Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis
A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed b...
Saved in:
Published in | Operations research Vol. 56; no. 1; pp. 48 - 58 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Linthicum, MD
INFORMS
01.01.2008
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0030-364X 1526-5463 |
DOI | 10.1287/opre.1070.0460 |
Cover
Loading…
Abstract | A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. |
---|---|
AbstractList | A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decisionmaking unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. [PUBLICATION ABSTRACT] A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decisionmaking unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. Subject classifications: organizational studies: productivity, effectiveness/performance; statistics: nonparametric; probability: stochastic model applications; simulation: applications. Area of review: Decision Analysis. |
Audience | Trade |
Author | Banker, Rajiv D Natarajan, Ram |
Author_xml | – sequence: 1 fullname: Banker, Rajiv D – sequence: 2 fullname: Natarajan, Ram |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20192534$$DView record in Pascal Francis |
BookMark | eNqFkUtvEzEUhS1UJNLClh3SCInlBL9nZhmF8JAqwYJW7CyPx04dOXawPSn593iYQFkUIS9sXX_n6txzL8GFD14D8BLBJcJt8zYcol4i2MAlpBw-AQvEMK8Z5eQCLCAksCacfnsGLlPaQQg7xtkC3G6O0o0yW7-t1sFn_SOP0lW3MlrZO52qlTFa_fr-EsMwlufR5lN1k6bSO5lltfFH7cJhr32uVl66U7LpOXhqpEv6xfm-AjfvN1_XH-vrzx8-rVfXtWK4yzWhPWox4wNFFLeIdgoighijeGC0kaRrmr7p8YAMxVQ3kDODUE9ZYXjbUUOuwOu57yGG76NOWezCGIuJJDDqEKeE8QLVM7SVTgvrTchRqq32OkpXMjS2lFfFCIcMt6zwy0f4cga9t-pRwZuzC5mUdCZKr2wSh2j3Mp4EhqjDjNDC0ZlTMaQUtRHK5pJ9yT1K6wSCYtqkmDYppk2KaZMPfv7Ifnf-p-DVLNilHOKDD4Zog_hfgUyzxX36f7_zfHd2e3dv4xzKJJzAJBgXSNCW_ARtMcYz |
CODEN | OPREAI |
CitedBy_id | crossref_primary_10_2139_ssrn_2515772 crossref_primary_10_3390_math8091522 crossref_primary_10_1111_1477_9552_12626 crossref_primary_10_1590_S0101_74382011000100006 crossref_primary_10_2139_ssrn_3312103 crossref_primary_10_1080_00207543_2010_497507 crossref_primary_10_1007_s11187_017_9904_4 crossref_primary_10_1007_s12351_018_0413_2 crossref_primary_10_5937_jemc2101051C crossref_primary_10_1108_IJESM_07_2020_0024 crossref_primary_10_1016_j_ejor_2019_04_009 crossref_primary_10_1007_s10916_010_9438_7 crossref_primary_10_1007_s11123_023_00692_1 crossref_primary_10_1007_s10657_012_9329_0 crossref_primary_10_1016_j_jup_2021_101175 crossref_primary_10_1016_j_orp_2024_100306 crossref_primary_10_1016_j_jebo_2013_06_011 crossref_primary_10_1016_j_dajour_2022_100099 crossref_primary_10_1108_IJEM_10_2020_0456 crossref_primary_10_1007_s10614_014_9450_y crossref_primary_10_1108_IJBM_04_2021_0129 crossref_primary_10_1590_0034_7612130868 crossref_primary_10_1007_s11123_018_0532_z crossref_primary_10_1108_SEF_05_2017_0109 crossref_primary_10_1186_s12913_024_11244_0 crossref_primary_10_1142_S2382624X22400045 crossref_primary_10_1007_s10479_022_04672_w crossref_primary_10_1007_s10342_024_01663_3 crossref_primary_10_3390_su9050853 crossref_primary_10_1177_2321022216636443 crossref_primary_10_1177_1354816616656248 crossref_primary_10_1016_j_econmod_2015_06_025 crossref_primary_10_1016_j_eneco_2025_108289 crossref_primary_10_1080_13571516_2020_1858703 crossref_primary_10_1111_ajfs_12482 crossref_primary_10_1016_j_jairtraman_2017_12_003 crossref_primary_10_1016_j_irfa_2013_06_006 crossref_primary_10_1016_j_aei_2018_12_006 crossref_primary_10_1016_j_cor_2016_05_017 crossref_primary_10_1080_10920277_2022_2099425 crossref_primary_10_1007_s10742_019_00203_6 crossref_primary_10_1080_1226508X_2010_533854 crossref_primary_10_1007_s10479_013_1367_7 crossref_primary_10_1186_s12913_021_07276_5 crossref_primary_10_1002_ajae_12036 crossref_primary_10_1080_01900692_2016_1256892 crossref_primary_10_2308_JMAR_2023_031 crossref_primary_10_1016_j_ejor_2014_04_041 crossref_primary_10_1108_BIJ_08_2018_0265 crossref_primary_10_1108_BIJ_11_2012_0076 crossref_primary_10_1080_12265080903391735 crossref_primary_10_1016_j_ejor_2017_08_005 crossref_primary_10_1016_j_respol_2011_03_010 crossref_primary_10_1108_CR_07_2017_0043 crossref_primary_10_1080_19371918_2012_672261 crossref_primary_10_1016_j_eneco_2017_04_009 crossref_primary_10_1016_j_econmod_2013_10_008 crossref_primary_10_1108_IJOEM_11_2020_1374 crossref_primary_10_1287_opre_2018_1831 crossref_primary_10_2139_ssrn_3257535 crossref_primary_10_1002_hpm_3408 crossref_primary_10_1108_RAF_07_2012_0063 crossref_primary_10_1016_j_omega_2011_08_010 crossref_primary_10_1186_s12544_018_0311_y crossref_primary_10_1016_j_jenvman_2024_121733 crossref_primary_10_1016_j_iimb_2011_06_003 crossref_primary_10_1080_18146627_2016_1224594 crossref_primary_10_1177_1354816616656266 crossref_primary_10_2139_ssrn_2965742 crossref_primary_10_1080_03155986_2019_1624476 crossref_primary_10_24056_KAJ_2024_05_001 crossref_primary_10_3168_jds_2017_13816 crossref_primary_10_1007_s40812_017_0086_5 crossref_primary_10_1016_j_jclepro_2023_139929 crossref_primary_10_1080_00207543_2011_581005 crossref_primary_10_1002_ijfe_2927 crossref_primary_10_1111_j_1538_4616_2010_00318_x crossref_primary_10_1177_0160017620979611 crossref_primary_10_1007_s11156_017_0662_9 crossref_primary_10_1007_s40953_024_00389_8 crossref_primary_10_1111_apce_12270 crossref_primary_10_1111_jfir_12316 crossref_primary_10_1016_j_techfore_2020_119998 crossref_primary_10_1016_j_dajour_2022_100051 crossref_primary_10_3390_math8020233 crossref_primary_10_1051_e3sconf_202339601110 crossref_primary_10_2139_ssrn_3277185 crossref_primary_10_1080_00343404_2013_837872 crossref_primary_10_1007_s10479_008_0482_3 crossref_primary_10_1016_j_jbankfin_2010_01_013 crossref_primary_10_1016_j_resourpol_2013_11_001 crossref_primary_10_1080_17516234_2013_873340 crossref_primary_10_1080_19761597_2020_1713831 crossref_primary_10_1287_opre_1120_1094 crossref_primary_10_32997_2463_0470_vol_27_num_1_2019_2616 crossref_primary_10_1080_00036846_2017_1340572 crossref_primary_10_3390_w5042058 crossref_primary_10_3846_13923730_2014_897966 crossref_primary_10_1080_1351847X_2024_2366367 crossref_primary_10_1080_10632921_2023_2223567 crossref_primary_10_1016_j_econmod_2017_03_011 crossref_primary_10_1016_j_seps_2015_10_004 crossref_primary_10_1007_s10479_019_03287_y crossref_primary_10_1080_01605682_2022_2053309 crossref_primary_10_2139_ssrn_2708790 crossref_primary_10_1016_j_eneco_2014_07_002 crossref_primary_10_1108_BIJ_10_2014_0097 crossref_primary_10_1007_s11123_013_0358_7 crossref_primary_10_1016_j_jclepro_2017_08_155 crossref_primary_10_1080_13657305_2014_926464 crossref_primary_10_1108_BIJ_05_2022_0286 crossref_primary_10_1016_j_ijpe_2018_05_029 crossref_primary_10_1590_S0103_65132010005000045 crossref_primary_10_1016_j_telpol_2014_01_004 crossref_primary_10_1108_RAF_05_2012_0043 crossref_primary_10_1111_jbl_12197 crossref_primary_10_3390_su131810066 crossref_primary_10_1016_j_adiac_2025_100806 crossref_primary_10_1142_S0219091522500278 crossref_primary_10_1093_scipol_scaa022 crossref_primary_10_5089_9781455217922_001 crossref_primary_10_1186_s41072_024_00191_y crossref_primary_10_1016_j_wasman_2021_09_022 crossref_primary_10_2139_ssrn_2825787 crossref_primary_10_1016_j_aquaculture_2024_741794 crossref_primary_10_1016_j_econmod_2023_106202 crossref_primary_10_1111_j_1539_6975_2011_01437_x crossref_primary_10_4018_ijrcm_2014100103 crossref_primary_10_1016_j_tra_2014_03_008 crossref_primary_10_1007_s11123_011_0230_6 crossref_primary_10_1016_j_seps_2015_06_002 crossref_primary_10_1080_01605682_2019_1612549 crossref_primary_10_1016_j_seps_2019_06_009 crossref_primary_10_1007_s12351_016_0259_4 crossref_primary_10_1111_itor_12055 crossref_primary_10_2139_ssrn_1999346 crossref_primary_10_1108_14468951011073316 crossref_primary_10_2139_ssrn_1495351 crossref_primary_10_1016_j_seps_2018_04_001 crossref_primary_10_1177_097380101000400403 crossref_primary_10_2166_wst_2015_169 crossref_primary_10_1016_j_agwat_2023_108647 crossref_primary_10_1016_j_rser_2014_10_071 crossref_primary_10_1007_s11192_019_03324_4 crossref_primary_10_1016_j_ejor_2012_01_023 crossref_primary_10_1080_0309877X_2023_2209799 crossref_primary_10_61138_bolgeselkalkinmadergisi_1271815 crossref_primary_10_1016_j_ejor_2018_10_050 crossref_primary_10_1108_MF_07_2019_0380 crossref_primary_10_1177_1091142116651487 crossref_primary_10_1108_IGDR_07_2023_0093 crossref_primary_10_29105_ensayos30_2_2 crossref_primary_10_1080_10920277_2019_1626252 crossref_primary_10_1108_JKM_06_2014_0240 crossref_primary_10_1007_s11123_011_0231_5 crossref_primary_10_21511_bbs_15_3__2020_01 crossref_primary_10_3138_cpp_37_1_85 crossref_primary_10_1007_s10824_019_09347_2 crossref_primary_10_1007_s10916_009_9390_6 crossref_primary_10_2308_jmar_50397 crossref_primary_10_1108_JM2_04_2024_0122 crossref_primary_10_1108_IGDR_11_2018_0116 crossref_primary_10_15678_krem_16719 crossref_primary_10_1016_j_ejor_2012_01_048 crossref_primary_10_1080_12269328_2014_887045 crossref_primary_10_1007_s10479_014_1670_y crossref_primary_10_1108_SBR_04_2020_0056 crossref_primary_10_1007_s12351_015_0169_x crossref_primary_10_1016_j_ejor_2019_03_019 crossref_primary_10_1016_j_tra_2013_01_026 crossref_primary_10_1002_bsd2_115 crossref_primary_10_1142_S0217590821500156 crossref_primary_10_1177_0972150916666850 crossref_primary_10_1111_j_1539_6975_2011_01443_x crossref_primary_10_1016_j_dss_2010_02_002 crossref_primary_10_36923_ijsser_v4i1_143 crossref_primary_10_52292_j_estudecon_2024_3178 crossref_primary_10_1016_j_techfore_2020_120209 crossref_primary_10_1111_are_14376 crossref_primary_10_1590_1806_9479_2019_179530 crossref_primary_10_1080_1226508X_2011_601633 crossref_primary_10_2139_ssrn_2244881 crossref_primary_10_29252_jemr_7_27_41 crossref_primary_10_1007_s10479_011_0875_6 crossref_primary_10_1016_j_landusepol_2021_105560 crossref_primary_10_1016_j_ejor_2020_06_012 crossref_primary_10_2139_ssrn_1814108 crossref_primary_10_1057_fsm_2010_20 crossref_primary_10_1108_H_08_2016_0059 crossref_primary_10_2139_ssrn_2485183 crossref_primary_10_1016_j_ejor_2010_08_024 crossref_primary_10_1080_02692171_2013_804493 crossref_primary_10_1016_j_seps_2021_101031 crossref_primary_10_1111_j_1574_0862_2010_00508_x crossref_primary_10_1016_j_ejor_2014_06_040 crossref_primary_10_1016_j_ejor_2014_06_044 crossref_primary_10_1007_s00180_019_00951_6 crossref_primary_10_1016_j_compind_2009_10_006 crossref_primary_10_1016_j_omega_2015_04_004 crossref_primary_10_1371_journal_pone_0311174 crossref_primary_10_1002_mde_3135 crossref_primary_10_1111_insr_12056 crossref_primary_10_1016_j_jup_2016_06_013 crossref_primary_10_1016_j_econmod_2023_106299 crossref_primary_10_1016_j_jclepro_2018_02_147 crossref_primary_10_1057_jors_2010_193 crossref_primary_10_1016_j_techfore_2022_121836 crossref_primary_10_1016_j_jairtraman_2015_05_002 crossref_primary_10_1108_BIJ_01_2019_0039 crossref_primary_10_1016_j_ejor_2012_09_002 crossref_primary_10_2308_accr_50274 crossref_primary_10_1016_j_qref_2020_02_002 crossref_primary_10_1108_JIC_08_2020_0276 crossref_primary_10_1016_j_tourman_2021_104348 crossref_primary_10_1080_0740817X_2010_491497 crossref_primary_10_1177_03611981241284625 crossref_primary_10_1016_j_seps_2024_102081 crossref_primary_10_1007_s10671_019_09254_5 crossref_primary_10_1590_S0103_65132012005000088 crossref_primary_10_2139_ssrn_1579352 crossref_primary_10_1111_j_1539_6975_2011_01411_x crossref_primary_10_1007_s10479_019_03393_x crossref_primary_10_1016_j_tranpol_2021_05_026 crossref_primary_10_1007_s10479_021_04252_4 crossref_primary_10_1007_s10479_022_04659_7 crossref_primary_10_1016_j_seps_2017_01_005 crossref_primary_10_53974_unza_jabs_1_1_332 crossref_primary_10_1016_j_seps_2009_06_002 crossref_primary_10_1111_itor_13560 crossref_primary_10_1007_s12197_022_09610_x crossref_primary_10_1016_j_seps_2022_101426 crossref_primary_10_1080_00207543_2015_1037022 crossref_primary_10_2139_ssrn_2933403 crossref_primary_10_1007_s11846_018_0299_7 crossref_primary_10_1016_j_eap_2018_04_002 crossref_primary_10_1057_s41288_021_00208_8 crossref_primary_10_1016_j_apmrv_2020_06_003 crossref_primary_10_1016_j_jretai_2012_09_001 crossref_primary_10_3390_su13020514 crossref_primary_10_1002_jaa2_117 crossref_primary_10_1016_j_econmod_2020_12_020 crossref_primary_10_1016_j_enpol_2013_05_091 crossref_primary_10_1016_j_jup_2019_100960 crossref_primary_10_1093_ajae_aar051 crossref_primary_10_1016_j_eap_2021_08_004 crossref_primary_10_1108_PM_09_2020_0061 crossref_primary_10_1142_S0219622014500916 crossref_primary_10_1007_s40503_015_0019_5 crossref_primary_10_1108_APJBA_09_2021_0446 crossref_primary_10_1051_ro_2016063 crossref_primary_10_3390_fishes7040168 crossref_primary_10_1016_j_omega_2018_09_005 crossref_primary_10_1080_00343404_2010_497479 crossref_primary_10_1016_j_jbankfin_2013_04_030 crossref_primary_10_1002_mde_3145 crossref_primary_10_1007_s00181_022_02273_x crossref_primary_10_1016_j_knosys_2014_04_004 crossref_primary_10_1080_01441647_2010_547635 crossref_primary_10_1016_j_seps_2023_101763 crossref_primary_10_2139_ssrn_1997444 crossref_primary_10_32675_ses_2018_11_1_003 crossref_primary_10_1111_1911_3846_13003 crossref_primary_10_1016_j_ejor_2011_08_004 crossref_primary_10_1108_IJPPM_09_2018_0328 crossref_primary_10_1016_j_tranpol_2018_06_008 crossref_primary_10_2139_ssrn_1666884 crossref_primary_10_1155_2015_347045 crossref_primary_10_2139_ssrn_1995149 crossref_primary_10_1016_j_rdf_2012_09_003 crossref_primary_10_1051_ro_2020040 crossref_primary_10_1057_jors_2010_137 crossref_primary_10_1108_RAF_06_2012_0052 crossref_primary_10_1016_j_jairtraman_2022_102317 crossref_primary_10_1080_03088839_2014_990408 crossref_primary_10_1080_23311916_2019_1575638 crossref_primary_10_1016_j_ejor_2024_04_008 crossref_primary_10_1016_j_seps_2023_101537 crossref_primary_10_1016_j_eap_2017_11_003 crossref_primary_10_1007_s11123_012_0302_2 crossref_primary_10_70490_gumrukticaretdergisi_1536364 crossref_primary_10_15722_jds_14_7_201607_53 crossref_primary_10_1111_poms_13055 crossref_primary_10_1016_j_ejor_2010_06_007 crossref_primary_10_1080_14942119_2020_1778980 crossref_primary_10_1080_15567249_2010_540625 crossref_primary_10_1016_j_econmod_2015_11_023 crossref_primary_10_1109_TEM_2018_2861982 crossref_primary_10_1007_s10479_023_05606_w crossref_primary_10_1016_j_seps_2018_10_004 crossref_primary_10_1007_s00181_024_02636_6 crossref_primary_10_1016_j_landusepol_2019_104113 crossref_primary_10_1080_24725579_2017_1367978 crossref_primary_10_1017_S0266466614000413 crossref_primary_10_1108_IMEFM_12_2012_0114 crossref_primary_10_1080_20421338_2020_1755111 crossref_primary_10_1111_j_1749_124X_2011_01260_x crossref_primary_10_1080_23322039_2014_932700 crossref_primary_10_1111_jbl_12300 crossref_primary_10_1080_13547860_2013_818428 crossref_primary_10_1186_s12960_022_00777_2 crossref_primary_10_1108_JIC_03_2020_0105 crossref_primary_10_1108_JIC_03_2020_0106 crossref_primary_10_1093_icc_dtq051 crossref_primary_10_1016_j_seps_2020_100857 crossref_primary_10_24136_oc_2021_019 crossref_primary_10_1108_IJWBR_10_2019_0052 crossref_primary_10_3390_ijerph20032060 crossref_primary_10_3390_su13042188 crossref_primary_10_2139_ssrn_1997468 crossref_primary_10_1007_s10479_008_0390_6 crossref_primary_10_1186_s40854_023_00583_2 crossref_primary_10_1155_2021_8153506 crossref_primary_10_1016_j_omega_2010_12_006 crossref_primary_10_2139_ssrn_3374478 crossref_primary_10_1016_j_eap_2020_03_002 crossref_primary_10_1007_s11205_010_9772_7 crossref_primary_10_1057_jors_2009_142 crossref_primary_10_4018_ijpmat_2014040103 crossref_primary_10_1016_j_jbankfin_2009_07_001 crossref_primary_10_3390_su10020400 crossref_primary_10_1016_j_ejor_2010_06_027 crossref_primary_10_1007_s40685_020_00109_x crossref_primary_10_1051_ro_2022012 crossref_primary_10_1016_j_ejor_2015_10_050 crossref_primary_10_1016_j_ememar_2014_06_001 crossref_primary_10_1002_joom_1307 crossref_primary_10_1016_j_iref_2021_03_015 crossref_primary_10_1111_j_1540_6296_2011_01202_x crossref_primary_10_1186_s12913_018_3228_1 crossref_primary_10_1108_JES_06_2019_0295 crossref_primary_10_1016_j_ejor_2021_05_019 crossref_primary_10_1016_j_jairtraman_2023_102523 crossref_primary_10_1002_mde_3529 crossref_primary_10_1111_poms_13257 crossref_primary_10_3390_su10124826 crossref_primary_10_1016_j_eneco_2021_105222 crossref_primary_10_1111_poms_13019 crossref_primary_10_1016_j_seps_2021_101162 crossref_primary_10_1111_are_14636 crossref_primary_10_1016_j_ejor_2016_09_008 crossref_primary_10_1016_j_ejor_2009_04_025 crossref_primary_10_1177_0973801017738416 crossref_primary_10_1080_00036846_2018_1494815 crossref_primary_10_1016_j_ecolind_2016_10_035 crossref_primary_10_1016_j_jairtraman_2022_102355 crossref_primary_10_1007_s10754_023_09346_z crossref_primary_10_1016_j_respol_2011_07_001 crossref_primary_10_1590_S0101_74382013005000007 crossref_primary_10_1016_j_ejor_2016_11_008 crossref_primary_10_1016_j_renene_2018_04_085 crossref_primary_10_1111_saje_12034 crossref_primary_10_1108_JCC_08_02_2015_B003 crossref_primary_10_1007_s00168_014_0604_6 crossref_primary_10_3390_math8081347 crossref_primary_10_1016_j_jbankfin_2017_10_009 crossref_primary_10_1016_j_aqrep_2015_12_001 crossref_primary_10_1111_asej_12124 crossref_primary_10_3917_risa_774_0837 crossref_primary_10_2139_ssrn_1976881 crossref_primary_10_1016_j_jenvman_2014_10_005 crossref_primary_10_1016_j_seps_2020_100928 crossref_primary_10_1007_s10479_021_04503_4 crossref_primary_10_1016_j_seps_2020_100934 crossref_primary_10_1016_j_eswa_2018_09_054 crossref_primary_10_1080_1226508X_2015_1014392 crossref_primary_10_1007_s10479_020_03883_3 crossref_primary_10_1007_s10644_016_9200_3 crossref_primary_10_1007_s40622_016_0133_5 crossref_primary_10_1177_0020852311419385 crossref_primary_10_1556_032_2019_69_3_6 crossref_primary_10_1007_s10479_012_1173_7 crossref_primary_10_1016_j_retrec_2020_100824 crossref_primary_10_1080_00036846_2015_1042145 crossref_primary_10_1016_j_jeconbus_2015_07_002 crossref_primary_10_1080_03003930_2021_2023015 crossref_primary_10_2139_ssrn_1480785 crossref_primary_10_2139_ssrn_2634626 crossref_primary_10_1016_j_ejor_2024_12_049 crossref_primary_10_2139_ssrn_1965759 crossref_primary_10_1093_erae_jbad041 crossref_primary_10_1007_s10657_008_9093_3 crossref_primary_10_1016_j_omega_2018_02_002 crossref_primary_10_1108_BIJ_08_2024_0644 crossref_primary_10_1016_j_jengtecman_2011_03_001 crossref_primary_10_2139_ssrn_2725206 crossref_primary_10_1016_j_procs_2015_07_094 crossref_primary_10_1108_AJEMS_01_2014_0007 crossref_primary_10_1287_mnsc_2020_01932 crossref_primary_10_1016_j_ejor_2014_07_027 crossref_primary_10_1007_s11629_024_8746_1 crossref_primary_10_1108_CG_08_2017_0171 crossref_primary_10_1007_s11846_022_00611_y crossref_primary_10_1016_j_intfin_2017_08_010 crossref_primary_10_1016_j_brq_2019_02_003 crossref_primary_10_1016_j_jup_2016_01_004 crossref_primary_10_1016_j_econmod_2022_106010 crossref_primary_10_1016_j_omega_2021_102534 crossref_primary_10_1111_jsbm_12410 crossref_primary_10_1016_j_ejor_2008_07_039 crossref_primary_10_1108_BIJ_01_2018_0005 crossref_primary_10_1016_j_ejor_2010_01_027 crossref_primary_10_1016_j_seps_2024_101997 crossref_primary_10_1016_j_jairtraman_2013_06_007 crossref_primary_10_1080_15567249_2010_551823 crossref_primary_10_4236_ojbm_2021_95130 crossref_primary_10_1007_s10479_021_04148_3 crossref_primary_10_2139_ssrn_4867629 crossref_primary_10_1007_s10479_020_03530_x crossref_primary_10_1007_s10342_023_01572_x crossref_primary_10_1016_j_aqrep_2015_11_002 crossref_primary_10_21073_kiar_2016__70_009 crossref_primary_10_1080_01605682_2017_1398202 crossref_primary_10_1177_2340944420966870 crossref_primary_10_1016_j_measurement_2014_04_013 crossref_primary_10_1016_j_ejor_2012_12_009 crossref_primary_10_1108_IJSE_05_2019_0321 crossref_primary_10_1016_j_ejor_2016_05_056 crossref_primary_10_1002_jid_2897 crossref_primary_10_1007_s00181_021_02124_1 crossref_primary_10_1016_j_ejor_2012_12_004 crossref_primary_10_1016_j_jairtraman_2019_101740 crossref_primary_10_1016_j_ejor_2014_01_032 crossref_primary_10_1111_1759_3441_12269 crossref_primary_10_1007_s12351_021_00626_5 crossref_primary_10_1007_s43546_022_00245_y crossref_primary_10_1007_s11356_021_12769_1 crossref_primary_10_1016_j_measurement_2015_05_004 crossref_primary_10_1016_j_jbankfin_2010_01_007 crossref_primary_10_1007_s10797_014_9312_5 crossref_primary_10_1016_j_aquaculture_2021_736883 crossref_primary_10_1007_s10479_016_2191_7 crossref_primary_10_1016_j_ribaf_2023_101980 crossref_primary_10_3390_su12166625 crossref_primary_10_1080_09640568_2017_1393401 crossref_primary_10_1108_CAER_08_2011_0087 crossref_primary_10_1016_j_seps_2019_100753 crossref_primary_10_1108_IJMF_04_2019_0137 crossref_primary_10_1016_j_iref_2016_10_015 crossref_primary_10_1007_s11123_010_0184_0 crossref_primary_10_1016_j_marpol_2015_06_002 crossref_primary_10_1016_j_ejor_2023_05_032 crossref_primary_10_1080_23322039_2021_1953726 crossref_primary_10_1080_10864415_2018_1441784 crossref_primary_10_1080_13657305_2015_1082118 crossref_primary_10_1016_j_jbankfin_2010_02_023 crossref_primary_10_26794_2220_6469_2020_14_1_108_122 crossref_primary_10_1016_j_jbankfin_2010_02_025 crossref_primary_10_1016_j_jbankfin_2010_02_024 crossref_primary_10_1002_kpm_1448 crossref_primary_10_1016_j_ejor_2023_07_027 crossref_primary_10_1007_s10479_009_0572_x crossref_primary_10_1016_j_econmod_2015_10_049 crossref_primary_10_1016_j_omega_2024_103270 crossref_primary_10_1108_BIJ_12_2016_0183 crossref_primary_10_1108_JES_12_2022_0678 crossref_primary_10_2139_ssrn_1189487 crossref_primary_10_1080_01605682_2020_1860661 crossref_primary_10_1007_s10799_023_00405_y crossref_primary_10_1108_MD_01_2015_0025 crossref_primary_10_1186_1472_6963_12_74 crossref_primary_10_1007_s11123_013_0341_3 crossref_primary_10_1016_j_rser_2017_04_049 crossref_primary_10_1016_j_agwat_2015_06_020 crossref_primary_10_1007_s10479_025_06473_3 crossref_primary_10_1016_j_omega_2009_08_004 crossref_primary_10_3390_su14042058 crossref_primary_10_1108_BIJ_01_2021_0039 crossref_primary_10_1080_23311975_2023_2275366 crossref_primary_10_1186_s40854_021_00320_7 crossref_primary_10_1108_IJoEM_11_2016_0301 crossref_primary_10_1002_smj_2199 crossref_primary_10_2139_ssrn_1485733 crossref_primary_10_1007_s11123_015_0459_6 crossref_primary_10_1111_jori_12022 crossref_primary_10_4236_chnstd_2014_33014 crossref_primary_10_1111_cjag_12314 crossref_primary_10_1108_JES_04_2017_0091 crossref_primary_10_1016_j_omega_2018_04_009 crossref_primary_10_1002_bse_3162 crossref_primary_10_1108_MF_10_2020_0529 crossref_primary_10_1007_s10824_012_9194_2 crossref_primary_10_1007_s11192_019_03296_5 crossref_primary_10_1590_S0101_41612014000400001 crossref_primary_10_1016_j_seps_2016_10_005 crossref_primary_10_1177_1536867X19893640 crossref_primary_10_2139_ssrn_1984546 crossref_primary_10_1108_EMJB_06_2015_0026 crossref_primary_10_1016_j_ejor_2012_06_028 crossref_primary_10_1007_s11846_019_00351_6 crossref_primary_10_1057_gpp_2011_6 crossref_primary_10_1016_j_cor_2009_09_015 crossref_primary_10_1590_S1807_76922012000100005 crossref_primary_10_3390_w7073263 crossref_primary_10_1007_s10551_018_4046_4 crossref_primary_10_1111_acfi_12188 crossref_primary_10_1108_JFEP_08_2023_0223 crossref_primary_10_1080_16507541_2010_481901 crossref_primary_10_2139_ssrn_1693523 crossref_primary_10_1016_j_eneco_2025_108371 crossref_primary_10_3390_agriculture12010092 crossref_primary_10_1504_IJBPM_2010_036041 crossref_primary_10_1016_j_dajour_2022_100115 crossref_primary_10_1111_ecoj_12038 crossref_primary_10_1080_1540496X_2023_2168477 crossref_primary_10_1016_j_rser_2012_04_051 crossref_primary_10_1007_s40812_019_00128_8 crossref_primary_10_1080_00343404_2021_2000596 crossref_primary_10_1108_IJPDLM_05_2012_0163 |
Cites_doi | 10.1016/j.jeconom.2005.07.009 10.1023/A:1016565719882 10.1016/0304-4076(82)90004-5 10.1016/S0377-2217(99)00429-4 10.1287/mnsc.37.12.1620 10.1023/A:1013540521576 10.1080/07474938608800089 10.1016/S0377-2217(02)00699-9 10.1016/0304-4076(80)90043-3 10.1016/0304-4076(80)90041-X 10.1287/mnsc.30.9.1078 10.2307/2525757 10.1023/A:1018312801700 10.2307/2343100 10.1016/0304-4076(77)90052-5 10.2307/1924032 10.1007/BF00157039 10.1016/0304-3878(81)90004-3 10.1016/0377-2217(93)90289-Y 10.1287/mnsc.39.10.1265 |
ContentType | Journal Article |
Copyright | Copyright 2008 INFORMS 2008 INIST-CNRS COPYRIGHT 2008 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2008 |
Copyright_xml | – notice: Copyright 2008 INFORMS – notice: 2008 INIST-CNRS – notice: COPYRIGHT 2008 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2008 |
DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88F 8AL 8AO 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- K9. L.- L.0 L6V M0C M0N M0S M1P M1Q M2O M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1287/opre.1070.0460 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Military Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Military Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Computer Science Business Statistics Applied Sciences Mathematics |
EISSN | 1526-5463 |
EndPage | 58 |
ExternalDocumentID | 1462303831 A182605285 20192534 10_1287_opre_1070_0460 25147166 opre.1070.0460 opres_56_1_48 |
Genre | Research Article Feature |
GroupedDBID | 02 08R 123 1AW 1OL 29N 2AX 3V. 4.4 7WY 7X7 85S 88E 8AL 8AO 8FE 8FG 8FI 8FJ 8FL 8G5 8V8 92 AABCJ ABBHK ABDEX ABEFU ABJCF ABPPZ ABSIS ABUWG ABWPA ACDCL ACHQT ACIWK ACNCT ACUWV ACVYA ADBBV ADGDI ADNFJ AENEX AEUPB AFFNX AFKRA AJPNJ AKVCP ALMA_UNASSIGNED_HOLDINGS AQNXB AQSKT ARAPS AZQEC B-7 BBAFP BENPR BEZIV BGLVJ BPHCQ BVXVI CBXGM CCKSF CS3 CWXUR CYVLN DWQXO DZ EBA EBE EBO EBR EBS EBU ECR EHE EJD EMI EMK EPL F20 F5P FH7 FRNLG FYUFA G8K GENNL GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA GUQSH HCIFZ H~9 IAO ICJ IEA IGG IOF ITC JAV JBC JPL JSODD JST K6 K60 K6V K7- L6V LI M0C M0N M1P M1Q M2O M7S MBDVC MV1 N95 NIEAY P2P P62 PQEST PQQKQ PQUKI PRG PROAC PSQYO PTHSS QVA RNS RPU SA0 TAE TH9 TN5 U5U VQA WH7 X XFK XHC XI7 XJT XXP YNT YZZ ZCG AETEA HGD HVGLF Y99 YHZ ZY4 -DZ -~X 18M AAAZS AAWTO AAXLS AAYOK ABAWQ ABDPE ABKVW ABLWH ABXSQ ABYYQ ACGFO ACHJO ACSVP ACXJH ADEPB ADMHC ADMHG ADNWM ADULT AEGXH AEMOZ AFAIT AFTQD AGKTX AHAJD AHQJS AIAGR ALIPV APTMU ASMEE BAAKF CCPQU HF~ HMCUK IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA UKHRP XOL XSW ~02 ~92 AAYXX CITATION YYP IQODW PJZUB PPXIY PQGLB PMFND 7XB 8FK JQ2 K9. L.- L.0 PKEHL PRINS Q9U |
ID | FETCH-LOGICAL-c529t-34b18256d41428149c01315542d547a3977b7b2d1f424e7065f11b453156894f3 |
IEDL.DBID | 7X7 |
ISSN | 0030-364X |
IngestDate | Fri Jul 25 10:33:26 EDT 2025 Fri Jun 13 00:47:07 EDT 2025 Tue Jun 10 21:27:46 EDT 2025 Mon Jul 21 09:14:36 EDT 2025 Tue Jul 01 00:21:40 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Thu Jun 19 16:02:46 EDT 2025 Tue Jan 05 23:29:22 EST 2021 Fri Jan 15 03:35:27 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Performance evaluation Productivity Stochastic model Monte Carlo method Random noise organizational studies: productivity Statistical analysis Probabilistic approach Decision support system Decision making Non parametric estimation Regression analysis Modeling Independent variable Parametric method Consistent estimator Least squares method effectiveness/performance; statistics: nonparametric; probability: stochastic model applications; simulation: applications Maximum likelihood Data envelopment analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-34b18256d41428149c01315542d547a3977b7b2d1f424e7065f11b453156894f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 219164356 |
PQPubID | 37962 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1287_opre_1070_0460 jstor_primary_25147166 informs_primary_10_1287_opre_1070_0460 crossref_primary_10_1287_opre_1070_0460 gale_infotracacademiconefile_A182605285 pascalfrancis_primary_20192534 proquest_journals_219164356 gale_infotracgeneralonefile_A182605285 highwire_informs_opres_56_1_48 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Linthicum, MD |
PublicationPlace_xml | – name: Linthicum, MD – name: Linthicum |
PublicationTitle | Operations research |
PublicationYear | 2008 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B10 B21 B11 B22 B12 B23 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Aigner D. J. (B1) 1968; 58 Kalirajan K. P. (B14) 1989; 24 |
References_xml | – ident: B8 – ident: B12 – ident: B9 – ident: B11 – ident: B13 – ident: B14 – ident: B10 – ident: B3 – ident: B2 – ident: B20 – ident: B1 – ident: B4 – ident: B7 – ident: B5 – ident: B6 – ident: B22 – ident: B23 – ident: B21 – ident: B17 – ident: B18 – ident: B16 – ident: B15 – ident: B19 – ident: B22 doi: 10.1016/j.jeconom.2005.07.009 – ident: B23 doi: 10.1023/A:1016565719882 – ident: B13 doi: 10.1016/0304-4076(82)90004-5 – ident: B17 doi: 10.1016/S0377-2217(99)00429-4 – ident: B19 doi: 10.1287/mnsc.37.12.1620 – ident: B7 doi: 10.1023/A:1013540521576 – ident: B21 doi: 10.1080/07474938608800089 – ident: B4 doi: 10.1016/S0377-2217(02)00699-9 – ident: B16 doi: 10.1016/0304-4076(80)90043-3 – ident: B10 doi: 10.1016/0304-4076(80)90041-X – ident: B5 doi: 10.1287/mnsc.30.9.1078 – ident: B15 doi: 10.2307/2525757 – ident: B12 doi: 10.1023/A:1018312801700 – ident: B8 doi: 10.2307/2343100 – ident: B2 doi: 10.1016/0304-4076(77)90052-5 – ident: B20 doi: 10.2307/1924032 – ident: B11 doi: 10.1007/BF00157039 – volume: 24 start-page: 247 year: 1989 ident: B14 publication-title: Indian Econom. Rev. – ident: B18 doi: 10.1016/0304-3878(81)90004-3 – ident: B6 doi: 10.1016/0377-2217(93)90289-Y – ident: B3 doi: 10.1287/mnsc.39.10.1265 – volume: 58 start-page: 826 issue: 4 year: 1968 ident: B1 publication-title: Amer. Econom. Rev. |
SSID | ssj0009565 |
Score | 2.4368787 |
Snippet | A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided... |
SourceID | proquest gale pascalfrancis crossref jstor informs highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 48 |
SubjectTerms | applications Applied sciences Consistent estimators Context effects (Psychology) Cubic polynomials Data envelopment analysis Decision making Decision theory. Utility theory effectiveness/performance Efficiency Error rates Estimation methods Estimation theory Estimators Evaluation Exact sciences and technology Firm modelling Influence Inventory control, production control. Distribution Mathematics Maximum likelihood estimation Methods Monte Carlo simulation Noise nonparametric Nonparametric inference Operational research and scientific management Operational research. Management science Operations research organizational studies Performance evaluation probability Probability and statistics Production estimates Production functions Productivity Regression analysis Sciences and techniques of general use Simulation Social accounting Socioeconomic factors Statistics stochastic model applications Stochastic models Studies Variables |
Title | Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis |
URI | http://or.journal.informs.org/cgi/content/abstract/56/1/48 https://www.jstor.org/stable/25147166 https://www.proquest.com/docview/219164356 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB1BKyE4FLpQsZSufEB8HEw3ie3Ep2oLu1RIVBWi1d4sJ3Z6qdJCFomfz4xjL13xdYmiZJREmfHkTfz8BuCFcE7bNlNcq9Zx4esp185b7nyZeacb64NOwadTdXIuPi7lMnJz-kirTDkxJGp33dA_8kMcWYjsC6mObr5yahpFk6uxg8Zd2CblMmJ0lcvyluauGhoYFJhqlFhGzUasEQ6pwwgWruX0LU0MbnyTUmZOcsFhmRMByD5RFok_aXt8he3Q--K3NB6-TYtHsBNBJZsNUbALd3w3gnuJ0z6Ch6l3A4tDeQQPbgkRjmA3Hu_Z66hD_eYxXMyjEnh3yYKI1Q9aa8IusLqm9VY9mwUuCJ0-G3RjQyMKFlgI7L1dWTbv1pQkluRPnsD5Yv7l3QmPbRh4I3O94oWosQiRyglSZ8OKqiGNHoQhuZOitIQg67LOXdaKXHiaNm2zrBY4uKWqtGiLPdjqrjv_FBjihVx7r6yuKtxrrNVW1KWQtfNCqXoMPDnCNFGjnFplXBmqVdBxhhxnyHGGHDeGV2v7m0Gd4--W5FdDrsQrNjauPsDnIgEsM6M6ayrzSo7h5Ybl5fDa_2Q4STFiYoSEm_ZGKpMZUeGV0vH_PdxeCKy1GYJOBA1K4S02Iu2XASFzWYgx7KfQMzH59GY9VJ798-w-3B_IL_Q_6Tlsrb599weIsFb1JIwj3FaLDxPYPp6fnn3-CXs5JP0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4AF2oWArFB149hG4S2xsfEFrRXbb0IQ5ttTfjxE4vKC1kEfCj-I_MOPbSFa9Tb6tk5ET7zYxn4plvAJ5wa5WpU5koWduEu3KQKOtMYt0wdVZVxnmegoNDOT3m72ZitgI_Yi8MlVVGn-gdtT2r6Bv5NloWRva5kK_PPyU0NIoOV-MEjU4r9tz3r5ixta92dxDep1k2GR-9mSZhqEBSiUzNk5yXGFILaTlxjWF-UBHjDG6qmRV8aCgeKodlZtOaZ9zRIWCdpiVHVRWyULzOcd0rcJXnuSKDKiZvL3D8ym5gQo6uTfJZ4IjEnGSbJppgojwcvKSDyKU9MO4EkZ7Yt1VRwNrGEkmq1zQtQlZ3szZ-2zb8Xji5A7dCEMtGndatwYprenAt1tD34HacFcGC6-jBzQvEhz1YC9db9iLwXm_dhZNxYB5vTpknzfpGvS3sBLN56u9q2cjXntDt9x1PrR98wXzVA9sxc8PGzaIEikW6lXtwfCkIrcNqc9a4-8AwPsmUc9KoosBflTHK8HLIRWkdl7LsQxKB0FXgRKfRHB815UYInCbgNAGnCbg-PF_In3dsIH-XJFw1QYkrViZ0O-B7EeGWHlFeNxBZIfrwbEnytPvb_yS4GXVEBw3xD221kDrVvMCV4vX_vdy6V6yFGAa5GKRIiY9Y0rRfApQJiJz3YSOqng7OrtUL03zwz7uP4fr06GBf7-8e7m3Aja7whr5lPYTV-ecv7hFGd_Ny09sUgw-XbcQ_AQEXWwU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlX0AHSh6lIoPvA8hN0ktpMcEFqxu2opVD3Qam_GiZ1eqrQli1p-Gv-OGcdeuuJ16m2VjJxov5nxTDzzDcAzbkyh61hGhaxNxG05jApjdWRsFltTVNo6noJPB3L3iH-YidkK_Ai9MFRWGXyic9TmrKJv5AO0LIzsUyEHta-KOBxP351fRDRAig5awzSNTkP27fdLzN7at3tjhPp5kkwnn9_vRn7AQFSJpJhHKS8xvBbScOIdw1yhIvYZ3GATI3imKTYqszIxcc0TbulAsI7jkqPaCpkXvE5x3VtwO0tFTCaWzbJrfL-yG56QopuTfOb5IjE_GdB0E0yas-EbOpRc2g_DrhCoil2LFQWvbSiXpNpN3SJ8dTd347ctxO2L0_tw1we0bNRp4Aas2KYHa6Gevgf3wtwI5t1ID9avkSD2YMNfb9krz4H9-gEcTzwLeXPCHIHWFfW5sGPM7KnXq2UjV4dCtw87zlo3BIO5Cgg21nPNJs2iHIoF6pWHcHQjCG3CanPW2C1gGKskhbVSF3mOvyqtC83LjIvSWC5l2YcoAKEqz49OYzpOFeVJCJwi4BQBpwi4PrxcyJ93zCB_lyRcFUGJK1badz7gexH5lhpRjjcUSS768GJJ8qT72_8kuBN0RHkNcQ9tlZAqVjzHlcL1_73cplOshRgGvBiwSImPWNK0XwKUFYiU92E7qJ7yjq9VCzN99M-7T2ENzVd93DvY34Y7XQ0OfdZ6DKvzr9_sEwz05uWOMykGX27ahn8CdKtfMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Contextual+Variables+Affecting+Productivity+Using+Data+Envelopment+Analysis&rft.jtitle=Operations+research&rft.au=BANKER%2C+Rajiv+D&rft.au=NATARAJAN%2C+Ram&rft.date=2008-01-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0030-364X&rft.volume=56&rft.issue=1&rft.spage=48&rft.epage=58&rft_id=info:doi/10.1287%2Fopre.1070.0460&rft.externalDBID=n%2Fa&rft.externalDocID=20192534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon |