Continuous Histone Replacement by Hira Is Essential for Normal Transcriptional Regulation and De Novo DNA Methylation during Mouse Oogenesis
The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira i...
Saved in:
Published in | Molecular cell Vol. 60; no. 4; pp. 611 - 625 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.11.2015
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.
[Display omitted]
•Histone H3/H4 replacement is continuous and mediated by Hira during mouse oogenesis•Loss of Hira results in chromatin abnormalities and extensive oocyte loss•Hira depletion reduces histone load, which prevents normal transcriptional regulation•Hira-mediated histone replacement is required for normal 5mC deposition in oocytes
To address the extent to which basic cellular processes depend on replication-independent chromatin assembly in vivo, Nashun et al. deleted histone H3.3 chaperone Hira during mouse oogenesis. Their results demonstrate a critical relationship between continuing histone replacement, chromatin homeostasis, transcriptional regulation, and de novo DNA methylation. |
---|---|
AbstractList | The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo. The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo. [Display omitted] •Histone H3/H4 replacement is continuous and mediated by Hira during mouse oogenesis•Loss of Hira results in chromatin abnormalities and extensive oocyte loss•Hira depletion reduces histone load, which prevents normal transcriptional regulation•Hira-mediated histone replacement is required for normal 5mC deposition in oocytes To address the extent to which basic cellular processes depend on replication-independent chromatin assembly in vivo, Nashun et al. deleted histone H3.3 chaperone Hira during mouse oogenesis. Their results demonstrate a critical relationship between continuing histone replacement, chromatin homeostasis, transcriptional regulation, and de novo DNA methylation. The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo. • Histone H3/H4 replacement is continuous and mediated by Hira during mouse oogenesis • Loss of Hira results in chromatin abnormalities and extensive oocyte loss • Hira depletion reduces histone load, which prevents normal transcriptional regulation • Hira-mediated histone replacement is required for normal 5mC deposition in oocytes To address the extent to which basic cellular processes depend on replication-independent chromatin assembly in vivo, Nashun et al. deleted histone H3.3 chaperone Hira during mouse oogenesis. Their results demonstrate a critical relationship between continuing histone replacement, chromatin homeostasis, transcriptional regulation, and de novo DNA methylation. |
Author | Hill, Peter W.S. Festenstein, Richard J. Clark, Stephen J. Smallwood, Sebastien A. Sharma, Vineet Pelczar, Pawel Nashun, Buhe Ndjetehe, Elodie Dharmalingam, Gopuraja Amouroux, Rachel Kelsey, Gavin Hajkova, Petra |
AuthorAffiliation | 2 Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK 3 Department of Medicine, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK 4 Transgenic and Reproductive Techniques Laboratory, Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland 5 Centre for Trophoblast Research, University of Cambridge, Cambridge CB22 3AT, UK 1 Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK |
AuthorAffiliation_xml | – name: 3 Department of Medicine, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK – name: 1 Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – name: 2 Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK – name: 5 Centre for Trophoblast Research, University of Cambridge, Cambridge CB22 3AT, UK – name: 4 Transgenic and Reproductive Techniques Laboratory, Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland |
Author_xml | – sequence: 1 givenname: Buhe surname: Nashun fullname: Nashun, Buhe organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 2 givenname: Peter W.S. surname: Hill fullname: Hill, Peter W.S. organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 3 givenname: Sebastien A. surname: Smallwood fullname: Smallwood, Sebastien A. organization: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK – sequence: 4 givenname: Gopuraja surname: Dharmalingam fullname: Dharmalingam, Gopuraja organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 5 givenname: Rachel surname: Amouroux fullname: Amouroux, Rachel organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 6 givenname: Stephen J. surname: Clark fullname: Clark, Stephen J. organization: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK – sequence: 7 givenname: Vineet surname: Sharma fullname: Sharma, Vineet organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 8 givenname: Elodie surname: Ndjetehe fullname: Ndjetehe, Elodie organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 9 givenname: Pawel surname: Pelczar fullname: Pelczar, Pawel organization: Transgenic and Reproductive Techniques Laboratory, Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland – sequence: 10 givenname: Richard J. surname: Festenstein fullname: Festenstein, Richard J. organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK – sequence: 11 givenname: Gavin surname: Kelsey fullname: Kelsey, Gavin organization: Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK – sequence: 12 givenname: Petra surname: Hajkova fullname: Hajkova, Petra email: petra.hajkova@csc.mrc.ac.uk organization: Medical Research Council Clinical Sciences Centre (MRC CSC), Faculty of Medicine, Imperial College London, London W12 0NN, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26549683$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uclu2zAQJYoUzdL-QVHw2IsdLiJlXQoETtoEyAIE6ZngMnJoSKRLSgb8D_noUrCbppeeOPNm5r0ZvlN0FGIAhD5TMqeEyvP1vI-dhW7OCBUFmhNK3qETSpp6VlFZHR1iVktxjE5zXhNCK7FoPqBjJkXVyAU_QS_LGAYfxjhmfO3zUDTwI2w6baGHMGCzK3DS-Cbjq5wL4nWH25jwfUx9CZ-SDtkmvxl8DCV_hNXY6SnBOjh8CaVxG_Hl_QW-g-F5d6i5MfmwwndFFvBDXEGA7PNH9L7VXYZPh_cM_fx-9bS8nt0-_LhZXtzOrGDNMOOGk1q3wI10nHLiiAbjWk0bYVxVW6OppExaZijYlopKuoV0DupGt8waxs_Qtz3vZjQ9OFvOSrpTm-R7nXYqaq_-rQT_rFZxqypZMyomgq8HghR_jZAH1ftcvOh0gHKSojUXDRE146W12rfaFHNO0L7KUKImI9Va7Y1Uk5ETWowsY1_ervg69Me5vzdA-aith6Sy9RAsOJ_ADspF_3-F36Q9t1M |
CitedBy_id | crossref_primary_10_1042_EBC20180060 crossref_primary_10_1007_s00439_020_02252_1 crossref_primary_10_1083_jcb_201610014 crossref_primary_10_1016_j_celrep_2017_07_011 crossref_primary_10_3390_ijms22031313 crossref_primary_10_3390_biom13121750 crossref_primary_10_1016_j_exphem_2017_01_003 crossref_primary_10_1016_j_gde_2015_12_002 crossref_primary_10_1038_s41467_021_24153_1 crossref_primary_10_1186_s13073_019_0694_y crossref_primary_10_1530_REP_16_0376 crossref_primary_10_1007_s00018_024_05185_4 crossref_primary_10_1242_dev_141390 crossref_primary_10_1371_journal_pgen_1007042 crossref_primary_10_3389_fcell_2022_826892 crossref_primary_10_1002_mrd_22939 crossref_primary_10_1038_ng_3945 crossref_primary_10_1016_j_molcel_2016_04_006 crossref_primary_10_1038_s41588_019_0428_5 crossref_primary_10_1038_s41419_021_04272_9 crossref_primary_10_1186_s13072_018_0200_6 crossref_primary_10_1186_s12958_021_00776_3 crossref_primary_10_1247_csf_17001 crossref_primary_10_1016_j_stemcr_2021_06_009 crossref_primary_10_1093_genetics_iyad106 crossref_primary_10_12688_f1000research_21513_1 crossref_primary_10_1038_ncomms15775 crossref_primary_10_1007_s10815_016_0706_4 crossref_primary_10_1038_nprot_2016_187 crossref_primary_10_1016_j_gde_2021_01_008 crossref_primary_10_2139_ssrn_3869899 crossref_primary_10_1016_j_celrep_2021_109406 crossref_primary_10_1016_j_jmb_2016_11_019 crossref_primary_10_1038_s41598_021_89052_3 crossref_primary_10_1038_s41594_017_0013_5 crossref_primary_10_1016_j_celrep_2017_08_088 crossref_primary_10_1007_s00412_019_00704_w crossref_primary_10_1016_j_cub_2016_02_061 crossref_primary_10_1007_s00412_017_0640_y crossref_primary_10_1038_s41580_020_0262_8 crossref_primary_10_1007_s11427_019_1572_7 crossref_primary_10_1038_s41467_023_39477_3 crossref_primary_10_1073_pnas_1610646113 crossref_primary_10_2217_epi_2016_0056 crossref_primary_10_1016_j_celrep_2022_111393 crossref_primary_10_1038_s41594_020_00521_1 crossref_primary_10_3389_fcell_2022_767773 crossref_primary_10_1093_nar_gkx817 crossref_primary_10_1042_EBC20190043 crossref_primary_10_3390_ani8050071 crossref_primary_10_1016_j_cub_2023_07_032 crossref_primary_10_1093_nar_gkx696 crossref_primary_10_1093_biolre_ioac091 crossref_primary_10_1038_s41586_020_2552_x crossref_primary_10_1073_pnas_2114743118 crossref_primary_10_3177_jnsv_62_375 crossref_primary_10_1016_j_celrep_2016_09_074 crossref_primary_10_1080_15592294_2020_1741777 crossref_primary_10_1016_j_celrep_2022_111365 crossref_primary_10_1101_cshperspect_a039677 crossref_primary_10_3390_cells13040320 crossref_primary_10_1016_j_cub_2015_12_073 crossref_primary_10_1098_rsob_160207 crossref_primary_10_3390_cells12242828 crossref_primary_10_1038_s10038_018_0433_z crossref_primary_10_1038_s41580_018_0008_z crossref_primary_10_1083_jcb_201807044 crossref_primary_10_1002_advs_202308018 crossref_primary_10_1038_s41467_021_24036_5 crossref_primary_10_1242_dev_200044 crossref_primary_10_1016_j_celrep_2020_01_062 crossref_primary_10_1186_s13059_023_02867_3 crossref_primary_10_1262_jrd_2022_122 crossref_primary_10_1186_s12915_018_0573_9 crossref_primary_10_1186_s13072_021_00430_7 crossref_primary_10_1038_s41598_019_42179_w crossref_primary_10_1002_1873_3468_12343 crossref_primary_10_1016_j_ygeno_2023_110685 crossref_primary_10_3389_fcell_2020_597498 |
Cites_doi | 10.1242/dev.051805 10.1095/biolreprod.104.031757 10.1242/dev.095513 10.1128/MCB.24.10.4309-4320.2004 10.1016/j.cell.2013.08.061 10.1371/journal.pgen.1004964 10.1016/j.ydbio.2006.01.008 10.1038/nature02633 10.1038/nbt.1621 10.1016/j.tig.2011.09.004 10.1074/jbc.M109.089433 10.1016/S1097-2765(02)00526-9 10.1016/j.devcel.2014.06.022 10.1371/journal.pgen.1003439 10.1002/mc.2940050406 10.1038/46567 10.1387/ijdb.120152gk 10.1016/j.cell.2010.01.004 10.1038/ng.864 10.1074/jbc.M512170200 10.1371/journal.pgen.1002440 10.1038/nsmb.2461 10.1016/j.cell.2010.01.003 10.1016/j.ccr.2014.07.028 10.1038/nsmb.2839 10.1016/j.cub.2009.09.021 10.1128/MCB.00698-09 10.1186/s13059-015-0769-z 10.1038/ng1637 10.1038/nmeth.3035 10.1016/j.tibs.2014.10.004 10.1016/S0092-8674(03)01064-X 10.1038/ncb2089 10.1038/nature13899 10.1186/gb-2013-14-10-r121 10.1016/j.ydbio.2005.08.023 10.1016/j.cell.2006.08.049 10.1073/pnas.1635158100 10.1101/gad.347705 10.1038/nrg3673 10.1371/journal.pgen.1002279 10.1101/gad.495809 10.1016/j.neuron.2015.06.014 10.1186/1756-8935-6-7 10.1126/science.1186777 10.1038/nature04059 10.1038/nrm3531 10.1038/nature14176 10.1126/science.1187945 10.1016/j.celrep.2013.03.026 10.1146/annurev-biochem-060713-035536 10.1016/j.cub.2009.05.048 10.1016/j.cell.2013.08.029 |
ContentType | Journal Article |
Copyright | 2015 The Authors Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. 2015 The Authors 2015 |
Copyright_xml | – notice: 2015 The Authors – notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2015 The Authors 2015 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.molcel.2015.10.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 625 |
ExternalDocumentID | 10_1016_j_molcel_2015_10_010 26549683 S1097276515007777 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/J007943/1 – fundername: Medical Research Council grantid: MC_U120081321 – fundername: Medical Research Council grantid: MC_US_A652_5PY70 – fundername: Medical Research Council grantid: MR/K011332/1 – fundername: Medical Research Council grantid: MC_U120092689 – fundername: Biotechnology and Biological Sciences Research Council |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 0SF AAHBH AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM .55 .GJ 29M 3O- 53G 5VS AAIKJ AAQFI AAQXK AAYXX ADMUD CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c529t-3b307afe3b6d3130d0aebdfa195bd47cba16126c2b1ecf1546d86dde79af2cb23 |
IEDL.DBID | ABVKL |
ISSN | 1097-2765 |
IngestDate | Tue Sep 17 21:25:50 EDT 2024 Fri Oct 25 23:58:21 EDT 2024 Thu Sep 26 17:40:13 EDT 2024 Sat Sep 28 08:29:42 EDT 2024 Fri Feb 23 02:30:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-3b307afe3b6d3130d0aebdfa195bd47cba16126c2b1ecf1546d86dde79af2cb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: TMCF, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276515007777 |
PMID | 26549683 |
PQID | 1735905723 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4672152 proquest_miscellaneous_1735905723 crossref_primary_10_1016_j_molcel_2015_10_010 pubmed_primary_26549683 elsevier_sciencedirect_doi_10_1016_j_molcel_2015_10_010 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-19 |
PublicationDateYYYYMMDD | 2015-11-19 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Smallwood, Kelsey (bib42) 2012; 28 Tomizawa, Nowacka-Woszuk, Kelsey (bib48) 2012; 56 De La Fuente (bib10) 2006; 292 Greenall, Williams, Martin, Palmer, Gray, Liu, Whitehall (bib14) 2006; 281 Yang, Han, De Carvalho, Lay, Jones, Liang (bib53) 2014; 26 Akiyama, Suzuki, Matsuda, Aoki (bib2) 2011; 7 Li, Albertini (bib25) 2013; 14 Polo, Roche, Almouzni (bib36) 2006; 127 Adam, Polo, Almouzni (bib1) 2013; 155 Ray-Gallet, Quivy, Scamps, Martini, Lipinski, Almouzni (bib38) 2002; 9 Smallwood, Tomizawa, Krueger, Ruf, Carli, Segonds-Pichon, Sato, Hata, Andrews, Kelsey (bib43) 2011; 43 Dhayalan, Rajavelu, Rathert, Tamas, Jurkowska, Ragozin, Jeltsch (bib12) 2010; 285 Kraushaar, Jin, Maunakea, Abraham, Ha, Zhao (bib23) 2013; 14 Bush, Yuen, Barrilleaux, Riggs, O’Geen, Cotterman, Knoepfler (bib8) 2013; 6 Ransom, Dennehey, Tyler (bib37) 2010; 140 Wyrick, Holstege, Jennings, Causton, Shore, Grunstein, Lander, Young (bib52) 1999; 402 Shirane, Toh, Kobayashi, Miura, Chiba, Ito, Kono, Sasaki (bib41) 2013; 9 Gurard-Levin, Quivy, Almouzni (bib16) 2014; 83 Smallwood, Lee, Angermueller, Krueger, Saadeh, Peat, Andrews, Stegle, Reik, Kelsey (bib44) 2014; 11 Santenard, Ziegler-Birling, Koch, Tora, Bannister, Torres-Padilla (bib40) 2010; 12 Hajkova, Jeffries, Lee, Miller, Jackson, Surani (bib17) 2010; 329 Guo, Wang, Li, Ding, Xiao, Yin, He, Shi, Dong, Li (bib15) 2015; 517 Tang, Jacobs, Mattiske, Soh, Graham, Tran, Lim, Hudson, Kalitsis, O’Bryan (bib46) 2015; 11 Trapnell, Williams, Pertea, Mortazavi, Kwan, van Baren, Salzberg, Wold, Pachter (bib49) 2010; 28 Blackwell, Martin, Greenall, Pidoux, Allshire, Whitehall (bib6) 2004; 24 Lin, Koh, Wong, Conti, Ramalho-Santos (bib27) 2014; 30 Ljungman, Hanawalt (bib28) 1992; 5 Sakai, Schwartz, Goldstein, Ahmad (bib39) 2009; 19 Baubec, Colombo, Wirbelauer, Schmidt, Burger, Krebs, Akalin, Schübeler (bib5) 2015; 520 Goldberg, Banaszynski, Noh, Lewis, Elsaesser, Stadler, Dewell, Law, Guo, Li (bib13) 2010; 140 Maze, Wenderski, Noh, Bagot, Tzavaras, Purushothaman, Elsässer, Guo, Ionete, Hurd (bib31) 2015; 87 Tagami, Ray-Gallet, Almouzni, Nakatani (bib45) 2004; 116 Hoek, Stillman (bib19) 2003; 100 Inoue, Zhang (bib20) 2014; 21 Lin, Conti, Ramalho-Santos (bib26) 2013; 140 Veselovska, Smallwood, Saadeh, Stewart, Krueger, Maupetit-Méhouas, Arnaud, Tomizawa, Andrews, Kelsey (bib50) 2015; 16 Lan, Xu, Cooney (bib24) 2004; 71 Wirbelauer, Bell, Schübeler (bib51) 2005; 19 Deal, Henikoff, Henikoff (bib11) 2010; 328 Teves, Weber, Henikoff (bib47) 2014; 39 Kobayashi, Sakurai, Imai, Takahashi, Fukuda, Yayoi, Sato, Nakabayashi, Hata, Sotomaru (bib22) 2012; 8 Anderson, Wardle, Korkut, Murton, López-Maury, Bähler, Whitehall (bib3) 2009; 29 Kaneda, Okano, Hata, Sado, Tsujimoto, Li, Sasaki (bib21) 2004; 429 Loppin, Bonnefoy, Anselme, Laurençon, Karr, Couble (bib29) 2005; 437 Hödl, Basler (bib18) 2009; 19 Maze, Noh, Soshnev, Allis (bib30) 2014; 15 Chotalia, Smallwood, Ruf, Dawson, Lucifero, Frontera, James, Dean, Kelsey (bib9) 2009; 23 Mito, Henikoff, Henikoff (bib32) 2005; 37 Pchelintsev, McBryan, Rai, van Tuyn, Ray-Gallet, Almouzni, Adams (bib35) 2013; 3 Burgess, Zhang (bib7) 2013; 20 Pan, O’brien, Wigglesworth, Eppig, Schultz (bib34) 2005; 286 Banaszynski, Wen, Dewell, Whitcomb, Lin, Diaz, Elsässer, Chapgier, Goldberg, Canaani (bib4) 2013; 155 Nashun, Yukawa, Liu, Akiyama, Aoki (bib33) 2010; 137 26643846 - Nat Struct Mol Biol. 2015 Dec;22(12):947 Adam (10.1016/j.molcel.2015.10.010_bib1) 2013; 155 Maze (10.1016/j.molcel.2015.10.010_bib31) 2015; 87 Gurard-Levin (10.1016/j.molcel.2015.10.010_bib16) 2014; 83 Smallwood (10.1016/j.molcel.2015.10.010_bib43) 2011; 43 Yang (10.1016/j.molcel.2015.10.010_bib53) 2014; 26 Ray-Gallet (10.1016/j.molcel.2015.10.010_bib38) 2002; 9 Chotalia (10.1016/j.molcel.2015.10.010_bib9) 2009; 23 Kraushaar (10.1016/j.molcel.2015.10.010_bib23) 2013; 14 Banaszynski (10.1016/j.molcel.2015.10.010_bib4) 2013; 155 Greenall (10.1016/j.molcel.2015.10.010_bib14) 2006; 281 Ljungman (10.1016/j.molcel.2015.10.010_bib28) 1992; 5 Li (10.1016/j.molcel.2015.10.010_bib25) 2013; 14 Anderson (10.1016/j.molcel.2015.10.010_bib3) 2009; 29 Bush (10.1016/j.molcel.2015.10.010_bib8) 2013; 6 Inoue (10.1016/j.molcel.2015.10.010_bib20) 2014; 21 Wyrick (10.1016/j.molcel.2015.10.010_bib52) 1999; 402 Trapnell (10.1016/j.molcel.2015.10.010_bib49) 2010; 28 Smallwood (10.1016/j.molcel.2015.10.010_bib42) 2012; 28 Kobayashi (10.1016/j.molcel.2015.10.010_bib22) 2012; 8 Polo (10.1016/j.molcel.2015.10.010_bib36) 2006; 127 Lin (10.1016/j.molcel.2015.10.010_bib27) 2014; 30 Loppin (10.1016/j.molcel.2015.10.010_bib29) 2005; 437 Hoek (10.1016/j.molcel.2015.10.010_bib19) 2003; 100 Blackwell (10.1016/j.molcel.2015.10.010_bib6) 2004; 24 Hödl (10.1016/j.molcel.2015.10.010_bib18) 2009; 19 Teves (10.1016/j.molcel.2015.10.010_bib47) 2014; 39 Dhayalan (10.1016/j.molcel.2015.10.010_bib12) 2010; 285 Akiyama (10.1016/j.molcel.2015.10.010_bib2) 2011; 7 Ransom (10.1016/j.molcel.2015.10.010_bib37) 2010; 140 De La Fuente (10.1016/j.molcel.2015.10.010_bib10) 2006; 292 Nashun (10.1016/j.molcel.2015.10.010_bib33) 2010; 137 Deal (10.1016/j.molcel.2015.10.010_bib11) 2010; 328 Hajkova (10.1016/j.molcel.2015.10.010_bib17) 2010; 329 Baubec (10.1016/j.molcel.2015.10.010_bib5) 2015; 520 Burgess (10.1016/j.molcel.2015.10.010_bib7) 2013; 20 Maze (10.1016/j.molcel.2015.10.010_bib30) 2014; 15 Tomizawa (10.1016/j.molcel.2015.10.010_bib48) 2012; 56 Mito (10.1016/j.molcel.2015.10.010_bib32) 2005; 37 Sakai (10.1016/j.molcel.2015.10.010_bib39) 2009; 19 Lan (10.1016/j.molcel.2015.10.010_bib24) 2004; 71 Pchelintsev (10.1016/j.molcel.2015.10.010_bib35) 2013; 3 Shirane (10.1016/j.molcel.2015.10.010_bib41) 2013; 9 Guo (10.1016/j.molcel.2015.10.010_bib15) 2015; 517 Pan (10.1016/j.molcel.2015.10.010_bib34) 2005; 286 Wirbelauer (10.1016/j.molcel.2015.10.010_bib51) 2005; 19 Tang (10.1016/j.molcel.2015.10.010_bib46) 2015; 11 Smallwood (10.1016/j.molcel.2015.10.010_bib44) 2014; 11 Lin (10.1016/j.molcel.2015.10.010_bib26) 2013; 140 Goldberg (10.1016/j.molcel.2015.10.010_bib13) 2010; 140 Tagami (10.1016/j.molcel.2015.10.010_bib45) 2004; 116 Santenard (10.1016/j.molcel.2015.10.010_bib40) 2010; 12 Kaneda (10.1016/j.molcel.2015.10.010_bib21) 2004; 429 Veselovska (10.1016/j.molcel.2015.10.010_bib50) 2015; 16 |
References_xml | – volume: 11 start-page: e1004964 year: 2015 ident: bib46 article-title: Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice publication-title: PLoS Genet. contributor: fullname: O’Bryan – volume: 140 start-page: 678 year: 2010 end-page: 691 ident: bib13 article-title: Distinct factors control histone variant H3.3 localization at specific genomic regions publication-title: Cell contributor: fullname: Li – volume: 11 start-page: 817 year: 2014 end-page: 820 ident: bib44 article-title: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity publication-title: Nat. Methods contributor: fullname: Kelsey – volume: 23 start-page: 105 year: 2009 end-page: 117 ident: bib9 article-title: Transcription is required for establishment of germline methylation marks at imprinted genes publication-title: Genes Dev. contributor: fullname: Kelsey – volume: 37 start-page: 1090 year: 2005 end-page: 1097 ident: bib32 article-title: Genome-scale profiling of histone H3.3 replacement patterns publication-title: Nat. Genet. contributor: fullname: Henikoff – volume: 12 start-page: 853 year: 2010 end-page: 862 ident: bib40 article-title: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 publication-title: Nat. Cell Biol. contributor: fullname: Torres-Padilla – volume: 281 start-page: 8732 year: 2006 end-page: 8739 ident: bib14 article-title: Hip3 interacts with the HIRA proteins Hip1 and Slm9 and is required for transcriptional silencing and accurate chromosome segregation publication-title: J. Biol. Chem. contributor: fullname: Whitehall – volume: 19 start-page: 1816 year: 2009 end-page: 1820 ident: bib39 article-title: Transcriptional and developmental functions of the H3.3 histone variant in Drosophila publication-title: Curr. Biol. contributor: fullname: Ahmad – volume: 517 start-page: 640 year: 2015 end-page: 644 ident: bib15 article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A publication-title: Nature contributor: fullname: Li – volume: 15 start-page: 259 year: 2014 end-page: 271 ident: bib30 article-title: Every amino acid matters: essential contributions of histone variants to mammalian development and disease publication-title: Nat. Rev. Genet. contributor: fullname: Allis – volume: 429 start-page: 900 year: 2004 end-page: 903 ident: bib21 article-title: Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting publication-title: Nature contributor: fullname: Sasaki – volume: 16 start-page: 209 year: 2015 ident: bib50 article-title: Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape publication-title: Genome Biol. contributor: fullname: Kelsey – volume: 20 start-page: 14 year: 2013 end-page: 22 ident: bib7 article-title: Histone chaperones in nucleosome assembly and human disease publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Zhang – volume: 140 start-page: 183 year: 2010 end-page: 195 ident: bib37 article-title: Chaperoning histones during DNA replication and repair publication-title: Cell contributor: fullname: Tyler – volume: 87 start-page: 77 year: 2015 end-page: 94 ident: bib31 article-title: Critical Role of Histone Turnover in Neuronal Transcription and Plasticity publication-title: Neuron contributor: fullname: Hurd – volume: 140 start-page: 3624 year: 2013 end-page: 3634 ident: bib26 article-title: Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development publication-title: Development contributor: fullname: Ramalho-Santos – volume: 402 start-page: 418 year: 1999 end-page: 421 ident: bib52 article-title: Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast publication-title: Nature contributor: fullname: Young – volume: 286 start-page: 493 year: 2005 end-page: 506 ident: bib34 article-title: Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro publication-title: Dev. Biol. contributor: fullname: Schultz – volume: 5 start-page: 264 year: 1992 end-page: 269 ident: bib28 article-title: Efficient protection against oxidative DNA damage in chromatin publication-title: Mol. Carcinog. contributor: fullname: Hanawalt – volume: 116 start-page: 51 year: 2004 end-page: 61 ident: bib45 article-title: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis publication-title: Cell contributor: fullname: Nakatani – volume: 21 start-page: 609 year: 2014 end-page: 616 ident: bib20 article-title: Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes publication-title: Nat. Struct. Mol. Biol. contributor: fullname: Zhang – volume: 6 start-page: 7 year: 2013 ident: bib8 article-title: Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development publication-title: Epigenetics Chromatin contributor: fullname: Knoepfler – volume: 24 start-page: 4309 year: 2004 end-page: 4320 ident: bib6 article-title: The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres publication-title: Mol. Cell. Biol. contributor: fullname: Whitehall – volume: 83 start-page: 487 year: 2014 end-page: 517 ident: bib16 article-title: Histone chaperones: assisting histone traffic and nucleosome dynamics publication-title: Annu. Rev. Biochem. contributor: fullname: Almouzni – volume: 127 start-page: 481 year: 2006 end-page: 493 ident: bib36 article-title: New histone incorporation marks sites of UV repair in human cells publication-title: Cell contributor: fullname: Almouzni – volume: 155 start-page: 94 year: 2013 end-page: 106 ident: bib1 article-title: Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA publication-title: Cell contributor: fullname: Almouzni – volume: 9 start-page: e1003439 year: 2013 ident: bib41 article-title: Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases publication-title: PLoS Genet. contributor: fullname: Sasaki – volume: 7 start-page: e1002279 year: 2011 ident: bib2 article-title: Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos publication-title: PLoS Genet. contributor: fullname: Aoki – volume: 28 start-page: 511 year: 2010 end-page: 515 ident: bib49 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. contributor: fullname: Pachter – volume: 30 start-page: 268 year: 2014 end-page: 279 ident: bib27 article-title: Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote publication-title: Dev. Cell contributor: fullname: Ramalho-Santos – volume: 28 start-page: 33 year: 2012 end-page: 42 ident: bib42 article-title: De novo DNA methylation: a germ cell perspective publication-title: Trends Genet. contributor: fullname: Kelsey – volume: 29 start-page: 5158 year: 2009 end-page: 5167 ident: bib3 article-title: The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts publication-title: Mol. Cell. Biol. contributor: fullname: Whitehall – volume: 285 start-page: 26114 year: 2010 end-page: 26120 ident: bib12 article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation publication-title: J. Biol. Chem. contributor: fullname: Jeltsch – volume: 56 start-page: 867 year: 2012 end-page: 875 ident: bib48 article-title: DNA methylation establishment during oocyte growth: mechanisms and significance publication-title: Int. J. Dev. Biol. contributor: fullname: Kelsey – volume: 437 start-page: 1386 year: 2005 end-page: 1390 ident: bib29 article-title: The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus publication-title: Nature contributor: fullname: Couble – volume: 155 start-page: 107 year: 2013 end-page: 120 ident: bib4 article-title: Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells publication-title: Cell contributor: fullname: Canaani – volume: 292 start-page: 1 year: 2006 end-page: 12 ident: bib10 article-title: Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes publication-title: Dev. Biol. contributor: fullname: De La Fuente – volume: 71 start-page: 1469 year: 2004 end-page: 1474 ident: bib24 article-title: Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice publication-title: Biol. Reprod. contributor: fullname: Cooney – volume: 19 start-page: 1761 year: 2005 end-page: 1766 ident: bib51 article-title: Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias publication-title: Genes Dev. contributor: fullname: Schübeler – volume: 520 start-page: 243 year: 2015 end-page: 247 ident: bib5 article-title: Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation publication-title: Nature contributor: fullname: Schübeler – volume: 100 start-page: 12183 year: 2003 end-page: 12188 ident: bib19 article-title: Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Stillman – volume: 43 start-page: 811 year: 2011 end-page: 814 ident: bib43 article-title: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos publication-title: Nat. Genet. contributor: fullname: Kelsey – volume: 8 start-page: e1002440 year: 2012 ident: bib22 article-title: Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks publication-title: PLoS Genet. contributor: fullname: Sotomaru – volume: 3 start-page: 1012 year: 2013 end-page: 1019 ident: bib35 article-title: Placing the HIRA histone chaperone complex in the chromatin landscape publication-title: Cell Rep. contributor: fullname: Adams – volume: 39 start-page: 577 year: 2014 end-page: 586 ident: bib47 article-title: Transcribing through the nucleosome publication-title: Trends Biochem. Sci. contributor: fullname: Henikoff – volume: 9 start-page: 1091 year: 2002 end-page: 1100 ident: bib38 article-title: HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis publication-title: Mol. Cell contributor: fullname: Almouzni – volume: 329 start-page: 78 year: 2010 end-page: 82 ident: bib17 article-title: Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway publication-title: Science contributor: fullname: Surani – volume: 26 start-page: 577 year: 2014 end-page: 590 ident: bib53 article-title: Gene body methylation can alter gene expression and is a therapeutic target in cancer publication-title: Cancer Cell contributor: fullname: Liang – volume: 19 start-page: 1221 year: 2009 end-page: 1226 ident: bib18 article-title: Transcription in the absence of histone H3.3 publication-title: Curr. Biol. contributor: fullname: Basler – volume: 137 start-page: 3785 year: 2010 end-page: 3794 ident: bib33 article-title: Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice publication-title: Development contributor: fullname: Aoki – volume: 14 start-page: R121 year: 2013 ident: bib23 article-title: Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 publication-title: Genome Biol. contributor: fullname: Zhao – volume: 328 start-page: 1161 year: 2010 end-page: 1164 ident: bib11 article-title: Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones publication-title: Science contributor: fullname: Henikoff – volume: 14 start-page: 141 year: 2013 end-page: 152 ident: bib25 article-title: The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Albertini – volume: 137 start-page: 3785 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib33 article-title: Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice publication-title: Development doi: 10.1242/dev.051805 contributor: fullname: Nashun – volume: 71 start-page: 1469 year: 2004 ident: 10.1016/j.molcel.2015.10.010_bib24 article-title: Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice publication-title: Biol. Reprod. doi: 10.1095/biolreprod.104.031757 contributor: fullname: Lan – volume: 140 start-page: 3624 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib26 article-title: Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development publication-title: Development doi: 10.1242/dev.095513 contributor: fullname: Lin – volume: 24 start-page: 4309 year: 2004 ident: 10.1016/j.molcel.2015.10.010_bib6 article-title: The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.10.4309-4320.2004 contributor: fullname: Blackwell – volume: 155 start-page: 107 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib4 article-title: Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells publication-title: Cell doi: 10.1016/j.cell.2013.08.061 contributor: fullname: Banaszynski – volume: 11 start-page: e1004964 year: 2015 ident: 10.1016/j.molcel.2015.10.010_bib46 article-title: Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004964 contributor: fullname: Tang – volume: 292 start-page: 1 year: 2006 ident: 10.1016/j.molcel.2015.10.010_bib10 article-title: Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.01.008 contributor: fullname: De La Fuente – volume: 429 start-page: 900 year: 2004 ident: 10.1016/j.molcel.2015.10.010_bib21 article-title: Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting publication-title: Nature doi: 10.1038/nature02633 contributor: fullname: Kaneda – volume: 28 start-page: 511 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib49 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 contributor: fullname: Trapnell – volume: 28 start-page: 33 year: 2012 ident: 10.1016/j.molcel.2015.10.010_bib42 article-title: De novo DNA methylation: a germ cell perspective publication-title: Trends Genet. doi: 10.1016/j.tig.2011.09.004 contributor: fullname: Smallwood – volume: 285 start-page: 26114 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib12 article-title: The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.089433 contributor: fullname: Dhayalan – volume: 9 start-page: 1091 year: 2002 ident: 10.1016/j.molcel.2015.10.010_bib38 article-title: HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00526-9 contributor: fullname: Ray-Gallet – volume: 30 start-page: 268 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib27 article-title: Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.06.022 contributor: fullname: Lin – volume: 9 start-page: e1003439 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib41 article-title: Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003439 contributor: fullname: Shirane – volume: 5 start-page: 264 year: 1992 ident: 10.1016/j.molcel.2015.10.010_bib28 article-title: Efficient protection against oxidative DNA damage in chromatin publication-title: Mol. Carcinog. doi: 10.1002/mc.2940050406 contributor: fullname: Ljungman – volume: 402 start-page: 418 year: 1999 ident: 10.1016/j.molcel.2015.10.010_bib52 article-title: Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast publication-title: Nature doi: 10.1038/46567 contributor: fullname: Wyrick – volume: 56 start-page: 867 year: 2012 ident: 10.1016/j.molcel.2015.10.010_bib48 article-title: DNA methylation establishment during oocyte growth: mechanisms and significance publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.120152gk contributor: fullname: Tomizawa – volume: 140 start-page: 183 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib37 article-title: Chaperoning histones during DNA replication and repair publication-title: Cell doi: 10.1016/j.cell.2010.01.004 contributor: fullname: Ransom – volume: 43 start-page: 811 year: 2011 ident: 10.1016/j.molcel.2015.10.010_bib43 article-title: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos publication-title: Nat. Genet. doi: 10.1038/ng.864 contributor: fullname: Smallwood – volume: 281 start-page: 8732 year: 2006 ident: 10.1016/j.molcel.2015.10.010_bib14 article-title: Hip3 interacts with the HIRA proteins Hip1 and Slm9 and is required for transcriptional silencing and accurate chromosome segregation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512170200 contributor: fullname: Greenall – volume: 8 start-page: e1002440 year: 2012 ident: 10.1016/j.molcel.2015.10.010_bib22 article-title: Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002440 contributor: fullname: Kobayashi – volume: 20 start-page: 14 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib7 article-title: Histone chaperones in nucleosome assembly and human disease publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2461 contributor: fullname: Burgess – volume: 140 start-page: 678 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib13 article-title: Distinct factors control histone variant H3.3 localization at specific genomic regions publication-title: Cell doi: 10.1016/j.cell.2010.01.003 contributor: fullname: Goldberg – volume: 26 start-page: 577 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib53 article-title: Gene body methylation can alter gene expression and is a therapeutic target in cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.07.028 contributor: fullname: Yang – volume: 21 start-page: 609 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib20 article-title: Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2839 contributor: fullname: Inoue – volume: 19 start-page: 1816 year: 2009 ident: 10.1016/j.molcel.2015.10.010_bib39 article-title: Transcriptional and developmental functions of the H3.3 histone variant in Drosophila publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.09.021 contributor: fullname: Sakai – volume: 29 start-page: 5158 year: 2009 ident: 10.1016/j.molcel.2015.10.010_bib3 article-title: The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00698-09 contributor: fullname: Anderson – volume: 16 start-page: 209 year: 2015 ident: 10.1016/j.molcel.2015.10.010_bib50 article-title: Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape publication-title: Genome Biol. doi: 10.1186/s13059-015-0769-z contributor: fullname: Veselovska – volume: 37 start-page: 1090 year: 2005 ident: 10.1016/j.molcel.2015.10.010_bib32 article-title: Genome-scale profiling of histone H3.3 replacement patterns publication-title: Nat. Genet. doi: 10.1038/ng1637 contributor: fullname: Mito – volume: 11 start-page: 817 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib44 article-title: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity publication-title: Nat. Methods doi: 10.1038/nmeth.3035 contributor: fullname: Smallwood – volume: 39 start-page: 577 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib47 article-title: Transcribing through the nucleosome publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.10.004 contributor: fullname: Teves – volume: 116 start-page: 51 year: 2004 ident: 10.1016/j.molcel.2015.10.010_bib45 article-title: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis publication-title: Cell doi: 10.1016/S0092-8674(03)01064-X contributor: fullname: Tagami – volume: 12 start-page: 853 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib40 article-title: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2089 contributor: fullname: Santenard – volume: 517 start-page: 640 year: 2015 ident: 10.1016/j.molcel.2015.10.010_bib15 article-title: Structural insight into autoinhibition and histone H3-induced activation of DNMT3A publication-title: Nature doi: 10.1038/nature13899 contributor: fullname: Guo – volume: 14 start-page: R121 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib23 article-title: Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 publication-title: Genome Biol. doi: 10.1186/gb-2013-14-10-r121 contributor: fullname: Kraushaar – volume: 286 start-page: 493 year: 2005 ident: 10.1016/j.molcel.2015.10.010_bib34 article-title: Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.08.023 contributor: fullname: Pan – volume: 127 start-page: 481 year: 2006 ident: 10.1016/j.molcel.2015.10.010_bib36 article-title: New histone incorporation marks sites of UV repair in human cells publication-title: Cell doi: 10.1016/j.cell.2006.08.049 contributor: fullname: Polo – volume: 100 start-page: 12183 year: 2003 ident: 10.1016/j.molcel.2015.10.010_bib19 article-title: Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1635158100 contributor: fullname: Hoek – volume: 19 start-page: 1761 year: 2005 ident: 10.1016/j.molcel.2015.10.010_bib51 article-title: Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias publication-title: Genes Dev. doi: 10.1101/gad.347705 contributor: fullname: Wirbelauer – volume: 15 start-page: 259 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib30 article-title: Every amino acid matters: essential contributions of histone variants to mammalian development and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3673 contributor: fullname: Maze – volume: 7 start-page: e1002279 year: 2011 ident: 10.1016/j.molcel.2015.10.010_bib2 article-title: Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002279 contributor: fullname: Akiyama – volume: 23 start-page: 105 year: 2009 ident: 10.1016/j.molcel.2015.10.010_bib9 article-title: Transcription is required for establishment of germline methylation marks at imprinted genes publication-title: Genes Dev. doi: 10.1101/gad.495809 contributor: fullname: Chotalia – volume: 87 start-page: 77 year: 2015 ident: 10.1016/j.molcel.2015.10.010_bib31 article-title: Critical Role of Histone Turnover in Neuronal Transcription and Plasticity publication-title: Neuron doi: 10.1016/j.neuron.2015.06.014 contributor: fullname: Maze – volume: 6 start-page: 7 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib8 article-title: Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-6-7 contributor: fullname: Bush – volume: 328 start-page: 1161 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib11 article-title: Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones publication-title: Science doi: 10.1126/science.1186777 contributor: fullname: Deal – volume: 437 start-page: 1386 year: 2005 ident: 10.1016/j.molcel.2015.10.010_bib29 article-title: The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus publication-title: Nature doi: 10.1038/nature04059 contributor: fullname: Loppin – volume: 14 start-page: 141 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib25 article-title: The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3531 contributor: fullname: Li – volume: 520 start-page: 243 year: 2015 ident: 10.1016/j.molcel.2015.10.010_bib5 article-title: Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation publication-title: Nature doi: 10.1038/nature14176 contributor: fullname: Baubec – volume: 329 start-page: 78 year: 2010 ident: 10.1016/j.molcel.2015.10.010_bib17 article-title: Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway publication-title: Science doi: 10.1126/science.1187945 contributor: fullname: Hajkova – volume: 3 start-page: 1012 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib35 article-title: Placing the HIRA histone chaperone complex in the chromatin landscape publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.03.026 contributor: fullname: Pchelintsev – volume: 83 start-page: 487 year: 2014 ident: 10.1016/j.molcel.2015.10.010_bib16 article-title: Histone chaperones: assisting histone traffic and nucleosome dynamics publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035536 contributor: fullname: Gurard-Levin – volume: 19 start-page: 1221 year: 2009 ident: 10.1016/j.molcel.2015.10.010_bib18 article-title: Transcription in the absence of histone H3.3 publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.05.048 contributor: fullname: Hödl – volume: 155 start-page: 94 year: 2013 ident: 10.1016/j.molcel.2015.10.010_bib1 article-title: Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA publication-title: Cell doi: 10.1016/j.cell.2013.08.029 contributor: fullname: Adam |
SSID | ssj0014589 |
Score | 2.5292506 |
Snippet | The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 611 |
SubjectTerms | Animals Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromatin - metabolism DNA Methylation Female Fertilization Gene Expression Regulation Histone Chaperones - genetics Histone Chaperones - metabolism Histones - metabolism Mice Oocytes - metabolism Oogenesis Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
Title | Continuous Histone Replacement by Hira Is Essential for Normal Transcriptional Regulation and De Novo DNA Methylation during Mouse Oogenesis |
URI | https://dx.doi.org/10.1016/j.molcel.2015.10.010 https://www.ncbi.nlm.nih.gov/pubmed/26549683 https://search.proquest.com/docview/1735905723 https://pubmed.ncbi.nlm.nih.gov/PMC4672152 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZTxsxEB5xqFJfqhbakh7Ilfq6TdbetePHEEBcCRItVdSXla-FregGkYDEf-BHd2aPiNBKlfroS2t7vDOfPRfAZ4sixfu-jXQSQpRoqSObS0maQu6EzkOvR47Co7E8OE-OJulkBYatLwyZVTa8v-bpFbduarrNbnavi6L7lXSnXFEqb4pJo9QqrHNEv_h3rg92vh-fLJQJSVplwqP-EQ1oPegqM69f0ysXSAcRp1_IzItcaf8uof5EoE8NKR9Jpv2X8KKBlGxQz_oVrIRyA57VSSbvN-GBAlAV5S1e8VkVFKQMDGE3PZ_TyyCz91h9Y9jhjO3NyBUJTyRDKMvGBGevWCXNWt6C5bM6ez0WmCk92w3Y8W7KdscDNgpI9qat9n9kI_xsYKfTC-Kpxew1nO_vfRseRE0OhsilXM8jYZEJmDwIK71Aeed7Jlifm1in1ifKWYOQkUvHbRxcjnhM-r5Elqm0ybmzXLyBtRIXtgUszT2ujOLRJCEJjmLpIXYSLpa56gsTdyBq9z27rkNtZK0N2s-splNGdKJapFMHVEucbOnIZCgN_jHyU0vLDP8mUpGYMuB-ZLESqUYIy0UH3ta0XcyFS7xLyz62qCWqLzpQpO7llrK4rCJ2ozSi_MHv_nvG7-E5lcgJMtYfYG1-cxs-Ihqa2-3mtG_D6uFkB0vj4eT0x28W_w-h |
link.rule.ids | 230,315,783,787,888,3513,27581,27936,27937,45675,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VVgheEOUMUDASr0uy9q4dP5YeSkoTJGilvFm-FhaVTdWkSP0P_Ghm9oiaFgmpj2t7tbZnduaz5wL44FClhDB0ic5iTDItdeIKKclSyL3QRRwMKFB4MpWj0-xols82YK-LhSG3ylb2NzK9ltZtS7_dzf55Wfa_ke2UKyrlTTlplLoHWxR2SWw-nn1amRKwTdcmT60SGt7Fz9VOXr_mZz6SBSLNP5KTFwXS_ls_3cafN90or-mlw8fwqAWUbLeZ8zZsxOoJ3G9KTF49hT-UfqqsLvGAz-qUIFVkCLrp8pzuBZm7wuYLy8YLdrCgQCTkR4ZAlk0JzJ6xWpd1kgWfvza16_GB2Sqw_YgDf8_Z_nSXTSISve1roh_ZBD8b2Zf5d5Ko5eIZnB4enOyNkrYCQ-JzrpeJcCgCbBGFk0GgtgsDG10obKpzFzLlnUXAyKXnLo2-QDQmw1CiwFTaFtw7Lp7DZoULewksLwKujLLRZDGLnjLpIXISPpWFGgqb9iDp9t2cN4k2TOeB9tM0dDJEJ2pFOvVAdcQxawxjUBf85833HS0N_ktkILFVxP0wqRK5RgDLRQ9eNLRdzYVLPEnLIfaoNaqvBlCe7vWeqvxR5-tGXUTVg1_decbv4MHoZHJsjsfTz6_hIfVQOGSq38Dm8uIy7iAuWrq3Nd__BRFgDrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Histone+Replacement+by+Hira+Is+Essential+for+Normal+Transcriptional+Regulation+and+De+Novo+DNA+Methylation+during+Mouse+Oogenesis&rft.jtitle=Molecular+cell&rft.au=Nashun%2C+Buhe&rft.au=Hill%2C+Peter%C2%A0W.S.&rft.au=Smallwood%2C+Sebastien%C2%A0A.&rft.au=Dharmalingam%2C+Gopuraja&rft.date=2015-11-19&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=60&rft.issue=4&rft.spage=611&rft.epage=625&rft_id=info:doi/10.1016%2Fj.molcel.2015.10.010&rft.externalDocID=S1097276515007777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |