Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series

This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing componen...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 114; no. 525; pp. 453 - 465
Main Authors Li, Zeda, Krafty, Robert T.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.01.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood-based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slowly varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. Supplementary materials for this article are available online.
AbstractList This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slow-varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation.
This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood-based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slowly varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. Supplementary materials for this article are available online.
Author Krafty, Robert T.
Li, Zeda
Author_xml – sequence: 1
  givenname: Zeda
  surname: Li
  fullname: Li, Zeda
  organization: Paul H. Chook Department of Information Systems and Statistics, Baruch College, City University of New York
– sequence: 2
  givenname: Robert T.
  orcidid: 0000-0003-1478-6430
  surname: Krafty
  fullname: Krafty, Robert T.
  email: rkrafty@pitt.edu
  organization: Department of Biostatistics, University of Pittsburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31156284$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFnwCKxIVLFtuxY-eC2Fb9QCriQJG4WZNkAq4Se7GTovz7Ot1tBT10LiONn3nHM-8ROXDeISFvGV0zqulHykrOhKzWnDK1ZoLJiuoXZMVkoXKuxM8DslqYfIEOyVGMNzSF0voVOSwYkyXXYkXONi1sR3uL2QnMGC247NoOmJ8H_DOha-Zs46Cfo42Z77KvU59YCBZGvOey7xgsxtfkZQd9xDf7fEx-nJ9dn17mV98uvpxurvJG8mrMZaEVSFE2ErUSLZelqrq6Yh0UgmJLgYqqrJAq3pU11G3R1B3HUqeaAl3p4ph82ulup3rAtkE3BujNNtgBwmw8WPP_i7O_zS9_a0op0h1YEviwFwg-7RdHM9jYYN-DQz9Fw3khhFYpEvr-CXrjp5COsVCMJUWpeKLkjmqCjzFg9_gZRs1ilHkwyixGmb1Rqe_dv5s8dj04k4DPO8C6zocB_vrQt2aEufehC-AaGxP87Iw7nRmjyg
CitedBy_id crossref_primary_10_1002_sim_10154
crossref_primary_10_1080_01621459_2019_1623043
crossref_primary_10_1080_10618600_2021_2000870
crossref_primary_10_1109_TSP_2020_3014607
crossref_primary_10_1214_23_AOAS1791
crossref_primary_10_2166_nh_2021_007
crossref_primary_10_1111_biom_13763
crossref_primary_10_1002_sim_8884
crossref_primary_10_1007_s00180_021_01141_z
crossref_primary_10_1111_jtsa_12534
crossref_primary_10_1080_10618600_2020_1868305
crossref_primary_10_1016_j_csda_2022_107596
crossref_primary_10_1016_j_csda_2018_10_001
crossref_primary_10_1016_j_csda_2020_107019
crossref_primary_10_1016_j_jspi_2021_02_010
crossref_primary_10_1109_TKDE_2021_3128770
crossref_primary_10_1016_j_csda_2022_107477
Cites_doi 10.1007/BF02590998
10.1016/j.csda.2004.12.011
10.1093/biomet/ass088
10.1080/01621459.1998.10473808
10.1038/nclimate1840
10.1002/wcc.33
10.1093/biomet/asm022
10.1029/95GL03602
10.1007/978-1-4419-7865-3
10.1016/j.csda.2016.05.025
10.1198/016214504000000557
10.1214/06-BA117A
10.1111/biom.12719
10.1080/01621459.2017.1281811
10.1007/s11336-013-9354-0
10.1214/08-AOAS185
10.1093/biomet/82.4.711
10.1093/biomet/asv070
10.1080/01621459.1997.10473662
10.1198/016214504000001448
10.1029/2008GL034499
10.1198/016214505000000745
10.1080/01621459.1994.10476785
10.1201/b16018
10.1109/TSP.2014.2343937
10.1214/aos/1015957480
10.1201/b10905-6
10.1029/2006GL027632
10.1080/01621459.2012.716340
10.1080/01621459.2016.1165683
10.1214/07-AOS577
10.1093/biomet/asq007
10.1198/016214501753168244
10.1007/978-1-4684-0377-0
10.1029/2004GL019442
10.1016/j.spl.2017.02.008
ContentType Journal Article
Copyright 2018 American Statistical Association 2018
2018 American Statistical Association
Copyright_xml – notice: 2018 American Statistical Association 2018
– notice: 2018 American Statistical Association
DBID NPM
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7X8
5PM
DOI 10.1080/01621459.2017.1415908
DatabaseName PubMed
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 465
ExternalDocumentID 10_1080_01621459_2017_1415908
31156284
1415908
Genre Theory and Methods
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM104987
– fundername: NIGMS NIH HHS
  grantid: R01 GM113243
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVI
AAAVZ
AABCJ
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABEHJ
ABFAN
ABFIM
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABTAI
ABXUL
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
FJW
FUNRP
FVPDL
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
JMS
K60
K6~
KYCEM
LJTGL
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TEJ
TFL
TFT
TFW
TN5
TTHFI
U5U
UPT
UT5
UU3
V1K
WH7
WZA
XFK
YQT
YYM
ZGOLN
~S~
.-4
.GJ
07G
1OL
2AX
3R3
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAHBH
AAIKQ
AAKBW
ABBHK
ABEFU
ABJCF
ABJNI
ABPAQ
ABPQH
ABRLO
ABUWG
ABXSQ
ABXYU
ABYAD
ACAGQ
ACGEE
ACTWD
ACUBG
ADACV
ADBBV
ADMHG
ADODI
ADULT
AELPN
AEUMN
AEUPB
AFKRA
AGCQS
AGLEN
AGROQ
AHDZW
AHMOU
AI.
ALCKM
ALIPV
AMATQ
AMXXU
AQUVI
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
F20
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
K9-
KQ8
L6V
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TBQAZ
TDBHL
TFMCV
TOXWX
TUROJ
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c529t-5387a546c5e874d25679fb91fa340ed0a04969e072f6babd3cbf2e6869e7a8983
ISSN 0162-1459
IngestDate Tue Sep 17 21:18:05 EDT 2024
Fri Oct 25 03:39:10 EDT 2024
Thu Oct 10 17:12:46 EDT 2024
Fri Aug 23 02:37:27 EDT 2024
Wed Oct 16 00:46:52 EDT 2024
Tue Jul 04 18:18:47 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 525
Keywords Spectral Analysis
Locally Stationary Process
Modified Cholesky Decomposition
Penalized Splines
Reversible Jump Markov Chain Monte Carlo
Nonstationary Multivariate Time Series
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-5387a546c5e874d25679fb91fa340ed0a04969e072f6babd3cbf2e6869e7a8983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1478-6430
OpenAccessLink https://europepmc.org/articles/pmc6541451?pdf=render
PMID 31156284
PQID 2211654572
PQPubID 41715
PageCount 13
ParticipantIDs proquest_journals_2211654572
crossref_primary_10_1080_01621459_2017_1415908
informaworld_taylorfrancis_310_1080_01621459_2017_1415908
proquest_miscellaneous_2234487777
pubmed_primary_31156284
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6541451
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
Le Cam L. (cit0019) 1953; 103
cit0010
cit0030
Priestley M. B. (cit0031) 1965
cit0017
cit0039
cit0018
Iber C. (cit0015) 2007
cit0037
cit0016
cit0038
cit0013
cit0035
cit0036
cit0022
cit0044
cit0001
cit0023
cit0020
cit0042
cit0021
cit0043
Guo W. (cit0014) 2006; 16
cit0040
cit0041
Brillinger D. R. (cit0002) 2002
cit0008
cit0009
(cit0032) 1981; 1
cit0006
cit0028
cit0007
cit0029
cit0004
Carter C. K. (cit0005) 1996
cit0026
cit0027
cit0024
cit0003
cit0025
References_xml – ident: cit0043
  doi: 10.1007/BF02590998
– ident: cit0026
  doi: 10.1016/j.csda.2004.12.011
– ident: cit0017
  doi: 10.1093/biomet/ass088
– ident: cit0001
  doi: 10.1080/01621459.1998.10473808
– ident: cit0021
  doi: 10.1038/nclimate1840
– ident: cit0042
  doi: 10.1002/wcc.33
– ident: cit0034
  doi: 10.1093/biomet/asm022
– year: 1965
  ident: cit0031
  publication-title: Journal of the Royal Statistical Society
  contributor:
    fullname: Priestley M. B.
– ident: cit0041
  doi: 10.1029/95GL03602
– ident: cit0038
  doi: 10.1007/978-1-4419-7865-3
– ident: cit0044
  doi: 10.1016/j.csda.2016.05.025
– ident: cit0007
  doi: 10.1198/016214504000000557
– volume-title: The AASM Manual for the Scoring of Sleep and Associated Events
  year: 2007
  ident: cit0015
  contributor:
    fullname: Iber C.
– ident: cit0011
  doi: 10.1214/06-BA117A
– ident: cit0003
  doi: 10.1111/biom.12719
– ident: cit0018
  doi: 10.1080/01621459.2017.1281811
– ident: cit0023
  doi: 10.1007/s11336-013-9354-0
– ident: cit0033
  doi: 10.1214/08-AOAS185
– ident: cit0013
  doi: 10.1093/biomet/82.4.711
– ident: cit0037
  doi: 10.1093/biomet/asv070
– ident: cit0006
  doi: 10.1080/01621459.1997.10473662
– ident: cit0028
  doi: 10.1198/016214504000001448
– ident: cit0025
  doi: 10.1029/2008GL034499
– ident: cit0009
  doi: 10.1198/016214505000000745
– ident: cit0030
  doi: 10.1080/01621459.1994.10476785
– ident: cit0012
  doi: 10.1201/b16018
– ident: cit0029
  doi: 10.1109/TSP.2014.2343937
– ident: cit0008
  doi: 10.1214/aos/1015957480
– ident: cit0024
  doi: 10.1201/b10905-6
– ident: cit0039
  doi: 10.1029/2006GL027632
– ident: cit0016
– volume: 103
  start-page: 367
  year: 1953
  ident: cit0019
  publication-title: University of California Publications in Statistics
  contributor:
    fullname: Le Cam L.
– volume-title: Time Series: Data Analysis and Theory
  year: 2002
  ident: cit0002
  contributor:
    fullname: Brillinger D. R.
– volume: 16
  start-page: 825
  year: 2006
  ident: cit0014
  publication-title: Statistica Sinica
  contributor:
    fullname: Guo W.
– year: 1996
  ident: cit0005
  publication-title: Journal of the Royal Statistical Society
  contributor:
    fullname: Carter C. K.
– volume: 1
  volume-title: Spectral Analysis and Time Series
  year: 1981
  ident: cit0032
  contributor:
    fullname:
– ident: cit0035
  doi: 10.1080/01621459.2012.716340
– ident: cit0010
  doi: 10.1080/01621459.2016.1165683
– ident: cit0022
  doi: 10.1214/07-AOS577
– ident: cit0036
  doi: 10.1093/biomet/asq007
– ident: cit0027
  doi: 10.1198/016214501753168244
– ident: cit0020
  doi: 10.1007/978-1-4684-0377-0
– ident: cit0040
  doi: 10.1029/2004GL019442
– ident: cit0004
  doi: 10.1016/j.spl.2017.02.008
SSID ssj0000788
Score 2.44007
Snippet This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into...
SourceID pubmedcentral
proquest
crossref
pubmed
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 453
SubjectTerms Bayesian analysis
Computer simulation
El Nino
Electroencephalography
Empirical analysis
Locally stationary process
Markov analysis
Markov chains
Matrices
Matrix methods
Modified Cholesky decomposition
Monte Carlo simulation
Nonstationary multivariate time series
Oscillation
Partitions
Penalized splines
Power
Power spectrum analysis
Regression analysis
Reversible
Reversible jump Markov chain Monte Carlo
Segments
Simulation
Sleep
Southern Oscillation
Spectra
Spectral analysis
Spectrographic analysis
Spectrum analysis
Statistical methods
Statistics
Time series
Time-frequency analysis
Title Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1415908
https://www.ncbi.nlm.nih.gov/pubmed/31156284
https://www.proquest.com/docview/2211654572
https://search.proquest.com/docview/2234487777
https://pubmed.ncbi.nlm.nih.gov/PMC6541451
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguewF8SawoCBxzSpx_IiPC2q1gqVcWqniYtmJLbi0q24Wafn1jF9pwlZi4RJVjmtH_sbjsT3zDULvaVe3QmNWYFhbYYNCTNE0nSo6ajvLWsI64aKRvyzY-Yp8WtN1ypAdo0t6fdr-OhhX8j-oQhng6qJk_wHZoVEogN-ALzwBYXjeCeOzTl16158P6sb4aEgX0VHMd8E_-mZCOeJDbX_C1hisS1_P6YnkQnjbPB2FnPgkv71ndD4AqPPm8S4B38x-d_95p2xINxBct8eHCy6eqSrKyXkjw0VFIml3Upgh7DNKBsV0pABJoP6NaykJeSBuqeno1wiNu7adgx0HlV25_Ov7dSndxS--yvnq4kIuZ-vlffQAg0ZxqqwuF_sll_sEo8PXplAtR6J-qJOJETKhqD200fjTX3ZkgCwfoYcRmvwsiMFjdM9snqDjAZmrp2iW5CFP8pBP5SFP8pBvbT6WB18vD_LwDK3ms-XH8yKmyShaikVfwJLFFSWspabhpAMblgurRWVVTUrTlQo2gUyYkmPLtNIwObXFhjVQxlUjmvo5OtpsN-Ylyg1VprKlaEqiSFe2gjBD3dWtEVpVWmfoNI2bvAxsKLJKJLNxoKUbaBkHOkNiPLqy98dQNuSMkfVf_nuSoJBx0l1JjB1fFKEcZ-jd8BpUorvnUhuzvXZ1akIczyXP0IuA3PC1jlyKgUmWIT7BdKjg6NanbzY_vnvadejWpbV-dYd-X6Pj_Ww6QUf97tq8AeO112-94P4GoliWgA
link.rule.ids 230,315,783,787,888,27936,27937,60214,61003
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cCgXKH1AgLap1Gu2ieNHfATEatvCnkDiZtmxrSKkLIIsEvx6PE6y3UWteiDH2I5ie2Y8M575BuAbs2UtDeEZCWdrMFCoy6rK6swybz2vKbcSs5HPpnxyQX9essulXBgMq0Qb2ndAEVFWI3OjM3oIifse1BQE2MY8k0IEXi-wcPdrWOcIAIZpHPn0jzQWsfYkDslwzJDF86_PrJxPK-ilf9NBn4dSLp1N4y2oh1l1ISnXo3lrRvXjM8DHl037LWz2qmt62NHaNrxyzTvYQG21A3t-DyeHVt-g_EyP9IPD9MwUU0yy8W0XsP2QDhgo6cynMff3PtjqQd2N_VJ01bm7D3AxPjk_nmR9nYasZkS2WZCZQjPKa-YqQW1QooT0RhZelzR3NtfBCuHS5YJ4brQJ1GE8cbwK74SuZFV-hLVm1rhdSB3TrvC5rHKqqc1rSbljeHfopNGFMQmMht1RNx0chyoGlNN-eRQuj-qXJwG5vIeqjX4Q3xUtUeV_xh4MG656zr5ThCBgEWWCJPB10Rx4Ei9adONmc-xTBqtXhCeBnY4-Fn-L6EY86AQJiBXKWXRAvO_Vlubqd8T9jiXbWbH3gil9gTeT87NTdfpj-msfNkKTjP4kcgBr7e3cfQoaVms-RxZ6Ar-VGLs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVAvvB-BAkHimiVx_IiPBboqrxUHKnGz7NhWEVJ21c0ilV_PjJMs3QrEoTnGdhTbM_Y39sw3AK-Er1vtmCwY7q1ooPBQNI23hRfRR9ly6TVFI39eyOMT_uGbmLwJ16NbJdnQcSCKSGs1KffKx8kj7jWiFOLXpjCTSqGqV5S3-zrcQCRQkqjX5eLPYqxS6klqUlCbKYjnX5_Z2Z52yEv_BkEve1Je2Jrmt8FNnRo8Un7MNr2btb8u8T1eqdd34NYIXPPDQdLuwrXQ3YN9wqoD1fN9ODr0dkWrZ_7GngcKzswpwKSYnw3u2uf5xICSL2OeIn9_oqWOYDfVy-mgLqwfwMn86Ovb42LM0lC0gum-wBVTWcFlK0KjuEcIpXR0uoq25mXwpUUbROpQKhalsw5lw0UWZIPvlG10Uz-EvW7ZhceQB2FDFUvdlNxyX7aayyDo5jBoZyvnMphNk2NWAxmHqSaO03F4DA2PGYcnA31xCk2fTkHikLLE1P9pezDNtxn1em0YI7oiLhTL4OW2GDWSrllsF5YbqlOjzavwyeDRIB7bvyVuI4mIIAO1IzjbCsT2vVvSfT9NrN8pYbuonlyhSy_g5pd3c_Pp_eLjU9jHEp0Ok9gB7PVnm_AM4VXvnicF-g1ROBdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Bayesian+Time-Frequency+Analysis+of+Multivariate+Time+Series&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Li%2C+Zeda&rft.au=Krafty%2C+Robert&rft.date=2019-01-02&rft.issn=0162-1459&rft.volume=114&rft.issue=525&rft.spage=453&rft.epage=465&rft_id=info:doi/10.1080%2F01621459.2017.1415908&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon