Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series
This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing componen...
Saved in:
Published in | Journal of the American Statistical Association Vol. 114; no. 525; pp. 453 - 465 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.01.2019
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood-based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slowly varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. Supplementary materials for this article are available online. |
---|---|
AbstractList | This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slow-varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood-based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slowly varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. Supplementary materials for this article are available online. |
Author | Krafty, Robert T. Li, Zeda |
Author_xml | – sequence: 1 givenname: Zeda surname: Li fullname: Li, Zeda organization: Paul H. Chook Department of Information Systems and Statistics, Baruch College, City University of New York – sequence: 2 givenname: Robert T. orcidid: 0000-0003-1478-6430 surname: Krafty fullname: Krafty, Robert T. email: rkrafty@pitt.edu organization: Department of Biostatistics, University of Pittsburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31156284$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFnwCKxIVLFtuxY-eC2Fb9QCriQJG4WZNkAq4Se7GTovz7Ot1tBT10LiONn3nHM-8ROXDeISFvGV0zqulHykrOhKzWnDK1ZoLJiuoXZMVkoXKuxM8DslqYfIEOyVGMNzSF0voVOSwYkyXXYkXONi1sR3uL2QnMGC247NoOmJ8H_DOha-Zs46Cfo42Z77KvU59YCBZGvOey7xgsxtfkZQd9xDf7fEx-nJ9dn17mV98uvpxurvJG8mrMZaEVSFE2ErUSLZelqrq6Yh0UgmJLgYqqrJAq3pU11G3R1B3HUqeaAl3p4ph82ulup3rAtkE3BujNNtgBwmw8WPP_i7O_zS9_a0op0h1YEviwFwg-7RdHM9jYYN-DQz9Fw3khhFYpEvr-CXrjp5COsVCMJUWpeKLkjmqCjzFg9_gZRs1ilHkwyixGmb1Rqe_dv5s8dj04k4DPO8C6zocB_vrQt2aEufehC-AaGxP87Iw7nRmjyg |
CitedBy_id | crossref_primary_10_1002_sim_10154 crossref_primary_10_1080_01621459_2019_1623043 crossref_primary_10_1080_10618600_2021_2000870 crossref_primary_10_1109_TSP_2020_3014607 crossref_primary_10_1214_23_AOAS1791 crossref_primary_10_2166_nh_2021_007 crossref_primary_10_1111_biom_13763 crossref_primary_10_1002_sim_8884 crossref_primary_10_1007_s00180_021_01141_z crossref_primary_10_1111_jtsa_12534 crossref_primary_10_1080_10618600_2020_1868305 crossref_primary_10_1016_j_csda_2022_107596 crossref_primary_10_1016_j_csda_2018_10_001 crossref_primary_10_1016_j_csda_2020_107019 crossref_primary_10_1016_j_jspi_2021_02_010 crossref_primary_10_1109_TKDE_2021_3128770 crossref_primary_10_1016_j_csda_2022_107477 |
Cites_doi | 10.1007/BF02590998 10.1016/j.csda.2004.12.011 10.1093/biomet/ass088 10.1080/01621459.1998.10473808 10.1038/nclimate1840 10.1002/wcc.33 10.1093/biomet/asm022 10.1029/95GL03602 10.1007/978-1-4419-7865-3 10.1016/j.csda.2016.05.025 10.1198/016214504000000557 10.1214/06-BA117A 10.1111/biom.12719 10.1080/01621459.2017.1281811 10.1007/s11336-013-9354-0 10.1214/08-AOAS185 10.1093/biomet/82.4.711 10.1093/biomet/asv070 10.1080/01621459.1997.10473662 10.1198/016214504000001448 10.1029/2008GL034499 10.1198/016214505000000745 10.1080/01621459.1994.10476785 10.1201/b16018 10.1109/TSP.2014.2343937 10.1214/aos/1015957480 10.1201/b10905-6 10.1029/2006GL027632 10.1080/01621459.2012.716340 10.1080/01621459.2016.1165683 10.1214/07-AOS577 10.1093/biomet/asq007 10.1198/016214501753168244 10.1007/978-1-4684-0377-0 10.1029/2004GL019442 10.1016/j.spl.2017.02.008 |
ContentType | Journal Article |
Copyright | 2018 American Statistical Association 2018 2018 American Statistical Association |
Copyright_xml | – notice: 2018 American Statistical Association 2018 – notice: 2018 American Statistical Association |
DBID | NPM AAYXX CITATION 8BJ FQK JBE K9. 7X8 5PM |
DOI | 10.1080/01621459.2017.1415908 |
DatabaseName | PubMed CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 465 |
ExternalDocumentID | 10_1080_01621459_2017_1415908 31156284 1415908 |
Genre | Theory and Methods Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM104987 – fundername: NIGMS NIH HHS grantid: R01 GM113243 |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVI AAAVZ AABCJ AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABEHJ ABFAN ABFIM ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABTAI ABXUL ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFOLD AFSUE AFVYC AFWLO AFXHP AGDLA AGMYJ AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS EJD E~A E~B F5P FJW FUNRP FVPDL GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO J.P JAS JMS K60 K6~ KYCEM LJTGL M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TEJ TFL TFT TFW TN5 TTHFI U5U UPT UT5 UU3 V1K WH7 WZA XFK YQT YYM ZGOLN ~S~ .-4 .GJ 07G 1OL 2AX 3R3 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAHBH AAIKQ AAKBW ABBHK ABEFU ABJCF ABJNI ABPAQ ABPQH ABRLO ABUWG ABXSQ ABXYU ABYAD ACAGQ ACGEE ACTWD ACUBG ADACV ADBBV ADMHG ADODI ADULT AELPN AEUMN AEUPB AFKRA AGCQS AGLEN AGROQ AHDZW AHMOU AI. ALCKM ALIPV AMATQ AMXXU AQUVI AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DQDLB DSRWC DWIFK DWQXO E.L ECEWR F20 FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HQ6 HVGLF IPSME IVXBP JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPL JSODD JST K9- KQ8 L6V LU7 M0C M0R M0T M1P M2O M2P M7S MVM NHB NPM NUSFT P-O PADUT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SA0 SJN TAQ TBQAZ TDBHL TFMCV TOXWX TUROJ UB9 UKHRP UQL VH1 VOH WHG YXB YYP ZCG ZGI ZUP ZXP AAYXX CITATION 8BJ FQK JBE K9. 7X8 5PM |
ID | FETCH-LOGICAL-c529t-5387a546c5e874d25679fb91fa340ed0a04969e072f6babd3cbf2e6869e7a8983 |
ISSN | 0162-1459 |
IngestDate | Tue Sep 17 21:18:05 EDT 2024 Fri Oct 25 03:39:10 EDT 2024 Thu Oct 10 17:12:46 EDT 2024 Fri Aug 23 02:37:27 EDT 2024 Wed Oct 16 00:46:52 EDT 2024 Tue Jul 04 18:18:47 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 525 |
Keywords | Spectral Analysis Locally Stationary Process Modified Cholesky Decomposition Penalized Splines Reversible Jump Markov Chain Monte Carlo Nonstationary Multivariate Time Series |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c529t-5387a546c5e874d25679fb91fa340ed0a04969e072f6babd3cbf2e6869e7a8983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1478-6430 |
OpenAccessLink | https://europepmc.org/articles/pmc6541451?pdf=render |
PMID | 31156284 |
PQID | 2211654572 |
PQPubID | 41715 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2211654572 crossref_primary_10_1080_01621459_2017_1415908 informaworld_taylorfrancis_310_1080_01621459_2017_1415908 proquest_miscellaneous_2234487777 pubmed_primary_31156284 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6541451 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-02 |
PublicationDateYYYYMMDD | 2019-01-02 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationTitleAlternate | J Am Stat Assoc |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0011 cit0033 cit0012 cit0034 Le Cam L. (cit0019) 1953; 103 cit0010 cit0030 Priestley M. B. (cit0031) 1965 cit0017 cit0039 cit0018 Iber C. (cit0015) 2007 cit0037 cit0016 cit0038 cit0013 cit0035 cit0036 cit0022 cit0044 cit0001 cit0023 cit0020 cit0042 cit0021 cit0043 Guo W. (cit0014) 2006; 16 cit0040 cit0041 Brillinger D. R. (cit0002) 2002 cit0008 cit0009 (cit0032) 1981; 1 cit0006 cit0028 cit0007 cit0029 cit0004 Carter C. K. (cit0005) 1996 cit0026 cit0027 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0043 doi: 10.1007/BF02590998 – ident: cit0026 doi: 10.1016/j.csda.2004.12.011 – ident: cit0017 doi: 10.1093/biomet/ass088 – ident: cit0001 doi: 10.1080/01621459.1998.10473808 – ident: cit0021 doi: 10.1038/nclimate1840 – ident: cit0042 doi: 10.1002/wcc.33 – ident: cit0034 doi: 10.1093/biomet/asm022 – year: 1965 ident: cit0031 publication-title: Journal of the Royal Statistical Society contributor: fullname: Priestley M. B. – ident: cit0041 doi: 10.1029/95GL03602 – ident: cit0038 doi: 10.1007/978-1-4419-7865-3 – ident: cit0044 doi: 10.1016/j.csda.2016.05.025 – ident: cit0007 doi: 10.1198/016214504000000557 – volume-title: The AASM Manual for the Scoring of Sleep and Associated Events year: 2007 ident: cit0015 contributor: fullname: Iber C. – ident: cit0011 doi: 10.1214/06-BA117A – ident: cit0003 doi: 10.1111/biom.12719 – ident: cit0018 doi: 10.1080/01621459.2017.1281811 – ident: cit0023 doi: 10.1007/s11336-013-9354-0 – ident: cit0033 doi: 10.1214/08-AOAS185 – ident: cit0013 doi: 10.1093/biomet/82.4.711 – ident: cit0037 doi: 10.1093/biomet/asv070 – ident: cit0006 doi: 10.1080/01621459.1997.10473662 – ident: cit0028 doi: 10.1198/016214504000001448 – ident: cit0025 doi: 10.1029/2008GL034499 – ident: cit0009 doi: 10.1198/016214505000000745 – ident: cit0030 doi: 10.1080/01621459.1994.10476785 – ident: cit0012 doi: 10.1201/b16018 – ident: cit0029 doi: 10.1109/TSP.2014.2343937 – ident: cit0008 doi: 10.1214/aos/1015957480 – ident: cit0024 doi: 10.1201/b10905-6 – ident: cit0039 doi: 10.1029/2006GL027632 – ident: cit0016 – volume: 103 start-page: 367 year: 1953 ident: cit0019 publication-title: University of California Publications in Statistics contributor: fullname: Le Cam L. – volume-title: Time Series: Data Analysis and Theory year: 2002 ident: cit0002 contributor: fullname: Brillinger D. R. – volume: 16 start-page: 825 year: 2006 ident: cit0014 publication-title: Statistica Sinica contributor: fullname: Guo W. – year: 1996 ident: cit0005 publication-title: Journal of the Royal Statistical Society contributor: fullname: Carter C. K. – volume: 1 volume-title: Spectral Analysis and Time Series year: 1981 ident: cit0032 contributor: fullname: — – ident: cit0035 doi: 10.1080/01621459.2012.716340 – ident: cit0010 doi: 10.1080/01621459.2016.1165683 – ident: cit0022 doi: 10.1214/07-AOS577 – ident: cit0036 doi: 10.1093/biomet/asq007 – ident: cit0027 doi: 10.1198/016214501753168244 – ident: cit0020 doi: 10.1007/978-1-4684-0377-0 – ident: cit0040 doi: 10.1029/2004GL019442 – ident: cit0004 doi: 10.1016/j.spl.2017.02.008 |
SSID | ssj0000788 |
Score | 2.44007 |
Snippet | This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into... |
SourceID | pubmedcentral proquest crossref pubmed informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 453 |
SubjectTerms | Bayesian analysis Computer simulation El Nino Electroencephalography Empirical analysis Locally stationary process Markov analysis Markov chains Matrices Matrix methods Modified Cholesky decomposition Monte Carlo simulation Nonstationary multivariate time series Oscillation Partitions Penalized splines Power Power spectrum analysis Regression analysis Reversible Reversible jump Markov chain Monte Carlo Segments Simulation Sleep Southern Oscillation Spectra Spectral analysis Spectrographic analysis Spectrum analysis Statistical methods Statistics Time series Time-frequency analysis |
Title | Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1415908 https://www.ncbi.nlm.nih.gov/pubmed/31156284 https://www.proquest.com/docview/2211654572 https://search.proquest.com/docview/2234487777 https://pubmed.ncbi.nlm.nih.gov/PMC6541451 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguewF8SawoCBxzSpx_IiPC2q1gqVcWqniYtmJLbi0q24Wafn1jF9pwlZi4RJVjmtH_sbjsT3zDULvaVe3QmNWYFhbYYNCTNE0nSo6ajvLWsI64aKRvyzY-Yp8WtN1ypAdo0t6fdr-OhhX8j-oQhng6qJk_wHZoVEogN-ALzwBYXjeCeOzTl16158P6sb4aEgX0VHMd8E_-mZCOeJDbX_C1hisS1_P6YnkQnjbPB2FnPgkv71ndD4AqPPm8S4B38x-d_95p2xINxBct8eHCy6eqSrKyXkjw0VFIml3Upgh7DNKBsV0pABJoP6NaykJeSBuqeno1wiNu7adgx0HlV25_Ov7dSndxS--yvnq4kIuZ-vlffQAg0ZxqqwuF_sll_sEo8PXplAtR6J-qJOJETKhqD200fjTX3ZkgCwfoYcRmvwsiMFjdM9snqDjAZmrp2iW5CFP8pBP5SFP8pBvbT6WB18vD_LwDK3ms-XH8yKmyShaikVfwJLFFSWspabhpAMblgurRWVVTUrTlQo2gUyYkmPLtNIwObXFhjVQxlUjmvo5OtpsN-Ylyg1VprKlaEqiSFe2gjBD3dWtEVpVWmfoNI2bvAxsKLJKJLNxoKUbaBkHOkNiPLqy98dQNuSMkfVf_nuSoJBx0l1JjB1fFKEcZ-jd8BpUorvnUhuzvXZ1akIczyXP0IuA3PC1jlyKgUmWIT7BdKjg6NanbzY_vnvadejWpbV-dYd-X6Pj_Ww6QUf97tq8AeO112-94P4GoliWgA |
link.rule.ids | 230,315,783,787,888,27936,27937,60214,61003 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cCgXKH1AgLap1Gu2ieNHfATEatvCnkDiZtmxrSKkLIIsEvx6PE6y3UWteiDH2I5ie2Y8M575BuAbs2UtDeEZCWdrMFCoy6rK6swybz2vKbcSs5HPpnxyQX9essulXBgMq0Qb2ndAEVFWI3OjM3oIifse1BQE2MY8k0IEXi-wcPdrWOcIAIZpHPn0jzQWsfYkDslwzJDF86_PrJxPK-ilf9NBn4dSLp1N4y2oh1l1ISnXo3lrRvXjM8DHl037LWz2qmt62NHaNrxyzTvYQG21A3t-DyeHVt-g_EyP9IPD9MwUU0yy8W0XsP2QDhgo6cynMff3PtjqQd2N_VJ01bm7D3AxPjk_nmR9nYasZkS2WZCZQjPKa-YqQW1QooT0RhZelzR3NtfBCuHS5YJ4brQJ1GE8cbwK74SuZFV-hLVm1rhdSB3TrvC5rHKqqc1rSbljeHfopNGFMQmMht1RNx0chyoGlNN-eRQuj-qXJwG5vIeqjX4Q3xUtUeV_xh4MG656zr5ThCBgEWWCJPB10Rx4Ei9adONmc-xTBqtXhCeBnY4-Fn-L6EY86AQJiBXKWXRAvO_Vlubqd8T9jiXbWbH3gil9gTeT87NTdfpj-msfNkKTjP4kcgBr7e3cfQoaVms-RxZ6Ar-VGLs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVAvvB-BAkHimiVx_IiPBboqrxUHKnGz7NhWEVJ21c0ilV_PjJMs3QrEoTnGdhTbM_Y39sw3AK-Er1vtmCwY7q1ooPBQNI23hRfRR9ly6TVFI39eyOMT_uGbmLwJ16NbJdnQcSCKSGs1KffKx8kj7jWiFOLXpjCTSqGqV5S3-zrcQCRQkqjX5eLPYqxS6klqUlCbKYjnX5_Z2Z52yEv_BkEve1Je2Jrmt8FNnRo8Un7MNr2btb8u8T1eqdd34NYIXPPDQdLuwrXQ3YN9wqoD1fN9ODr0dkWrZ_7GngcKzswpwKSYnw3u2uf5xICSL2OeIn9_oqWOYDfVy-mgLqwfwMn86Ovb42LM0lC0gum-wBVTWcFlK0KjuEcIpXR0uoq25mXwpUUbROpQKhalsw5lw0UWZIPvlG10Uz-EvW7ZhceQB2FDFUvdlNxyX7aayyDo5jBoZyvnMphNk2NWAxmHqSaO03F4DA2PGYcnA31xCk2fTkHikLLE1P9pezDNtxn1em0YI7oiLhTL4OW2GDWSrllsF5YbqlOjzavwyeDRIB7bvyVuI4mIIAO1IzjbCsT2vVvSfT9NrN8pYbuonlyhSy_g5pd3c_Pp_eLjU9jHEp0Ok9gB7PVnm_AM4VXvnicF-g1ROBdo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Bayesian+Time-Frequency+Analysis+of+Multivariate+Time+Series&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Li%2C+Zeda&rft.au=Krafty%2C+Robert&rft.date=2019-01-02&rft.issn=0162-1459&rft.volume=114&rft.issue=525&rft.spage=453&rft.epage=465&rft_id=info:doi/10.1080%2F01621459.2017.1415908&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |