Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis

A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed b...

Full description

Saved in:
Bibliographic Details
Published inOperations research Vol. 56; no. 1; pp. 48 - 58
Main Authors Banker, Rajiv D, Natarajan, Ram
Format Journal Article
LanguageEnglish
Published Linthicum, MD INFORMS 01.01.2008
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0030-364X
1526-5463
DOI10.1287/opre.1070.0460

Cover

Loading…
Abstract A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology.
AbstractList A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology.
A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decisionmaking unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology.
A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decision-making unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. [PUBLICATION ABSTRACT]
A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided inefficiency deviations as well as two-sided random noise. Conditions are identified under which a two-stage procedure consisting of DEA followed by ordinary least squares (OLS) regression analysis yields consistent estimators of the impact of contextual variables. Conditions are also identified under which DEA in the first stage followed by maximum likelihood estimation (MLE) in the second stage yields consistent estimators of the impact of contextual variables. This requires the contextual variables to be independent of the input variables, but the contextual variables may be correlated with each other. Monte Carlo simulations are carried out to compare the performance of our two-stage approach with one-stage and two-stage parametric approaches. Simulation results indicate that DEA-based procedures with OLS, maximum likelihood, or even Tobit estimation in the second stage perform as well as the best of the parametric methods in the estimation of the impact of contextual variables on productivity. Simulation results also indicate that DEA-based procedures perform better than parametric methods in the estimation of individual decisionmaking unit (DMU) productivity. Overall, the results establish DEA as a nonparametric stochastic frontier estimation (SFE) methodology. Subject classifications: organizational studies: productivity, effectiveness/performance; statistics: nonparametric; probability: stochastic model applications; simulation: applications. Area of review: Decision Analysis.
Audience Trade
Author Banker, Rajiv D
Natarajan, Ram
Author_xml – sequence: 1
  fullname: Banker, Rajiv D
– sequence: 2
  fullname: Natarajan, Ram
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20192534$$DView record in Pascal Francis
BookMark eNqFkUtvEzEUhS1UJNLClh3SCInlBL9nZhmF8JAqwYJW7CyPx04dOXawPSn593iYQFkUIS9sXX_n6txzL8GFD14D8BLBJcJt8zYcol4i2MAlpBw-AQvEMK8Z5eQCLCAksCacfnsGLlPaQQg7xtkC3G6O0o0yW7-t1sFn_SOP0lW3MlrZO52qlTFa_fr-EsMwlufR5lN1k6bSO5lltfFH7cJhr32uVl66U7LpOXhqpEv6xfm-AjfvN1_XH-vrzx8-rVfXtWK4yzWhPWox4wNFFLeIdgoighijeGC0kaRrmr7p8YAMxVQ3kDODUE9ZYXjbUUOuwOu57yGG76NOWezCGIuJJDDqEKeE8QLVM7SVTgvrTchRqq32OkpXMjS2lFfFCIcMt6zwy0f4cga9t-pRwZuzC5mUdCZKr2wSh2j3Mp4EhqjDjNDC0ZlTMaQUtRHK5pJ9yT1K6wSCYtqkmDYppk2KaZMPfv7Ifnf-p-DVLNilHOKDD4Zog_hfgUyzxX36f7_zfHd2e3dv4xzKJJzAJBgXSNCW_ARtMcYz
CODEN OPREAI
CitedBy_id crossref_primary_10_2139_ssrn_2515772
crossref_primary_10_3390_math8091522
crossref_primary_10_1111_1477_9552_12626
crossref_primary_10_1590_S0101_74382011000100006
crossref_primary_10_2139_ssrn_3312103
crossref_primary_10_1080_00207543_2010_497507
crossref_primary_10_1007_s11187_017_9904_4
crossref_primary_10_1007_s12351_018_0413_2
crossref_primary_10_5937_jemc2101051C
crossref_primary_10_1108_IJESM_07_2020_0024
crossref_primary_10_1016_j_ejor_2019_04_009
crossref_primary_10_1007_s10916_010_9438_7
crossref_primary_10_1007_s11123_023_00692_1
crossref_primary_10_1007_s10657_012_9329_0
crossref_primary_10_1016_j_jup_2021_101175
crossref_primary_10_1016_j_orp_2024_100306
crossref_primary_10_1016_j_jebo_2013_06_011
crossref_primary_10_1016_j_dajour_2022_100099
crossref_primary_10_1108_IJEM_10_2020_0456
crossref_primary_10_1007_s10614_014_9450_y
crossref_primary_10_1108_IJBM_04_2021_0129
crossref_primary_10_1590_0034_7612130868
crossref_primary_10_1007_s11123_018_0532_z
crossref_primary_10_1108_SEF_05_2017_0109
crossref_primary_10_1186_s12913_024_11244_0
crossref_primary_10_1142_S2382624X22400045
crossref_primary_10_1007_s10479_022_04672_w
crossref_primary_10_1007_s10342_024_01663_3
crossref_primary_10_3390_su9050853
crossref_primary_10_1177_2321022216636443
crossref_primary_10_1177_1354816616656248
crossref_primary_10_1016_j_econmod_2015_06_025
crossref_primary_10_1016_j_eneco_2025_108289
crossref_primary_10_1080_13571516_2020_1858703
crossref_primary_10_1111_ajfs_12482
crossref_primary_10_1016_j_jairtraman_2017_12_003
crossref_primary_10_1016_j_irfa_2013_06_006
crossref_primary_10_1016_j_aei_2018_12_006
crossref_primary_10_1016_j_cor_2016_05_017
crossref_primary_10_1080_10920277_2022_2099425
crossref_primary_10_1007_s10742_019_00203_6
crossref_primary_10_1080_1226508X_2010_533854
crossref_primary_10_1007_s10479_013_1367_7
crossref_primary_10_1186_s12913_021_07276_5
crossref_primary_10_1002_ajae_12036
crossref_primary_10_1080_01900692_2016_1256892
crossref_primary_10_2308_JMAR_2023_031
crossref_primary_10_1016_j_ejor_2014_04_041
crossref_primary_10_1108_BIJ_08_2018_0265
crossref_primary_10_1108_BIJ_11_2012_0076
crossref_primary_10_1080_12265080903391735
crossref_primary_10_1016_j_ejor_2017_08_005
crossref_primary_10_1016_j_respol_2011_03_010
crossref_primary_10_1108_CR_07_2017_0043
crossref_primary_10_1080_19371918_2012_672261
crossref_primary_10_1016_j_eneco_2017_04_009
crossref_primary_10_1016_j_econmod_2013_10_008
crossref_primary_10_1108_IJOEM_11_2020_1374
crossref_primary_10_1287_opre_2018_1831
crossref_primary_10_2139_ssrn_3257535
crossref_primary_10_1002_hpm_3408
crossref_primary_10_1108_RAF_07_2012_0063
crossref_primary_10_1016_j_omega_2011_08_010
crossref_primary_10_1186_s12544_018_0311_y
crossref_primary_10_1016_j_jenvman_2024_121733
crossref_primary_10_1016_j_iimb_2011_06_003
crossref_primary_10_1080_18146627_2016_1224594
crossref_primary_10_1177_1354816616656266
crossref_primary_10_2139_ssrn_2965742
crossref_primary_10_1080_03155986_2019_1624476
crossref_primary_10_24056_KAJ_2024_05_001
crossref_primary_10_3168_jds_2017_13816
crossref_primary_10_1007_s40812_017_0086_5
crossref_primary_10_1016_j_jclepro_2023_139929
crossref_primary_10_1080_00207543_2011_581005
crossref_primary_10_1002_ijfe_2927
crossref_primary_10_1111_j_1538_4616_2010_00318_x
crossref_primary_10_1177_0160017620979611
crossref_primary_10_1007_s11156_017_0662_9
crossref_primary_10_1007_s40953_024_00389_8
crossref_primary_10_1111_apce_12270
crossref_primary_10_1111_jfir_12316
crossref_primary_10_1016_j_techfore_2020_119998
crossref_primary_10_1016_j_dajour_2022_100051
crossref_primary_10_3390_math8020233
crossref_primary_10_1051_e3sconf_202339601110
crossref_primary_10_2139_ssrn_3277185
crossref_primary_10_1080_00343404_2013_837872
crossref_primary_10_1007_s10479_008_0482_3
crossref_primary_10_1016_j_jbankfin_2010_01_013
crossref_primary_10_1016_j_resourpol_2013_11_001
crossref_primary_10_1080_17516234_2013_873340
crossref_primary_10_1080_19761597_2020_1713831
crossref_primary_10_1287_opre_1120_1094
crossref_primary_10_32997_2463_0470_vol_27_num_1_2019_2616
crossref_primary_10_1080_00036846_2017_1340572
crossref_primary_10_3390_w5042058
crossref_primary_10_3846_13923730_2014_897966
crossref_primary_10_1080_1351847X_2024_2366367
crossref_primary_10_1080_10632921_2023_2223567
crossref_primary_10_1016_j_econmod_2017_03_011
crossref_primary_10_1016_j_seps_2015_10_004
crossref_primary_10_1007_s10479_019_03287_y
crossref_primary_10_1080_01605682_2022_2053309
crossref_primary_10_2139_ssrn_2708790
crossref_primary_10_1016_j_eneco_2014_07_002
crossref_primary_10_1108_BIJ_10_2014_0097
crossref_primary_10_1007_s11123_013_0358_7
crossref_primary_10_1016_j_jclepro_2017_08_155
crossref_primary_10_1080_13657305_2014_926464
crossref_primary_10_1108_BIJ_05_2022_0286
crossref_primary_10_1016_j_ijpe_2018_05_029
crossref_primary_10_1590_S0103_65132010005000045
crossref_primary_10_1016_j_telpol_2014_01_004
crossref_primary_10_1108_RAF_05_2012_0043
crossref_primary_10_1111_jbl_12197
crossref_primary_10_3390_su131810066
crossref_primary_10_1016_j_adiac_2025_100806
crossref_primary_10_1142_S0219091522500278
crossref_primary_10_1093_scipol_scaa022
crossref_primary_10_5089_9781455217922_001
crossref_primary_10_1186_s41072_024_00191_y
crossref_primary_10_1016_j_wasman_2021_09_022
crossref_primary_10_2139_ssrn_2825787
crossref_primary_10_1016_j_aquaculture_2024_741794
crossref_primary_10_1016_j_econmod_2023_106202
crossref_primary_10_1111_j_1539_6975_2011_01437_x
crossref_primary_10_4018_ijrcm_2014100103
crossref_primary_10_1016_j_tra_2014_03_008
crossref_primary_10_1007_s11123_011_0230_6
crossref_primary_10_1016_j_seps_2015_06_002
crossref_primary_10_1080_01605682_2019_1612549
crossref_primary_10_1016_j_seps_2019_06_009
crossref_primary_10_1007_s12351_016_0259_4
crossref_primary_10_1111_itor_12055
crossref_primary_10_2139_ssrn_1999346
crossref_primary_10_1108_14468951011073316
crossref_primary_10_2139_ssrn_1495351
crossref_primary_10_1016_j_seps_2018_04_001
crossref_primary_10_1177_097380101000400403
crossref_primary_10_2166_wst_2015_169
crossref_primary_10_1016_j_agwat_2023_108647
crossref_primary_10_1016_j_rser_2014_10_071
crossref_primary_10_1007_s11192_019_03324_4
crossref_primary_10_1016_j_ejor_2012_01_023
crossref_primary_10_1080_0309877X_2023_2209799
crossref_primary_10_61138_bolgeselkalkinmadergisi_1271815
crossref_primary_10_1016_j_ejor_2018_10_050
crossref_primary_10_1108_MF_07_2019_0380
crossref_primary_10_1177_1091142116651487
crossref_primary_10_1108_IGDR_07_2023_0093
crossref_primary_10_29105_ensayos30_2_2
crossref_primary_10_1080_10920277_2019_1626252
crossref_primary_10_1108_JKM_06_2014_0240
crossref_primary_10_1007_s11123_011_0231_5
crossref_primary_10_21511_bbs_15_3__2020_01
crossref_primary_10_3138_cpp_37_1_85
crossref_primary_10_1007_s10824_019_09347_2
crossref_primary_10_1007_s10916_009_9390_6
crossref_primary_10_2308_jmar_50397
crossref_primary_10_1108_JM2_04_2024_0122
crossref_primary_10_1108_IGDR_11_2018_0116
crossref_primary_10_15678_krem_16719
crossref_primary_10_1016_j_ejor_2012_01_048
crossref_primary_10_1080_12269328_2014_887045
crossref_primary_10_1007_s10479_014_1670_y
crossref_primary_10_1108_SBR_04_2020_0056
crossref_primary_10_1007_s12351_015_0169_x
crossref_primary_10_1016_j_ejor_2019_03_019
crossref_primary_10_1016_j_tra_2013_01_026
crossref_primary_10_1002_bsd2_115
crossref_primary_10_1142_S0217590821500156
crossref_primary_10_1177_0972150916666850
crossref_primary_10_1111_j_1539_6975_2011_01443_x
crossref_primary_10_1016_j_dss_2010_02_002
crossref_primary_10_36923_ijsser_v4i1_143
crossref_primary_10_52292_j_estudecon_2024_3178
crossref_primary_10_1016_j_techfore_2020_120209
crossref_primary_10_1111_are_14376
crossref_primary_10_1590_1806_9479_2019_179530
crossref_primary_10_1080_1226508X_2011_601633
crossref_primary_10_2139_ssrn_2244881
crossref_primary_10_29252_jemr_7_27_41
crossref_primary_10_1007_s10479_011_0875_6
crossref_primary_10_1016_j_landusepol_2021_105560
crossref_primary_10_1016_j_ejor_2020_06_012
crossref_primary_10_2139_ssrn_1814108
crossref_primary_10_1057_fsm_2010_20
crossref_primary_10_1108_H_08_2016_0059
crossref_primary_10_2139_ssrn_2485183
crossref_primary_10_1016_j_ejor_2010_08_024
crossref_primary_10_1080_02692171_2013_804493
crossref_primary_10_1016_j_seps_2021_101031
crossref_primary_10_1111_j_1574_0862_2010_00508_x
crossref_primary_10_1016_j_ejor_2014_06_040
crossref_primary_10_1016_j_ejor_2014_06_044
crossref_primary_10_1007_s00180_019_00951_6
crossref_primary_10_1016_j_compind_2009_10_006
crossref_primary_10_1016_j_omega_2015_04_004
crossref_primary_10_1371_journal_pone_0311174
crossref_primary_10_1002_mde_3135
crossref_primary_10_1111_insr_12056
crossref_primary_10_1016_j_jup_2016_06_013
crossref_primary_10_1016_j_econmod_2023_106299
crossref_primary_10_1016_j_jclepro_2018_02_147
crossref_primary_10_1057_jors_2010_193
crossref_primary_10_1016_j_techfore_2022_121836
crossref_primary_10_1016_j_jairtraman_2015_05_002
crossref_primary_10_1108_BIJ_01_2019_0039
crossref_primary_10_1016_j_ejor_2012_09_002
crossref_primary_10_2308_accr_50274
crossref_primary_10_1016_j_qref_2020_02_002
crossref_primary_10_1108_JIC_08_2020_0276
crossref_primary_10_1016_j_tourman_2021_104348
crossref_primary_10_1080_0740817X_2010_491497
crossref_primary_10_1177_03611981241284625
crossref_primary_10_1016_j_seps_2024_102081
crossref_primary_10_1007_s10671_019_09254_5
crossref_primary_10_1590_S0103_65132012005000088
crossref_primary_10_2139_ssrn_1579352
crossref_primary_10_1111_j_1539_6975_2011_01411_x
crossref_primary_10_1007_s10479_019_03393_x
crossref_primary_10_1016_j_tranpol_2021_05_026
crossref_primary_10_1007_s10479_021_04252_4
crossref_primary_10_1007_s10479_022_04659_7
crossref_primary_10_1016_j_seps_2017_01_005
crossref_primary_10_53974_unza_jabs_1_1_332
crossref_primary_10_1016_j_seps_2009_06_002
crossref_primary_10_1111_itor_13560
crossref_primary_10_1007_s12197_022_09610_x
crossref_primary_10_1016_j_seps_2022_101426
crossref_primary_10_1080_00207543_2015_1037022
crossref_primary_10_2139_ssrn_2933403
crossref_primary_10_1007_s11846_018_0299_7
crossref_primary_10_1016_j_eap_2018_04_002
crossref_primary_10_1057_s41288_021_00208_8
crossref_primary_10_1016_j_apmrv_2020_06_003
crossref_primary_10_1016_j_jretai_2012_09_001
crossref_primary_10_3390_su13020514
crossref_primary_10_1002_jaa2_117
crossref_primary_10_1016_j_econmod_2020_12_020
crossref_primary_10_1016_j_enpol_2013_05_091
crossref_primary_10_1016_j_jup_2019_100960
crossref_primary_10_1093_ajae_aar051
crossref_primary_10_1016_j_eap_2021_08_004
crossref_primary_10_1108_PM_09_2020_0061
crossref_primary_10_1142_S0219622014500916
crossref_primary_10_1007_s40503_015_0019_5
crossref_primary_10_1108_APJBA_09_2021_0446
crossref_primary_10_1051_ro_2016063
crossref_primary_10_3390_fishes7040168
crossref_primary_10_1016_j_omega_2018_09_005
crossref_primary_10_1080_00343404_2010_497479
crossref_primary_10_1016_j_jbankfin_2013_04_030
crossref_primary_10_1002_mde_3145
crossref_primary_10_1007_s00181_022_02273_x
crossref_primary_10_1016_j_knosys_2014_04_004
crossref_primary_10_1080_01441647_2010_547635
crossref_primary_10_1016_j_seps_2023_101763
crossref_primary_10_2139_ssrn_1997444
crossref_primary_10_32675_ses_2018_11_1_003
crossref_primary_10_1111_1911_3846_13003
crossref_primary_10_1016_j_ejor_2011_08_004
crossref_primary_10_1108_IJPPM_09_2018_0328
crossref_primary_10_1016_j_tranpol_2018_06_008
crossref_primary_10_2139_ssrn_1666884
crossref_primary_10_1155_2015_347045
crossref_primary_10_2139_ssrn_1995149
crossref_primary_10_1016_j_rdf_2012_09_003
crossref_primary_10_1051_ro_2020040
crossref_primary_10_1057_jors_2010_137
crossref_primary_10_1108_RAF_06_2012_0052
crossref_primary_10_1016_j_jairtraman_2022_102317
crossref_primary_10_1080_03088839_2014_990408
crossref_primary_10_1080_23311916_2019_1575638
crossref_primary_10_1016_j_ejor_2024_04_008
crossref_primary_10_1016_j_seps_2023_101537
crossref_primary_10_1016_j_eap_2017_11_003
crossref_primary_10_1007_s11123_012_0302_2
crossref_primary_10_70490_gumrukticaretdergisi_1536364
crossref_primary_10_15722_jds_14_7_201607_53
crossref_primary_10_1111_poms_13055
crossref_primary_10_1016_j_ejor_2010_06_007
crossref_primary_10_1080_14942119_2020_1778980
crossref_primary_10_1080_15567249_2010_540625
crossref_primary_10_1016_j_econmod_2015_11_023
crossref_primary_10_1109_TEM_2018_2861982
crossref_primary_10_1007_s10479_023_05606_w
crossref_primary_10_1016_j_seps_2018_10_004
crossref_primary_10_1007_s00181_024_02636_6
crossref_primary_10_1016_j_landusepol_2019_104113
crossref_primary_10_1080_24725579_2017_1367978
crossref_primary_10_1017_S0266466614000413
crossref_primary_10_1108_IMEFM_12_2012_0114
crossref_primary_10_1080_20421338_2020_1755111
crossref_primary_10_1111_j_1749_124X_2011_01260_x
crossref_primary_10_1080_23322039_2014_932700
crossref_primary_10_1111_jbl_12300
crossref_primary_10_1080_13547860_2013_818428
crossref_primary_10_1186_s12960_022_00777_2
crossref_primary_10_1108_JIC_03_2020_0105
crossref_primary_10_1108_JIC_03_2020_0106
crossref_primary_10_1093_icc_dtq051
crossref_primary_10_1016_j_seps_2020_100857
crossref_primary_10_24136_oc_2021_019
crossref_primary_10_1108_IJWBR_10_2019_0052
crossref_primary_10_3390_ijerph20032060
crossref_primary_10_3390_su13042188
crossref_primary_10_2139_ssrn_1997468
crossref_primary_10_1007_s10479_008_0390_6
crossref_primary_10_1186_s40854_023_00583_2
crossref_primary_10_1155_2021_8153506
crossref_primary_10_1016_j_omega_2010_12_006
crossref_primary_10_2139_ssrn_3374478
crossref_primary_10_1016_j_eap_2020_03_002
crossref_primary_10_1007_s11205_010_9772_7
crossref_primary_10_1057_jors_2009_142
crossref_primary_10_4018_ijpmat_2014040103
crossref_primary_10_1016_j_jbankfin_2009_07_001
crossref_primary_10_3390_su10020400
crossref_primary_10_1016_j_ejor_2010_06_027
crossref_primary_10_1007_s40685_020_00109_x
crossref_primary_10_1051_ro_2022012
crossref_primary_10_1016_j_ejor_2015_10_050
crossref_primary_10_1016_j_ememar_2014_06_001
crossref_primary_10_1002_joom_1307
crossref_primary_10_1016_j_iref_2021_03_015
crossref_primary_10_1111_j_1540_6296_2011_01202_x
crossref_primary_10_1186_s12913_018_3228_1
crossref_primary_10_1108_JES_06_2019_0295
crossref_primary_10_1016_j_ejor_2021_05_019
crossref_primary_10_1016_j_jairtraman_2023_102523
crossref_primary_10_1002_mde_3529
crossref_primary_10_1111_poms_13257
crossref_primary_10_3390_su10124826
crossref_primary_10_1016_j_eneco_2021_105222
crossref_primary_10_1111_poms_13019
crossref_primary_10_1016_j_seps_2021_101162
crossref_primary_10_1111_are_14636
crossref_primary_10_1016_j_ejor_2016_09_008
crossref_primary_10_1016_j_ejor_2009_04_025
crossref_primary_10_1177_0973801017738416
crossref_primary_10_1080_00036846_2018_1494815
crossref_primary_10_1016_j_ecolind_2016_10_035
crossref_primary_10_1016_j_jairtraman_2022_102355
crossref_primary_10_1007_s10754_023_09346_z
crossref_primary_10_1016_j_respol_2011_07_001
crossref_primary_10_1590_S0101_74382013005000007
crossref_primary_10_1016_j_ejor_2016_11_008
crossref_primary_10_1016_j_renene_2018_04_085
crossref_primary_10_1111_saje_12034
crossref_primary_10_1108_JCC_08_02_2015_B003
crossref_primary_10_1007_s00168_014_0604_6
crossref_primary_10_3390_math8081347
crossref_primary_10_1016_j_jbankfin_2017_10_009
crossref_primary_10_1016_j_aqrep_2015_12_001
crossref_primary_10_1111_asej_12124
crossref_primary_10_3917_risa_774_0837
crossref_primary_10_2139_ssrn_1976881
crossref_primary_10_1016_j_jenvman_2014_10_005
crossref_primary_10_1016_j_seps_2020_100928
crossref_primary_10_1007_s10479_021_04503_4
crossref_primary_10_1016_j_seps_2020_100934
crossref_primary_10_1016_j_eswa_2018_09_054
crossref_primary_10_1080_1226508X_2015_1014392
crossref_primary_10_1007_s10479_020_03883_3
crossref_primary_10_1007_s10644_016_9200_3
crossref_primary_10_1007_s40622_016_0133_5
crossref_primary_10_1177_0020852311419385
crossref_primary_10_1556_032_2019_69_3_6
crossref_primary_10_1007_s10479_012_1173_7
crossref_primary_10_1016_j_retrec_2020_100824
crossref_primary_10_1080_00036846_2015_1042145
crossref_primary_10_1016_j_jeconbus_2015_07_002
crossref_primary_10_1080_03003930_2021_2023015
crossref_primary_10_2139_ssrn_1480785
crossref_primary_10_2139_ssrn_2634626
crossref_primary_10_1016_j_ejor_2024_12_049
crossref_primary_10_2139_ssrn_1965759
crossref_primary_10_1093_erae_jbad041
crossref_primary_10_1007_s10657_008_9093_3
crossref_primary_10_1016_j_omega_2018_02_002
crossref_primary_10_1108_BIJ_08_2024_0644
crossref_primary_10_1016_j_jengtecman_2011_03_001
crossref_primary_10_2139_ssrn_2725206
crossref_primary_10_1016_j_procs_2015_07_094
crossref_primary_10_1108_AJEMS_01_2014_0007
crossref_primary_10_1287_mnsc_2020_01932
crossref_primary_10_1016_j_ejor_2014_07_027
crossref_primary_10_1007_s11629_024_8746_1
crossref_primary_10_1108_CG_08_2017_0171
crossref_primary_10_1007_s11846_022_00611_y
crossref_primary_10_1016_j_intfin_2017_08_010
crossref_primary_10_1016_j_brq_2019_02_003
crossref_primary_10_1016_j_jup_2016_01_004
crossref_primary_10_1016_j_econmod_2022_106010
crossref_primary_10_1016_j_omega_2021_102534
crossref_primary_10_1111_jsbm_12410
crossref_primary_10_1016_j_ejor_2008_07_039
crossref_primary_10_1108_BIJ_01_2018_0005
crossref_primary_10_1016_j_ejor_2010_01_027
crossref_primary_10_1016_j_seps_2024_101997
crossref_primary_10_1016_j_jairtraman_2013_06_007
crossref_primary_10_1080_15567249_2010_551823
crossref_primary_10_4236_ojbm_2021_95130
crossref_primary_10_1007_s10479_021_04148_3
crossref_primary_10_2139_ssrn_4867629
crossref_primary_10_1007_s10479_020_03530_x
crossref_primary_10_1007_s10342_023_01572_x
crossref_primary_10_1016_j_aqrep_2015_11_002
crossref_primary_10_21073_kiar_2016__70_009
crossref_primary_10_1080_01605682_2017_1398202
crossref_primary_10_1177_2340944420966870
crossref_primary_10_1016_j_measurement_2014_04_013
crossref_primary_10_1016_j_ejor_2012_12_009
crossref_primary_10_1108_IJSE_05_2019_0321
crossref_primary_10_1016_j_ejor_2016_05_056
crossref_primary_10_1002_jid_2897
crossref_primary_10_1007_s00181_021_02124_1
crossref_primary_10_1016_j_ejor_2012_12_004
crossref_primary_10_1016_j_jairtraman_2019_101740
crossref_primary_10_1016_j_ejor_2014_01_032
crossref_primary_10_1111_1759_3441_12269
crossref_primary_10_1007_s12351_021_00626_5
crossref_primary_10_1007_s43546_022_00245_y
crossref_primary_10_1007_s11356_021_12769_1
crossref_primary_10_1016_j_measurement_2015_05_004
crossref_primary_10_1016_j_jbankfin_2010_01_007
crossref_primary_10_1007_s10797_014_9312_5
crossref_primary_10_1016_j_aquaculture_2021_736883
crossref_primary_10_1007_s10479_016_2191_7
crossref_primary_10_1016_j_ribaf_2023_101980
crossref_primary_10_3390_su12166625
crossref_primary_10_1080_09640568_2017_1393401
crossref_primary_10_1108_CAER_08_2011_0087
crossref_primary_10_1016_j_seps_2019_100753
crossref_primary_10_1108_IJMF_04_2019_0137
crossref_primary_10_1016_j_iref_2016_10_015
crossref_primary_10_1007_s11123_010_0184_0
crossref_primary_10_1016_j_marpol_2015_06_002
crossref_primary_10_1016_j_ejor_2023_05_032
crossref_primary_10_1080_23322039_2021_1953726
crossref_primary_10_1080_10864415_2018_1441784
crossref_primary_10_1080_13657305_2015_1082118
crossref_primary_10_1016_j_jbankfin_2010_02_023
crossref_primary_10_26794_2220_6469_2020_14_1_108_122
crossref_primary_10_1016_j_jbankfin_2010_02_025
crossref_primary_10_1016_j_jbankfin_2010_02_024
crossref_primary_10_1002_kpm_1448
crossref_primary_10_1016_j_ejor_2023_07_027
crossref_primary_10_1007_s10479_009_0572_x
crossref_primary_10_1016_j_econmod_2015_10_049
crossref_primary_10_1016_j_omega_2024_103270
crossref_primary_10_1108_BIJ_12_2016_0183
crossref_primary_10_1108_JES_12_2022_0678
crossref_primary_10_2139_ssrn_1189487
crossref_primary_10_1080_01605682_2020_1860661
crossref_primary_10_1007_s10799_023_00405_y
crossref_primary_10_1108_MD_01_2015_0025
crossref_primary_10_1186_1472_6963_12_74
crossref_primary_10_1007_s11123_013_0341_3
crossref_primary_10_1016_j_rser_2017_04_049
crossref_primary_10_1016_j_agwat_2015_06_020
crossref_primary_10_1007_s10479_025_06473_3
crossref_primary_10_1016_j_omega_2009_08_004
crossref_primary_10_3390_su14042058
crossref_primary_10_1108_BIJ_01_2021_0039
crossref_primary_10_1080_23311975_2023_2275366
crossref_primary_10_1186_s40854_021_00320_7
crossref_primary_10_1108_IJoEM_11_2016_0301
crossref_primary_10_1002_smj_2199
crossref_primary_10_2139_ssrn_1485733
crossref_primary_10_1007_s11123_015_0459_6
crossref_primary_10_1111_jori_12022
crossref_primary_10_4236_chnstd_2014_33014
crossref_primary_10_1111_cjag_12314
crossref_primary_10_1108_JES_04_2017_0091
crossref_primary_10_1016_j_omega_2018_04_009
crossref_primary_10_1002_bse_3162
crossref_primary_10_1108_MF_10_2020_0529
crossref_primary_10_1007_s10824_012_9194_2
crossref_primary_10_1007_s11192_019_03296_5
crossref_primary_10_1590_S0101_41612014000400001
crossref_primary_10_1016_j_seps_2016_10_005
crossref_primary_10_1177_1536867X19893640
crossref_primary_10_2139_ssrn_1984546
crossref_primary_10_1108_EMJB_06_2015_0026
crossref_primary_10_1016_j_ejor_2012_06_028
crossref_primary_10_1007_s11846_019_00351_6
crossref_primary_10_1057_gpp_2011_6
crossref_primary_10_1016_j_cor_2009_09_015
crossref_primary_10_1590_S1807_76922012000100005
crossref_primary_10_3390_w7073263
crossref_primary_10_1007_s10551_018_4046_4
crossref_primary_10_1111_acfi_12188
crossref_primary_10_1108_JFEP_08_2023_0223
crossref_primary_10_1080_16507541_2010_481901
crossref_primary_10_2139_ssrn_1693523
crossref_primary_10_1016_j_eneco_2025_108371
crossref_primary_10_3390_agriculture12010092
crossref_primary_10_1504_IJBPM_2010_036041
crossref_primary_10_1016_j_dajour_2022_100115
crossref_primary_10_1111_ecoj_12038
crossref_primary_10_1080_1540496X_2023_2168477
crossref_primary_10_1016_j_rser_2012_04_051
crossref_primary_10_1007_s40812_019_00128_8
crossref_primary_10_1080_00343404_2021_2000596
crossref_primary_10_1108_IJPDLM_05_2012_0163
Cites_doi 10.1016/j.jeconom.2005.07.009
10.1023/A:1016565719882
10.1016/0304-4076(82)90004-5
10.1016/S0377-2217(99)00429-4
10.1287/mnsc.37.12.1620
10.1023/A:1013540521576
10.1080/07474938608800089
10.1016/S0377-2217(02)00699-9
10.1016/0304-4076(80)90043-3
10.1016/0304-4076(80)90041-X
10.1287/mnsc.30.9.1078
10.2307/2525757
10.1023/A:1018312801700
10.2307/2343100
10.1016/0304-4076(77)90052-5
10.2307/1924032
10.1007/BF00157039
10.1016/0304-3878(81)90004-3
10.1016/0377-2217(93)90289-Y
10.1287/mnsc.39.10.1265
ContentType Journal Article
Copyright Copyright 2008 INFORMS
2008 INIST-CNRS
COPYRIGHT 2008 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2008
Copyright_xml – notice: Copyright 2008 INFORMS
– notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2008 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2008
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88F
8AL
8AO
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L.0
L6V
M0C
M0N
M0S
M1P
M1Q
M2O
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1287/opre.1070.0460
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Military Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Military Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef


ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
Statistics
Applied Sciences
Mathematics
EISSN 1526-5463
EndPage 58
ExternalDocumentID 1462303831
A182605285
20192534
10_1287_opre_1070_0460
25147166
opre.1070.0460
opres_56_1_48
Genre Research Article
Feature
GroupedDBID 02
08R
123
1AW
1OL
29N
2AX
3V.
4.4
7WY
7X7
85S
88E
8AL
8AO
8FE
8FG
8FI
8FJ
8FL
8G5
8V8
92
AABCJ
ABBHK
ABDEX
ABEFU
ABJCF
ABPPZ
ABSIS
ABUWG
ABWPA
ACDCL
ACHQT
ACIWK
ACNCT
ACUWV
ACVYA
ADBBV
ADGDI
ADNFJ
AENEX
AEUPB
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
ARAPS
AZQEC
B-7
BBAFP
BENPR
BEZIV
BGLVJ
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DWQXO
DZ
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMI
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
H~9
IAO
ICJ
IEA
IGG
IOF
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
LI
M0C
M0N
M1P
M1Q
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRG
PROAC
PSQYO
PTHSS
QVA
RNS
RPU
SA0
TAE
TH9
TN5
U5U
VQA
WH7
X
XFK
XHC
XI7
XJT
XXP
YNT
YZZ
ZCG
AETEA
HGD
HVGLF
Y99
YHZ
ZY4
-DZ
-~X
18M
AAAZS
AAWTO
AAXLS
AAYOK
ABAWQ
ABDPE
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACSVP
ACXJH
ADEPB
ADMHC
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
CCPQU
HF~
HMCUK
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
UKHRP
XOL
XSW
~02
~92
AAYXX
CITATION
YYP
IQODW
PJZUB
PPXIY
PQGLB
PMFND
7XB
8FK
JQ2
K9.
L.-
L.0
PKEHL
PRINS
Q9U
ID FETCH-LOGICAL-c529t-34b18256d41428149c01315542d547a3977b7b2d1f424e7065f11b453156894f3
IEDL.DBID 7X7
ISSN 0030-364X
IngestDate Fri Jul 25 10:33:26 EDT 2025
Fri Jun 13 00:47:07 EDT 2025
Tue Jun 10 21:27:46 EDT 2025
Mon Jul 21 09:14:36 EDT 2025
Tue Jul 01 00:21:40 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Thu Jun 19 16:02:46 EDT 2025
Tue Jan 05 23:29:22 EST 2021
Fri Jan 15 03:35:27 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance evaluation
Productivity
Stochastic model
Monte Carlo method
Random noise
organizational studies: productivity
Statistical analysis
Probabilistic approach
Decision support system
Decision making
Non parametric estimation
Regression analysis
Modeling
Independent variable
Parametric method
Consistent estimator
Least squares method
effectiveness/performance; statistics: nonparametric; probability: stochastic model applications; simulation: applications
Maximum likelihood
Data envelopment analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-34b18256d41428149c01315542d547a3977b7b2d1f424e7065f11b453156894f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 219164356
PQPubID 37962
PageCount 11
ParticipantIDs crossref_citationtrail_10_1287_opre_1070_0460
jstor_primary_25147166
informs_primary_10_1287_opre_1070_0460
crossref_primary_10_1287_opre_1070_0460
gale_infotracacademiconefile_A182605285
pascalfrancis_primary_20192534
proquest_journals_219164356
gale_infotracgeneralonefile_A182605285
highwire_informs_opres_56_1_48
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum, MD
PublicationPlace_xml – name: Linthicum, MD
– name: Linthicum
PublicationTitle Operations research
PublicationYear 2008
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B10
B21
B11
B22
B12
B23
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Aigner D. J. (B1) 1968; 58
Kalirajan K. P. (B14) 1989; 24
References_xml – ident: B8
– ident: B12
– ident: B9
– ident: B11
– ident: B13
– ident: B14
– ident: B10
– ident: B3
– ident: B2
– ident: B20
– ident: B1
– ident: B4
– ident: B7
– ident: B5
– ident: B6
– ident: B22
– ident: B23
– ident: B21
– ident: B17
– ident: B18
– ident: B16
– ident: B15
– ident: B19
– ident: B22
  doi: 10.1016/j.jeconom.2005.07.009
– ident: B23
  doi: 10.1023/A:1016565719882
– ident: B13
  doi: 10.1016/0304-4076(82)90004-5
– ident: B17
  doi: 10.1016/S0377-2217(99)00429-4
– ident: B19
  doi: 10.1287/mnsc.37.12.1620
– ident: B7
  doi: 10.1023/A:1013540521576
– ident: B21
  doi: 10.1080/07474938608800089
– ident: B4
  doi: 10.1016/S0377-2217(02)00699-9
– ident: B16
  doi: 10.1016/0304-4076(80)90043-3
– ident: B10
  doi: 10.1016/0304-4076(80)90041-X
– ident: B5
  doi: 10.1287/mnsc.30.9.1078
– ident: B15
  doi: 10.2307/2525757
– ident: B12
  doi: 10.1023/A:1018312801700
– ident: B8
  doi: 10.2307/2343100
– ident: B2
  doi: 10.1016/0304-4076(77)90052-5
– ident: B20
  doi: 10.2307/1924032
– ident: B11
  doi: 10.1007/BF00157039
– volume: 24
  start-page: 247
  year: 1989
  ident: B14
  publication-title: Indian Econom. Rev.
– ident: B18
  doi: 10.1016/0304-3878(81)90004-3
– ident: B6
  doi: 10.1016/0377-2217(93)90289-Y
– ident: B3
  doi: 10.1287/mnsc.39.10.1265
– volume: 58
  start-page: 826
  issue: 4
  year: 1968
  ident: B1
  publication-title: Amer. Econom. Rev.
SSID ssj0009565
Score 2.4368787
Snippet A DEA-based stochastic frontier estimation framework is presented to evaluate contextual variables affecting productivity that allows for both one-sided...
SourceID proquest
gale
pascalfrancis
crossref
jstor
informs
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 48
SubjectTerms applications
Applied sciences
Consistent estimators
Context effects (Psychology)
Cubic polynomials
Data envelopment analysis
Decision making
Decision theory. Utility theory
effectiveness/performance
Efficiency
Error rates
Estimation methods
Estimation theory
Estimators
Evaluation
Exact sciences and technology
Firm modelling
Influence
Inventory control, production control. Distribution
Mathematics
Maximum likelihood estimation
Methods
Monte Carlo simulation
Noise
nonparametric
Nonparametric inference
Operational research and scientific management
Operational research. Management science
Operations research
organizational studies
Performance evaluation
probability
Probability and statistics
Production estimates
Production functions
Productivity
Regression analysis
Sciences and techniques of general use
Simulation
Social accounting
Socioeconomic factors
Statistics
stochastic model applications
Stochastic models
Studies
Variables
Title Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis
URI http://or.journal.informs.org/cgi/content/abstract/56/1/48
https://www.jstor.org/stable/25147166
https://www.proquest.com/docview/219164356
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB1BKyE4FLpQsZSufEB8HEw3ie3Ep2oLu1RIVBWi1d4sJ3Z6qdJCFomfz4xjL13xdYmiZJREmfHkTfz8BuCFcE7bNlNcq9Zx4esp185b7nyZeacb64NOwadTdXIuPi7lMnJz-kirTDkxJGp33dA_8kMcWYjsC6mObr5yahpFk6uxg8Zd2CblMmJ0lcvyluauGhoYFJhqlFhGzUasEQ6pwwgWruX0LU0MbnyTUmZOcsFhmRMByD5RFok_aXt8he3Q--K3NB6-TYtHsBNBJZsNUbALd3w3gnuJ0z6Ch6l3A4tDeQQPbgkRjmA3Hu_Z66hD_eYxXMyjEnh3yYKI1Q9aa8IusLqm9VY9mwUuCJ0-G3RjQyMKFlgI7L1dWTbv1pQkluRPnsD5Yv7l3QmPbRh4I3O94oWosQiRyglSZ8OKqiGNHoQhuZOitIQg67LOXdaKXHiaNm2zrBY4uKWqtGiLPdjqrjv_FBjihVx7r6yuKtxrrNVW1KWQtfNCqXoMPDnCNFGjnFplXBmqVdBxhhxnyHGGHDeGV2v7m0Gd4--W5FdDrsQrNjauPsDnIgEsM6M6ayrzSo7h5Ybl5fDa_2Q4STFiYoSEm_ZGKpMZUeGV0vH_PdxeCKy1GYJOBA1K4S02Iu2XASFzWYgx7KfQMzH59GY9VJ798-w-3B_IL_Q_6Tlsrb599weIsFb1JIwj3FaLDxPYPp6fnn3-CXs5JP0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4AF2oWArFB149hG4S2xsfEFrRXbb0IQ5ttTfjxE4vKC1kEfCj-I_MOPbSFa9Tb6tk5ET7zYxn4plvAJ5wa5WpU5koWduEu3KQKOtMYt0wdVZVxnmegoNDOT3m72ZitgI_Yi8MlVVGn-gdtT2r6Bv5NloWRva5kK_PPyU0NIoOV-MEjU4r9tz3r5ixta92dxDep1k2GR-9mSZhqEBSiUzNk5yXGFILaTlxjWF-UBHjDG6qmRV8aCgeKodlZtOaZ9zRIWCdpiVHVRWyULzOcd0rcJXnuSKDKiZvL3D8ym5gQo6uTfJZ4IjEnGSbJppgojwcvKSDyKU9MO4EkZ7Yt1VRwNrGEkmq1zQtQlZ3szZ-2zb8Xji5A7dCEMtGndatwYprenAt1tD34HacFcGC6-jBzQvEhz1YC9db9iLwXm_dhZNxYB5vTpknzfpGvS3sBLN56u9q2cjXntDt9x1PrR98wXzVA9sxc8PGzaIEikW6lXtwfCkIrcNqc9a4-8AwPsmUc9KoosBflTHK8HLIRWkdl7LsQxKB0FXgRKfRHB815UYInCbgNAGnCbg-PF_In3dsIH-XJFw1QYkrViZ0O-B7EeGWHlFeNxBZIfrwbEnytPvb_yS4GXVEBw3xD221kDrVvMCV4vX_vdy6V6yFGAa5GKRIiY9Y0rRfApQJiJz3YSOqng7OrtUL03zwz7uP4fr06GBf7-8e7m3Aja7whr5lPYTV-ecv7hFGd_Ny09sUgw-XbcQ_AQEXWwU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlX0AHSh6lIoPvA8hN0ktpMcEFqxu2opVD3Qam_GiZ1eqrQli1p-Gv-OGcdeuuJ16m2VjJxov5nxTDzzDcAzbkyh61hGhaxNxG05jApjdWRsFltTVNo6noJPB3L3iH-YidkK_Ai9MFRWGXyic9TmrKJv5AO0LIzsUyEHta-KOBxP351fRDRAig5awzSNTkP27fdLzN7at3tjhPp5kkwnn9_vRn7AQFSJpJhHKS8xvBbScOIdw1yhIvYZ3GATI3imKTYqszIxcc0TbulAsI7jkqPaCpkXvE5x3VtwO0tFTCaWzbJrfL-yG56QopuTfOb5IjE_GdB0E0yas-EbOpRc2g_DrhCoil2LFQWvbSiXpNpN3SJ8dTd347ctxO2L0_tw1we0bNRp4Aas2KYHa6Gevgf3wtwI5t1ID9avkSD2YMNfb9krz4H9-gEcTzwLeXPCHIHWFfW5sGPM7KnXq2UjV4dCtw87zlo3BIO5Cgg21nPNJs2iHIoF6pWHcHQjCG3CanPW2C1gGKskhbVSF3mOvyqtC83LjIvSWC5l2YcoAKEqz49OYzpOFeVJCJwi4BQBpwi4PrxcyJ93zCB_lyRcFUGJK1badz7gexH5lhpRjjcUSS768GJJ8qT72_8kuBN0RHkNcQ9tlZAqVjzHlcL1_73cplOshRgGvBiwSImPWNK0XwKUFYiU92E7qJ7yjq9VCzN99M-7T2ENzVd93DvY34Y7XQ0OfdZ6DKvzr9_sEwz05uWOMykGX27ahn8CdKtfMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Contextual+Variables+Affecting+Productivity+Using+Data+Envelopment+Analysis&rft.jtitle=Operations+research&rft.au=BANKER%2C+Rajiv+D&rft.au=NATARAJAN%2C+Ram&rft.date=2008-01-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0030-364X&rft.volume=56&rft.issue=1&rft.spage=48&rft.epage=58&rft_id=info:doi/10.1287%2Fopre.1070.0460&rft.externalDBID=n%2Fa&rft.externalDocID=20192534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon