A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data

The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and...

Full description

Saved in:
Bibliographic Details
Published inCell reports methods Vol. 1; no. 5; p. 100071
Main Authors Minoura, Kodai, Abe, Ko, Nam, Hyunha, Nishikawa, Hiroyoshi, Shimamura, Teppei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.09.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. [Display omitted] •scMM learns low-dimensional joint representations from single-cell multiomics data•scMM detects previously overlooked cell populations in single-cell multimodal data•Pseudocell generation enables scMM to learn interpretable latent dimensions•scMM accurately predicts missing modalities by crossmodal generation Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. However, computational methods for integrated analysis of complex and high-dimensional multimodal single-cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representations from multimodal single-cell data. In addition, scMM learns underlying relationships across modalities, enabling crossmodal generation of single-cell data. Minoura et al. report the development of scMM, a multimodal deep generative model-based framework for analyzing single-cell multiomics data. scMM extracts biologically interpretable joint representations from high-dimensional multimodal data that can be used for downstream analyses. In addition, it learns relationships among single-cell modalities, enabling many-to-many prediction of missing modalities.
AbstractList The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.
The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. • scMM learns low-dimensional joint representations from single-cell multiomics data • scMM detects previously overlooked cell populations in single-cell multimodal data • Pseudocell generation enables scMM to learn interpretable latent dimensions • scMM accurately predicts missing modalities by crossmodal generation Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. However, computational methods for integrated analysis of complex and high-dimensional multimodal single-cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representations from multimodal single-cell data. In addition, scMM learns underlying relationships across modalities, enabling crossmodal generation of single-cell data. Minoura et al. report the development of scMM, a multimodal deep generative model-based framework for analyzing single-cell multiomics data. scMM extracts biologically interpretable joint representations from high-dimensional multimodal data that can be used for downstream analyses. In addition, it learns relationships among single-cell modalities, enabling many-to-many prediction of missing modalities.
The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.
The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches. [Display omitted] •scMM learns low-dimensional joint representations from single-cell multiomics data•scMM detects previously overlooked cell populations in single-cell multimodal data•Pseudocell generation enables scMM to learn interpretable latent dimensions•scMM accurately predicts missing modalities by crossmodal generation Revolutionary single-cell multiomics technologies have enabled acquiring characteristics of individual cells across multiple modalities, such as transcriptome, epigenome, and surface proteins. However, computational methods for integrated analysis of complex and high-dimensional multimodal single-cell data are currently limited. Here, we present scMM, a mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. scMM effectively infers interpretable joint representations from multimodal single-cell data. In addition, scMM learns underlying relationships across modalities, enabling crossmodal generation of single-cell data. Minoura et al. report the development of scMM, a multimodal deep generative model-based framework for analyzing single-cell multiomics data. scMM extracts biologically interpretable joint representations from high-dimensional multimodal data that can be used for downstream analyses. In addition, it learns relationships among single-cell modalities, enabling many-to-many prediction of missing modalities.
ArticleNumber 100071
Author Nishikawa, Hiroyoshi
Shimamura, Teppei
Nam, Hyunha
Minoura, Kodai
Abe, Ko
Author_xml – sequence: 1
  givenname: Kodai
  orcidid: 0000-0003-3221-329X
  surname: Minoura
  fullname: Minoura, Kodai
  organization: Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
– sequence: 2
  givenname: Ko
  surname: Abe
  fullname: Abe, Ko
  organization: Laboratory of Medical Statistics, Kobe Pharmaceutical University
– sequence: 3
  givenname: Hyunha
  surname: Nam
  fullname: Nam, Hyunha
  organization: Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
– sequence: 4
  givenname: Hiroyoshi
  orcidid: 0000-0001-6563-9807
  surname: Nishikawa
  fullname: Nishikawa, Hiroyoshi
  organization: Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
– sequence: 5
  givenname: Teppei
  orcidid: 0000-0003-2994-872X
  surname: Shimamura
  fullname: Shimamura, Teppei
  email: shimamura@med.nagoya-u.ac.jp
  organization: Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35474667$$D View this record in MEDLINE/PubMed
BookMark eNqFUctOGzEUtSqqQil_gCovu5ng5wzuohJCfSAhddOuLce-Do5m7NT2RPD3dZRQQRewsn3vecjnvEdHMUVA6JySBSW0v1gvbJ6g3i0YYbSNCBnoG3TC-n7oGB_k0ZP7MTorZd0gTFLOFX2HjrkUg2j7E2Su8BTu65yhS76D-w3kWrAD2OAVRMimhi3gKTkYsU8Zh1hh1abgsIlmfCih4ORxCXE1QmdhHPE0jzWkKdimY6r5gN56MxY4O5yn6Pe3r7-uf3S3P7_fXF_ddlYyVbteDR6kAs-FIEvBiZCGS-cVl1wAo_zStzdxfqB2qcAZZ5VjwjnOPJfQ81P0Za-7mZcTOAuxZjPqTQ6TyQ86maCfb2K406u01YrQgSrZBD4dBHL6M0Opegpl9yMTIc1Fs172VF32RDTox6de_0wec22Az3uAzamUDF7bUFuWaWcdRk2J3vWo13rfo971qPc9NrL4j_yo_wrtEAC0lLcBsi42QLTgQgZbtUvhZYG_LpS7EQ
CitedBy_id crossref_primary_10_1093_bib_bbae582
crossref_primary_10_1093_nar_gkae409
crossref_primary_10_1038_s41592_023_01909_9
crossref_primary_10_1093_bioinformatics_btac736
crossref_primary_10_1007_s11427_024_2770_x
crossref_primary_10_1093_nar_gkac006
crossref_primary_10_1038_s41592_022_01595_z
crossref_primary_10_1038_s43705_022_00182_9
crossref_primary_10_1093_bib_bbaf116
crossref_primary_10_1186_s13059_025_03514_9
crossref_primary_10_3389_fbinf_2023_1191961
crossref_primary_10_1093_bioinformatics_btad005
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1080_21645515_2023_2234792
crossref_primary_10_1093_bib_bbaf010
crossref_primary_10_1186_s13059_024_03211_z
crossref_primary_10_1038_s41467_024_54771_4
crossref_primary_10_1038_s41467_024_49806_9
crossref_primary_10_1002_advs_202307835
crossref_primary_10_1007_s12293_025_00442_w
crossref_primary_10_1093_bib_bbae450
crossref_primary_10_1016_j_isci_2023_106025
crossref_primary_10_1186_s13059_021_02556_z
crossref_primary_10_3390_biology12101313
crossref_primary_10_1093_bioinformatics_btae300
crossref_primary_10_1093_bioinformatics_btae520
crossref_primary_10_1186_s12859_024_05880_w
crossref_primary_10_2174_1574893618666221130094050
crossref_primary_10_1093_bib_bbad265
crossref_primary_10_1186_s12859_024_05656_2
crossref_primary_10_1038_s41467_022_35031_9
crossref_primary_10_1016_j_compbiomed_2023_106865
crossref_primary_10_21105_joss_05093
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1038_s41392_023_01383_x
crossref_primary_10_1186_s13073_024_01415_3
crossref_primary_10_1145_3641284
crossref_primary_10_1038_s41592_024_02316_4
crossref_primary_10_1038_s41598_022_24754_w
crossref_primary_10_1093_bioinformatics_btae374
crossref_primary_10_1007_s11634_024_00609_2
crossref_primary_10_3389_fgene_2022_977968
crossref_primary_10_1002_advs_202301169
crossref_primary_10_1093_bib_bbae449
crossref_primary_10_1089_cmb_2022_0264
crossref_primary_10_1038_s41467_023_43917_5
crossref_primary_10_1109_TNB_2024_3456797
crossref_primary_10_1007_s11831_025_10230_x
Cites_doi 10.1038/s41587-019-0379-5
10.1093/bioinformatics/btaa169
10.1111/j.1365-2567.2006.02354.x
10.1038/s41592-018-0229-2
10.1038/s41592-019-0691-5
10.1186/s13059-020-1932-8
10.1016/j.cell.2021.04.048
10.1038/nmeth.4401
10.1016/j.cell.2015.05.047
10.1186/s13059-019-1898-6
10.1093/bioinformatics/btaa293
10.1016/j.it.2005.04.011
10.1038/s41587-019-0290-0
10.1093/bib/bbaa287
10.1016/j.cell.2020.09.056
10.1126/science.aaw1219
10.1038/s41594-019-0323-x
10.1016/j.cell.2019.05.006
10.1016/j.stem.2020.01.012
10.1186/s13059-016-0950-z
10.1038/s41467-019-12630-7
10.1038/nbt.4091
10.1016/j.cell.2019.05.031
10.1126/science.aau0730
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.crmeth.2021.100071
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2667-2375
ExternalDocumentID PMC9017195
35474667
10_1016_j_crmeth_2021_100071
S2667237521001235
Genre Journal Article
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
OK1
RPM
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-697fe59ef3440b43045a35df93534e2138fa350df71cb9edadc9d24dd32f35e63
ISSN 2667-2375
IngestDate Thu Aug 21 13:21:28 EDT 2025
Fri Jul 11 04:56:33 EDT 2025
Thu Jan 02 22:54:39 EST 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 01:27:09 EDT 2025
Fri Feb 23 02:40:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords dimensionality reduction
multimodal data integration
single-cell multiomics
deep generative model
multimodal prediction
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-697fe59ef3440b43045a35df93534e2138fa350df71cb9edadc9d24dd32f35e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0001-6563-9807
0000-0003-2994-872X
0000-0003-3221-329X
OpenAccessLink http://dx.doi.org/10.1016/j.crmeth.2021.100071
PMID 35474667
PQID 2656198604
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9017195
proquest_miscellaneous_2656198604
pubmed_primary_35474667
crossref_citationtrail_10_1016_j_crmeth_2021_100071
crossref_primary_10_1016_j_crmeth_2021_100071
elsevier_sciencedirect_doi_10_1016_j_crmeth_2021_100071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-27
PublicationDateYYYYMMDD 2021-09-27
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports methods
PublicationTitleAlternate Cell Rep Methods
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Haghverdi, Lun, Morgan, Marioni (bib9) 2018; 36
Svensson (bib29) 2020; 38
Zhu, Preissl, Ren (bib35) 2020; 17
Akiba, Sano, Yanase, Ohta, Koyama (bib1) 2019
Joost, Annusver, Jacob, Sun, Dalessandri, Sivan, Sequeira, Sandberg, Kasper (bib12) 2020; 26
Kingma, Welling (bib14) 2013
Levine, Simonds, Bendall, Davis, Amir, Tadmor, Litvin, Fienberg, Jager, Zunder (bib15) 2015; 162
Sun, Zhu, Ma, Zhou, Sun, Zhu, Ma, Zhou (bib28) 2019; 20
González-Blas, Minnoye, Papasokrati, Aibar, Hulselmans, Christiaens, Davie, Wouters, Aerts (bib6) 2019; 16
Ma, Zhang, LaFave, Earl, Chiang, Hu, Ding, Brack, Kartha, Tay (bib17) 2020; 183
Schep, Wu, Buenrostro, Greenleaf (bib23) 2017; 14
Bakken, Jorstad, Hu, Lake, Tian, Kalmbach, Crow, Hodge, Krienen, Sorensen (bib2) 2020
Svensson, Gayoso, Yosef, Pachter (bib30) 2020; 36
Kennedy, Willis, Armitage (bib13) 2006; 118
Stuart, Srivastava, Lareau, Satija (bib27) 2020
Welch, Kozareva, Ferreira, Vanderburg, Martin, Macosko (bib31) 2019; 177
Chen, Lake, Zhang (bib4) 2019; 37
Xiong, Xu, Tian, Shao, Tang, Gao, Zhang, Jiang, Zhang (bib33) 2019; 10
Zhu, Yu, Huang, Juric, Abnousi, Hu, Lucero, Behrens, Hu, Ren (bib34) 2019; 26
Robert, Casella (bib20) 2004
Rosa, Pabst (bib22) 2005; 26
Sønderby, Raiko, Maaløe, Sønderby, Winther (bib25) 2016
Rodriques, Stickels, Goeva, Martin, Murray, Vanderburg, Welch, Chen, Chen, Macosko (bib21) 2019; 363
Shi, Siddharth, Paige, Torr (bib24) 2019
Grønbech, Vording, Timshel, Sønderby, Pers, Winther (bib7) 2020; 36
Gayoso, Steier, Lopez, Regier, Nazor, Streets, Yosef (bib5) 2021
Reddi, Kale, Kumar (bib19) 2019
Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib26) 2019; 177
Lopez, Regier, Cole, Jordan, Yosef (bib16) 2018; 15
Cao, Cusanovich, Ramani, Aghamirzaie, Pliner, Hill, Daza, McFaline-Figueroa, Packer, Christiansen (bib3) 2018; 361
McInnes, Healy, Melville (bib18) 2018
Zuo, Chen (bib36) 2020; 22
Jin, Zhang, Nie (bib11) 2020; 21
Hu, Huang, An, Du, Hu, Xue, Zhu, Wang, Xue, Fan (bib10) 2016; 17
Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib8) 2021; 84
Shi (10.1016/j.crmeth.2021.100071_bib24) 2019
Kingma (10.1016/j.crmeth.2021.100071_bib14) 2013
Robert (10.1016/j.crmeth.2021.100071_bib20) 2004
Zhu (10.1016/j.crmeth.2021.100071_bib35) 2020; 17
Rosa (10.1016/j.crmeth.2021.100071_bib22) 2005; 26
Jin (10.1016/j.crmeth.2021.100071_bib11) 2020; 21
Sønderby (10.1016/j.crmeth.2021.100071_bib25) 2016
Levine (10.1016/j.crmeth.2021.100071_bib15) 2015; 162
Chen (10.1016/j.crmeth.2021.100071_bib4) 2019; 37
Sun (10.1016/j.crmeth.2021.100071_bib28) 2019; 20
Cao (10.1016/j.crmeth.2021.100071_bib3) 2018; 361
Lopez (10.1016/j.crmeth.2021.100071_bib16) 2018; 15
Svensson (10.1016/j.crmeth.2021.100071_bib29) 2020; 38
Grønbech (10.1016/j.crmeth.2021.100071_bib7) 2020; 36
Kennedy (10.1016/j.crmeth.2021.100071_bib13) 2006; 118
Stuart (10.1016/j.crmeth.2021.100071_bib26) 2019; 177
González-Blas (10.1016/j.crmeth.2021.100071_bib6) 2019; 16
Zhu (10.1016/j.crmeth.2021.100071_bib34) 2019; 26
Akiba (10.1016/j.crmeth.2021.100071_bib1) 2019
Svensson (10.1016/j.crmeth.2021.100071_bib30) 2020; 36
Reddi (10.1016/j.crmeth.2021.100071_bib19) 2019
Stuart (10.1016/j.crmeth.2021.100071_bib27) 2020
Bakken (10.1016/j.crmeth.2021.100071_bib2) 2020
McInnes (10.1016/j.crmeth.2021.100071_bib18) 2018
Schep (10.1016/j.crmeth.2021.100071_bib23) 2017; 14
Gayoso (10.1016/j.crmeth.2021.100071_bib5) 2021
Rodriques (10.1016/j.crmeth.2021.100071_bib21) 2019; 363
Welch (10.1016/j.crmeth.2021.100071_bib31) 2019; 177
Zuo (10.1016/j.crmeth.2021.100071_bib36) 2020; 22
Hao (10.1016/j.crmeth.2021.100071_bib8) 2021; 84
Haghverdi (10.1016/j.crmeth.2021.100071_bib9) 2018; 36
Hu (10.1016/j.crmeth.2021.100071_bib10) 2016; 17
Xiong (10.1016/j.crmeth.2021.100071_bib33) 2019; 10
Joost (10.1016/j.crmeth.2021.100071_bib12) 2020; 26
Ma (10.1016/j.crmeth.2021.100071_bib17) 2020; 183
References_xml – volume: 162
  start-page: 184
  year: 2015
  end-page: 197
  ident: bib15
  article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
  publication-title: Cell
– start-page: 1802.03426
  year: 2018
  ident: bib18
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 16
  start-page: 1
  year: 2019
  end-page: 4
  ident: bib6
  article-title: cisTopic:
  publication-title: Nat. Methods
– volume: 361
  start-page: eaau0730
  year: 2018
  ident: bib3
  article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  publication-title: Science
– start-page: 1312.6114
  year: 2013
  ident: bib14
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv
– volume: 22
  start-page: bbaa287
  year: 2020
  ident: bib36
  article-title: Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
  publication-title: Brief. Bioinform.
– year: 2020
  ident: bib2
  article-title: Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse
  publication-title: bioRxiv
– volume: 26
  start-page: 1063
  year: 2019
  end-page: 1070
  ident: bib34
  article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome
  publication-title: Nat. Struct. Mol. Biol.
– start-page: 1911.03393
  year: 2019
  ident: bib24
  article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models
  publication-title: arXiv
– start-page: 1907.10902
  year: 2019
  ident: bib1
  article-title: Optuna: a next-generation hyperparameter optimization framework
  publication-title: arXiv
– volume: 10
  start-page: 4576
  year: 2019
  ident: bib33
  article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction
  publication-title: Nat. Commun.
– volume: 183
  start-page: 1103
  year: 2020
  end-page: 1116.e20
  ident: bib17
  article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin
  publication-title: Cell
– year: 2020
  ident: bib27
  article-title: Multimodal single-cell chromatin analysis with Signac
  publication-title: bioRxiv
– volume: 36
  start-page: 3418
  year: 2020
  end-page: 3421
  ident: bib30
  article-title: Interpretable factor models of single-cell RNA-seq via variational autoencoders
  publication-title: Bioinformatics
– volume: 118
  start-page: 143
  year: 2006
  end-page: 152
  ident: bib13
  article-title: Deciphering CD30 ligand biology and its role in humoral immunity
  publication-title: Immunology
– volume: 363
  start-page: 1463
  year: 2019
  end-page: 1467
  ident: bib21
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
– volume: 36
  start-page: 4415
  year: 2020
  end-page: 4422
  ident: bib7
  article-title: scVAE: variational auto-encoders for single-cell gene expression data
  publication-title: Bioinformatics
– volume: 26
  start-page: 360
  year: 2005
  end-page: 366
  ident: bib22
  article-title: The bone marrow: a nest for migratory memory T cells
  publication-title: Trends Immunol.
– volume: 36
  start-page: 421
  year: 2018
  ident: bib9
  article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat. Biotechnol.
– start-page: 1904.09237
  year: 2019
  ident: bib19
  article-title: On the convergence of Adam and beyond
  publication-title: arXiv
– volume: 38
  start-page: 147
  year: 2020
  end-page: 150
  ident: bib29
  article-title: Droplet scRNA-seq is not zero-inflated
  publication-title: Nat. Biotechnol.
– volume: 26
  start-page: 441
  year: 2020
  end-page: 457.e7
  ident: bib12
  article-title: The molecular anatomy of mouse skin during hair growth and rest
  publication-title: Cell Stem Cell
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902.e21
  ident: bib26
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
– start-page: 511
  year: 2004
  end-page: 543
  ident: bib20
  article-title: Monte Carlo Statistical Methods
– volume: 17
  start-page: 11
  year: 2020
  end-page: 14
  ident: bib35
  article-title: Single-cell multimodal omics: the power of many
  publication-title: Nat. Methods
– volume: 17
  start-page: 88
  year: 2016
  ident: bib10
  article-title: Simultaneous profiling of transcriptome and DNA methylome from a single cell
  publication-title: Genome Biol.
– start-page: 1602.02282
  year: 2016
  ident: bib25
  article-title: Ladder variational autoencoders
  publication-title: arXiv
– volume: 37
  start-page: 1452
  year: 2019
  end-page: 1457
  ident: bib4
  article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
  publication-title: Nat. Biotechnol.
– volume: 20
  start-page: 269
  year: 2019
  ident: bib28
  article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
  publication-title: Genome Biol.
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  ident: bib16
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
– volume: 177
  start-page: 1873
  year: 2019
  end-page: 1887.e17
  ident: bib31
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity
  publication-title: Cell
– volume: 84
  start-page: 3573
  year: 2021
  end-page: 3587.e29
  ident: bib8
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
– start-page: 1
  year: 2021
  end-page: 11
  ident: bib5
  article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI
  publication-title: Nat. Methods
– volume: 21
  start-page: 25
  year: 2020
  ident: bib11
  article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles
  publication-title: Genome Biol.
– volume: 14
  start-page: 975
  year: 2017
  end-page: 978
  ident: bib23
  article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
  publication-title: Nat. Methods
– volume: 38
  start-page: 147
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib29
  article-title: Droplet scRNA-seq is not zero-inflated
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0379-5
– volume: 36
  start-page: 3418
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib30
  article-title: Interpretable factor models of single-cell RNA-seq via variational autoencoders
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa169
– start-page: 1
  year: 2021
  ident: 10.1016/j.crmeth.2021.100071_bib5
  article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI
  publication-title: Nat. Methods
– volume: 118
  start-page: 143
  year: 2006
  ident: 10.1016/j.crmeth.2021.100071_bib13
  article-title: Deciphering CD30 ligand biology and its role in humoral immunity
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2006.02354.x
– volume: 16
  start-page: 1
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib6
  article-title: cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
  publication-title: Nat. Methods
– volume: 15
  start-page: 1053
  year: 2018
  ident: 10.1016/j.crmeth.2021.100071_bib16
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 17
  start-page: 11
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib35
  article-title: Single-cell multimodal omics: the power of many
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0691-5
– volume: 21
  start-page: 25
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib11
  article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1932-8
– year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib27
  article-title: Multimodal single-cell chromatin analysis with Signac
  publication-title: bioRxiv
– volume: 84
  start-page: 3573
  year: 2021
  ident: 10.1016/j.crmeth.2021.100071_bib8
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 14
  start-page: 975
  year: 2017
  ident: 10.1016/j.crmeth.2021.100071_bib23
  article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4401
– volume: 162
  start-page: 184
  year: 2015
  ident: 10.1016/j.crmeth.2021.100071_bib15
  article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– start-page: 1904.09237
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib19
  article-title: On the convergence of Adam and beyond
  publication-title: arXiv
– start-page: 1907.10902
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib1
  article-title: Optuna: a next-generation hyperparameter optimization framework
  publication-title: arXiv
– start-page: 1911.03393
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib24
  article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models
  publication-title: arXiv
– volume: 20
  start-page: 269
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib28
  article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1898-6
– start-page: 1312.6114
  year: 2013
  ident: 10.1016/j.crmeth.2021.100071_bib14
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv
– volume: 36
  start-page: 4415
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib7
  article-title: scVAE: variational auto-encoders for single-cell gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa293
– volume: 26
  start-page: 360
  year: 2005
  ident: 10.1016/j.crmeth.2021.100071_bib22
  article-title: The bone marrow: a nest for migratory memory T cells
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2005.04.011
– volume: 37
  start-page: 1452
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib4
  article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0290-0
– start-page: 1802.03426
  year: 2018
  ident: 10.1016/j.crmeth.2021.100071_bib18
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv
– volume: 22
  start-page: bbaa287
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib36
  article-title: Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa287
– volume: 183
  start-page: 1103
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib17
  article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.056
– volume: 363
  start-page: 1463
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib21
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 26
  start-page: 1063
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib34
  article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0323-x
– start-page: 511
  year: 2004
  ident: 10.1016/j.crmeth.2021.100071_bib20
– year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib2
  article-title: Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse
  publication-title: bioRxiv
– volume: 177
  start-page: 1873
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib31
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 26
  start-page: 441
  year: 2020
  ident: 10.1016/j.crmeth.2021.100071_bib12
  article-title: The molecular anatomy of mouse skin during hair growth and rest
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.01.012
– start-page: 1602.02282
  year: 2016
  ident: 10.1016/j.crmeth.2021.100071_bib25
  article-title: Ladder variational autoencoders
  publication-title: arXiv
– volume: 17
  start-page: 88
  year: 2016
  ident: 10.1016/j.crmeth.2021.100071_bib10
  article-title: Simultaneous profiling of transcriptome and DNA methylome from a single cell
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0950-z
– volume: 10
  start-page: 4576
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib33
  article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12630-7
– volume: 36
  start-page: 421
  year: 2018
  ident: 10.1016/j.crmeth.2021.100071_bib9
  article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4091
– volume: 177
  start-page: 1888
  year: 2019
  ident: 10.1016/j.crmeth.2021.100071_bib26
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 361
  start-page: eaau0730
  year: 2018
  ident: 10.1016/j.crmeth.2021.100071_bib3
  article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  publication-title: Science
  doi: 10.1126/science.aau0730
SSID ssj0002513391
Score 2.4412017
Snippet The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100071
SubjectTerms deep generative model
dimensionality reduction
multimodal data integration
multimodal prediction
single-cell multiomics
Title A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
URI https://dx.doi.org/10.1016/j.crmeth.2021.100071
https://www.ncbi.nlm.nih.gov/pubmed/35474667
https://www.proquest.com/docview/2656198604
https://pubmed.ncbi.nlm.nih.gov/PMC9017195
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbblEIvoe9sH0GF3oLN2pJs67iUlqXQnBLIzciWTJymdth4aTc_oL-7M5Jfm902TS_GK9vyY74djUYz3xDyoUDVF3GYqUoTeVznwlNSI41rkLNZbpADDKMtjqPFKf9yJs4mk1-jqKVVk_n5zc68kv-RKrSBXDFL9h6S7TuFBtgH-cIWJAzbf5Lx_Oh7-ROXALy68CxXf3N9pI25wsLIpuX0trVubDRhTw2B9KwDFwl6Cy6Nhy58F1-IicrQj8taG3gM8Hi3xOAKT_f2-Neygud12WW1VuWwqGRcW-9zdvhbrFfVeT8gHKMf7Jv6Ya9flMt6XUPD2B8RBhg84dL7ndqCET_2QubqofhmR1und0fwEiMdGli7Z6d6d56GCz9f4mv6eHt_OH2TTfvWKNfHHnZhbRep6yXFXlLXywPyMITpBht5fXBED7EIji2-2L9Il4VpQwW3H-dPVs72LOZ2MO7Iujl5QvbbaQmdO4w9JRNTPSOPXKHS9XOi5nQbaRSRRgekUYs0CkijA9JohzRaF3SENDogjSLSXpDTz59OPi68tjiHl4tQNl4k48IIaQrG-SzjuOCumNCFZIJxEwYsKeD3TBdxkGfSaKVzqUOuNQsLJkzEXpK9qq7MAaFxkmilEq4LEfNEGKWUBlWRIRkbY5xNCes-Zpq3zPVYQOUy_Zssp8Trr7pyzC13nB93ckpb69NZlSmg744r33diTUE540dUlalX12kIs6VAJtGMT8krJ-b-WZjgMQc4wX03ANCfgMTvm0eq8twSwEskuZLi9T3f8A15PPxh35K9Zrky78CkbrJD64o6tKj_De18z_I
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixture-of-experts+deep+generative+model+for+integrated+analysis+of+single-cell+multiomics+data&rft.jtitle=Cell+reports+methods&rft.au=Minoura%2C+Kodai&rft.au=Abe%2C+Ko&rft.au=Nam%2C+Hyunha&rft.au=Nishikawa%2C+Hiroyoshi&rft.date=2021-09-27&rft.issn=2667-2375&rft.eissn=2667-2375&rft.volume=1&rft.issue=5&rft.spage=100071&rft_id=info:doi/10.1016%2Fj.crmeth.2021.100071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_crmeth_2021_100071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-2375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-2375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-2375&client=summon