDF7bUFuWaWcdRk2J3vWo13rfo971qPc9NrL4j_yo_wrtEAC0lLcBsi42QLTgQgZbtUvhZYG_LpS7EQ |
CitedBy_id | crossref_primary_10_1093_bib_bbae582 crossref_primary_10_1093_nar_gkae409 crossref_primary_10_1038_s41592_023_01909_9 crossref_primary_10_1093_bioinformatics_btac736 crossref_primary_10_1007_s11427_024_2770_x crossref_primary_10_1093_nar_gkac006 crossref_primary_10_1038_s41592_022_01595_z crossref_primary_10_1038_s43705_022_00182_9 crossref_primary_10_1093_bib_bbaf116 crossref_primary_10_1186_s13059_025_03514_9 crossref_primary_10_3389_fbinf_2023_1191961 crossref_primary_10_1093_bioinformatics_btad005 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1080_21645515_2023_2234792 crossref_primary_10_1093_bib_bbaf010 crossref_primary_10_1186_s13059_024_03211_z crossref_primary_10_1038_s41467_024_54771_4 crossref_primary_10_1038_s41467_024_49806_9 crossref_primary_10_1002_advs_202307835 crossref_primary_10_1007_s12293_025_00442_w crossref_primary_10_1093_bib_bbae450 crossref_primary_10_1016_j_isci_2023_106025 crossref_primary_10_1186_s13059_021_02556_z crossref_primary_10_3390_biology12101313 crossref_primary_10_1093_bioinformatics_btae300 crossref_primary_10_1093_bioinformatics_btae520 crossref_primary_10_1186_s12859_024_05880_w crossref_primary_10_2174_1574893618666221130094050 crossref_primary_10_1093_bib_bbad265 crossref_primary_10_1186_s12859_024_05656_2 crossref_primary_10_1038_s41467_022_35031_9 crossref_primary_10_1016_j_compbiomed_2023_106865 crossref_primary_10_21105_joss_05093 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1038_s41392_023_01383_x crossref_primary_10_1186_s13073_024_01415_3 crossref_primary_10_1145_3641284 crossref_primary_10_1038_s41592_024_02316_4 crossref_primary_10_1038_s41598_022_24754_w crossref_primary_10_1093_bioinformatics_btae374 crossref_primary_10_1007_s11634_024_00609_2 crossref_primary_10_3389_fgene_2022_977968 crossref_primary_10_1002_advs_202301169 crossref_primary_10_1093_bib_bbae449 crossref_primary_10_1089_cmb_2022_0264 crossref_primary_10_1038_s41467_023_43917_5 crossref_primary_10_1109_TNB_2024_3456797 crossref_primary_10_1007_s11831_025_10230_x |
Cites_doi | 10.1038/s41587-019-0379-5 10.1093/bioinformatics/btaa169 10.1111/j.1365-2567.2006.02354.x 10.1038/s41592-018-0229-2 10.1038/s41592-019-0691-5 10.1186/s13059-020-1932-8 10.1016/j.cell.2021.04.048 10.1038/nmeth.4401 10.1016/j.cell.2015.05.047 10.1186/s13059-019-1898-6 10.1093/bioinformatics/btaa293 10.1016/j.it.2005.04.011 10.1038/s41587-019-0290-0 10.1093/bib/bbaa287 10.1016/j.cell.2020.09.056 10.1126/science.aaw1219 10.1038/s41594-019-0323-x 10.1016/j.cell.2019.05.006 10.1016/j.stem.2020.01.012 10.1186/s13059-016-0950-z 10.1038/s41467-019-12630-7 10.1038/nbt.4091 10.1016/j.cell.2019.05.031 10.1126/science.aau0730 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.crmeth.2021.100071 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2667-2375 |
ExternalDocumentID | PMC9017195 35474667 10_1016_j_crmeth_2021_100071 S2667237521001235 |
Genre | Journal Article |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 OK1 RPM 0R~ AALRI AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-697fe59ef3440b43045a35df93534e2138fa350df71cb9edadc9d24dd32f35e63 |
ISSN | 2667-2375 |
IngestDate | Thu Aug 21 13:21:28 EDT 2025 Fri Jul 11 04:56:33 EDT 2025 Thu Jan 02 22:54:39 EST 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 01:27:09 EDT 2025 Fri Feb 23 02:40:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | dimensionality reduction multimodal data integration single-cell multiomics deep generative model multimodal prediction |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c529t-697fe59ef3440b43045a35df93534e2138fa350df71cb9edadc9d24dd32f35e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
ORCID | 0000-0001-6563-9807 0000-0003-2994-872X 0000-0003-3221-329X |
OpenAccessLink | http://dx.doi.org/10.1016/j.crmeth.2021.100071 |
PMID | 35474667 |
PQID | 2656198604 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9017195 proquest_miscellaneous_2656198604 pubmed_primary_35474667 crossref_citationtrail_10_1016_j_crmeth_2021_100071 crossref_primary_10_1016_j_crmeth_2021_100071 elsevier_sciencedirect_doi_10_1016_j_crmeth_2021_100071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-27 |
PublicationDateYYYYMMDD | 2021-09-27 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports methods |
PublicationTitleAlternate | Cell Rep Methods |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Haghverdi, Lun, Morgan, Marioni (bib9) 2018; 36 Svensson (bib29) 2020; 38 Zhu, Preissl, Ren (bib35) 2020; 17 Akiba, Sano, Yanase, Ohta, Koyama (bib1) 2019 Joost, Annusver, Jacob, Sun, Dalessandri, Sivan, Sequeira, Sandberg, Kasper (bib12) 2020; 26 Kingma, Welling (bib14) 2013 Levine, Simonds, Bendall, Davis, Amir, Tadmor, Litvin, Fienberg, Jager, Zunder (bib15) 2015; 162 Sun, Zhu, Ma, Zhou, Sun, Zhu, Ma, Zhou (bib28) 2019; 20 González-Blas, Minnoye, Papasokrati, Aibar, Hulselmans, Christiaens, Davie, Wouters, Aerts (bib6) 2019; 16 Ma, Zhang, LaFave, Earl, Chiang, Hu, Ding, Brack, Kartha, Tay (bib17) 2020; 183 Schep, Wu, Buenrostro, Greenleaf (bib23) 2017; 14 Bakken, Jorstad, Hu, Lake, Tian, Kalmbach, Crow, Hodge, Krienen, Sorensen (bib2) 2020 Svensson, Gayoso, Yosef, Pachter (bib30) 2020; 36 Kennedy, Willis, Armitage (bib13) 2006; 118 Stuart, Srivastava, Lareau, Satija (bib27) 2020 Welch, Kozareva, Ferreira, Vanderburg, Martin, Macosko (bib31) 2019; 177 Chen, Lake, Zhang (bib4) 2019; 37 Xiong, Xu, Tian, Shao, Tang, Gao, Zhang, Jiang, Zhang (bib33) 2019; 10 Zhu, Yu, Huang, Juric, Abnousi, Hu, Lucero, Behrens, Hu, Ren (bib34) 2019; 26 Robert, Casella (bib20) 2004 Rosa, Pabst (bib22) 2005; 26 Sønderby, Raiko, Maaløe, Sønderby, Winther (bib25) 2016 Rodriques, Stickels, Goeva, Martin, Murray, Vanderburg, Welch, Chen, Chen, Macosko (bib21) 2019; 363 Shi, Siddharth, Paige, Torr (bib24) 2019 Grønbech, Vording, Timshel, Sønderby, Pers, Winther (bib7) 2020; 36 Gayoso, Steier, Lopez, Regier, Nazor, Streets, Yosef (bib5) 2021 Reddi, Kale, Kumar (bib19) 2019 Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib26) 2019; 177 Lopez, Regier, Cole, Jordan, Yosef (bib16) 2018; 15 Cao, Cusanovich, Ramani, Aghamirzaie, Pliner, Hill, Daza, McFaline-Figueroa, Packer, Christiansen (bib3) 2018; 361 McInnes, Healy, Melville (bib18) 2018 Zuo, Chen (bib36) 2020; 22 Jin, Zhang, Nie (bib11) 2020; 21 Hu, Huang, An, Du, Hu, Xue, Zhu, Wang, Xue, Fan (bib10) 2016; 17 Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib8) 2021; 84 Shi (10.1016/j.crmeth.2021.100071_bib24) 2019 Kingma (10.1016/j.crmeth.2021.100071_bib14) 2013 Robert (10.1016/j.crmeth.2021.100071_bib20) 2004 Zhu (10.1016/j.crmeth.2021.100071_bib35) 2020; 17 Rosa (10.1016/j.crmeth.2021.100071_bib22) 2005; 26 Jin (10.1016/j.crmeth.2021.100071_bib11) 2020; 21 Sønderby (10.1016/j.crmeth.2021.100071_bib25) 2016 Levine (10.1016/j.crmeth.2021.100071_bib15) 2015; 162 Chen (10.1016/j.crmeth.2021.100071_bib4) 2019; 37 Sun (10.1016/j.crmeth.2021.100071_bib28) 2019; 20 Cao (10.1016/j.crmeth.2021.100071_bib3) 2018; 361 Lopez (10.1016/j.crmeth.2021.100071_bib16) 2018; 15 Svensson (10.1016/j.crmeth.2021.100071_bib29) 2020; 38 Grønbech (10.1016/j.crmeth.2021.100071_bib7) 2020; 36 Kennedy (10.1016/j.crmeth.2021.100071_bib13) 2006; 118 Stuart (10.1016/j.crmeth.2021.100071_bib26) 2019; 177 González-Blas (10.1016/j.crmeth.2021.100071_bib6) 2019; 16 Zhu (10.1016/j.crmeth.2021.100071_bib34) 2019; 26 Akiba (10.1016/j.crmeth.2021.100071_bib1) 2019 Svensson (10.1016/j.crmeth.2021.100071_bib30) 2020; 36 Reddi (10.1016/j.crmeth.2021.100071_bib19) 2019 Stuart (10.1016/j.crmeth.2021.100071_bib27) 2020 Bakken (10.1016/j.crmeth.2021.100071_bib2) 2020 McInnes (10.1016/j.crmeth.2021.100071_bib18) 2018 Schep (10.1016/j.crmeth.2021.100071_bib23) 2017; 14 Gayoso (10.1016/j.crmeth.2021.100071_bib5) 2021 Rodriques (10.1016/j.crmeth.2021.100071_bib21) 2019; 363 Welch (10.1016/j.crmeth.2021.100071_bib31) 2019; 177 Zuo (10.1016/j.crmeth.2021.100071_bib36) 2020; 22 Hao (10.1016/j.crmeth.2021.100071_bib8) 2021; 84 Haghverdi (10.1016/j.crmeth.2021.100071_bib9) 2018; 36 Hu (10.1016/j.crmeth.2021.100071_bib10) 2016; 17 Xiong (10.1016/j.crmeth.2021.100071_bib33) 2019; 10 Joost (10.1016/j.crmeth.2021.100071_bib12) 2020; 26 Ma (10.1016/j.crmeth.2021.100071_bib17) 2020; 183 |
References_xml | – volume: 162 start-page: 184 year: 2015 end-page: 197 ident: bib15 article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis publication-title: Cell – start-page: 1802.03426 year: 2018 ident: bib18 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 16 start-page: 1 year: 2019 end-page: 4 ident: bib6 article-title: cisTopic: publication-title: Nat. Methods – volume: 361 start-page: eaau0730 year: 2018 ident: bib3 article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells publication-title: Science – start-page: 1312.6114 year: 2013 ident: bib14 article-title: Auto-encoding variational Bayes publication-title: arXiv – volume: 22 start-page: bbaa287 year: 2020 ident: bib36 article-title: Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data publication-title: Brief. Bioinform. – year: 2020 ident: bib2 article-title: Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse publication-title: bioRxiv – volume: 26 start-page: 1063 year: 2019 end-page: 1070 ident: bib34 article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome publication-title: Nat. Struct. Mol. Biol. – start-page: 1911.03393 year: 2019 ident: bib24 article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models publication-title: arXiv – start-page: 1907.10902 year: 2019 ident: bib1 article-title: Optuna: a next-generation hyperparameter optimization framework publication-title: arXiv – volume: 10 start-page: 4576 year: 2019 ident: bib33 article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction publication-title: Nat. Commun. – volume: 183 start-page: 1103 year: 2020 end-page: 1116.e20 ident: bib17 article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin publication-title: Cell – year: 2020 ident: bib27 article-title: Multimodal single-cell chromatin analysis with Signac publication-title: bioRxiv – volume: 36 start-page: 3418 year: 2020 end-page: 3421 ident: bib30 article-title: Interpretable factor models of single-cell RNA-seq via variational autoencoders publication-title: Bioinformatics – volume: 118 start-page: 143 year: 2006 end-page: 152 ident: bib13 article-title: Deciphering CD30 ligand biology and its role in humoral immunity publication-title: Immunology – volume: 363 start-page: 1463 year: 2019 end-page: 1467 ident: bib21 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science – volume: 36 start-page: 4415 year: 2020 end-page: 4422 ident: bib7 article-title: scVAE: variational auto-encoders for single-cell gene expression data publication-title: Bioinformatics – volume: 26 start-page: 360 year: 2005 end-page: 366 ident: bib22 article-title: The bone marrow: a nest for migratory memory T cells publication-title: Trends Immunol. – volume: 36 start-page: 421 year: 2018 ident: bib9 article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat. Biotechnol. – start-page: 1904.09237 year: 2019 ident: bib19 article-title: On the convergence of Adam and beyond publication-title: arXiv – volume: 38 start-page: 147 year: 2020 end-page: 150 ident: bib29 article-title: Droplet scRNA-seq is not zero-inflated publication-title: Nat. Biotechnol. – volume: 26 start-page: 441 year: 2020 end-page: 457.e7 ident: bib12 article-title: The molecular anatomy of mouse skin during hair growth and rest publication-title: Cell Stem Cell – volume: 177 start-page: 1888 year: 2019 end-page: 1902.e21 ident: bib26 article-title: Comprehensive integration of single-cell data publication-title: Cell – start-page: 511 year: 2004 end-page: 543 ident: bib20 article-title: Monte Carlo Statistical Methods – volume: 17 start-page: 11 year: 2020 end-page: 14 ident: bib35 article-title: Single-cell multimodal omics: the power of many publication-title: Nat. Methods – volume: 17 start-page: 88 year: 2016 ident: bib10 article-title: Simultaneous profiling of transcriptome and DNA methylome from a single cell publication-title: Genome Biol. – start-page: 1602.02282 year: 2016 ident: bib25 article-title: Ladder variational autoencoders publication-title: arXiv – volume: 37 start-page: 1452 year: 2019 end-page: 1457 ident: bib4 article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell publication-title: Nat. Biotechnol. – volume: 20 start-page: 269 year: 2019 ident: bib28 article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis publication-title: Genome Biol. – volume: 15 start-page: 1053 year: 2018 end-page: 1058 ident: bib16 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods – volume: 177 start-page: 1873 year: 2019 end-page: 1887.e17 ident: bib31 article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity publication-title: Cell – volume: 84 start-page: 3573 year: 2021 end-page: 3587.e29 ident: bib8 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell – start-page: 1 year: 2021 end-page: 11 ident: bib5 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI publication-title: Nat. Methods – volume: 21 start-page: 25 year: 2020 ident: bib11 article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles publication-title: Genome Biol. – volume: 14 start-page: 975 year: 2017 end-page: 978 ident: bib23 article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data publication-title: Nat. Methods – volume: 38 start-page: 147 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib29 article-title: Droplet scRNA-seq is not zero-inflated publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0379-5 – volume: 36 start-page: 3418 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib30 article-title: Interpretable factor models of single-cell RNA-seq via variational autoencoders publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa169 – start-page: 1 year: 2021 ident: 10.1016/j.crmeth.2021.100071_bib5 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI publication-title: Nat. Methods – volume: 118 start-page: 143 year: 2006 ident: 10.1016/j.crmeth.2021.100071_bib13 article-title: Deciphering CD30 ligand biology and its role in humoral immunity publication-title: Immunology doi: 10.1111/j.1365-2567.2006.02354.x – volume: 16 start-page: 1 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib6 article-title: cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data publication-title: Nat. Methods – volume: 15 start-page: 1053 year: 2018 ident: 10.1016/j.crmeth.2021.100071_bib16 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 17 start-page: 11 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib35 article-title: Single-cell multimodal omics: the power of many publication-title: Nat. Methods doi: 10.1038/s41592-019-0691-5 – volume: 21 start-page: 25 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib11 article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles publication-title: Genome Biol. doi: 10.1186/s13059-020-1932-8 – year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib27 article-title: Multimodal single-cell chromatin analysis with Signac publication-title: bioRxiv – volume: 84 start-page: 3573 year: 2021 ident: 10.1016/j.crmeth.2021.100071_bib8 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 14 start-page: 975 year: 2017 ident: 10.1016/j.crmeth.2021.100071_bib23 article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data publication-title: Nat. Methods doi: 10.1038/nmeth.4401 – volume: 162 start-page: 184 year: 2015 ident: 10.1016/j.crmeth.2021.100071_bib15 article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – start-page: 1904.09237 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib19 article-title: On the convergence of Adam and beyond publication-title: arXiv – start-page: 1907.10902 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib1 article-title: Optuna: a next-generation hyperparameter optimization framework publication-title: arXiv – start-page: 1911.03393 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib24 article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models publication-title: arXiv – volume: 20 start-page: 269 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib28 article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis publication-title: Genome Biol. doi: 10.1186/s13059-019-1898-6 – start-page: 1312.6114 year: 2013 ident: 10.1016/j.crmeth.2021.100071_bib14 article-title: Auto-encoding variational Bayes publication-title: arXiv – volume: 36 start-page: 4415 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib7 article-title: scVAE: variational auto-encoders for single-cell gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa293 – volume: 26 start-page: 360 year: 2005 ident: 10.1016/j.crmeth.2021.100071_bib22 article-title: The bone marrow: a nest for migratory memory T cells publication-title: Trends Immunol. doi: 10.1016/j.it.2005.04.011 – volume: 37 start-page: 1452 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib4 article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0290-0 – start-page: 1802.03426 year: 2018 ident: 10.1016/j.crmeth.2021.100071_bib18 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 22 start-page: bbaa287 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib36 article-title: Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa287 – volume: 183 start-page: 1103 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib17 article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin publication-title: Cell doi: 10.1016/j.cell.2020.09.056 – volume: 363 start-page: 1463 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib21 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 26 start-page: 1063 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib34 article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0323-x – start-page: 511 year: 2004 ident: 10.1016/j.crmeth.2021.100071_bib20 – year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib2 article-title: Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse publication-title: bioRxiv – volume: 177 start-page: 1873 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib31 article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 26 start-page: 441 year: 2020 ident: 10.1016/j.crmeth.2021.100071_bib12 article-title: The molecular anatomy of mouse skin during hair growth and rest publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.01.012 – start-page: 1602.02282 year: 2016 ident: 10.1016/j.crmeth.2021.100071_bib25 article-title: Ladder variational autoencoders publication-title: arXiv – volume: 17 start-page: 88 year: 2016 ident: 10.1016/j.crmeth.2021.100071_bib10 article-title: Simultaneous profiling of transcriptome and DNA methylome from a single cell publication-title: Genome Biol. doi: 10.1186/s13059-016-0950-z – volume: 10 start-page: 4576 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib33 article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction publication-title: Nat. Commun. doi: 10.1038/s41467-019-12630-7 – volume: 36 start-page: 421 year: 2018 ident: 10.1016/j.crmeth.2021.100071_bib9 article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4091 – volume: 177 start-page: 1888 year: 2019 ident: 10.1016/j.crmeth.2021.100071_bib26 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 361 start-page: eaau0730 year: 2018 ident: 10.1016/j.crmeth.2021.100071_bib3 article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells publication-title: Science doi: 10.1126/science.aau0730 |
SSID | ssj0002513391 |
Score | 2.4412017 |
Snippet | The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100071 |
SubjectTerms | deep generative model dimensionality reduction multimodal data integration multimodal prediction single-cell multiomics |
Title | A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data |
URI | https://dx.doi.org/10.1016/j.crmeth.2021.100071 https://www.ncbi.nlm.nih.gov/pubmed/35474667 https://www.proquest.com/docview/2656198604 https://pubmed.ncbi.nlm.nih.gov/PMC9017195 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbblEIvoe9sH0GF3oLN2pJs67iUlqXQnBLIzciWTJymdth4aTc_oL-7M5Jfm902TS_GK9vyY74djUYz3xDyoUDVF3GYqUoTeVznwlNSI41rkLNZbpADDKMtjqPFKf9yJs4mk1-jqKVVk_n5zc68kv-RKrSBXDFL9h6S7TuFBtgH-cIWJAzbf5Lx_Oh7-ROXALy68CxXf3N9pI25wsLIpuX0trVubDRhTw2B9KwDFwl6Cy6Nhy58F1-IicrQj8taG3gM8Hi3xOAKT_f2-Neygud12WW1VuWwqGRcW-9zdvhbrFfVeT8gHKMf7Jv6Ya9flMt6XUPD2B8RBhg84dL7ndqCET_2QubqofhmR1und0fwEiMdGli7Z6d6d56GCz9f4mv6eHt_OH2TTfvWKNfHHnZhbRep6yXFXlLXywPyMITpBht5fXBED7EIji2-2L9Il4VpQwW3H-dPVs72LOZ2MO7Iujl5QvbbaQmdO4w9JRNTPSOPXKHS9XOi5nQbaRSRRgekUYs0CkijA9JohzRaF3SENDogjSLSXpDTz59OPi68tjiHl4tQNl4k48IIaQrG-SzjuOCumNCFZIJxEwYsKeD3TBdxkGfSaKVzqUOuNQsLJkzEXpK9qq7MAaFxkmilEq4LEfNEGKWUBlWRIRkbY5xNCes-Zpq3zPVYQOUy_Zssp8Trr7pyzC13nB93ckpb69NZlSmg744r33diTUE540dUlalX12kIs6VAJtGMT8krJ-b-WZjgMQc4wX03ANCfgMTvm0eq8twSwEskuZLi9T3f8A15PPxh35K9Zrky78CkbrJD64o6tKj_De18z_I |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixture-of-experts+deep+generative+model+for+integrated+analysis+of+single-cell+multiomics+data&rft.jtitle=Cell+reports+methods&rft.au=Minoura%2C+Kodai&rft.au=Abe%2C+Ko&rft.au=Nam%2C+Hyunha&rft.au=Nishikawa%2C+Hiroyoshi&rft.date=2021-09-27&rft.issn=2667-2375&rft.eissn=2667-2375&rft.volume=1&rft.issue=5&rft.spage=100071&rft_id=info:doi/10.1016%2Fj.crmeth.2021.100071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_crmeth_2021_100071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-2375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-2375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-2375&client=summon |