Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8+ TCR Repertoires to Immunodominant Viral Antigens
A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495–503 (NLV) of cytomegalovir...
Saved in:
Published in | Cell reports (Cambridge) Vol. 19; no. 3; pp. 569 - 583 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.04.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495–503 (NLV) of cytomegalovirus and M158–66 (GIL) of influenza A virus. The highly individualized repertoires (87–5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL–HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection.
[Display omitted]
•Characterized human CD8+ TCR repertoires for CMV-NLV and IAV-GIL viral epitopes•Highly diverse repertoires comprised 87–5,533 distinct clonotypes per subject•Repertoires were individualized, but public clonotypes were favored for expansion•Structural basis for lower diversity of GIL- versus NLV-specific TCR repertoires
CD8+ T cells are essential for controlling viral infections. Chen et al. analyzed human TCR repertoires specific for two viral epitopes. Repertoire diversity was much greater than previously appreciated for both public and private TCRs. Such diversity assures protection from virus escape and the provision of T cell functional heterogeneity. |
---|---|
AbstractList | A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8
+
TCR repertoires for two dominant viral epitopes: pp65
495–503
(NLV) of cytomegalovirus and M1
58–66
(GIL) of influenza A virus. The highly individualized repertoires (87–5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL–HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8
+
TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection.
CD8
+
T cells are essential for controlling viral infections. Chen et al. analyzed human TCR repertoires specific for two viral epitopes. Repertoire diversity was much greater than previously appreciated for both public and private TCRs. Such diversity assures protection from virus escape and the provision of T cell functional heterogeneity. A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495–503 (NLV) of cytomegalovirus and M158–66 (GIL) of influenza A virus. The highly individualized repertoires (87–5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL–HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection. : CD8+ T cells are essential for controlling viral infections. Chen et al. analyzed human TCR repertoires specific for two viral epitopes. Repertoire diversity was much greater than previously appreciated for both public and private TCRs. Such diversity assures protection from virus escape and the provision of T cell functional heterogeneity. Keywords: αβ TCRs for IAV-GIL, αβ TCRs for CMV-NLV, TCR repertoire, TCR-pMHC structure, CD8 T cells, human A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495-503 (NLV) of cytomegalovirus and M158-66 (GIL) of influenza A virus. The highly individualized repertoires (87-5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL-HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection.A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495-503 (NLV) of cytomegalovirus and M158-66 (GIL) of influenza A virus. The highly individualized repertoires (87-5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL-HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection. A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495–503 (NLV) of cytomegalovirus and M158–66 (GIL) of influenza A virus. The highly individualized repertoires (87–5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL–HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection. [Display omitted] •Characterized human CD8+ TCR repertoires for CMV-NLV and IAV-GIL viral epitopes•Highly diverse repertoires comprised 87–5,533 distinct clonotypes per subject•Repertoires were individualized, but public clonotypes were favored for expansion•Structural basis for lower diversity of GIL- versus NLV-specific TCR repertoires CD8+ T cells are essential for controlling viral infections. Chen et al. analyzed human TCR repertoires specific for two viral epitopes. Repertoire diversity was much greater than previously appreciated for both public and private TCRs. Such diversity assures protection from virus escape and the provision of T cell functional heterogeneity. A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8 TCR repertoires for two dominant viral epitopes: pp65 (NLV) of cytomegalovirus and M1 (GIL) of influenza A virus. The highly individualized repertoires (87-5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL-HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8 TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection. |
Author | Mariuzza, Roy A. Ko, Annette Shi, Alvin Yang, Xinbo Gao, Mingming Zhang, Yongqing Sun, Xiaoping Chen, Guobing Weng, Nan-ping |
AuthorAffiliation | 1 Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA 3 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA 2 W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA 4 Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA |
AuthorAffiliation_xml | – name: 3 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA – name: 1 Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – name: 2 W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA – name: 4 Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA |
Author_xml | – sequence: 1 givenname: Guobing surname: Chen fullname: Chen, Guobing organization: Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 2 givenname: Xinbo surname: Yang fullname: Yang, Xinbo organization: W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA – sequence: 3 givenname: Annette surname: Ko fullname: Ko, Annette organization: Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 4 givenname: Xiaoping surname: Sun fullname: Sun, Xiaoping organization: Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 5 givenname: Mingming surname: Gao fullname: Gao, Mingming organization: W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA – sequence: 6 givenname: Yongqing surname: Zhang fullname: Zhang, Yongqing organization: Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 7 givenname: Alvin surname: Shi fullname: Shi, Alvin organization: Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA – sequence: 8 givenname: Roy A. surname: Mariuzza fullname: Mariuzza, Roy A. organization: W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA – sequence: 9 givenname: Nan-ping surname: Weng fullname: Weng, Nan-ping email: wengn@mail.nih.gov organization: Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28423320$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFuEzEQhleoiJbSN0Boj0goYez1rh0OSFUKpFIlpDbiannt2dTRrh1sb6SceHWcJkUtB_DF9nj-b-SZ_3Vx4rzDonhLYEqANB_XU419wM2UAuFTqKbA6YvijFJCJoQyfvLkfFpcxLiGvBogZMZeFadUMFpVFM6KX3f4c0SnsVTOlHcpjDqNQfXlpVP9LmIsb3GL-X5lY7JOp4e8hV3d97sc22KIWC7GQblyfiU-lMv5bVZsMCRvQ1YnX14Pw-i88YN1yqXyhz3gk12hi2-Kl53qI14c9_Ni-fXLcr6Y3Hz_dj2_vJnoms7ShCEwTdqmhYoRwpWpBTEtNkZDs4-jQUBmlDaNahoBxnDBDUAtWtIKqM6L6wPWeLWWm2AHFXbSKysfAj6spArJ6h5lxZtW844jkJp1DW81shlhLeFt19GuyazPB9ZmbAc0Gl3KP3oGff7i7L1c-a2sGadQkwx4fwQEn5sfkxxszPPslUM_RknEjIAQAmhOffe01p8ijwPMCZ8OCTr4GAN2UtukkvX70raXBOTeMHItD4aRe8NIqGQ2TBazv8SP_P_Ijg3APLCtxSCjtnsPmTxynXJL7b8BvwEXnd4D |
CitedBy_id | crossref_primary_10_1038_s43587_022_00208_w crossref_primary_10_1016_j_molimm_2021_08_009 crossref_primary_10_1111_imcb_12791 crossref_primary_10_1038_s41598_020_79363_2 crossref_primary_10_3390_ijms20081986 crossref_primary_10_1016_j_immuni_2023_01_026 crossref_primary_10_3389_fimmu_2022_1011935 crossref_primary_10_1016_j_smim_2023_101810 crossref_primary_10_1371_journal_pone_0265313 crossref_primary_10_1093_ecco_jcc_jjz179 crossref_primary_10_3389_fimmu_2023_1137054 crossref_primary_10_1016_j_celrep_2020_107885 crossref_primary_10_1146_annurev_immunol_042718_041757 crossref_primary_10_1016_j_resmic_2018_01_002 crossref_primary_10_3389_fimmu_2021_626793 crossref_primary_10_3389_fimmu_2022_797640 crossref_primary_10_1038_s42256_021_00383_2 crossref_primary_10_3390_cancers12102879 crossref_primary_10_3390_encyclopedia4010038 crossref_primary_10_1021_jacs_1c00016 crossref_primary_10_1073_pnas_1902649116 crossref_primary_10_3389_fimmu_2018_01453 crossref_primary_10_1007_s00262_021_03047_7 crossref_primary_10_7717_peerj_cs_2239 crossref_primary_10_1016_j_clim_2023_109795 crossref_primary_10_1016_j_jbc_2023_103035 crossref_primary_10_1128_mBio_01841_17 crossref_primary_10_1038_s41591_019_0523_2 crossref_primary_10_1134_S0006297924090098 crossref_primary_10_3389_fimmu_2017_01267 crossref_primary_10_1038_s41467_024_54675_3 crossref_primary_10_1371_journal_ppat_1008122 crossref_primary_10_3390_ijms23031029 crossref_primary_10_3389_fimmu_2022_858057 crossref_primary_10_1111_acel_13262 crossref_primary_10_1249_MSS_0000000000003130 crossref_primary_10_1016_j_immuni_2020_11_004 crossref_primary_10_3389_fimmu_2019_02159 crossref_primary_10_4049_jimmunol_1801401 crossref_primary_10_1074_jbc_M117_810382 crossref_primary_10_1158_2326_6066_CIR_23_0467 crossref_primary_10_1103_PhysRevE_109_064411 crossref_primary_10_1371_journal_pcbi_1009297 crossref_primary_10_1172_JCI158122 crossref_primary_10_1182_bloodadvances_2020002255 crossref_primary_10_1016_j_intimp_2019_105688 crossref_primary_10_1126_sciadv_abd8180 crossref_primary_10_1038_s41388_019_1101_2 crossref_primary_10_4049_jimmunol_1700744 crossref_primary_10_1016_j_tips_2020_06_001 crossref_primary_10_3390_diseases13010019 crossref_primary_10_1016_j_mucimm_2023_01_003 crossref_primary_10_3390_diagnostics14202330 crossref_primary_10_7554_eLife_81274 crossref_primary_10_1172_JCI176740 crossref_primary_10_1007_s00251_019_01134_9 crossref_primary_10_1128_mBio_00250_20 crossref_primary_10_1038_s42003_021_02709_7 crossref_primary_10_1038_s41590_019_0346_9 crossref_primary_10_4049_jimmunol_2001386 crossref_primary_10_1038_s41467_019_08906_7 crossref_primary_10_3389_fimmu_2022_916430 crossref_primary_10_1038_s41525_019_0084_9 crossref_primary_10_1016_j_cels_2023_03_001 crossref_primary_10_1038_s41577_024_01111_8 crossref_primary_10_1038_s41577_023_00835_3 crossref_primary_10_3389_fimmu_2021_663664 crossref_primary_10_3390_v15061334 crossref_primary_10_1146_annurev_immunol_042617_053035 crossref_primary_10_1002_cti2_1340 crossref_primary_10_1007_s11892_017_0946_4 crossref_primary_10_3389_fimmu_2019_01516 crossref_primary_10_1111_hepr_13318 crossref_primary_10_3389_fimmu_2019_00827 crossref_primary_10_4049_jimmunol_1900915 crossref_primary_10_1111_imm_12991 crossref_primary_10_1111_tri_13475 crossref_primary_10_1126_sciadv_abf5835 crossref_primary_10_1126_sciadv_adj6975 crossref_primary_10_1016_j_cellimm_2018_12_007 crossref_primary_10_1038_s41590_023_01633_8 crossref_primary_10_1073_pnas_1921964117 crossref_primary_10_1093_bib_bbae343 crossref_primary_10_3390_ijms23158590 crossref_primary_10_3389_fimmu_2018_02539 crossref_primary_10_3389_fimmu_2022_906217 crossref_primary_10_7554_eLife_22057 crossref_primary_10_1016_j_compbiomed_2024_107956 crossref_primary_10_1111_imcb_12377 crossref_primary_10_1093_infdis_jiaa631 crossref_primary_10_1186_s12985_024_02511_x crossref_primary_10_1093_infdis_jiy647 crossref_primary_10_1016_j_cellimm_2018_12_011 crossref_primary_10_1038_s43587_022_00198_9 crossref_primary_10_7717_peerj_15009 crossref_primary_10_1186_s12979_022_00307_7 crossref_primary_10_3389_fimmu_2020_01587 crossref_primary_10_1093_nar_gky432 |
Cites_doi | 10.1093/nar/gkp335 10.1038/nm.1779 10.4049/jimmunol.178.9.5727 10.1111/cei.12770 10.1093/bioinformatics/bts091 10.1016/j.it.2014.06.004 10.1146/annurev.immunol.23.021704.115658 10.1038/nmeth.2960 10.4049/jimmunol.179.5.3203 10.1038/nri2260 10.4049/jimmunol.175.9.6123 10.1002/path.4437 10.1016/S0167-5699(98)01299-7 10.1111/imr.12002 10.1189/jlb.6A0215-071RR 10.1126/scitranslmed.3003647 10.1128/JVI.73.3.2099-2108.1999 10.1016/j.immuni.2011.07.010 10.1002/eji.201343397 10.1038/ni.3310 10.1038/nm869 10.1074/jbc.M111.289488 10.4049/jimmunol.1100091 10.4049/jimmunol.1003309 10.1146/annurev.immunol.26.021607.090421 10.1371/journal.ppat.1001198 10.4049/jimmunol.0902233 10.1074/jbc.M115.691311 10.1073/pnas.1106851108 10.1073/pnas.1207186109 10.1073/pnas.88.20.8987 10.1128/JVI.03020-14 10.4049/jimmunol.0900556 10.1128/JVI.70.11.7569-7579.1996 10.1182/blood.V99.1.213 10.1038/ni942 10.1098/rstb.2014.0291 10.1038/nri1292 10.1016/j.immuni.2009.05.006 10.1016/S1074-7613(02)00513-7 10.1016/j.immuni.2014.12.022 10.1038/nri3279 10.1126/scitranslmed.3001442 10.1038/ni1502 10.1016/j.coviro.2013.06.011 10.1016/j.cell.2012.01.035 10.4049/jimmunol.0901607 10.1016/j.coviro.2016.01.017 10.1038/326881a0 10.1016/j.jim.2014.01.013 10.1038/icb.2015.17 10.1038/ni1175 10.1073/pnas.1409155111 10.1016/j.immuni.2015.05.003 10.1016/j.immuni.2007.12.018 10.1084/jem.185.9.1651 10.1146/annurev-immunol-032414-112334 10.4049/jimmunol.1303147 |
ContentType | Journal Article |
Copyright | 2017 Copyright © 2017. Published by Elsevier Inc. |
Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2017.03.072 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 583 |
ExternalDocumentID | oai_doaj_org_article_376bc7f7e0154f67bce4914b17bff2f6 PMC5472051 28423320 10_1016_j_celrep_2017_03_072 S2211124717304497 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI036900 – fundername: NIAID NIH HHS grantid: R37 AI036900 – fundername: Intramural NIH HHS grantid: ZIA AG000757 – fundername: NIAID NIH HHS grantid: HHSN272201300006C |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-4e04c1b6b034117ad581dbe6dc06c1b6ede0e4dacd6a6680dd787d0058b1b803 |
IEDL.DBID | DOA |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Thu Aug 21 18:13:36 EDT 2025 Fri Jul 11 04:23:50 EDT 2025 Mon Jul 21 06:02:44 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Tue Jul 01 03:07:38 EDT 2025 Wed May 17 00:03:04 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | αβ TCRs for CMV-NLV αβ TCRs for IAV-GIL CD8 T cells human TCR repertoire TCR-pMHC structure |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-4e04c1b6b034117ad581dbe6dc06c1b6ede0e4dacd6a6680dd787d0058b1b803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/376bc7f7e0154f67bce4914b17bff2f6 |
PMID | 28423320 |
PQID | 1891088802 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_376bc7f7e0154f67bce4914b17bff2f6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5472051 proquest_miscellaneous_1891088802 pubmed_primary_28423320 crossref_citationtrail_10_1016_j_celrep_2017_03_072 crossref_primary_10_1016_j_celrep_2017_03_072 elsevier_sciencedirect_doi_10_1016_j_celrep_2017_03_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-18 |
PublicationDateYYYYMMDD | 2017-04-18 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ishizuka, Stewart-Jones, van der Merwe, Bell, McMichael, Jones (bib17) 2008; 28 Deng, Langley, Wang, Topalian, Mariuzza (bib9) 2012; 109 Okonechnikov, Golosova, Fursov (bib39) 2012; 28 Yin, Li, Mariuzza (bib58) 2012; 250 Cadwell (bib4) 2015; 42 Gras, Saulquin, Reiser, Debeaupuis, Echasserieau, Kissenpfennig, Legoux, Chouquet, Le Gorrec, Machillot (bib13) 2009; 183 Turner, Kedzierska, Komodromou, La Gruta, Dunstone, Webb, Webby, Walden, Xie, McCluskey (bib50) 2005; 6 La Gruta, Turner (bib22) 2014; 35 Miles, Bulek, Cole, Gostick, Schauenburg, Dolton, Venturi, Davenport, Tan, Burrows (bib31) 2010; 6 Gotch, Rothbard, Howland, Townsend, McMichael (bib12) 1987; 326 Feng, Bond, Ely, Maynard, Garcia (bib10) 2007; 8 Hombrink, Raz, Kester, de Boer, Weißbrich, von dem Borne, Busch, Schumacher, Falkenburg, Heemskerk (bib16) 2013; 43 La Gruta, Thomas (bib21) 2013; 3 Adams, Narayanan, Birnbaum, Sidhu, Blevins, Gee, Sibener, Baker, Kranz, Garcia (bib1) 2016; 17 Link, Eugster, Heidenreich, Rücker-Braun, Schmiedgen, Oelschlägel, Kühn, Dietz, Fuchs, Dahl (bib25) 2016; 184 Naumov, Naumova, Yassai, Gorski (bib33) 2011; 186 Day, Carmichael, ten Berge, Waller, Sissons, Wills (bib7) 2007; 179 Mason (bib29) 1998; 19 Laydon, Bangham, Asquith (bib23) 2015; 370 Koning, Costa, Hasrat, Grady, Spijkers, Nanlohy, Keşmir, van Baarle (bib20) 2014; 405 Qi, Liu, Cheng, Glanville, Zhang, Lee, Olshen, Weyand, Boyd, Goronzy (bib41) 2014; 111 Wang, Dash, McCullers, Doherty, Thomas (bib53) 2012; 4 Rudolph, Stanfield, Wilson (bib44) 2006; 24 Zhang, Bevan (bib59) 2011; 35 Shugay, Britanova, Merzlyak, Turchaninova, Mamedov, Tuganbaev, Bolotin, Staroverov, Putintseva, Plevova (bib47) 2014; 11 Moss, Moots, Rosenberg, Rowland-Jones, Bodmer, McMichael, Bell (bib32) 1991; 88 Miconnet, Marrau, Farina, Taffé, Vigano, Harari, Pantaleo (bib30) 2011; 186 Marrack, Scott-Browne, Dai, Gapin, Kappler (bib28) 2008; 26 Rossjohn, Gras, Miles, Turner, Godfrey, McCluskey (bib43) 2015; 33 Hemmer, Fleckenstein, Vergelli, Jung, McFarland, Martin, Wiesmüller (bib15) 1997; 185 Peggs, Verfuerth, Pizzey, Ainsworth, Moss, Mackinnon (bib40) 2002; 99 Day, Guillonneau, Gras, La Gruta, Vignali, Doherty, Purcell, Rossjohn, Turner (bib8) 2011; 108 Yang, Gao, Chen, Pierce, Lu, Weng, Mariuzza (bib57) 2015; 290 Kjer-Nielsen, Clements, Purcell, Brooks, Whisstock, Burrows, McCluskey, Rossjohn (bib19) 2003; 18 Lissina, Chakrabarti, Takiguchi, Appay (bib26) 2016; 16 Wooldridge, Ekeruche-Makinde, van den Berg, Skowera, Miles, Tan, Dolton, Clement, Llewellyn-Lacey, Price (bib56) 2012; 287 Schub, Schuster, Hammerschmidt, Moosmann (bib45) 2009; 183 Araki, Wang, Zang, Wood, Schones, Cui, Roh, Lhotsky, Wersto, Peng (bib2) 2009; 30 Li, Hiroi, Zhang, Shi, Chen, De, Metter, Wood, Sharov, Milner (bib24) 2016; 99 Venturi, Price, Douek, Davenport (bib52) 2008; 8 Robins, Srivastava, Campregher, Turtle, Andriesen, Riddell, Carlson, Warren (bib42) 2010; 2 Nikolich-Zugich, Slifka, Messaoudi (bib37) 2004; 4 Wills, Carmichael, Mynard, Jin, Weekes, Plachter, Sissons (bib55) 1996; 70 Griffiths, Baraniak, Reeves (bib14) 2015; 235 Neller, Ladell, McLaren, Matthews, Gostick, Pentier, Dolton, Schauenburg, Koning, Fontaine Costa (bib34) 2015; 93 Bailey, Boden, Buske, Frith, Grant, Clementi, Ren, Li, Noble (bib3) 2009; 37 Gil, Yassai, Naumov, Selin (bib11) 2015; 89 Clemente, Ursell, Parfrey, Knight (bib5) 2012; 148 Ishizuka, Grebe, Shenderov, Peters, Chen, Peng, Wang, Dong, Pasquetto, Oseroff (bib18) 2009; 183 Cole, Pumphrey, Boulter, Sami, Bell, Gostick, Price, Gao, Sewell, Jakobsen (bib6) 2007; 178 Nelson, Beisang, Tubo, Dileepan, Wiesner, Nielsen, Wüthrich, Klein, Kotov, Spanier (bib35) 2015; 42 Varela-Rohena, Molloy, Dunn, Li, Suhoski, Carroll, Milicic, Mahon, Sutton, Laugel (bib51) 2008; 14 Weekes, Wills, Mynard, Carmichael, Sissons (bib54) 1999; 73 Sewell (bib46) 2012; 12 Oelke, Maus, Didiano, June, Mackensen, Schneck (bib38) 2003; 9 Trautmann, Rimbert, Echasserieau, Saulquin, Neveu, Dechanet, Cerundolo, Bonneville (bib49) 2005; 175 Stewart-Jones, McMichael, Bell, Stuart, Jones (bib48) 2003; 4 Magurran (bib27) 2004 Nguyen, Rowntree, Pellicci, Bird, Handel, Kjer-Nielsen, Kedzierska, Kotsimbos, Mifsud (bib36) 2014; 192 Gil (10.1016/j.celrep.2017.03.072_bib11) 2015; 89 Trautmann (10.1016/j.celrep.2017.03.072_bib49) 2005; 175 Rossjohn (10.1016/j.celrep.2017.03.072_bib43) 2015; 33 Schub (10.1016/j.celrep.2017.03.072_bib45) 2009; 183 Hombrink (10.1016/j.celrep.2017.03.072_bib16) 2013; 43 Nelson (10.1016/j.celrep.2017.03.072_bib35) 2015; 42 Wang (10.1016/j.celrep.2017.03.072_bib53) 2012; 4 Wooldridge (10.1016/j.celrep.2017.03.072_bib56) 2012; 287 Link (10.1016/j.celrep.2017.03.072_bib25) 2016; 184 Okonechnikov (10.1016/j.celrep.2017.03.072_bib39) 2012; 28 Hemmer (10.1016/j.celrep.2017.03.072_bib15) 1997; 185 La Gruta (10.1016/j.celrep.2017.03.072_bib21) 2013; 3 Nguyen (10.1016/j.celrep.2017.03.072_bib36) 2014; 192 Kjer-Nielsen (10.1016/j.celrep.2017.03.072_bib19) 2003; 18 Rudolph (10.1016/j.celrep.2017.03.072_bib44) 2006; 24 Clemente (10.1016/j.celrep.2017.03.072_bib5) 2012; 148 Koning (10.1016/j.celrep.2017.03.072_bib20) 2014; 405 Peggs (10.1016/j.celrep.2017.03.072_bib40) 2002; 99 Yin (10.1016/j.celrep.2017.03.072_bib58) 2012; 250 Day (10.1016/j.celrep.2017.03.072_bib8) 2011; 108 Marrack (10.1016/j.celrep.2017.03.072_bib28) 2008; 26 Magurran (10.1016/j.celrep.2017.03.072_bib27) 2004 Shugay (10.1016/j.celrep.2017.03.072_bib47) 2014; 11 Stewart-Jones (10.1016/j.celrep.2017.03.072_bib48) 2003; 4 Cole (10.1016/j.celrep.2017.03.072_bib6) 2007; 178 Oelke (10.1016/j.celrep.2017.03.072_bib38) 2003; 9 Li (10.1016/j.celrep.2017.03.072_bib24) 2016; 99 Miconnet (10.1016/j.celrep.2017.03.072_bib30) 2011; 186 Nikolich-Zugich (10.1016/j.celrep.2017.03.072_bib37) 2004; 4 Griffiths (10.1016/j.celrep.2017.03.072_bib14) 2015; 235 Wills (10.1016/j.celrep.2017.03.072_bib55) 1996; 70 Feng (10.1016/j.celrep.2017.03.072_bib10) 2007; 8 Qi (10.1016/j.celrep.2017.03.072_bib41) 2014; 111 Gras (10.1016/j.celrep.2017.03.072_bib13) 2009; 183 Ishizuka (10.1016/j.celrep.2017.03.072_bib18) 2009; 183 Sewell (10.1016/j.celrep.2017.03.072_bib46) 2012; 12 Bailey (10.1016/j.celrep.2017.03.072_bib3) 2009; 37 Cadwell (10.1016/j.celrep.2017.03.072_bib4) 2015; 42 Miles (10.1016/j.celrep.2017.03.072_bib31) 2010; 6 Turner (10.1016/j.celrep.2017.03.072_bib50) 2005; 6 Venturi (10.1016/j.celrep.2017.03.072_bib52) 2008; 8 Robins (10.1016/j.celrep.2017.03.072_bib42) 2010; 2 Deng (10.1016/j.celrep.2017.03.072_bib9) 2012; 109 Naumov (10.1016/j.celrep.2017.03.072_bib33) 2011; 186 Adams (10.1016/j.celrep.2017.03.072_bib1) 2016; 17 Araki (10.1016/j.celrep.2017.03.072_bib2) 2009; 30 Gotch (10.1016/j.celrep.2017.03.072_bib12) 1987; 326 Moss (10.1016/j.celrep.2017.03.072_bib32) 1991; 88 Laydon (10.1016/j.celrep.2017.03.072_bib23) 2015; 370 Ishizuka (10.1016/j.celrep.2017.03.072_bib17) 2008; 28 Neller (10.1016/j.celrep.2017.03.072_bib34) 2015; 93 Weekes (10.1016/j.celrep.2017.03.072_bib54) 1999; 73 Day (10.1016/j.celrep.2017.03.072_bib7) 2007; 179 Yang (10.1016/j.celrep.2017.03.072_bib57) 2015; 290 La Gruta (10.1016/j.celrep.2017.03.072_bib22) 2014; 35 Zhang (10.1016/j.celrep.2017.03.072_bib59) 2011; 35 Lissina (10.1016/j.celrep.2017.03.072_bib26) 2016; 16 Mason (10.1016/j.celrep.2017.03.072_bib29) 1998; 19 Varela-Rohena (10.1016/j.celrep.2017.03.072_bib51) 2008; 14 |
References_xml | – volume: 148 start-page: 1258 year: 2012 end-page: 1270 ident: bib5 article-title: The impact of the gut microbiota on human health: an integrative view publication-title: Cell – volume: 24 start-page: 419 year: 2006 end-page: 466 ident: bib44 article-title: How TCRs bind MHCs, peptides, and coreceptors publication-title: Annu. Rev. Immunol. – volume: 28 start-page: 171 year: 2008 end-page: 182 ident: bib17 article-title: The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vbeta domain publication-title: Immunity – volume: 178 start-page: 5727 year: 2007 end-page: 5734 ident: bib6 article-title: Human TCR-binding affinity is governed by MHC class restriction publication-title: J. Immunol. – volume: 179 start-page: 3203 year: 2007 end-page: 3213 ident: bib7 article-title: Rapid CD8 publication-title: J. Immunol. – volume: 14 start-page: 1390 year: 2008 end-page: 1395 ident: bib51 article-title: Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor publication-title: Nat. Med. – volume: 185 start-page: 1651 year: 1997 end-page: 1659 ident: bib15 article-title: Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone publication-title: J. Exp. Med. – volume: 186 start-page: 6617 year: 2011 end-page: 6624 ident: bib33 article-title: Selective T cell expansion during aging of CD8 memory repertoires to influenza revealed by modeling publication-title: J. Immunol. – volume: 109 start-page: 14960 year: 2012 end-page: 14965 ident: bib9 article-title: Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3 publication-title: Proc. Natl. Acad. Sci. USA – volume: 99 start-page: 213 year: 2002 end-page: 223 ident: bib40 article-title: Characterization of human cytomegalovirus peptide-specific CD8( publication-title: Blood – volume: 8 start-page: 975 year: 2007 end-page: 983 ident: bib10 article-title: Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’ publication-title: Nat. Immunol. – volume: 99 start-page: 505 year: 2016 end-page: 513 ident: bib24 article-title: TCRβ repertoire of CD4 publication-title: J. Leukoc. Biol. – volume: 89 start-page: 4102 year: 2015 end-page: 4116 ident: bib11 article-title: Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age publication-title: J. Virol. – volume: 183 start-page: 4337 year: 2009 end-page: 4345 ident: bib18 article-title: Quantitating T cell cross-reactivity for unrelated peptide antigens publication-title: J. Immunol. – volume: 17 start-page: 87 year: 2016 end-page: 94 ident: bib1 article-title: Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity publication-title: Nat. Immunol. – volume: 42 start-page: 95 year: 2015 end-page: 107 ident: bib35 article-title: T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity publication-title: Immunity – volume: 42 start-page: 805 year: 2015 end-page: 813 ident: bib4 article-title: The virome in host health and disease publication-title: Immunity – volume: 175 start-page: 6123 year: 2005 end-page: 6132 ident: bib49 article-title: Selection of T cell clones expressing high-affinity public TCRs within Human cytomegalovirus-specific CD8 T cell responses publication-title: J. Immunol. – volume: 18 start-page: 53 year: 2003 end-page: 64 ident: bib19 article-title: A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity publication-title: Immunity – volume: 250 start-page: 32 year: 2012 end-page: 48 ident: bib58 article-title: Structural basis for self-recognition by autoimmune T-cell receptors publication-title: Immunol. Rev. – volume: 93 start-page: 625 year: 2015 end-page: 633 ident: bib34 article-title: Naive CD8 publication-title: Immunol. Cell Biol. – volume: 30 start-page: 912 year: 2009 end-page: 925 ident: bib2 article-title: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8 publication-title: Immunity – volume: 19 start-page: 395 year: 1998 end-page: 404 ident: bib29 article-title: A very high level of crossreactivity is an essential feature of the T-cell receptor publication-title: Immunol. Today – start-page: 100 year: 2004 end-page: 130 ident: bib27 article-title: An index of diversity publication-title: Measuring Biological Diversity – volume: 186 start-page: 7039 year: 2011 end-page: 7049 ident: bib30 article-title: Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure publication-title: J. Immunol. – volume: 4 start-page: 123 year: 2004 end-page: 132 ident: bib37 article-title: The many important facets of T-cell repertoire diversity publication-title: Nat. Rev. Immunol. – volume: 4 start-page: 657 year: 2003 end-page: 663 ident: bib48 article-title: A structural basis for immunodominant human T cell receptor recognition publication-title: Nat. Immunol. – volume: 326 start-page: 881 year: 1987 end-page: 882 ident: bib12 article-title: Cytotoxic T lymphocytres recognize a fragment of influenza virus matrix protein in association with HLA-A2 publication-title: Nature – volume: 235 start-page: 288 year: 2015 end-page: 297 ident: bib14 article-title: The pathogenesis of human cytomegalovirus publication-title: J. Pathol. – volume: 16 start-page: 77 year: 2016 end-page: 85 ident: bib26 article-title: TCR clonotypes: molecular determinants of T-cell efficacy against HIV publication-title: Curr. Opin. Virol. – volume: 43 start-page: 3038 year: 2013 end-page: 3050 ident: bib16 article-title: Mixed functional characteristics correlating with TCR-ligand koff -rate of MHC-tetramer reactive T cells within the naive T-cell repertoire publication-title: Eur. J. Immunol. – volume: 287 start-page: 1168 year: 2012 end-page: 1177 ident: bib56 article-title: A single autoimmune T cell receptor recognizes more than a million different peptides publication-title: J. Biol. Chem. – volume: 2 start-page: 47ra64 year: 2010 ident: bib42 article-title: Overlap and effective size of the human CD8 publication-title: Sci. Transl. Med. – volume: 290 start-page: 29106 year: 2015 end-page: 29119 ident: bib57 article-title: Structural basis for clonal diversity of the public T cell response to a dominant human cytomegalovirus epitope publication-title: J. Biol. Chem. – volume: 183 start-page: 430 year: 2009 end-page: 437 ident: bib13 article-title: Structural bases for the affinity-driven selection of a public TCR against a dominant human cytomegalovirus epitope publication-title: J Immunol. – volume: 6 start-page: e1001198 year: 2010 ident: bib31 article-title: Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus infection publication-title: PLoS Pathog. – volume: 108 start-page: 9536 year: 2011 end-page: 9541 ident: bib8 article-title: Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8 publication-title: Proc. Natl. Acad. Sci. USA – volume: 73 start-page: 2099 year: 1999 end-page: 2108 ident: bib54 article-title: The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo publication-title: J. Virol. – volume: 70 start-page: 7569 year: 1996 end-page: 7579 ident: bib55 article-title: The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL publication-title: J. Virol. – volume: 192 start-page: 5039 year: 2014 end-page: 5049 ident: bib36 article-title: Recognition of distinct cross-reactive virus-specific CD8+ T cells reveals a unique TCR signature in a clinical setting publication-title: J. Immunol. – volume: 26 start-page: 171 year: 2008 end-page: 203 ident: bib28 article-title: Evolutionarily conserved amino acids that control TCR-MHC interaction publication-title: Annu. Rev. Immunol. – volume: 183 start-page: 6819 year: 2009 end-page: 6830 ident: bib45 article-title: CMV-specific TCR-transgenic T cells for immunotherapy publication-title: J. Immunol. – volume: 12 start-page: 669 year: 2012 end-page: 677 ident: bib46 article-title: Why must T cells be cross-reactive? publication-title: Nat. Rev. Immunol. – volume: 8 start-page: 231 year: 2008 end-page: 238 ident: bib52 article-title: The molecular basis for public T-cell responses? publication-title: Nat. Rev. Immunol. – volume: 4 start-page: 128ra42 year: 2012 ident: bib53 article-title: T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection publication-title: Sci. Transl. Med. – volume: 9 start-page: 619 year: 2003 end-page: 624 ident: bib38 article-title: Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells publication-title: Nat. Med. – volume: 37 start-page: W202 year: 2009 end-page: W208 ident: bib3 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res. – volume: 28 start-page: 1166 year: 2012 end-page: 1167 ident: bib39 article-title: Unipro UGENE: a unified bioinformatics toolkit publication-title: Bioinformatics – volume: 3 start-page: 447 year: 2013 end-page: 451 ident: bib21 article-title: Interrogating the relationship between naïve and immune antiviral T cell repertoires publication-title: Curr. Opin. Virol. – volume: 35 start-page: 161 year: 2011 end-page: 168 ident: bib59 article-title: CD8( publication-title: Immunity – volume: 88 start-page: 8987 year: 1991 end-page: 8990 ident: bib32 article-title: Extensive conservation of α and β chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 382 year: 2005 end-page: 389 ident: bib50 article-title: Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8 publication-title: Nat. Immunol. – volume: 33 start-page: 169 year: 2015 end-page: 200 ident: bib43 article-title: T cell antigen receptor recognition of antigen-presenting molecules publication-title: Annu. Rev. Immunol. – volume: 35 start-page: 396 year: 2014 end-page: 402 ident: bib22 article-title: T cell mediated immunity to influenza: mechanisms of viral control publication-title: Trends Immunol. – volume: 370 start-page: 20140291 year: 2015 ident: bib23 article-title: Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 111 start-page: 13139 year: 2014 end-page: 13144 ident: bib41 article-title: Diversity and clonal selection in the human T-cell repertoire publication-title: Proc. Natl. Acad. Sci. USA – volume: 405 start-page: 199 year: 2014 end-page: 203 ident: bib20 article-title: In vitro expansion of antigen-specific CD8( publication-title: J. Immunol. Methods – volume: 184 start-page: 389 year: 2016 end-page: 402 ident: bib25 article-title: Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8( publication-title: Clin. Exp. Immunol. – volume: 11 start-page: 653 year: 2014 end-page: 655 ident: bib47 article-title: Towards error-free profiling of immune repertoires publication-title: Nat. Methods – volume: 37 start-page: W202 year: 2009 ident: 10.1016/j.celrep.2017.03.072_bib3 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp335 – volume: 14 start-page: 1390 year: 2008 ident: 10.1016/j.celrep.2017.03.072_bib51 article-title: Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor publication-title: Nat. Med. doi: 10.1038/nm.1779 – volume: 178 start-page: 5727 year: 2007 ident: 10.1016/j.celrep.2017.03.072_bib6 article-title: Human TCR-binding affinity is governed by MHC class restriction publication-title: J. Immunol. doi: 10.4049/jimmunol.178.9.5727 – volume: 184 start-page: 389 year: 2016 ident: 10.1016/j.celrep.2017.03.072_bib25 article-title: Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8(+) T cell receptor alpha repertoire following allogeneic transplantation publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.12770 – start-page: 100 year: 2004 ident: 10.1016/j.celrep.2017.03.072_bib27 article-title: An index of diversity – volume: 28 start-page: 1166 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib39 article-title: Unipro UGENE: a unified bioinformatics toolkit publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts091 – volume: 35 start-page: 396 year: 2014 ident: 10.1016/j.celrep.2017.03.072_bib22 article-title: T cell mediated immunity to influenza: mechanisms of viral control publication-title: Trends Immunol. doi: 10.1016/j.it.2014.06.004 – volume: 24 start-page: 419 year: 2006 ident: 10.1016/j.celrep.2017.03.072_bib44 article-title: How TCRs bind MHCs, peptides, and coreceptors publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.23.021704.115658 – volume: 11 start-page: 653 year: 2014 ident: 10.1016/j.celrep.2017.03.072_bib47 article-title: Towards error-free profiling of immune repertoires publication-title: Nat. Methods doi: 10.1038/nmeth.2960 – volume: 179 start-page: 3203 year: 2007 ident: 10.1016/j.celrep.2017.03.072_bib7 article-title: Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus publication-title: J. Immunol. doi: 10.4049/jimmunol.179.5.3203 – volume: 8 start-page: 231 year: 2008 ident: 10.1016/j.celrep.2017.03.072_bib52 article-title: The molecular basis for public T-cell responses? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2260 – volume: 175 start-page: 6123 year: 2005 ident: 10.1016/j.celrep.2017.03.072_bib49 article-title: Selection of T cell clones expressing high-affinity public TCRs within Human cytomegalovirus-specific CD8 T cell responses publication-title: J. Immunol. doi: 10.4049/jimmunol.175.9.6123 – volume: 235 start-page: 288 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib14 article-title: The pathogenesis of human cytomegalovirus publication-title: J. Pathol. doi: 10.1002/path.4437 – volume: 19 start-page: 395 year: 1998 ident: 10.1016/j.celrep.2017.03.072_bib29 article-title: A very high level of crossreactivity is an essential feature of the T-cell receptor publication-title: Immunol. Today doi: 10.1016/S0167-5699(98)01299-7 – volume: 250 start-page: 32 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib58 article-title: Structural basis for self-recognition by autoimmune T-cell receptors publication-title: Immunol. Rev. doi: 10.1111/imr.12002 – volume: 99 start-page: 505 year: 2016 ident: 10.1016/j.celrep.2017.03.072_bib24 article-title: TCRβ repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.6A0215-071RR – volume: 4 start-page: 128ra42 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib53 article-title: T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3003647 – volume: 73 start-page: 2099 year: 1999 ident: 10.1016/j.celrep.2017.03.072_bib54 article-title: The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo publication-title: J. Virol. doi: 10.1128/JVI.73.3.2099-2108.1999 – volume: 35 start-page: 161 year: 2011 ident: 10.1016/j.celrep.2017.03.072_bib59 article-title: CD8(+) T cells: foot soldiers of the immune system publication-title: Immunity doi: 10.1016/j.immuni.2011.07.010 – volume: 43 start-page: 3038 year: 2013 ident: 10.1016/j.celrep.2017.03.072_bib16 article-title: Mixed functional characteristics correlating with TCR-ligand koff -rate of MHC-tetramer reactive T cells within the naive T-cell repertoire publication-title: Eur. J. Immunol. doi: 10.1002/eji.201343397 – volume: 17 start-page: 87 year: 2016 ident: 10.1016/j.celrep.2017.03.072_bib1 article-title: Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity publication-title: Nat. Immunol. doi: 10.1038/ni.3310 – volume: 9 start-page: 619 year: 2003 ident: 10.1016/j.celrep.2017.03.072_bib38 article-title: Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells publication-title: Nat. Med. doi: 10.1038/nm869 – volume: 287 start-page: 1168 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib56 article-title: A single autoimmune T cell receptor recognizes more than a million different peptides publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.289488 – volume: 186 start-page: 6617 year: 2011 ident: 10.1016/j.celrep.2017.03.072_bib33 article-title: Selective T cell expansion during aging of CD8 memory repertoires to influenza revealed by modeling publication-title: J. Immunol. doi: 10.4049/jimmunol.1100091 – volume: 186 start-page: 7039 year: 2011 ident: 10.1016/j.celrep.2017.03.072_bib30 article-title: Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure publication-title: J. Immunol. doi: 10.4049/jimmunol.1003309 – volume: 26 start-page: 171 year: 2008 ident: 10.1016/j.celrep.2017.03.072_bib28 article-title: Evolutionarily conserved amino acids that control TCR-MHC interaction publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.26.021607.090421 – volume: 6 start-page: e1001198 year: 2010 ident: 10.1016/j.celrep.2017.03.072_bib31 article-title: Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001198 – volume: 183 start-page: 6819 year: 2009 ident: 10.1016/j.celrep.2017.03.072_bib45 article-title: CMV-specific TCR-transgenic T cells for immunotherapy publication-title: J. Immunol. doi: 10.4049/jimmunol.0902233 – volume: 290 start-page: 29106 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib57 article-title: Structural basis for clonal diversity of the public T cell response to a dominant human cytomegalovirus epitope publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.691311 – volume: 108 start-page: 9536 year: 2011 ident: 10.1016/j.celrep.2017.03.072_bib8 article-title: Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1106851108 – volume: 109 start-page: 14960 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib9 article-title: Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1207186109 – volume: 88 start-page: 8987 year: 1991 ident: 10.1016/j.celrep.2017.03.072_bib32 article-title: Extensive conservation of α and β chains of the human T-cell antigen receptor recognizing HLA-A2 and influenza A matrix peptide publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.20.8987 – volume: 89 start-page: 4102 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib11 article-title: Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age publication-title: J. Virol. doi: 10.1128/JVI.03020-14 – volume: 183 start-page: 430 year: 2009 ident: 10.1016/j.celrep.2017.03.072_bib13 article-title: Structural bases for the affinity-driven selection of a public TCR against a dominant human cytomegalovirus epitope publication-title: J Immunol. doi: 10.4049/jimmunol.0900556 – volume: 70 start-page: 7569 year: 1996 ident: 10.1016/j.celrep.2017.03.072_bib55 article-title: The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL publication-title: J. Virol. doi: 10.1128/JVI.70.11.7569-7579.1996 – volume: 99 start-page: 213 year: 2002 ident: 10.1016/j.celrep.2017.03.072_bib40 article-title: Characterization of human cytomegalovirus peptide-specific CD8(+) T-cell repertoire diversity following in vitro restimulation by antigen-pulsed dendritic cells publication-title: Blood doi: 10.1182/blood.V99.1.213 – volume: 4 start-page: 657 year: 2003 ident: 10.1016/j.celrep.2017.03.072_bib48 article-title: A structural basis for immunodominant human T cell receptor recognition publication-title: Nat. Immunol. doi: 10.1038/ni942 – volume: 370 start-page: 20140291 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib23 article-title: Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2014.0291 – volume: 4 start-page: 123 year: 2004 ident: 10.1016/j.celrep.2017.03.072_bib37 article-title: The many important facets of T-cell repertoire diversity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1292 – volume: 30 start-page: 912 year: 2009 ident: 10.1016/j.celrep.2017.03.072_bib2 article-title: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells publication-title: Immunity doi: 10.1016/j.immuni.2009.05.006 – volume: 18 start-page: 53 year: 2003 ident: 10.1016/j.celrep.2017.03.072_bib19 article-title: A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity publication-title: Immunity doi: 10.1016/S1074-7613(02)00513-7 – volume: 42 start-page: 95 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib35 article-title: T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity publication-title: Immunity doi: 10.1016/j.immuni.2014.12.022 – volume: 12 start-page: 669 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib46 article-title: Why must T cells be cross-reactive? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3279 – volume: 2 start-page: 47ra64 year: 2010 ident: 10.1016/j.celrep.2017.03.072_bib42 article-title: Overlap and effective size of the human CD8+ T cell receptor repertoire publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3001442 – volume: 8 start-page: 975 year: 2007 ident: 10.1016/j.celrep.2017.03.072_bib10 article-title: Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’ publication-title: Nat. Immunol. doi: 10.1038/ni1502 – volume: 3 start-page: 447 year: 2013 ident: 10.1016/j.celrep.2017.03.072_bib21 article-title: Interrogating the relationship between naïve and immune antiviral T cell repertoires publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2013.06.011 – volume: 148 start-page: 1258 year: 2012 ident: 10.1016/j.celrep.2017.03.072_bib5 article-title: The impact of the gut microbiota on human health: an integrative view publication-title: Cell doi: 10.1016/j.cell.2012.01.035 – volume: 183 start-page: 4337 year: 2009 ident: 10.1016/j.celrep.2017.03.072_bib18 article-title: Quantitating T cell cross-reactivity for unrelated peptide antigens publication-title: J. Immunol. doi: 10.4049/jimmunol.0901607 – volume: 16 start-page: 77 year: 2016 ident: 10.1016/j.celrep.2017.03.072_bib26 article-title: TCR clonotypes: molecular determinants of T-cell efficacy against HIV publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2016.01.017 – volume: 326 start-page: 881 year: 1987 ident: 10.1016/j.celrep.2017.03.072_bib12 article-title: Cytotoxic T lymphocytres recognize a fragment of influenza virus matrix protein in association with HLA-A2 publication-title: Nature doi: 10.1038/326881a0 – volume: 405 start-page: 199 year: 2014 ident: 10.1016/j.celrep.2017.03.072_bib20 article-title: In vitro expansion of antigen-specific CD8(+) T cells distorts the T-cell repertoire publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2014.01.013 – volume: 93 start-page: 625 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib34 article-title: Naive CD8+ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2015.17 – volume: 6 start-page: 382 year: 2005 ident: 10.1016/j.celrep.2017.03.072_bib50 article-title: Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations publication-title: Nat. Immunol. doi: 10.1038/ni1175 – volume: 111 start-page: 13139 year: 2014 ident: 10.1016/j.celrep.2017.03.072_bib41 article-title: Diversity and clonal selection in the human T-cell repertoire publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1409155111 – volume: 42 start-page: 805 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib4 article-title: The virome in host health and disease publication-title: Immunity doi: 10.1016/j.immuni.2015.05.003 – volume: 28 start-page: 171 year: 2008 ident: 10.1016/j.celrep.2017.03.072_bib17 article-title: The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vbeta domain publication-title: Immunity doi: 10.1016/j.immuni.2007.12.018 – volume: 185 start-page: 1651 year: 1997 ident: 10.1016/j.celrep.2017.03.072_bib15 article-title: Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone publication-title: J. Exp. Med. doi: 10.1084/jem.185.9.1651 – volume: 33 start-page: 169 year: 2015 ident: 10.1016/j.celrep.2017.03.072_bib43 article-title: T cell antigen receptor recognition of antigen-presenting molecules publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032414-112334 – volume: 192 start-page: 5039 year: 2014 ident: 10.1016/j.celrep.2017.03.072_bib36 article-title: Recognition of distinct cross-reactive virus-specific CD8+ T cells reveals a unique TCR signature in a clinical setting publication-title: J. Immunol. doi: 10.4049/jimmunol.1303147 |
SSID | ssj0000601194 |
Score | 2.4870458 |
Snippet | A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens... A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 569 |
SubjectTerms | Adult Amino Acid Motifs Amino Acid Sequence Antibody Affinity - immunology Antigens, Viral - immunology CD8 T cells CD8-Positive T-Lymphocytes - immunology Clone Cells Complementarity Determining Regions - immunology Consensus Sequence Cytomegalovirus - immunology HLA-A2 Antigen - immunology human Humans Immunodominant Epitopes - immunology Influenza A virus - immunology Peptides - chemistry Peptides - metabolism Protein Binding Receptors, Antigen, T-Cell - chemistry Receptors, Antigen, T-Cell - immunology Species Specificity TCR repertoire TCR-pMHC structure αβ TCRs for CMV-NLV αβ TCRs for IAV-GIL |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQbwpLxmJG4pqx67tHNkuqwUJDtuCerPieAJFVVq1AWlP_HVmnKQicFiJY5yx49jjmbE98w1jr2UsrRUB6OTeZdo4yApVxGymYgi1KGuRcgN-_GQuP-sPq9nqhM2HWBhyq-xlfyfTk7TuS6b9aE536_V0kePeBbUTXSMLrQuKKFfapSC-1dnxnIXwRmTKh0j0GVUYIuiSm1cFmz0QcKW0Ce3U5iMNlYD8R4rqX0P0b3_KPxTUxV12p7cs-duu8_fYCTT32a0u1-T1A_Zr0TtN87KJfJFgYwlyg3ewJHDgV_ATrUZ-Tqu-qdpER24gm2ssI-8N4OnIn8_P3Ru-nF9hjR3s2y2O4IG3W_6eYk1wm9t51_Av6675lgA_Dw_Z8uLdcn6Z9dkXsmqWF22mQehKBhMEKjppyzhD0zaAiZUwVA4RBOhYVtGUxjgRI679SGkKgwxOqEfstNk28IRxqFV0BaBxohVuV2UoQEYwdalA1a52E6aGAfdVj0xOCTI2fnBB--67afI0TV4oj9M0Ydmx1q5D5riB_ozm8khLuNqpYLv_6nvG8ihuQ2VrC2Ra1saGCnQhdZA21HVemwmzAyf4EZtiU-sbPv9qYByPK5iuZcoGtj8OXjo02RzKUaR53DHSsZNoPORK5QK_O2Kx0V-M3zTrbwklfKZtjhL36X_3-Bm7TU90dSbdc3aKjAkv0AJrw8u0xH4Dlrgw4Q priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqVkhcEG-Wl4zEDQXZcWI7B4RgS1WQyqHdot6sOB7DolW27AbEnvrXmcljITzUC1fHdmJ7Hp_j8TeMPZWhNEZ4oD_3Nsm0haRQRUhyFbyPooyizQ149F4fnmbvzvKzHTbkbO0ncP3XrR3lkzpdLZ5__7J5iQr_4mesVgWLFRD7pDQtZalBo7yHvsmQqh71gL-zzcRxRkfNaUqxXGlmhvt0_-ho5K9aWv-R2_oTlv4eXfmLuzq4zq71OJO_6gTjBtuB-ia70mWe3NxiFyd9CDUv68BPWhJZIuDgHUkJrPkxfEMMyffJBtRV09ajoJDFBssolgN4ewDAp_v2GZ9Nj7HFOayaJdrQNW-W_C3dPMFNbxdrwz_Mu-4bov9c32azgzez6WHS52JIqjwtmiQDkVXSay_Q7UlThhyBrgcdKqGpHAIIyEJZBV1qbUUIaAkCJS300luh7rDdelnDPcYhqmALQKiSKdy8Sl-ADKBjqUBFG-2EqWHCXdXzlFO6jIUbAtI-u26ZHC2TE8rhMk1Ysm113vF0XFL_Na3lti6xbLcFy9VH1yutQ-PrKxMNENCM2vgKskJmXhofYxr1hJlBElwPWDoggl3NL3n9k0FwHOozHdKUNSy_rp20COAsWlWsc7cTpO1HIpRIlUoFvnckYqNRjJ_U808tZ3iemRTt7_3_MewH7CoNhc7UpH3IdlFG4RFCs8Y_brXtB5XqOTI priority: 102 providerName: Scholars Portal |
Title | Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8+ TCR Repertoires to Immunodominant Viral Antigens |
URI | https://dx.doi.org/10.1016/j.celrep.2017.03.072 https://www.ncbi.nlm.nih.gov/pubmed/28423320 https://www.proquest.com/docview/1891088802 https://pubmed.ncbi.nlm.nih.gov/PMC5472051 https://doaj.org/article/376bc7f7e0154f67bce4914b17bff2f6 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG_KS0bihiLs2I2dI9tltYu0HHYL6s2K47EoqtLVNiDtib_OjJ1ULRx64ZKD4zwcz3g-21--YeydDI0xwgOt3NtCVxaKWtWhmKrgfRRNFCk34MWX6uyr_ryYLnZSfREnLMsD5w_3AR3AtyYaoGAfK-Nb0LXUXhofYxmT2DbGvJ3JVB6DScuMtpTLkjhbpTbjf3OJ3NXC6gZIrlKapHFqyr24lOT798LTv_DzbxblTlg6fcDuD3iSf8zteMjuQPeI3c0ZJm8fs99XA1WaN13gV0ksloQ2eBYjgQ2_hF-IFfkJ-XrX9qkekT9Wt1hGnA3gaaGfz07sez6fXeIV13DTr3Gs3PB-zc_pDxOc3GZODf-2zLfvSeZz84TNTz_NZ2fFkHOhaKdl3RcahG6lr7zA8CZNE6YIaD1UoRUVlUMAATo0baiaqrIiBPT4QMkJvfRWqKfsqFt38JxxiCrYGhCSaIWTVOlrkAGq2ChQ0UY7YWr84K4d9MgpLcbKjcSzHy53k6NuckI57KYJK7ZXXWc9jgP1j6kvt3VJTTsVoI25wcbcIRubMDNaghuASQYceKvlgce_HQ3Hod_SZkzTwfrnxkmLQM3i6Il1nmVD2r4kQoZSqVLgc_dMbK8V-2e65fekDT7VpsRx9sX_aPZLdo-aQgtO0r5iR2ij8BohWO_fJG_D4_niGI8X2v4BbAgyEg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRYi9IN5bnkbihqLacRonR7bLqoXdPWwL6s2K4zEUVWnVBqQ98deZcZKKwGElrn7Fscczn-3xN4y9la7QWligk_ssStIMolzlLhopZ60XhRchNuDFZTr5nHxcjBYHbNy9hSG3ylb3Nzo9aOs2ZdiO5nCzXA5nMe5d0DrRNbJIklzfYrcRDWiK3zBdnOwPWohwRIaAiFQhohrdE7rg51XCagvEXCl1oDvVcc9EBSb_nqX6F4n-7VD5h4U6u8_utdCSv296_4AdQPWQ3WmCTV4_Yr9mrdc0LyrHZ4E3ljg3eMNLAjt-BT8RNvJTWvZVWYdy5AeyusY0ct8AHs78-fg0e8fn4yussYFtvcYh3PF6zaf02AT3uY17Df-ybJqvifFz95jNzz7Mx5OoDb8QlaM4r6MERFJKm1qBlk7qwo0Q21pIXSlSSgcHAhJXlC4t0jQTzuHidxSn0EqbCfWEHVbrCo4ZB69clgOik0ThflXaHKSD1BcKlM98NmCqG3BTttTkFCFjZToftO-mmSZD02SEMjhNAxbta20aao4byp_QXO7LErF2SFhvv5pWsgzqW1tqr4GwpU-1LSHJZWKltt7HPh0w3UmC6ckpNrW84fNvOsExuITpXqaoYP1jZ2SGmC1DRYplnjaCtO8koodYqVjgd3si1vuLfk61_BZowkeJjlHlPvvvHr9mdyfzi3NzPr389JwdUQ7do8nsBTtEIYWXCMdq-yost9_dCDQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+and+Structural+Analyses+Reveal+Distinct+and+Highly+Diverse+Human+CD8%2B+TCR+Repertoires+to+Immunodominant+Viral+Antigens&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Guobing+Chen&rft.au=Xinbo+Yang&rft.au=Annette+Ko&rft.au=Xiaoping+Sun&rft.date=2017-04-18&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=19&rft.issue=3&rft.spage=569&rft.epage=583&rft_id=info:doi/10.1016%2Fj.celrep.2017.03.072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_376bc7f7e0154f67bce4914b17bff2f6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |