The 3p21.31 genetic locus promotes progression to type 1 diabetes through the CCR2/CCL2 pathway

Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with gen...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational autoimmunity (Online) Vol. 4; p. 100127
Main Authors Tran, Paul MH, Purohit, Sharad, Kim, Eileen, bin Satter, Khaled, Hopkins, Diane, Waugh, Kathleen, Dong, Fran, Onengut-Gumuscu, Suna, Rich, Stephen S., Rewers, Marian, She, Jin-Xiong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2589-9090
2589-9090
DOI10.1016/j.jtauto.2021.100127

Cover

Loading…
Abstract Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2, were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway. •Serum CCL-2 levels are lower in individuals with islet autoantibodies and type 1 diabetes compared to controls.•Serum CCL-2 levels are associated with the 3p21.31 genetic locus.•The 3p21.31 genetic locus is associated with type 1 diabetes.•The 3p21.31 genetic locus is associated with gene expression of the CCL-2 receptor, CCR2.
AbstractList Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis.The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC).Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2, were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively).The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway.
Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2 , were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway. • Serum CCL-2 levels are lower in individuals with islet autoantibodies and type 1 diabetes compared to controls. • Serum CCL-2 levels are associated with the 3p21.31 genetic locus. • The 3p21.31 genetic locus is associated with type 1 diabetes. • The 3p21.31 genetic locus is associated with gene expression of the CCL-2 receptor, CCR2 .
Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, , were associated with increased expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway.
Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2, were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway.Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2, were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway.
Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D), although the direction of effect differs. We assessed CCL-2 serum levels in a longitudinal cohort to clarify this association, combined with genetic data to elucidate the regulatory role of CCL-2 in T1D pathogenesis. The Diabetes Autoimmunity Study in the Young (DAISY) followed 310 subjects with high risk of developing T1D. Of these, 42 became persistently seropositive for islet autoantibodies but did not develop T1D (non-progressors); 48 did develop T1D (progressors). CCL-2 serum levels among the three study groups were compared using linear mixed models adjusting for age, sex, HLA genotype, and family history of T1D. Summary statistics were obtained from the CCL-2 protein quantitative trait loci (pQTL) and CCR2 expression QTL (eQTL) studies. The T1D fine mapping association data were provided by the Type 1 Diabetes Genetics Consortium (T1DGC). Serum CCL-2 levels were significantly lower in both progressors (p = 0.004) and non-progressors (p = 0.005), compared to controls. Two SNPs (rs1799988 and rs746492) in the 3p21.31 genetic locus, which includes the CCL-2 receptor, CCR2, were associated with increased CCR2 expression (p = 8.2e-5 and 5.2e-5, respectively), decreased CCL-2 serum level (p = 2.41e-9 and 6.21e-9, respectively), and increased risk of T1D (p = 7.9e-5 and 7.9e-5, respectively). The 3p21.31 genetic region is associated with developing T1D through regulatory control of the CCR2/CCL2 immune pathway. •Serum CCL-2 levels are lower in individuals with islet autoantibodies and type 1 diabetes compared to controls.•Serum CCL-2 levels are associated with the 3p21.31 genetic locus.•The 3p21.31 genetic locus is associated with type 1 diabetes.•The 3p21.31 genetic locus is associated with gene expression of the CCL-2 receptor, CCR2.
ArticleNumber 100127
Author Purohit, Sharad
bin Satter, Khaled
Waugh, Kathleen
Rich, Stephen S.
Tran, Paul MH
Rewers, Marian
Hopkins, Diane
Dong, Fran
Onengut-Gumuscu, Suna
Kim, Eileen
She, Jin-Xiong
Author_xml – sequence: 1
  givenname: Paul MH
  orcidid: 0000-0003-2197-4376
  surname: Tran
  fullname: Tran, Paul MH
  organization: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
– sequence: 2
  givenname: Sharad
  surname: Purohit
  fullname: Purohit, Sharad
  organization: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
– sequence: 3
  givenname: Eileen
  orcidid: 0000-0002-6782-1810
  surname: Kim
  fullname: Kim, Eileen
  organization: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
– sequence: 4
  givenname: Khaled
  orcidid: 0000-0002-2344-3002
  surname: bin Satter
  fullname: bin Satter, Khaled
  organization: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
– sequence: 5
  givenname: Diane
  surname: Hopkins
  fullname: Hopkins, Diane
  organization: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
– sequence: 6
  givenname: Kathleen
  surname: Waugh
  fullname: Waugh, Kathleen
  organization: Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
– sequence: 7
  givenname: Fran
  surname: Dong
  fullname: Dong, Fran
  organization: Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
– sequence: 8
  givenname: Suna
  orcidid: 0000-0002-6563-8334
  surname: Onengut-Gumuscu
  fullname: Onengut-Gumuscu, Suna
  organization: Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
– sequence: 9
  givenname: Stephen S.
  orcidid: 0000-0003-3872-7793
  surname: Rich
  fullname: Rich, Stephen S.
  organization: Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
– sequence: 10
  givenname: Marian
  orcidid: 0000-0003-3829-9207
  surname: Rewers
  fullname: Rewers, Marian
  organization: Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
– sequence: 11
  givenname: Jin-Xiong
  surname: She
  fullname: She, Jin-Xiong
  email: jshe@mail.mcg.edu
  organization: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35005592$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1r3DAQhk1JadI0_6AUH3vZjUa2bLmHQjH9CCwUSnoWsjS2ZbyWK8kJ---rjTcl6aE9zaCZeV40875OziY7YZK8BbIFAsX1sB2CXILdUkIhPhGg5YvkgjJebSpSkbMn-Xly5f1ACKEMAAr6KjnPGCGMVfQiEbc9ptkcIRmkHU4YjEpHqxafzs7ubcCHpHPovbFTGmwaDjOmkGojGzyWQ-_s0vUxYlrXP-h1Xe9oOsvQ38vDm-RlK0ePV6d4mfz88vm2_rbZff96U3_abRSjVdgw1rCshLIhpISMY6VlBUVbkIwXeSU11wyzUvGSta3kTDeSKqV1rjhXukSWXSY3K1dbOYjZmb10B2GlEQ8P1nVCuvi3EQUwqLI8p5TpKm8ka2SUUDojpGlyyCGyPq6seWn2qBVOwcnxGfR5ZTK96Oyd4CUUBaMR8P4EcPbXgj6IvfEKx1FOaBcvaAGcQc5pEVvfPdX6I_J4odjwYW1QznrvsBXKBBniLaK0GQUQcXSEGMTqCHF0hFgdEYfzv4Yf-f8ZOy0A48XuDDrhlcFJoTYOVYgrNf8G_AZV89AH
CitedBy_id crossref_primary_10_1007_s10528_024_10669_w
crossref_primary_10_1038_s41598_024_65732_8
Cites_doi 10.1007/s001250050514
10.1093/nar/gky1120
10.4049/jimmunol.1601458
10.1016/S0140-6736(18)31320-5
10.1056/NEJM198605223142106
10.1086/519795
10.1210/JC.2015-1388
10.1200/JCO.2018.36.5_suppl.92
10.1038/s42255-020-00287-2
10.1073/pnas.1910856117
10.1172/JCI115950
10.3109/08916930903246464
10.1038/ng.381
10.1358/dnp.2010.23.4.1453629
10.1111/jnc.13881
10.1093/bioinformatics/btq419
10.1007/s12272-013-0161-z
10.1016/j.ekir.2018.07.010
10.1016/j.intimp.2020.106314
10.1038/ng.2653
10.1111/j.1399-5448.2011.00774.x
10.1016/j.amjcard.2010.11.005
10.1186/1476-9255-6-32
10.1001/jama.298.12.1420
10.1016/S0140-6736(12)60110-X
10.1038/nm.3933
10.2307/2529876
10.2337/diabetes.51.1.55
10.1002/art.23591
10.3390/microorganisms8071031
10.1371/journal.pone.0174840
10.1016/S0140-6736(11)61931-4
10.1515/jpem-2015-0340
10.1136/ard.2005.037176
10.1172/JCI24335
10.1101/gr.229102
10.1038/ng.3245
10.1186/s13073-020-00754-1
10.1034/j.1600-0404.2001.104002088.x
10.1056/NEJMoa1902226
10.1186/1742-2094-11-23
10.1001/jama.2014.16425
10.1016/j.cyto.2012.06.018
10.4049/jimmunol.1900961
10.1016/S0140-6736(19)32127-0
10.1038/s41598-017-00513-0
10.1007/s00109-005-0637-5
10.1016/S0952-7915(01)00277-1
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.jtauto.2021.100127
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2589-9090
ExternalDocumentID oai_doaj_org_article_1519344225d94ba5ba649cd300bb4141
PMC8716652
35005592
10_1016_j_jtauto_2021_100127
S2589909021000472
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R21 HD050196
– fundername: NIDDK NIH HHS
  grantid: U01 DK062418
– fundername: NIDDK NIH HHS
  grantid: R01 DK032493
– fundername: NICHD NIH HHS
  grantid: R01 HD037800
– fundername: NICHD NIH HHS
  grantid: R33 HD050196
– fundername: NIDDK NIH HHS
  grantid: F30 DK121461
– fundername: NIDDK NIH HHS
  grantid: P30 DK116073
GroupedDBID 0SF
53G
6I.
AAEDW
AAFTH
AALRI
AAXUO
ACLIJ
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
RPM
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-55b53717b007138e9da916f6038649ad8d5e37c875ffa85dba2ccdd4c88cd7e53
IEDL.DBID DOA
ISSN 2589-9090
IngestDate Wed Aug 27 01:25:59 EDT 2025
Thu Aug 21 18:45:42 EDT 2025
Fri Jul 11 11:04:15 EDT 2025
Mon Jul 21 06:06:12 EDT 2025
Tue Jul 01 03:50:17 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Tue Jul 25 21:00:10 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MCP1
T1D
Fine mapping
CCL2
Autoimmune
DAISY
CCR2
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-55b53717b007138e9da916f6038649ad8d5e37c875ffa85dba2ccdd4c88cd7e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3872-7793
0000-0003-3829-9207
0000-0003-2197-4376
0000-0002-2344-3002
0000-0002-6782-1810
0000-0002-6563-8334
OpenAccessLink https://doaj.org/article/1519344225d94ba5ba649cd300bb4141
PMID 35005592
PQID 2618514826
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1519344225d94ba5ba649cd300bb4141
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8716652
proquest_miscellaneous_2618514826
pubmed_primary_35005592
crossref_citationtrail_10_1016_j_jtauto_2021_100127
crossref_primary_10_1016_j_jtauto_2021_100127
elsevier_sciencedirect_doi_10_1016_j_jtauto_2021_100127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of translational autoimmunity (Online)
PublicationTitleAlternate J Transl Autoimmun
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Livingstone (bib3) 2015; 313
Flores-Toro (bib47) 2020; 117
Vergunst (bib26) 2008; 58
Poma (bib44) 2020; 8
Lonsdale (bib46) 2013; 45
Grieb, Merk, Bernhagen, Bucala (bib15) 2010; 23
Rewers (bib32) 1996; 39
Zhao (bib30) 2019; 203
Gale (bib49) 2018; 3
Dayan, Korah, Tatovic, Bundy, Herold (bib52) 2019; 394
Koch (bib21) 1992; 90
Weisberg (bib38) 2006; 116
Haringman, Smeets, Reinders-Blankert, Tak (bib22) 2006; 65
Solomon, Balasa, Sarvetnick (bib13) 2010; 43
Ismail (bib16) 2016; 29
Li (bib7) 2015; 21
Quinones (bib20) 2005; 83
Pruim (bib37) 2010; 26
Hillary (bib40) 2020; 12
Vergunst (bib50) 2008; 58
Eisenbarth (bib1) 1986; 314
Onengut-Gumuscu (bib6) 2015; 47
Bose, Cho (bib23) 2013; 36
Novakova (bib24) 2017; 141
Cui, Chu, Chen (bib27) 2020; 83
Herold (bib4) 2019; 381
Godessart, Kunkel (bib8) 2001; 13
Draper, Smith (bib34) 1998
Cortes, Brown (bib45) 2011; 13
Gilbert (bib28) 2011; 107
Hagopian (bib43) 2011; 12
Laird, Ware (bib35) 1982; 38
Buniello (bib39) 2019; 47
Linehan (bib48) 2018; 36
Wang (bib29) 2009; 6
Folkersen (bib31) 2020; 2
Waugh (bib17) 2017; 12
Swerdlow (bib42) 2012; 379
Vogel (bib11) 2014; 11
Norris (bib33) 2007; 298
Purcell (bib36) 2007; 81
Bakos (bib10) 2017; 198
Sindern (bib25) 2001; 104
Piemonti (bib19) 2002; 51
Sarwar (bib41) 2012; 379
Purohit (bib14) 2015; 100
Gilbert (bib51) 2011; 107
DiMeglio, Evans-Molina, Oram (bib2) 2018; 391
Kent (bib9) 2002; 12
Barrett (bib5) 2009; 41
Chen (bib12) 2017; 7
Panee (bib18) 2012; 60
Buniello (10.1016/j.jtauto.2021.100127_bib39) 2019; 47
Barrett (10.1016/j.jtauto.2021.100127_bib5) 2009; 41
Wang (10.1016/j.jtauto.2021.100127_bib29) 2009; 6
Hillary (10.1016/j.jtauto.2021.100127_bib40) 2020; 12
Rewers (10.1016/j.jtauto.2021.100127_bib32) 1996; 39
Gilbert (10.1016/j.jtauto.2021.100127_bib51) 2011; 107
Herold (10.1016/j.jtauto.2021.100127_bib4) 2019; 381
Sindern (10.1016/j.jtauto.2021.100127_bib25) 2001; 104
Gale (10.1016/j.jtauto.2021.100127_bib49) 2018; 3
Purcell (10.1016/j.jtauto.2021.100127_bib36) 2007; 81
Panee (10.1016/j.jtauto.2021.100127_bib18) 2012; 60
Draper (10.1016/j.jtauto.2021.100127_bib34) 1998
Waugh (10.1016/j.jtauto.2021.100127_bib17) 2017; 12
Quinones (10.1016/j.jtauto.2021.100127_bib20) 2005; 83
Weisberg (10.1016/j.jtauto.2021.100127_bib38) 2006; 116
Sarwar (10.1016/j.jtauto.2021.100127_bib41) 2012; 379
Linehan (10.1016/j.jtauto.2021.100127_bib48) 2018; 36
Flores-Toro (10.1016/j.jtauto.2021.100127_bib47) 2020; 117
Dayan (10.1016/j.jtauto.2021.100127_bib52) 2019; 394
Chen (10.1016/j.jtauto.2021.100127_bib12) 2017; 7
Cortes (10.1016/j.jtauto.2021.100127_bib45) 2011; 13
Haringman (10.1016/j.jtauto.2021.100127_bib22) 2006; 65
Koch (10.1016/j.jtauto.2021.100127_bib21) 1992; 90
Bakos (10.1016/j.jtauto.2021.100127_bib10) 2017; 198
Vogel (10.1016/j.jtauto.2021.100127_bib11) 2014; 11
Poma (10.1016/j.jtauto.2021.100127_bib44) 2020; 8
Kent (10.1016/j.jtauto.2021.100127_bib9) 2002; 12
Vergunst (10.1016/j.jtauto.2021.100127_bib26) 2008; 58
Laird (10.1016/j.jtauto.2021.100127_bib35) 1982; 38
Godessart (10.1016/j.jtauto.2021.100127_bib8) 2001; 13
Pruim (10.1016/j.jtauto.2021.100127_bib37) 2010; 26
Hagopian (10.1016/j.jtauto.2021.100127_bib43) 2011; 12
Livingstone (10.1016/j.jtauto.2021.100127_bib3) 2015; 313
DiMeglio (10.1016/j.jtauto.2021.100127_bib2) 2018; 391
Li (10.1016/j.jtauto.2021.100127_bib7) 2015; 21
Zhao (10.1016/j.jtauto.2021.100127_bib30) 2019; 203
Grieb (10.1016/j.jtauto.2021.100127_bib15) 2010; 23
Lonsdale (10.1016/j.jtauto.2021.100127_bib46) 2013; 45
Vergunst (10.1016/j.jtauto.2021.100127_bib50) 2008; 58
Norris (10.1016/j.jtauto.2021.100127_bib33) 2007; 298
Swerdlow (10.1016/j.jtauto.2021.100127_bib42) 2012; 379
Bose (10.1016/j.jtauto.2021.100127_bib23) 2013; 36
Folkersen (10.1016/j.jtauto.2021.100127_bib31) 2020; 2
Ismail (10.1016/j.jtauto.2021.100127_bib16) 2016; 29
Eisenbarth (10.1016/j.jtauto.2021.100127_bib1) 1986; 314
Onengut-Gumuscu (10.1016/j.jtauto.2021.100127_bib6) 2015; 47
Piemonti (10.1016/j.jtauto.2021.100127_bib19) 2002; 51
Cui (10.1016/j.jtauto.2021.100127_bib27) 2020; 83
Novakova (10.1016/j.jtauto.2021.100127_bib24) 2017; 141
Purohit (10.1016/j.jtauto.2021.100127_bib14) 2015; 100
Solomon (10.1016/j.jtauto.2021.100127_bib13) 2010; 43
Gilbert (10.1016/j.jtauto.2021.100127_bib28) 2011; 107
References_xml – volume: 314
  start-page: 1360
  year: 1986
  end-page: 1368
  ident: bib1
  article-title: Type I diabetes mellitus. A chronic autoimmune disease
  publication-title: N. Engl. J. Med.
– volume: 83
  start-page: 106314
  year: 2020
  ident: bib27
  article-title: The role of chemokines and chemokine receptors in multiple sclerosis
  publication-title: Int. Immunopharm.
– volume: 12
  start-page: 996
  year: 2002
  end-page: 1006
  ident: bib9
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
– volume: 90
  start-page: 772
  year: 1992
  end-page: 779
  ident: bib21
  article-title: Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis
  publication-title: J. Clin. Invest.
– volume: 116
  start-page: 115
  year: 2006
  end-page: 124
  ident: bib38
  article-title: CCR2 modulates inflammatory and metabolic effects of high-fat feeding
  publication-title: J. Clin. Invest.
– volume: 2
  start-page: 1135
  year: 2020
  end-page: 1148
  ident: bib31
  article-title: Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals
  publication-title: Nat Metab
– volume: 12
  start-page: 60
  year: 2020
  ident: bib40
  article-title: Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults
  publication-title: Genome Med.
– volume: 104
  start-page: 88
  year: 2001
  end-page: 91
  ident: bib25
  article-title: Differential release of β‐chemokines in serum and CSF of patients with relapsing–remitting multiple sclerosis
  publication-title: Acta Neurol. Scand.
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  ident: bib35
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
– volume: 12
  start-page: 733
  year: 2011
  end-page: 743
  ident: bib43
  article-title: The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants
  publication-title: Pediatr. Diabetes
– volume: 198
  start-page: 4659
  year: 2017
  end-page: 4671
  ident: bib10
  article-title: CCR2 regulates the immune response by modulating the interconversion and function of effector and regulatory T cells
  publication-title: J. Immunol.
– volume: 43
  start-page: 156
  year: 2010
  end-page: 163
  ident: bib13
  article-title: CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse
  publication-title: Autoimmunity
– volume: 107
  start-page: 906
  year: 2011
  end-page: 911
  ident: bib28
  article-title: Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region
  publication-title: Am. J. Cardiol.
– volume: 8
  start-page: 1031
  year: 2020
  ident: bib44
  article-title: Immune transcriptome of cells infected with enterovirus strains obtained from cases of type 1 diabetes
  publication-title: Microorganisms
– volume: 12
  year: 2017
  ident: bib17
  article-title: Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: PLoS One
– volume: 36
  year: 2018
  ident: bib48
  article-title: Overall survival in a trial of orally administered CCR2 inhibitor CCX872 in locally advanced/metastatic pancreatic cancer: correlation with blood monocyte counts
  publication-title: J. Clin. Oncol.
– volume: 51
  start-page: 55
  year: 2002
  end-page: 65
  ident: bib19
  article-title: Human pancreatic islets produce and secrete MCP-1/CCL2: relevance in human islet transplantation
  publication-title: Diabetes
– volume: 26
  start-page: 2336
  year: 2010
  end-page: 2337
  ident: bib37
  article-title: LocusZoom: regional visualization of genome-wide association scan results
  publication-title: Bioinformatics
– volume: 394
  start-page: 1286
  year: 2019
  end-page: 1296
  ident: bib52
  article-title: Changing the landscape for type 1 diabetes: the first step to prevention
  publication-title: Lancet
– year: 1998
  ident: bib34
  article-title: Applied Regression Analysis
– volume: 41
  start-page: 703
  year: 2009
  end-page: 707
  ident: bib5
  article-title: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes
  publication-title: Nat. Genet.
– volume: 21
  start-page: 1018
  year: 2015
  end-page: 1027
  ident: bib7
  article-title: Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases
  publication-title: Nat. Med.
– volume: 7
  start-page: 421
  year: 2017
  ident: bib12
  article-title: Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: implication of rheumatoid arthritis therapy
  publication-title: Sci. Rep.
– volume: 13
  year: 2011
  ident: bib45
  article-title: Promise and pitfalls of the Immunochip
  publication-title: Arthritis Res. Ther.
– volume: 107
  start-page: 906
  year: 2011
  end-page: 911
  ident: bib51
  article-title: Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region
  publication-title: Am. J. Cardiol.
– volume: 3
  start-page: 1316
  year: 2018
  end-page: 1327
  ident: bib49
  article-title: Effect of PF-04634817, an oral CCR2/5 chemokine receptor antagonist, on albuminuria in adults with overt diabetic nephropathy
  publication-title: Kidney international reports
– volume: 117
  start-page: 1129
  year: 2020
  end-page: 1138
  ident: bib47
  article-title: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 13
  start-page: 670
  year: 2001
  end-page: 675
  ident: bib8
  article-title: Chemokines in autoimmune disease
  publication-title: Curr. Opin. Immunol.
– volume: 6
  start-page: 32
  year: 2009
  ident: bib29
  article-title: CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis
  publication-title: J. Inflamm.
– volume: 39
  start-page: 807
  year: 1996
  end-page: 812
  ident: bib32
  article-title: Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY)
  publication-title: Diabetologia
– volume: 100
  start-page: E1179
  year: 2015
  end-page: E1187
  ident: bib14
  article-title: Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1β in patients with type 1 diabetes
  publication-title: J. Clin. Endocrinol. Metabol.
– volume: 29
  start-page: 641
  year: 2016
  end-page: 645
  ident: bib16
  article-title: Monocyte chemoattractant protein 1 and macrophage migration inhibitory factor in children with type 1 diabetes
  publication-title: J. Pediatr. Endocrinol. Metab.
– volume: 203
  start-page: 3157
  year: 2019
  end-page: 3165
  ident: bib30
  article-title: CCR2-Mediated uptake of constitutively produced CCL2: a mechanism for regulating chemokine levels in the blood
  publication-title: J. Immunol.
– volume: 60
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib18
  article-title: Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes
  publication-title: Cytokine
– volume: 47
  start-page: D1005
  year: 2019
  end-page: d1012
  ident: bib39
  article-title: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 257
  year: 2010
  ident: bib15
  article-title: Macrophage migration inhibitory factor (MIF): a promising biomarker
  publication-title: Drug News Perspect.
– volume: 83
  start-page: 672
  year: 2005
  end-page: 681
  ident: bib20
  article-title: The complex role of the chemokine receptor CCR2 in collagen-induced arthritis: implications for therapeutic targeting of CCR2 in rheumatoid arthritis
  publication-title: J. Mol. Med. (Berl.)
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  ident: bib36
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am. J. Hum. Genet.
– volume: 298
  start-page: 1420
  year: 2007
  end-page: 1428
  ident: bib33
  article-title: Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes
  publication-title: Jama
– volume: 381
  start-page: 603
  year: 2019
  end-page: 613
  ident: bib4
  article-title: An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes
  publication-title: N. Engl. J. Med.
– volume: 58
  start-page: 1931
  year: 2008
  end-page: 1939
  ident: bib26
  article-title: Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial
  publication-title: Arthritis Rheum.
– volume: 36
  start-page: 1039
  year: 2013
  end-page: 1050
  ident: bib23
  article-title: J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases
  publication-title: Arch Pharm. Res. (Seoul)
– volume: 391
  start-page: 2449
  year: 2018
  end-page: 2462
  ident: bib2
  article-title: Type 1 diabetes
  publication-title: Lancet
– volume: 58
  start-page: 1931
  year: 2008
  end-page: 1939
  ident: bib50
  article-title: Modulation of CCR2 in rheumatoid arthritis: a double‐blind, randomized, placebo‐controlled clinical trial
  publication-title: Arthritis Rheum.: Official Journal of the American College of Rheumatology
– volume: 11
  start-page: 23
  year: 2014
  ident: bib11
  article-title: Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation
  publication-title: J. Neuroinflammation
– volume: 45
  start-page: 580
  year: 2013
  end-page: 585
  ident: bib46
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nat. Genet.
– volume: 379
  start-page: 1214
  year: 2012
  end-page: 1224
  ident: bib42
  article-title: The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis
  publication-title: Lancet
– volume: 65
  start-page: 294
  year: 2006
  end-page: 300
  ident: bib22
  article-title: Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis
  publication-title: Ann. Rheum. Dis.
– volume: 47
  start-page: 381
  year: 2015
  end-page: 386
  ident: bib6
  article-title: Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers
  publication-title: Nat. Genet.
– volume: 141
  start-page: 296
  year: 2017
  end-page: 304
  ident: bib24
  article-title: Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing‐remitting multiple sclerosis
  publication-title: J. Neurochem.
– volume: 379
  start-page: 1205
  year: 2012
  end-page: 1213
  ident: bib41
  article-title: IL6R Genetics Consortium Emerging Risk Factors Collaboration: interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies
  publication-title: Lancet
– volume: 313
  start-page: 37
  year: 2015
  end-page: 44
  ident: bib3
  article-title: Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010
  publication-title: Jama
– volume: 39
  start-page: 807
  year: 1996
  ident: 10.1016/j.jtauto.2021.100127_bib32
  article-title: Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY)
  publication-title: Diabetologia
  doi: 10.1007/s001250050514
– volume: 47
  start-page: D1005
  year: 2019
  ident: 10.1016/j.jtauto.2021.100127_bib39
  article-title: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1120
– volume: 198
  start-page: 4659
  year: 2017
  ident: 10.1016/j.jtauto.2021.100127_bib10
  article-title: CCR2 regulates the immune response by modulating the interconversion and function of effector and regulatory T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601458
– volume: 391
  start-page: 2449
  year: 2018
  ident: 10.1016/j.jtauto.2021.100127_bib2
  article-title: Type 1 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31320-5
– volume: 314
  start-page: 1360
  year: 1986
  ident: 10.1016/j.jtauto.2021.100127_bib1
  article-title: Type I diabetes mellitus. A chronic autoimmune disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM198605223142106
– volume: 81
  start-page: 559
  year: 2007
  ident: 10.1016/j.jtauto.2021.100127_bib36
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– volume: 13
  year: 2011
  ident: 10.1016/j.jtauto.2021.100127_bib45
  article-title: Promise and pitfalls of the Immunochip
  publication-title: Arthritis Res. Ther.
– volume: 100
  start-page: E1179
  year: 2015
  ident: 10.1016/j.jtauto.2021.100127_bib14
  article-title: Large-scale discovery and validation studies demonstrate significant reductions in circulating levels of IL8, IL-1Ra, MCP-1, and MIP-1β in patients with type 1 diabetes
  publication-title: J. Clin. Endocrinol. Metabol.
  doi: 10.1210/JC.2015-1388
– volume: 36
  year: 2018
  ident: 10.1016/j.jtauto.2021.100127_bib48
  article-title: Overall survival in a trial of orally administered CCR2 inhibitor CCX872 in locally advanced/metastatic pancreatic cancer: correlation with blood monocyte counts
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2018.36.5_suppl.92
– volume: 2
  start-page: 1135
  year: 2020
  ident: 10.1016/j.jtauto.2021.100127_bib31
  article-title: Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals
  publication-title: Nat Metab
  doi: 10.1038/s42255-020-00287-2
– year: 1998
  ident: 10.1016/j.jtauto.2021.100127_bib34
– volume: 117
  start-page: 1129
  year: 2020
  ident: 10.1016/j.jtauto.2021.100127_bib47
  article-title: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1910856117
– volume: 90
  start-page: 772
  year: 1992
  ident: 10.1016/j.jtauto.2021.100127_bib21
  article-title: Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115950
– volume: 43
  start-page: 156
  year: 2010
  ident: 10.1016/j.jtauto.2021.100127_bib13
  article-title: CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse
  publication-title: Autoimmunity
  doi: 10.3109/08916930903246464
– volume: 41
  start-page: 703
  year: 2009
  ident: 10.1016/j.jtauto.2021.100127_bib5
  article-title: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes
  publication-title: Nat. Genet.
  doi: 10.1038/ng.381
– volume: 23
  start-page: 257
  year: 2010
  ident: 10.1016/j.jtauto.2021.100127_bib15
  article-title: Macrophage migration inhibitory factor (MIF): a promising biomarker
  publication-title: Drug News Perspect.
  doi: 10.1358/dnp.2010.23.4.1453629
– volume: 141
  start-page: 296
  year: 2017
  ident: 10.1016/j.jtauto.2021.100127_bib24
  article-title: Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing‐remitting multiple sclerosis
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13881
– volume: 26
  start-page: 2336
  year: 2010
  ident: 10.1016/j.jtauto.2021.100127_bib37
  article-title: LocusZoom: regional visualization of genome-wide association scan results
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq419
– volume: 36
  start-page: 1039
  year: 2013
  ident: 10.1016/j.jtauto.2021.100127_bib23
  article-title: J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases
  publication-title: Arch Pharm. Res. (Seoul)
  doi: 10.1007/s12272-013-0161-z
– volume: 3
  start-page: 1316
  year: 2018
  ident: 10.1016/j.jtauto.2021.100127_bib49
  article-title: Effect of PF-04634817, an oral CCR2/5 chemokine receptor antagonist, on albuminuria in adults with overt diabetic nephropathy
  publication-title: Kidney international reports
  doi: 10.1016/j.ekir.2018.07.010
– volume: 83
  start-page: 106314
  year: 2020
  ident: 10.1016/j.jtauto.2021.100127_bib27
  article-title: The role of chemokines and chemokine receptors in multiple sclerosis
  publication-title: Int. Immunopharm.
  doi: 10.1016/j.intimp.2020.106314
– volume: 45
  start-page: 580
  year: 2013
  ident: 10.1016/j.jtauto.2021.100127_bib46
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2653
– volume: 12
  start-page: 733
  year: 2011
  ident: 10.1016/j.jtauto.2021.100127_bib43
  article-title: The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants
  publication-title: Pediatr. Diabetes
  doi: 10.1111/j.1399-5448.2011.00774.x
– volume: 107
  start-page: 906
  year: 2011
  ident: 10.1016/j.jtauto.2021.100127_bib51
  article-title: Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2010.11.005
– volume: 6
  start-page: 32
  year: 2009
  ident: 10.1016/j.jtauto.2021.100127_bib29
  article-title: CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis
  publication-title: J. Inflamm.
  doi: 10.1186/1476-9255-6-32
– volume: 107
  start-page: 906
  year: 2011
  ident: 10.1016/j.jtauto.2021.100127_bib28
  article-title: Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2010.11.005
– volume: 298
  start-page: 1420
  year: 2007
  ident: 10.1016/j.jtauto.2021.100127_bib33
  article-title: Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes
  publication-title: Jama
  doi: 10.1001/jama.298.12.1420
– volume: 379
  start-page: 1214
  year: 2012
  ident: 10.1016/j.jtauto.2021.100127_bib42
  article-title: The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60110-X
– volume: 21
  start-page: 1018
  year: 2015
  ident: 10.1016/j.jtauto.2021.100127_bib7
  article-title: Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases
  publication-title: Nat. Med.
  doi: 10.1038/nm.3933
– volume: 38
  start-page: 963
  year: 1982
  ident: 10.1016/j.jtauto.2021.100127_bib35
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 51
  start-page: 55
  year: 2002
  ident: 10.1016/j.jtauto.2021.100127_bib19
  article-title: Human pancreatic islets produce and secrete MCP-1/CCL2: relevance in human islet transplantation
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.1.55
– volume: 58
  start-page: 1931
  year: 2008
  ident: 10.1016/j.jtauto.2021.100127_bib50
  article-title: Modulation of CCR2 in rheumatoid arthritis: a double‐blind, randomized, placebo‐controlled clinical trial
  publication-title: Arthritis Rheum.: Official Journal of the American College of Rheumatology
  doi: 10.1002/art.23591
– volume: 8
  start-page: 1031
  year: 2020
  ident: 10.1016/j.jtauto.2021.100127_bib44
  article-title: Immune transcriptome of cells infected with enterovirus strains obtained from cases of type 1 diabetes
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8071031
– volume: 12
  year: 2017
  ident: 10.1016/j.jtauto.2021.100127_bib17
  article-title: Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174840
– volume: 379
  start-page: 1205
  year: 2012
  ident: 10.1016/j.jtauto.2021.100127_bib41
  article-title: IL6R Genetics Consortium Emerging Risk Factors Collaboration: interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61931-4
– volume: 29
  start-page: 641
  year: 2016
  ident: 10.1016/j.jtauto.2021.100127_bib16
  article-title: Monocyte chemoattractant protein 1 and macrophage migration inhibitory factor in children with type 1 diabetes
  publication-title: J. Pediatr. Endocrinol. Metab.
  doi: 10.1515/jpem-2015-0340
– volume: 58
  start-page: 1931
  year: 2008
  ident: 10.1016/j.jtauto.2021.100127_bib26
  article-title: Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.23591
– volume: 65
  start-page: 294
  year: 2006
  ident: 10.1016/j.jtauto.2021.100127_bib22
  article-title: Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.2005.037176
– volume: 116
  start-page: 115
  year: 2006
  ident: 10.1016/j.jtauto.2021.100127_bib38
  article-title: CCR2 modulates inflammatory and metabolic effects of high-fat feeding
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI24335
– volume: 12
  start-page: 996
  year: 2002
  ident: 10.1016/j.jtauto.2021.100127_bib9
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
  doi: 10.1101/gr.229102
– volume: 47
  start-page: 381
  year: 2015
  ident: 10.1016/j.jtauto.2021.100127_bib6
  article-title: Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3245
– volume: 12
  start-page: 60
  year: 2020
  ident: 10.1016/j.jtauto.2021.100127_bib40
  article-title: Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults
  publication-title: Genome Med.
  doi: 10.1186/s13073-020-00754-1
– volume: 104
  start-page: 88
  year: 2001
  ident: 10.1016/j.jtauto.2021.100127_bib25
  article-title: Differential release of β‐chemokines in serum and CSF of patients with relapsing–remitting multiple sclerosis
  publication-title: Acta Neurol. Scand.
  doi: 10.1034/j.1600-0404.2001.104002088.x
– volume: 381
  start-page: 603
  year: 2019
  ident: 10.1016/j.jtauto.2021.100127_bib4
  article-title: An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1902226
– volume: 11
  start-page: 23
  year: 2014
  ident: 10.1016/j.jtauto.2021.100127_bib11
  article-title: Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-11-23
– volume: 313
  start-page: 37
  year: 2015
  ident: 10.1016/j.jtauto.2021.100127_bib3
  article-title: Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010
  publication-title: Jama
  doi: 10.1001/jama.2014.16425
– volume: 60
  start-page: 1
  year: 2012
  ident: 10.1016/j.jtauto.2021.100127_bib18
  article-title: Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2012.06.018
– volume: 203
  start-page: 3157
  year: 2019
  ident: 10.1016/j.jtauto.2021.100127_bib30
  article-title: CCR2-Mediated uptake of constitutively produced CCL2: a mechanism for regulating chemokine levels in the blood
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900961
– volume: 394
  start-page: 1286
  year: 2019
  ident: 10.1016/j.jtauto.2021.100127_bib52
  article-title: Changing the landscape for type 1 diabetes: the first step to prevention
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32127-0
– volume: 7
  start-page: 421
  year: 2017
  ident: 10.1016/j.jtauto.2021.100127_bib12
  article-title: Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: implication of rheumatoid arthritis therapy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00513-0
– volume: 83
  start-page: 672
  year: 2005
  ident: 10.1016/j.jtauto.2021.100127_bib20
  article-title: The complex role of the chemokine receptor CCR2 in collagen-induced arthritis: implications for therapeutic targeting of CCR2 in rheumatoid arthritis
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-005-0637-5
– volume: 13
  start-page: 670
  year: 2001
  ident: 10.1016/j.jtauto.2021.100127_bib8
  article-title: Chemokines in autoimmune disease
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(01)00277-1
SSID ssj0002511162
Score 2.1532712
Snippet Multiple cross-sectional and longitudinal studies have shown that serum levels of the chemokine ligand 2 (CCL-2) are associated with type 1 diabetes (T1D),...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100127
SubjectTerms Autoimmune
CCL2
CCR2
DAISY
Fine mapping
MCP1
Research paper
T1D
Title The 3p21.31 genetic locus promotes progression to type 1 diabetes through the CCR2/CCL2 pathway
URI https://dx.doi.org/10.1016/j.jtauto.2021.100127
https://www.ncbi.nlm.nih.gov/pubmed/35005592
https://www.proquest.com/docview/2618514826
https://pubmed.ncbi.nlm.nih.gov/PMC8716652
https://doaj.org/article/1519344225d94ba5ba649cd300bb4141
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNOlrmyao0KuJrYclHVvTEELbQ2kgN6GX24TiXRovJf--M5K97DaHvfS0Zte7Wmk-e74Zj-Yj5L1RDWu1VxVLKGFW81T5VrvKeCnaCDcH4TDf8eVre3ElLq_l9ZbUF9aElfbAZeHOGqQYQgDsohHeSe9aYULkde29aPKWdQY-byuYwnswEucmq4kyqU1lalPP--Zycdft6NYj7v1jTe5ChKIyW34pt-_fcU8P6ee_VZRbbun8GXk68Un6oczjkDxKwxF5XBQm758TCzCgfAXj84YCVnDLIgX_tb6jq1yIl_LBj1INO9BxSTEpSxs6J2XppOQDr4l23Td21nWfGUUl4z_u_gW5Ov_0vbuoJk2FKkhmxkpKLzmEcD6HpzqZ6IAg9m3NNayrizrKxFWAKKbvnZbROxZCjCJoHaJKkr8kB8NySK8JBW6jo2ZJKSBdoVc-KMeZTqpvda3auCB8XlEbpobjqHvxy86VZbe22MGiHWyxw4JUm2-tSsONPed_RGNtzsV22fkNAJGdQGT3gWhB1GxqOzGPwijgp272DP9uRoaFCxOftrghLdd3FkJTYLMCwrcFeVWQsvmTXGLvM8Ng3B0M7cxi95Ph5mdu_o0BbivZm_8x7WPyBKdSMkpvycH4e51OgGON_jRfTqc5-fUXau0giw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+3p21.31+genetic+locus+promotes+progression+to+type+1+diabetes+through+the+CCR2%2FCCL2+pathway&rft.jtitle=Journal+of+translational+autoimmunity+%28Online%29&rft.au=Paul+MH.+Tran&rft.au=Sharad+Purohit&rft.au=Eileen+Kim&rft.au=Khaled+bin+Satter&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=2589-9090&rft.eissn=2589-9090&rft.volume=4&rft.spage=100127&rft_id=info:doi/10.1016%2Fj.jtauto.2021.100127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1519344225d94ba5ba649cd300bb4141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-9090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-9090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-9090&client=summon