Classification of Single Particles from Human Cell Extract Reveals Distinct Structures

Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their relia...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 24; no. 1; pp. 259 - 268.e3
Main Authors Verbeke, Eric J., Mallam, Anna L., Drew, Kevin, Marcotte, Edward M., Taylor, David W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.07.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2018.06.022

Cover

Loading…
Abstract Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines. [Display omitted] •Whole-cell extract can be fractionated and visualized using electron microscopy•Multiple 3D structures can be recovered from fractionated cell extract•Mass spectrometry data can inform on the identity of the resulting 3D structures•Using this method, proteasomes in two different biological states are observed Verbeke et al. demonstrate a shotgun approach to macromolecular structure determination by combining single-particle electron microscopy with mass spectrometry to reconstruct multiple three-dimensional models in a single experiment. This approach provides a method for investigating the structure and function of cellular machinery in parallel.
AbstractList Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines.Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines.
Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines. [Display omitted] •Whole-cell extract can be fractionated and visualized using electron microscopy•Multiple 3D structures can be recovered from fractionated cell extract•Mass spectrometry data can inform on the identity of the resulting 3D structures•Using this method, proteasomes in two different biological states are observed Verbeke et al. demonstrate a shotgun approach to macromolecular structure determination by combining single-particle electron microscopy with mass spectrometry to reconstruct multiple three-dimensional models in a single experiment. This approach provides a method for investigating the structure and function of cellular machinery in parallel.
Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines.
Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines. : Verbeke et al. demonstrate a shotgun approach to macromolecular structure determination by combining single-particle electron microscopy with mass spectrometry to reconstruct multiple three-dimensional models in a single experiment. This approach provides a method for investigating the structure and function of cellular machinery in parallel. Keywords: electron microscopy, structural biology, cellular fractionation, mass spectrometry, deep classification, heterogeneity analysis, protein complexes
Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ~1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines. Verbeke et al. demonstrate a shotgun approach to macromolecular structure determination by combining single-particle electron microscopy with mass spectrometry to reconstruct multiple three-dimensional models in a single experiment. This approach provides a method for investigating the structure and function of cellular machinery in parallel.
Author Drew, Kevin
Marcotte, Edward M.
Verbeke, Eric J.
Mallam, Anna L.
Taylor, David W.
AuthorAffiliation 5 Lead Contact
2 Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
1 Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
3 Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
4 LIVESTRONG Cancer Institute, Dell Medical School, Austin, TX 78712, USA
AuthorAffiliation_xml – name: 3 Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
– name: 1 Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
– name: 2 Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
– name: 4 LIVESTRONG Cancer Institute, Dell Medical School, Austin, TX 78712, USA
– name: 5 Lead Contact
Author_xml – sequence: 1
  givenname: Eric J.
  surname: Verbeke
  fullname: Verbeke, Eric J.
  organization: Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
– sequence: 2
  givenname: Anna L.
  surname: Mallam
  fullname: Mallam, Anna L.
  organization: Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
– sequence: 3
  givenname: Kevin
  surname: Drew
  fullname: Drew, Kevin
  organization: Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
– sequence: 4
  givenname: Edward M.
  surname: Marcotte
  fullname: Marcotte, Edward M.
  email: marcotte@icmb.utexas.edu
  organization: Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
– sequence: 5
  givenname: David W.
  surname: Taylor
  fullname: Taylor, David W.
  email: dtaylor@utexas.edu
  organization: Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29972786$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQXaEi-kH_AUJ75JJge23vmgMSCi2tVAlEgavlHY-Do8062N4I_j1OE6qWA_hia-bNG8-8d1odjWHEqnpByZwSKl-v5oBDxM2cEdrNiZwTxp5UJ4xROqOMt0cP3sfVeUorUo4klCr-rDpmSrWs7eRJ9W0xmJS882CyD2MdXH3rx-WA9ScTs4cBU-1iWNdX09qM9QKHob74maOBXH_GLZoh1e99yn4sgdscJ8hTxPS8eupKCs8P91n19fLiy-JqdvPxw_Xi3c0MBFN5JghVnbO2tayTyFsiSIN921kJigmLKHrXOt4AJ8xZxRUD0SMVTghg2NvmrLre89pgVnoT_drEXzoYr-8CIS71YQxteGNQiYZbAxws70F20NkOXKv6Xuy43u65NlO_Rgs4ljGHR6SPM6P_rpdhqyUlijW0ELw6EMTwY8KU9dqnotNgRgxT0oxI3nacU1mgLx_2um_yR5gC4HsAxJBSRHcPoUTvLKBXem8BvbOAJlIXC5SyN3-Vgc93ypYf--F_xYcFYFFs6zHqBB5HQOsjQi4r9f8m-A3l1dDs
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112622
crossref_primary_10_1038_s41592_018_0132_x
crossref_primary_10_1039_D1NR00388G
crossref_primary_10_1016_j_molcel_2021_08_010
crossref_primary_10_1016_j_celrep_2021_108727
crossref_primary_10_1002_pmic_202200096
crossref_primary_10_1074_jbc_RA118_006686
crossref_primary_10_1071_MA19009
crossref_primary_10_1021_acs_chemrev_1c00356
crossref_primary_10_1016_j_coviro_2023_101327
crossref_primary_10_1021_acs_chemrev_1c00217
crossref_primary_10_1515_hsz_2018_0445
crossref_primary_10_1017_S2633903X24000023
crossref_primary_10_1134_S1063774521050187
crossref_primary_10_1038_s41586_024_07198_2
crossref_primary_10_1016_j_molcel_2021_12_027
crossref_primary_10_1016_j_crstbi_2020_09_002
crossref_primary_10_1111_jnc_15245
crossref_primary_10_1074_jbc_REV118_005602
crossref_primary_10_3389_fmolb_2021_660542
crossref_primary_10_7554_eLife_105335
crossref_primary_10_1021_acs_jcim_9b01164
crossref_primary_10_1016_j_jsb_2019_107416
crossref_primary_10_1016_j_celrep_2022_111103
crossref_primary_10_1016_j_str_2022_01_001
Cites_doi 10.7554/eLife.13046
10.1016/j.jsb.2003.11.007
10.1016/j.jsb.2009.01.004
10.1016/j.sbi.2015.10.006
10.1038/nature04670
10.7554/eLife.25648
10.1016/j.tibs.2015.10.008
10.1016/j.jsb.2005.07.007
10.1101/gr.1239303
10.1126/science.aak9654
10.1073/pnas.2333925100
10.1016/j.jsb.2015.08.008
10.1073/pnas.1411718112
10.1021/ac991081o
10.1126/science.1261197
10.3410/B4-7
10.1016/j.jsb.2009.01.002
10.1016/j.cell.2012.08.011
10.1016/j.cell.2015.09.053
10.1073/pnas.1608050113
10.1016/j.jsb.2005.03.010
10.1038/nature14877
10.1002/jcc.20084
10.1038/nmeth.4169
10.1038/nsmb.1811
10.1002/pmic.201000595
10.1038/415141a
10.1016/j.jsb.2016.07.006
10.1074/mcp.M500230-MCP200
10.1093/nar/gkp914
10.1038/nature22366
10.15252/msb.20167490
10.1038/nature10774
10.1038/nbt.3109
10.1371/journal.pcbi.1005625
10.1146/annurev.biochem.78.081507.101607
10.1074/mcp.O115.055467
10.1126/science.1121018
10.1016/j.str.2014.11.017
10.15252/msb.20167412
10.1038/nmeth.2131
10.1016/j.jsb.2012.09.006
10.1038/415180a
10.1038/ncomms8573
10.1016/j.cell.2015.06.043
10.1126/science.1251652
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2018.06.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 268.e3
ExternalDocumentID oai_doaj_org_article_a43ae9534dac4cd4bc68c8d8cf79bb5d
PMC6109231
29972786
10_1016_j_celrep_2018_06_022
S2211124718309173
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD085901
– fundername: NIDDK NIH HHS
  grantid: R01 DK110520
– fundername: NICHD NIH HHS
  grantid: K99 HD092613
– fundername: NIGMS NIH HHS
  grantid: F32 GM112495
– fundername: NIGMS NIH HHS
  grantid: R21 GM119021
– fundername: NIGMS NIH HHS
  grantid: DP1 GM106408
– fundername: NIGMS NIH HHS
  grantid: R35 GM122480
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-50198fdd7d286e470503eb78d6c925dee5bf7f43c402fd9492c5be15f55c2ebd3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:31:46 EDT 2025
Thu Aug 21 18:15:54 EDT 2025
Fri Sep 05 11:18:43 EDT 2025
Thu Apr 03 07:07:17 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Tue Jul 01 02:58:56 EDT 2025
Wed May 17 01:19:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep classification
heterogeneity analysis
electron microscopy
mass spectrometry
structural biology
protein complexes
cellular fractionation
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-50198fdd7d286e470503eb78d6c925dee5bf7f43c402fd9492c5be15f55c2ebd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2018.06.022
PMID 29972786
PQID 2064784416
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a43ae9534dac4cd4bc68c8d8cf79bb5d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6109231
proquest_miscellaneous_2064784416
pubmed_primary_29972786
crossref_primary_10_1016_j_celrep_2018_06_022
crossref_citationtrail_10_1016_j_celrep_2018_06_022
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_06_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-03
PublicationDateYYYYMMDD 2018-07-03
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lander, Estrin, Matyskiela, Bashore, Nogales, Martin (bib22) 2012; 482
Asano, Fukuda, Beck, Aufderheide, Förster, Danev, Baumeister (bib1) 2015; 347
Gavin, Bösche, Krause, Grandi, Marzioch, Bauer, Schultz, Rick, Michon, Cruciat (bib10) 2002; 415
da Fonseca, Morris (bib3) 2015; 6
Mirande (bib27) 2017
Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib42) 2005; 151
Larance, Kirkwood, Tinti, Brenes Murillo, Ferguson, Lamond (bib23) 2016; 15
Liu, Heck (bib25) 2015; 35
Huttlin, Bruckner, Paulo, Cannon, Ting, Baltier, Colby, Gebreab, Gygi, Parzen (bib16) 2017; 545
Chandonia, Brenner (bib2) 2006; 311
Schweitzer, Aufderheide, Rudack, Beck, Pfeifer, Plitzko, Sakata, Schulten, Förster, Baumeister (bib38) 2016; 113
Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (bib39) 2003; 13
Montelione (bib28) 2012; 4
Havugimana, Hart, Nepusz, Yang, Turinsky, Li, Wang, Boutz, Fong, Phanse (bib12) 2012; 150
Drew, Lee, Huizar, Tu, Borgeson, McWhite, Ma, Wallingford, Marcotte (bib6) 2017; 13
Rohou, Grigorieff (bib34) 2015; 192
Silva, Gorenstein, Li, Vissers, Geromanos (bib41) 2006; 5
Flemming, Thierbach, Stelter, Böttcher, Hurt (bib9) 2010; 17
Nisemblat, Yaniv, Parnas, Frolow, Azem (bib29) 2015; 112
Finley (bib8) 2009; 78
Kastritis, O’Reilly, Bock, Li, Rogon, Buczak, Romanov, Betts, Bui, Hagen (bib17) 2017; 13
Lander, Stagg, Voss, Cheng, Fellmann, Pulokas, Yoshioka, Irving, Mulder, Lau (bib21) 2009; 166
Scheres (bib37) 2012; 180
Ho, Gruhler, Heilbut, Bader, Moore, Adams, Millar, Taylor, Bennett, Boutilier (bib14) 2002; 415
Kristensen, Gsponer, Foster (bib18) 2012; 9
Voss, Yoshioka, Radermacher, Potter, Carragher (bib45) 2009; 166
Danziger, Rivenzon-Segal, Wolf, Horovitz (bib5) 2003; 100
Hein, Hubner, Poser, Cox, Nagaraj, Toyoda, Gak, Weisswange, Mansfeld, Buchholz (bib13) 2015; 163
Huttlin, Ting, Bruckner, Gebreab, Gygi, Szpyt, Tam, Zarraga, Colby, Baltier (bib15) 2015; 162
Leitner, Faini, Stengel, Aebersold (bib24) 2016; 41
Ruepp, Waegele, Lechner, Brauner, Dunger-Kaltenbach, Fobo, Frishman, Montrone, Mewes (bib36) 2010; 38
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib30) 2004; 25
Rappsilber, Siniossoglou, Hurt, Mann (bib32) 2000; 72
Roseman (bib35) 2004; 145
Danev, Baumeister (bib4) 2016; 5
Rickgauer, Grigorieff, Denk (bib33) 2017; 6
Drew, Müller, Bonneau, Marcotte (bib7) 2017; 13
Harshbarger, Miller, Diedrich, Sacchettini (bib11) 2015; 23
Kühlbrandt (bib20) 2014; 343
Wan, Borgeson, Phanse, Tu, Drew, Clark, Xiong, Kagan, Kwan, Bezginov (bib46) 2015; 525
Wang, Gong, Liu, Li, Yan, Xia, Li, Zeng (bib47) 2016; 195
Sibanda, Chirgadze, Ascher, Blundell (bib40) 2017; 355
Punjani, Rubinstein, Fleet, Brubaker (bib31) 2017; 14
Vaudel, Burkhart, Zahedi, Oveland, Berven, Sickmann, Martens, Barsnes (bib44) 2015; 33
Mastronarde (bib26) 2005; 152
Vaudel, Barsnes, Berven, Sickmann, Martens (bib43) 2011; 11
Krogan, Cagney, Yu, Zhong, Guo, Ignatchenko, Li, Pu, Datta, Tikuisis (bib19) 2006; 440
Rohou (10.1016/j.celrep.2018.06.022_bib34) 2015; 192
Kastritis (10.1016/j.celrep.2018.06.022_bib17) 2017; 13
Hein (10.1016/j.celrep.2018.06.022_bib13) 2015; 163
Drew (10.1016/j.celrep.2018.06.022_bib7) 2017; 13
Wang (10.1016/j.celrep.2018.06.022_bib47) 2016; 195
Krogan (10.1016/j.celrep.2018.06.022_bib19) 2006; 440
Vaudel (10.1016/j.celrep.2018.06.022_bib43) 2011; 11
Rickgauer (10.1016/j.celrep.2018.06.022_bib33) 2017; 6
Chandonia (10.1016/j.celrep.2018.06.022_bib2) 2006; 311
Leitner (10.1016/j.celrep.2018.06.022_bib24) 2016; 41
Asano (10.1016/j.celrep.2018.06.022_bib1) 2015; 347
Punjani (10.1016/j.celrep.2018.06.022_bib31) 2017; 14
Kristensen (10.1016/j.celrep.2018.06.022_bib18) 2012; 9
Danev (10.1016/j.celrep.2018.06.022_bib4) 2016; 5
Suloway (10.1016/j.celrep.2018.06.022_bib42) 2005; 151
Mirande (10.1016/j.celrep.2018.06.022_bib27) 2017
Liu (10.1016/j.celrep.2018.06.022_bib25) 2015; 35
Rappsilber (10.1016/j.celrep.2018.06.022_bib32) 2000; 72
Gavin (10.1016/j.celrep.2018.06.022_bib10) 2002; 415
Havugimana (10.1016/j.celrep.2018.06.022_bib12) 2012; 150
Lander (10.1016/j.celrep.2018.06.022_bib22) 2012; 482
Nisemblat (10.1016/j.celrep.2018.06.022_bib29) 2015; 112
Huttlin (10.1016/j.celrep.2018.06.022_bib16) 2017; 545
Danziger (10.1016/j.celrep.2018.06.022_bib5) 2003; 100
Montelione (10.1016/j.celrep.2018.06.022_bib28) 2012; 4
Ruepp (10.1016/j.celrep.2018.06.022_bib36) 2010; 38
Scheres (10.1016/j.celrep.2018.06.022_bib37) 2012; 180
Finley (10.1016/j.celrep.2018.06.022_bib8) 2009; 78
Pettersen (10.1016/j.celrep.2018.06.022_bib30) 2004; 25
Silva (10.1016/j.celrep.2018.06.022_bib41) 2006; 5
Huttlin (10.1016/j.celrep.2018.06.022_bib15) 2015; 162
Drew (10.1016/j.celrep.2018.06.022_bib6) 2017; 13
Schweitzer (10.1016/j.celrep.2018.06.022_bib38) 2016; 113
da Fonseca (10.1016/j.celrep.2018.06.022_bib3) 2015; 6
Harshbarger (10.1016/j.celrep.2018.06.022_bib11) 2015; 23
Kühlbrandt (10.1016/j.celrep.2018.06.022_bib20) 2014; 343
Mastronarde (10.1016/j.celrep.2018.06.022_bib26) 2005; 152
Roseman (10.1016/j.celrep.2018.06.022_bib35) 2004; 145
Sibanda (10.1016/j.celrep.2018.06.022_bib40) 2017; 355
Flemming (10.1016/j.celrep.2018.06.022_bib9) 2010; 17
Lander (10.1016/j.celrep.2018.06.022_bib21) 2009; 166
Wan (10.1016/j.celrep.2018.06.022_bib46) 2015; 525
Larance (10.1016/j.celrep.2018.06.022_bib23) 2016; 15
Voss (10.1016/j.celrep.2018.06.022_bib45) 2009; 166
Vaudel (10.1016/j.celrep.2018.06.022_bib44) 2015; 33
Ho (10.1016/j.celrep.2018.06.022_bib14) 2002; 415
Shannon (10.1016/j.celrep.2018.06.022_bib39) 2003; 13
References_xml – volume: 38
  start-page: D497
  year: 2010
  end-page: D501
  ident: bib36
  article-title: CORUM: the comprehensive resource of mammalian protein complexes--2009
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 907
  year: 2012
  end-page: 909
  ident: bib18
  article-title: A high-throughput approach for measuring temporal changes in the interactome
  publication-title: Nat. Methods
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  ident: bib37
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
– volume: 166
  start-page: 95
  year: 2009
  end-page: 102
  ident: bib21
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
– volume: 163
  start-page: 712
  year: 2015
  end-page: 723
  ident: bib13
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: bib42
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
– volume: 41
  start-page: 20
  year: 2016
  end-page: 32
  ident: bib24
  article-title: Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines
  publication-title: Trends Biochem. Sci.
– volume: 162
  start-page: 425
  year: 2015
  end-page: 440
  ident: bib15
  article-title: The BioPlex network: a systematic exploration of the human interactome
  publication-title: Cell
– start-page: 505
  year: 2017
  end-page: 522
  ident: bib27
  article-title: The aminoacyl-tRNA synthetase complex
  publication-title: Macromolecular Protein Complexes
– volume: 152
  start-page: 36
  year: 2005
  end-page: 51
  ident: bib26
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J. Struct. Biol.
– volume: 343
  start-page: 1443
  year: 2014
  end-page: 1444
  ident: bib20
  article-title: Biochemistry. The resolution revolution
  publication-title: Science
– volume: 4
  start-page: 7
  year: 2012
  ident: bib28
  article-title: The Protein Structure Initiative: achievements and visions for the future
  publication-title: F1000 Biol. Rep.
– volume: 145
  start-page: 91
  year: 2004
  end-page: 99
  ident: bib35
  article-title: FindEM--a fast, efficient program for automatic selection of particles from electron micrographs
  publication-title: J. Struct. Biol.
– volume: 13
  start-page: 932
  year: 2017
  ident: bib6
  article-title: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes
  publication-title: Mol. Syst. Biol.
– volume: 195
  start-page: 325
  year: 2016
  end-page: 336
  ident: bib47
  article-title: DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM
  publication-title: J. Struct. Biol.
– volume: 33
  start-page: 22
  year: 2015
  end-page: 24
  ident: bib44
  article-title: PeptideShaker enables reanalysis of MS-derived proteomics data sets
  publication-title: Nat. Biotechnol.
– volume: 72
  start-page: 267
  year: 2000
  end-page: 275
  ident: bib32
  article-title: A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry
  publication-title: Anal. Chem.
– volume: 23
  start-page: 418
  year: 2015
  end-page: 424
  ident: bib11
  article-title: Crystal structure of the human 20S proteasome in complex with carfilzomib
  publication-title: Structure
– volume: 13
  start-page: 936
  year: 2017
  ident: bib17
  article-title: Capturing protein communities by structural proteomics in a thermophilic eukaryote
  publication-title: Mol. Syst. Biol.
– volume: 17
  start-page: 775
  year: 2010
  end-page: 778
  ident: bib9
  article-title: Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label
  publication-title: Nat. Struct. Mol. Biol.
– volume: 15
  start-page: 2476
  year: 2016
  end-page: 2490
  ident: bib23
  article-title: Global membrane protein interactome analysis using
  publication-title: Mol. Cell. Proteomics
– volume: 100
  start-page: 13797
  year: 2003
  end-page: 13802
  ident: bib5
  article-title: Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 -> Ala
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 35
  start-page: 100
  year: 2015
  end-page: 108
  ident: bib25
  article-title: Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry
  publication-title: Curr. Opin. Struct. Biol.
– volume: 415
  start-page: 141
  year: 2002
  end-page: 147
  ident: bib10
  article-title: Functional organization of the yeast proteome by systematic analysis of protein complexes
  publication-title: Nature
– volume: 192
  start-page: 216
  year: 2015
  end-page: 221
  ident: bib34
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
– volume: 166
  start-page: 205
  year: 2009
  end-page: 213
  ident: bib45
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
– volume: 440
  start-page: 637
  year: 2006
  end-page: 643
  ident: bib19
  article-title: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
  publication-title: Nature
– volume: 482
  start-page: 186
  year: 2012
  end-page: 191
  ident: bib22
  article-title: Complete subunit architecture of the proteasome regulatory particle
  publication-title: Nature
– volume: 112
  start-page: 6044
  year: 2015
  end-page: 6049
  ident: bib29
  article-title: Crystal structure of the human mitochondrial chaperonin symmetrical football complex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib30
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 525
  start-page: 339
  year: 2015
  end-page: 344
  ident: bib46
  article-title: Panorama of ancient metazoan macromolecular complexes
  publication-title: Nature
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib31
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 347
  start-page: 439
  year: 2015
  end-page: 442
  ident: bib1
  article-title: Proteasomes. A molecular census of 26S proteasomes in intact neurons
  publication-title: Science
– volume: 6
  start-page: 7573
  year: 2015
  ident: bib3
  article-title: Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  ident: bib39
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
– volume: 78
  start-page: 477
  year: 2009
  end-page: 513
  ident: bib8
  article-title: Recognition and processing of ubiquitin-protein conjugates by the proteasome
  publication-title: Annu. Rev. Biochem.
– volume: 6
  start-page: e25648
  year: 2017
  ident: bib33
  article-title: Single-protein detection in crowded molecular environments in cryo-EM images
  publication-title: eLife
– volume: 355
  start-page: 520
  year: 2017
  end-page: 524
  ident: bib40
  article-title: DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair
  publication-title: Science
– volume: 150
  start-page: 1068
  year: 2012
  end-page: 1081
  ident: bib12
  article-title: A census of human soluble protein complexes
  publication-title: Cell
– volume: 415
  start-page: 180
  year: 2002
  end-page: 183
  ident: bib14
  article-title: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
  publication-title: Nature
– volume: 11
  start-page: 996
  year: 2011
  end-page: 999
  ident: bib43
  article-title: SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches
  publication-title: Proteomics
– volume: 13
  start-page: e1005625
  year: 2017
  ident: bib7
  article-title: Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets
  publication-title: PLoS Comput. Biol.
– volume: 5
  start-page: e13046
  year: 2016
  ident: bib4
  article-title: Cryo-EM single particle analysis with the Volta phase plate
  publication-title: eLife
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  ident: bib16
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
– volume: 5
  start-page: 144
  year: 2006
  end-page: 156
  ident: bib41
  article-title: Absolute quantification of proteins by LCMS
  publication-title: Mol. Cell. Proteomics
– volume: 113
  start-page: 7816
  year: 2016
  end-page: 7821
  ident: bib38
  article-title: Structure of the human 26S proteasome at a resolution of 3.9 Å
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 311
  start-page: 347
  year: 2006
  end-page: 351
  ident: bib2
  article-title: The impact of structural genomics: expectations and outcomes
  publication-title: Science
– volume: 5
  start-page: e13046
  year: 2016
  ident: 10.1016/j.celrep.2018.06.022_bib4
  article-title: Cryo-EM single particle analysis with the Volta phase plate
  publication-title: eLife
  doi: 10.7554/eLife.13046
– volume: 145
  start-page: 91
  year: 2004
  ident: 10.1016/j.celrep.2018.06.022_bib35
  article-title: FindEM--a fast, efficient program for automatic selection of particles from electron micrographs
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2003.11.007
– volume: 166
  start-page: 205
  year: 2009
  ident: 10.1016/j.celrep.2018.06.022_bib45
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.004
– volume: 35
  start-page: 100
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib25
  article-title: Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2015.10.006
– volume: 440
  start-page: 637
  year: 2006
  ident: 10.1016/j.celrep.2018.06.022_bib19
  article-title: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
  publication-title: Nature
  doi: 10.1038/nature04670
– volume: 6
  start-page: e25648
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib33
  article-title: Single-protein detection in crowded molecular environments in cryo-EM images
  publication-title: eLife
  doi: 10.7554/eLife.25648
– volume: 41
  start-page: 20
  year: 2016
  ident: 10.1016/j.celrep.2018.06.022_bib24
  article-title: Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.10.008
– volume: 152
  start-page: 36
  year: 2005
  ident: 10.1016/j.celrep.2018.06.022_bib26
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.07.007
– volume: 13
  start-page: 2498
  year: 2003
  ident: 10.1016/j.celrep.2018.06.022_bib39
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 355
  start-page: 520
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib40
  article-title: DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair
  publication-title: Science
  doi: 10.1126/science.aak9654
– volume: 100
  start-page: 13797
  year: 2003
  ident: 10.1016/j.celrep.2018.06.022_bib5
  article-title: Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 -> Ala
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2333925100
– volume: 192
  start-page: 216
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib34
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.08.008
– volume: 112
  start-page: 6044
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib29
  article-title: Crystal structure of the human mitochondrial chaperonin symmetrical football complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1411718112
– volume: 72
  start-page: 267
  year: 2000
  ident: 10.1016/j.celrep.2018.06.022_bib32
  article-title: A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac991081o
– volume: 347
  start-page: 439
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib1
  article-title: Proteasomes. A molecular census of 26S proteasomes in intact neurons
  publication-title: Science
  doi: 10.1126/science.1261197
– volume: 4
  start-page: 7
  year: 2012
  ident: 10.1016/j.celrep.2018.06.022_bib28
  article-title: The Protein Structure Initiative: achievements and visions for the future
  publication-title: F1000 Biol. Rep.
  doi: 10.3410/B4-7
– start-page: 505
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib27
  article-title: The aminoacyl-tRNA synthetase complex
– volume: 166
  start-page: 95
  year: 2009
  ident: 10.1016/j.celrep.2018.06.022_bib21
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.002
– volume: 150
  start-page: 1068
  year: 2012
  ident: 10.1016/j.celrep.2018.06.022_bib12
  article-title: A census of human soluble protein complexes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.011
– volume: 163
  start-page: 712
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib13
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.053
– volume: 113
  start-page: 7816
  year: 2016
  ident: 10.1016/j.celrep.2018.06.022_bib38
  article-title: Structure of the human 26S proteasome at a resolution of 3.9 Å
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1608050113
– volume: 151
  start-page: 41
  year: 2005
  ident: 10.1016/j.celrep.2018.06.022_bib42
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 525
  start-page: 339
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib46
  article-title: Panorama of ancient metazoan macromolecular complexes
  publication-title: Nature
  doi: 10.1038/nature14877
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.celrep.2018.06.022_bib30
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib31
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 17
  start-page: 775
  year: 2010
  ident: 10.1016/j.celrep.2018.06.022_bib9
  article-title: Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1811
– volume: 11
  start-page: 996
  year: 2011
  ident: 10.1016/j.celrep.2018.06.022_bib43
  article-title: SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches
  publication-title: Proteomics
  doi: 10.1002/pmic.201000595
– volume: 415
  start-page: 141
  year: 2002
  ident: 10.1016/j.celrep.2018.06.022_bib10
  article-title: Functional organization of the yeast proteome by systematic analysis of protein complexes
  publication-title: Nature
  doi: 10.1038/415141a
– volume: 195
  start-page: 325
  year: 2016
  ident: 10.1016/j.celrep.2018.06.022_bib47
  article-title: DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.07.006
– volume: 5
  start-page: 144
  year: 2006
  ident: 10.1016/j.celrep.2018.06.022_bib41
  article-title: Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M500230-MCP200
– volume: 38
  start-page: D497
  year: 2010
  ident: 10.1016/j.celrep.2018.06.022_bib36
  article-title: CORUM: the comprehensive resource of mammalian protein complexes--2009
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp914
– volume: 545
  start-page: 505
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib16
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  doi: 10.1038/nature22366
– volume: 13
  start-page: 932
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib6
  article-title: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20167490
– volume: 482
  start-page: 186
  year: 2012
  ident: 10.1016/j.celrep.2018.06.022_bib22
  article-title: Complete subunit architecture of the proteasome regulatory particle
  publication-title: Nature
  doi: 10.1038/nature10774
– volume: 33
  start-page: 22
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib44
  article-title: PeptideShaker enables reanalysis of MS-derived proteomics data sets
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3109
– volume: 13
  start-page: e1005625
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib7
  article-title: Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005625
– volume: 78
  start-page: 477
  year: 2009
  ident: 10.1016/j.celrep.2018.06.022_bib8
  article-title: Recognition and processing of ubiquitin-protein conjugates by the proteasome
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.78.081507.101607
– volume: 15
  start-page: 2476
  year: 2016
  ident: 10.1016/j.celrep.2018.06.022_bib23
  article-title: Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O115.055467
– volume: 311
  start-page: 347
  year: 2006
  ident: 10.1016/j.celrep.2018.06.022_bib2
  article-title: The impact of structural genomics: expectations and outcomes
  publication-title: Science
  doi: 10.1126/science.1121018
– volume: 23
  start-page: 418
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib11
  article-title: Crystal structure of the human 20S proteasome in complex with carfilzomib
  publication-title: Structure
  doi: 10.1016/j.str.2014.11.017
– volume: 13
  start-page: 936
  year: 2017
  ident: 10.1016/j.celrep.2018.06.022_bib17
  article-title: Capturing protein communities by structural proteomics in a thermophilic eukaryote
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20167412
– volume: 9
  start-page: 907
  year: 2012
  ident: 10.1016/j.celrep.2018.06.022_bib18
  article-title: A high-throughput approach for measuring temporal changes in the interactome
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2131
– volume: 180
  start-page: 519
  year: 2012
  ident: 10.1016/j.celrep.2018.06.022_bib37
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 415
  start-page: 180
  year: 2002
  ident: 10.1016/j.celrep.2018.06.022_bib14
  article-title: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
  publication-title: Nature
  doi: 10.1038/415180a
– volume: 6
  start-page: 7573
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib3
  article-title: Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8573
– volume: 162
  start-page: 425
  year: 2015
  ident: 10.1016/j.celrep.2018.06.022_bib15
  article-title: The BioPlex network: a systematic exploration of the human interactome
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.043
– volume: 343
  start-page: 1443
  year: 2014
  ident: 10.1016/j.celrep.2018.06.022_bib20
  article-title: Biochemistry. The resolution revolution
  publication-title: Science
  doi: 10.1126/science.1251652
SSID ssj0000601194
Score 2.347706
Snippet Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 259
SubjectTerms Cell Extracts - chemistry
cellular fractionation
deep classification
electron microscopy
HEK293 Cells
heterogeneity analysis
Humans
Macromolecular Substances - metabolism
Macromolecular Substances - ultrastructure
mass spectrometry
Molecular Weight
Proteasome Endopeptidase Complex - metabolism
protein complexes
Protein Subunits - metabolism
structural biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEOW5UCojcY1oHDt2jtCHKiQQohT1ZvkxFkVRtqJbVP49M3ay2sBhL9wix3l4PPHMxN98w9gbCa4NgNFJUiFVUuJRZxpf1Qkb66gPo6Z854-f2rML-eFSXW6U-iJMWKEHLoJ762TjoFONjC7IEKUPrQkmmpB0572KtPqizdsIpsoaTFxmtKUsBGG2hNRT3lwGdwXofwLRVdaFvlOImV3K9P0z8_Sv-_k3inLDLJ0-ZA9Gf5K_K-PYY_dgeMR2S4XJ34_Zt1z0kuBAeQb4MvFzNFY98M8TJI5ThgnPP_P5EfQ9P7lbUeoU_wK_0Iu84ce0DAzYcJ65Zm8xQH_CLk5Pvh6dVWMphSoo0a0qhZ6cSREFL0wLUhMLDHhtYhs6oSKA8kkn2QQMJ1PsZCeC8lCrpFQQ4GPzlO0MywGeM24OVfSmdhjbeulBuK5RjWujw1AlxCAWrJkEacPIM07lLno7Acp-2CJ-S-K3hKsTeFW1vuq68Gxs6f-e5mjdl1iycwPqjh0FaLfpzoLpaYbt6HAURwJvdbXl8a8nhbD4PdImixtgeXuDnSh7F53MdsGeFQVZv6SgLGVt8Iyeqc5sFPMzw9X3zPlNrPjoir_4H8N-ye7TUDLouNlnO6g88Apdq5U_yF_RH_lzJLM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N3tI6jQq9lYD0s-NtuEUGgp3absTVjSqN1ivCHZlObfZ0a2lzo9BHqz9bDl0Xge9sw3jL1T0FQB0DtJOqRCKTyqrfRFmbCxjOYwGsp3_vS5Oj1TH1d6tccWYy4MhVUOsr-X6VlaDy3zgZrz8_V6vhTou6B2QuEqUekZQvwkpBZK4lsd7b6zEN5Imesh0viCJowZdDnMK0B7AQRcWfZAnkJMNFQG8p8oqn8N0dvxlH8pqJOH7MFgWfL3_eIfsT3oHrN7fa3J6yfsey5_SYFBeS_4JvElqq0W-JcxOI5TrgnPn_X5AtqWH__ZUhIV_wq_0Z685B9IIHTYsMyos1foqj9lZyfH3xanxVBUoQha1NtCo01nU8QtELYCZQgPBryxsQq10BFA-2SSkgEdyxRrVYugPZQ6aR0E-Cifsf1u08ELxu2hjt6WDXq5XnkQTS21bKrYoNMSYhAzJkdCujAgjlPhi9aNoWW_XE9-R-R3FGEncFaxm3XeI27cMf6I9mg3lvCyc8Pm4ocbCOgaJRuotVSxCSpE5UNlg402JFN7r-OMmXGH3YT98FLrO27_dmQIh28m_W5pOthcXeIgyuNFc7Oasec9g-wWKShf2VjsMRPWmTzFtKdb_8zo34SPj0b5y_9e8St2n85yzLF8zfaRY-ANWlZbf5BfnRuhiiPe
  priority: 102
  providerName: Elsevier
Title Classification of Single Particles from Human Cell Extract Reveals Distinct Structures
URI https://dx.doi.org/10.1016/j.celrep.2018.06.022
https://www.ncbi.nlm.nih.gov/pubmed/29972786
https://www.proquest.com/docview/2064784416
https://pubmed.ncbi.nlm.nih.gov/PMC6109231
https://doaj.org/article/a43ae9534dac4cd4bc68c8d8cf79bb5d
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYQVaVeKvrePpAr9ZqKOHbiHCpUKIhWoqpKt9qb5ceYUkXZsrsg-PedcZKFpUVcVivHzsMz9nyTzHzD2DsJtvSA3klUPmZS4r9aFy7LIzbmodoKFeU7H34tD8byy0RN1thQs7WfwPl_XTuqJzWeNe8vTi-3ccF_uIrV8tDMgNgn846NU-CmfA9tU0l6ftgD_m5vJo4zOeTQ3TKYGIIpobSiDOtr5iqx-q9YrX9R6c3gymvWan-DPexhJv_Y6cUjtgbtY3a_Kzx5-YT9TLUwKUooCYZPIz9CG9YA_zZEynFKPOHpHT_fhabhexcLyqji3-EcweWcf6LdocWGo0RBe4Z--1M23t_7sXuQ9RUWMq9EvcgUAjwdA8pD6BJkReQw4CodSl8LFQCUi1WUhUcvM4Za1sIrB7mKSnkBLhTP2Ho7beEF43pLBadziy6vkw6ErQtV2DJY9GB88GLEimEije_px6kKRmOGOLPfppOEIUkYCrcTOCpbjvrT0W_c0X-HZLTsS-TZqWE6Ozb9BBorCwu1KmSwXvognS-110H7WNXOqTBi1SBh0-OQDl_gqU7uuPzbQSEMLlP69mJbmJ7NsRMl9SL2LEfseacgy5scdA2vu6I6K0-xeqQ9-ZWowIksHxH6y1vP-Yo9oPtLAcbFa7aOGgFvEEYt3GZ6_YC_nyc7m2mV_AVizx8R
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKEaIviLvLaSReo218xM5ju7TaQlshtkX7ZsUX3SrKVu0W0X_PjJOsCDxU4i3ykTjjyRzOzDeEfBShKlwA7yRKFzMh4KrU3GZ5hMbcqx2vMN_5-KSYnonPcznfIJM-FwbDKjvZ38r0JK27lnFHzfHlYjGeMfBdQDuBcOWg9BS_R-6DNVBgXNfhfG990IKAI3kqiIgTMpzRp9ClOC8X6quAyJV5i-TJ2EBFJST_gab61xL9O6DyDw118Jg86kxLutuu_gnZCM1T8qAtNnn7jHxP9S8xMihtBl1GOgO9VQf6tY-Oo5hsQtO5Pp2Euqb7v1aYRUW_hZ9gUF7TTygRGmiYJdjZG_DVn5Ozg_3TyTTrqipkTrJylUkw6nT0sAdMF0EoBIQJVmlfuJJJH4K0UUXBHXiW0ZeiZE7akMsopWPBev6CbDbLJmwTqnektzqvwM21wgZWlVzyqvAVeC3OOzYivCekcR3kOFa-qE0fW3ZhWvIbJL_BEDsGs7L1rMsWcuOO8Xu4R-uxCJidGpZXP0xHQFMJXoVScuErJ5wX1hXaaa9dVKW10o-I6nfYDPgPbrW44_EfeoYw8Gni_5aqCcubaxiEibxgbxYj8rJlkPUiGSYsKw09asA6g7cY9jSL8wT_jQD5YJW_-u8VvycPp6fHR-bo8OTLa7KFPSkAmb8hm8A94S2YWSv7Ln1GvwFeRicF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Single+Particles+from+Human+Cell+Extract+Reveals+Distinct+Structures&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Verbeke%2C+Eric+J&rft.au=Mallam%2C+Anna+L&rft.au=Drew%2C+Kevin&rft.au=Marcotte%2C+Edward+M&rft.date=2018-07-03&rft.eissn=2211-1247&rft.volume=24&rft.issue=1&rft.spage=259&rft_id=info:doi/10.1016%2Fj.celrep.2018.06.022&rft_id=info%3Apmid%2F29972786&rft.externalDocID=29972786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon