Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock

Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implicati...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 191; no. 3; pp. 309 - 315
Main Authors Wong, Hector R., Cvijanovich, Natalie Z., Anas, Nick, Allen, Geoffrey L., Thomas, Neal J., Bigham, Michael T., Weiss, Scott L., Fitzgerald, Julie, Checchia, Paul A., Meyer, Keith, Shanley, Thomas P., Quasney, Michael, Hall, Mark, Gedeit, Rainer, Freishtat, Robert J., Nowak, Jeffrey, Shekhar, Raj S., Gertz, Shira, Dawson, Emily, Howard, Kelli, Harmon, Kelli, Beckman, Eileen, Frank, Erin, Lindsell, Christopher J.
Format Journal Article
LanguageEnglish
Published United States American Thoracic Society 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. To develop and validate a real-time subclassification method for septic shock. Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132). The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011). We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.
AbstractList Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. To develop and validate a real-time subclassification method for septic shock. Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132). The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011). We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.
Rationale: Using microarray data, we previously identified gene expression–based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. Objectives: To develop and validate a real-time subclassification method for septic shock. Methods: Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects ( n  = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort ( n  = 132). Measurements and Main Results: The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI 95 ] = 0.96–0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI 95 = 1.2–6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI 95  = 1.4–12.0; P  = 0.011). Conclusions: We developed and tested a gene expression–based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.
Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock.RATIONALEUsing microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock.To develop and validate a real-time subclassification method for septic shock.OBJECTIVESTo develop and validate a real-time subclassification method for septic shock.Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132).METHODSGene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132).The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011).MEASUREMENTS AND MAIN RESULTSThe NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011).We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.CONCLUSIONSWe developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.
Rationale: Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. Objectives: To develop and validate a real-time subclassification method for septic shock. Methods: Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarraybased reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132). Measurements and Main Results: The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011). Conclusions: We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions. 27 references
Author Weiss, Scott L.
Gertz, Shira
Bigham, Michael T.
Meyer, Keith
Allen, Geoffrey L.
Beckman, Eileen
Wong, Hector R.
Freishtat, Robert J.
Dawson, Emily
Shekhar, Raj S.
Thomas, Neal J.
Shanley, Thomas P.
Hall, Mark
Howard, Kelli
Lindsell, Christopher J.
Fitzgerald, Julie
Cvijanovich, Natalie Z.
Quasney, Michael
Frank, Erin
Checchia, Paul A.
Gedeit, Rainer
Harmon, Kelli
Nowak, Jeffrey
Anas, Nick
Author_xml – sequence: 1
  givenname: Hector R.
  surname: Wong
  fullname: Wong, Hector R.
  organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
– sequence: 2
  givenname: Natalie Z.
  surname: Cvijanovich
  fullname: Cvijanovich, Natalie Z.
  organization: University of California San Francisco Benioff Children’s Hospital Oakland, Oakland, California
– sequence: 3
  givenname: Nick
  surname: Anas
  fullname: Anas, Nick
  organization: Children’s Hospital of Orange County, Orange, California
– sequence: 4
  givenname: Geoffrey L.
  surname: Allen
  fullname: Allen, Geoffrey L.
  organization: Children’s Mercy Hospital, Kansas City, Missouri
– sequence: 5
  givenname: Neal J.
  surname: Thomas
  fullname: Thomas, Neal J.
  organization: Penn State Hershey Children’s Hospital, Hershey, Pennsylvania
– sequence: 6
  givenname: Michael T.
  surname: Bigham
  fullname: Bigham, Michael T.
  organization: Akron Children’s Hospital, Akron, Ohio
– sequence: 7
  givenname: Scott L.
  surname: Weiss
  fullname: Weiss, Scott L.
  organization: The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
– sequence: 8
  givenname: Julie
  surname: Fitzgerald
  fullname: Fitzgerald, Julie
  organization: The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
– sequence: 9
  givenname: Paul A.
  surname: Checchia
  fullname: Checchia, Paul A.
  organization: Texas Children’s Hospital, Houston, Texas
– sequence: 10
  givenname: Keith
  surname: Meyer
  fullname: Meyer, Keith
  organization: Miami Children’s Hospital, Miami, Florida
– sequence: 11
  givenname: Thomas P.
  surname: Shanley
  fullname: Shanley, Thomas P.
  organization: C. S. Mott Children’s Hospital at the University of Michigan, Ann Arbor, Michigan
– sequence: 12
  givenname: Michael
  surname: Quasney
  fullname: Quasney, Michael
  organization: C. S. Mott Children’s Hospital at the University of Michigan, Ann Arbor, Michigan
– sequence: 13
  givenname: Mark
  surname: Hall
  fullname: Hall, Mark
  organization: Nationwide Children’s Hospital, Columbus, Ohio
– sequence: 14
  givenname: Rainer
  surname: Gedeit
  fullname: Gedeit, Rainer
  organization: Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
– sequence: 15
  givenname: Robert J.
  surname: Freishtat
  fullname: Freishtat, Robert J.
  organization: Children’s National Medical Center, Washington, DC
– sequence: 16
  givenname: Jeffrey
  surname: Nowak
  fullname: Nowak, Jeffrey
  organization: Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota
– sequence: 17
  givenname: Raj S.
  surname: Shekhar
  fullname: Shekhar, Raj S.
  organization: Riley Hospital for Children, Indianapolis, Indiana
– sequence: 18
  givenname: Shira
  surname: Gertz
  fullname: Gertz, Shira
  organization: Hackensack University Medical Center, Joseph M. Sanzari Children’s Hospital, Hackensack, New Jersey
– sequence: 19
  givenname: Emily
  surname: Dawson
  fullname: Dawson, Emily
  organization: The University of Chicago Comer Children’s Hospital, Chicago, Illinois; and
– sequence: 20
  givenname: Kelli
  surname: Howard
  fullname: Howard, Kelli
  organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio
– sequence: 21
  givenname: Kelli
  surname: Harmon
  fullname: Harmon, Kelli
  organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio
– sequence: 22
  givenname: Eileen
  surname: Beckman
  fullname: Beckman, Eileen
  organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio
– sequence: 23
  givenname: Erin
  surname: Frank
  fullname: Frank, Erin
  organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio
– sequence: 24
  givenname: Christopher J.
  surname: Lindsell
  fullname: Lindsell, Christopher J.
  organization: Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25489881$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFTEQhoNU7If-AS9kwRtvtmbytdkboRytCpUKKuhVyMnO9qTmJNtkT6H-enM8rWgvxKsZmOd9mWTeQ7IXU0RCngI9BlDiZXZufcwoCKAtaCXOFw_IAUguW9F3dK_2tOOtEP3XfXJYyiWlwDTQR2SfSaF7reGAfHuN1xjS5ONFY5tF8NE7G8JNc4q2-GXA5iPmkqIN_gcOzQccvPMRm5Npysm6VTOnSgzeztm75hNO87askvv-mDwcbSj45LYekS-nbz4v3rVn52_fL07OWidZP7ccFCqx5A57B6g60ExLplE66AY5KtTIlRg7arWly6HXfedEh0JKxJEpxY_Iq53vtFmucXAY52yDmbJf23xjkvXm70n0K3ORro3gEqSm1eDFrUFOVxsss1n74jAEGzFtigGlQEFPlfwPVDIBXHBW0ef30Mu0yfUff1GUgajnqNSzP5f_vfXdgSqgd4DLqZSMo3F-trNP27f4YICabRbMNgtmlwWzy0KVsnvSO_d_iH4Cvli3wQ
CitedBy_id crossref_primary_10_3928_19382359_20220803_04
crossref_primary_10_1186_s13054_019_2446_1
crossref_primary_10_1186_s13054_022_04070_5
crossref_primary_10_21292_2078_5658_2020_17_6_54_62
crossref_primary_10_1016_j_chstcc_2024_100120
crossref_primary_10_1038_s41574_019_0185_7
crossref_primary_10_1097_CCM_0000000000004786
crossref_primary_10_1097_PCC_0000000000001146
crossref_primary_10_1097_SLA_0000000000003204
crossref_primary_10_1111_imm_12841
crossref_primary_10_1002_cpt_1034
crossref_primary_10_1016_j_ccc_2019_08_007
crossref_primary_10_1586_14737159_2016_1133300
crossref_primary_10_1016_j_pcl_2017_06_008
crossref_primary_10_3389_fped_2017_00139
crossref_primary_10_1164_rccm_201701_0143ED
crossref_primary_10_1097_PCC_0000000000001255
crossref_primary_10_1097_PCC_0000000000001132
crossref_primary_10_3389_fimmu_2018_02147
crossref_primary_10_1016_j_jpeds_2016_05_020
crossref_primary_10_1016_S2213_2600_16_00046_1
crossref_primary_10_1097_PCC_0000000000001808
crossref_primary_10_1186_s13054_023_04762_6
crossref_primary_10_1097_CCM_0000000000004091
crossref_primary_10_1080_14787210_2019_1581606
crossref_primary_10_1186_s13054_023_04494_7
crossref_primary_10_1039_C8LC01102H
crossref_primary_10_1097_CCM_0000000000002932
crossref_primary_10_1016_j_pcl_2017_06_010
crossref_primary_10_1016_S2213_2600_22_00483_0
crossref_primary_10_1097_PCC_0000000000000632
crossref_primary_10_1097_PCC_0000000000001835
crossref_primary_10_1097_CCM_0000000000004320
crossref_primary_10_3389_fped_2021_663435
crossref_primary_10_1038_s41390_021_01620_5
crossref_primary_10_1164_rccm_202201_0161OC
crossref_primary_10_1007_s00134_015_3812_3
crossref_primary_10_15360_1813_9779_2022_4_45_54
crossref_primary_10_1097_PCC_0000000000002481
crossref_primary_10_3390_ijms25073871
crossref_primary_10_3310_eme08100
crossref_primary_10_17816_psaic969
crossref_primary_10_1097_MOP_0000000000000337
crossref_primary_10_1017_pcm_2023_4
crossref_primary_10_1097_CCM_0000000000001833
crossref_primary_10_1097_PCC_0000000000003449
crossref_primary_10_1186_s13054_023_04689_y
crossref_primary_10_1038_pr_2017_134
crossref_primary_10_1097_PCC_0000000000000862
crossref_primary_10_1097_CCM_0000000000003225
crossref_primary_10_1038_s41581_018_0005_7
crossref_primary_10_4103_JTCCM_D_22_00016
crossref_primary_10_2119_molmed_2015_00064
crossref_primary_10_1093_ajhp_zxae134
crossref_primary_10_1186_s13054_024_04959_3
crossref_primary_10_3389_fped_2016_00074
crossref_primary_10_1186_s13054_022_04265_w
crossref_primary_10_15252_msb_20177998
crossref_primary_10_1186_s13054_018_2177_8
crossref_primary_10_1016_j_ccc_2023_03_002
crossref_primary_10_1186_s13054_015_1026_2
crossref_primary_10_1007_s00134_018_5175_z
crossref_primary_10_1097_PCC_0000000000000532
crossref_primary_10_1186_s13054_022_04121_x
crossref_primary_10_1016_j_pharmthera_2019_107428
crossref_primary_10_1097_AIA_0000000000000220
crossref_primary_10_1038_s41390_021_01879_8
crossref_primary_10_1177_2150135115606087
crossref_primary_10_1016_S2213_2600_20_30124_7
crossref_primary_10_3390_ijms231911740
crossref_primary_10_1373_jalm_2017_025908
crossref_primary_10_1097_MOP_0000000000000753
crossref_primary_10_1097_PCC_0000000000000513
crossref_primary_10_1097_PCC_0000000000003117
crossref_primary_10_1097_PCC_0000000000001058
crossref_primary_10_1097_PCC_0000000000001053
crossref_primary_10_1097_PCC_0000000000001052
crossref_primary_10_1097_PCC_0000000000001050
crossref_primary_10_1097_CCM_0000000000003084
crossref_primary_10_1016_S1473_3099_19_30567_5
crossref_primary_10_1055_s_0040_1716668
crossref_primary_10_1016_S2213_2600_18_30177_2
crossref_primary_10_1097_PCC_0000000000003141
crossref_primary_10_1164_rccm_201710_2006OC
crossref_primary_10_3390_cells12071003
crossref_primary_10_1007_s00134_021_06504_0
crossref_primary_10_1097_MAJ_0000000000000558
crossref_primary_10_1038_s41581_019_0199_3
crossref_primary_10_1097_PCC_0000000000000796
crossref_primary_10_1097_PCC_0000000000001401
crossref_primary_10_1186_s12931_022_02098_3
crossref_primary_10_1007_s00134_019_05923_4
crossref_primary_10_1097_CCM_0000000000002102
crossref_primary_10_1038_s41390_024_03289_y
crossref_primary_10_7554_eLife_77405
crossref_primary_10_1016_j_jpeds_2016_06_039
crossref_primary_10_1007_s00134_016_4482_5
crossref_primary_10_14814_phy2_14078
crossref_primary_10_1097_PCC_0000000000003499
crossref_primary_10_1093_jamia_ocz106
crossref_primary_10_1097_PCC_0000000000003009
crossref_primary_10_1001_jamanetworkopen_2020_9271
crossref_primary_10_3389_fendo_2024_1452993
crossref_primary_10_1097_CCM_0000000000006135
crossref_primary_10_1016_j_ccc_2017_08_012
crossref_primary_10_1080_17512433_2019_1643235
crossref_primary_10_1186_s13054_015_1052_0
crossref_primary_10_3389_fimmu_2021_733834
crossref_primary_10_1097_SHK_0000000000002226
crossref_primary_10_1186_s13054_025_05319_5
crossref_primary_10_1016_j_jcrc_2018_01_018
crossref_primary_10_1016_S2352_4642_24_00017_8
crossref_primary_10_1097_PCC_0000000000002198
crossref_primary_10_1186_s13054_017_1910_z
crossref_primary_10_2217_bmm_2020_0016
crossref_primary_10_1016_j_biocel_2018_04_019
crossref_primary_10_1007_s00134_017_4727_y
crossref_primary_10_1164_rccm_201806_1197OC
crossref_primary_10_1146_annurev_med_043021_014005
crossref_primary_10_1007_s00134_017_4677_4
crossref_primary_10_1038_s41598_017_09619_x
crossref_primary_10_1097_CCM_0000000000003834
crossref_primary_10_1097_CCM_0000000000003833
crossref_primary_10_15360_1813_9779_2024_6_2470
crossref_primary_10_3390_jcm13175002
crossref_primary_10_1097_PCC_0000000000000562
crossref_primary_10_1164_rccm_201412_2299ED
crossref_primary_10_1002_prca_202100036
crossref_primary_10_1152_ajplung_00380_2014
crossref_primary_10_1097_SHK_0000000000001910
crossref_primary_10_1186_s12920_020_00771_4
crossref_primary_10_4049_jimmunol_1500856
crossref_primary_10_1097_CCM_0000000000001323
crossref_primary_10_1186_s13054_024_05020_z
crossref_primary_10_1097_CCM_0000000000002781
crossref_primary_10_1097_PCC_0000000000001678
crossref_primary_10_1016_j_jpeds_2018_12_041
crossref_primary_10_1097_MCC_0000000000000571
crossref_primary_10_1097_SHK_0000000000001906
crossref_primary_10_1016_j_ebiom_2022_104394
crossref_primary_10_1164_rccm_201606_1171ED
crossref_primary_10_3389_fimmu_2025_1546474
crossref_primary_10_1164_rccm_201608_1685OC
crossref_primary_10_15252_emmm_201810128
crossref_primary_10_1097_PCC_0000000000003292
crossref_primary_10_1128_IAI_00437_16
crossref_primary_10_1097_CCM_0000000000004709
crossref_primary_10_3390_jcm13237038
crossref_primary_10_1007_s00134_015_3953_4
crossref_primary_10_1016_S2213_2600_17_30187_X
crossref_primary_10_3390_biomedicines12050984
crossref_primary_10_1007_s00134_017_4701_8
crossref_primary_10_1016_j_ebiom_2023_104938
crossref_primary_10_1080_14787210_2016_1222272
crossref_primary_10_1056_NEJMoa1701380
crossref_primary_10_1097_QCO_0000000000000583
crossref_primary_10_1016_j_yasu_2016_04_002
crossref_primary_10_1097_CCM_0000000000005675
crossref_primary_10_1097_ACO_0000000000000210
crossref_primary_10_1097_CCM_0000000000001079
crossref_primary_10_1097_CCM_0000000000001990
crossref_primary_10_1164_rccm_201604_0697ED
crossref_primary_10_1016_S2589_7500_24_00141_9
crossref_primary_10_1186_s13054_023_04507_5
crossref_primary_10_1097_CCM_0000000000001852
crossref_primary_10_3389_fmed_2024_1445451
crossref_primary_10_3389_fgene_2023_1100352
crossref_primary_10_1038_s41591_022_01843_x
crossref_primary_10_1016_j_imu_2023_101293
crossref_primary_10_1177_08850666231194535
crossref_primary_10_1038_s41467_018_03078_2
crossref_primary_10_1097_PCC_0000000000002570
crossref_primary_10_1152_ajpregu_00324_2020
crossref_primary_10_1038_s41598_018_33039_0
crossref_primary_10_1164_rccm_201601_0056OC
crossref_primary_10_1097_CCM_0000000000002733
crossref_primary_10_1186_s40635_021_00383_x
crossref_primary_10_1016_j_pcl_2022_01_015
crossref_primary_10_1016_S1473_3099_15_70112_X
crossref_primary_10_1016_j_ccc_2022_09_013
crossref_primary_10_3390_pathogens11010096
crossref_primary_10_1097_PCC_0000000000000942
crossref_primary_10_1097_CCM_0000000000004487
crossref_primary_10_1097_SHK_0000000000002081
crossref_primary_10_1097_MD_0000000000020762
crossref_primary_10_1097_CCM_0000000000002980
crossref_primary_10_1164_rccm_201807_1419OC
crossref_primary_10_1186_s13054_020_03266_x
crossref_primary_10_1042_CS20220713
crossref_primary_10_1007_s00134_017_4821_1
crossref_primary_10_1016_j_accpm_2019_05_001
crossref_primary_10_1007_s00134_019_05878_6
crossref_primary_10_1136_bmjopen_2022_066496
crossref_primary_10_1124_jpet_115_230797
crossref_primary_10_1016_j_ebiom_2015_11_035
crossref_primary_10_1097_PCC_0000000000001237
crossref_primary_10_1111_anae_13870
crossref_primary_10_1016_j_heliyon_2024_e28520
crossref_primary_10_21292_2078_5658_2019_16_2_15_24
crossref_primary_10_3390_pathogens10101239
crossref_primary_10_1164_rccm_201512_2544CP
crossref_primary_10_1016_S2213_2600_16_00068_0
crossref_primary_10_1164_rccm_201607_1535LE
crossref_primary_10_1164_rccm_201701_0066OC
crossref_primary_10_1016_j_immuni_2021_10_012
Cites_doi 10.1152/physiolgenomics.00024.2007
10.1056/NEJMra021333
10.1097/CCM.0b013e3182a64607
10.1371/journal.pone.0112702
10.1038/nbt1385
10.1038/nm.2205
10.1097/CCM.0b013e318277131c
10.1038/nri3552
10.1038/pr.2013.11
10.1164/rccm.201011-1897CI
10.2119/molmed.2009.00027
10.1155/JBB/2006/69141
10.1001/jama.288.7.862
10.1164/rccm.201209-1726OC
10.1097/PCC.0000000000000203
10.1056/NEJMcibr1004371
10.1016/S0022-3476(97)70065-9
10.1093/bioinformatics/btg307
10.1016/j.molmed.2014.01.002
10.1056/NEJMoa071366
10.1186/1741-7015-7-34
10.1038/labinvest.2011.94
10.1164/rccm.201401-0171OC
10.1016/j.ccc.2012.11.003
10.1097/CCM.0b013e3182257675
10.1016/j.molmed.2014.01.006
10.1097/CCM.0b013e3181b427e8
ContentType Journal Article
Copyright Copyright American Thoracic Society Feb 1, 2015
Copyright © 2015 by the American Thoracic Society 2015
Copyright_xml – notice: Copyright American Thoracic Society Feb 1, 2015
– notice: Copyright © 2015 by the American Thoracic Society 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ASE
FPQ
K6X
5PM
DOI 10.1164/rccm.201410-1864OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
British Nursing Index
British Nursing Index (BNI) (1985 to Present)
British Nursing Index
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
British Nursing Index
DatabaseTitleList MEDLINE

MEDLINE - Academic
British Nursing Index
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 315
ExternalDocumentID PMC4351580
3576345361
25489881
10_1164_rccm_201410_1864OC
Genre Validation Studies
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
General Information
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: K12 HD047349
– fundername: NIGMS NIH HHS
  grantid: R01GM064619
– fundername: NIGMS NIH HHS
  grantid: R01GM108025
– fundername: NCATS NIH HHS
  grantid: 8 UL1 TR000077
– fundername: NIGMS NIH HHS
  grantid: R01GM099773
– fundername: NCATS NIH HHS
  grantid: UL1 TR000077
– fundername: NIGMS NIH HHS
  grantid: R01 GM099773
– fundername: NIGMS NIH HHS
  grantid: R01 GM064619
– fundername: NIGMS NIH HHS
  grantid: R01 GM108025
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ASE
FPQ
K6X
5PM
ID FETCH-LOGICAL-c529t-316e64b3ce9c1e671828528e5c17d5f6e8e364f70a8a0bd9897c47e455eef2663
IEDL.DBID 7X7
ISSN 1073-449X
1535-4970
IngestDate Thu Aug 21 14:00:33 EDT 2025
Fri Jul 11 08:11:54 EDT 2025
Thu Jul 10 22:51:06 EDT 2025
Fri Jul 25 08:02:41 EDT 2025
Thu Apr 03 07:00:41 EDT 2025
Tue Jul 01 02:00:57 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords glucocorticoids
subclassification
adaptive immunity
gene expression
sepsis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-316e64b3ce9c1e671828528e5c17d5f6e8e364f70a8a0bd9897c47e455eef2663
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://doi.org/10.1164/rccm.201410-1864OC
PMID 25489881
PQID 1650214001
PQPubID 40575
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351580
proquest_miscellaneous_1661619065
proquest_miscellaneous_1652413432
proquest_journals_1650214001
pubmed_primary_25489881
crossref_citationtrail_10_1164_rccm_201410_1864OC
crossref_primary_10_1164_rccm_201410_1864OC
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
2015-Feb-01
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2015
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib14
bib15
bib12
bib13
bib10
bib11
bib27
bib25
bib26
bib23
bib24
bib21
bib22
bib20
bib9
bib7
bib8
bib5
bib18
bib6
bib19
bib3
bib16
bib4
bib17
bib1
bib2
21931299 - Lab Invest. 2011 Dec;91(12):1787-95
25280145 - Pediatr Crit Care Med. 2014 Oct;15(8):769-71
20802500 - Nat Med. 2010 Sep;16(9):1042-7
24548661 - Trends Mol Med. 2014 Apr;20(4):204-13
17489018 - J Biomed Biotechnol. 2006;2006(5):69141
23329198 - Pediatr Res. 2013 Apr;73(4 Pt 2):564-9
21705885 - Crit Care Med. 2011 Nov;39(11):2511-7
21680949 - Am J Respir Crit Care Med. 2012 Jan 15;185(2):133-9
23471468 - Am J Respir Crit Care Med. 2013 May 1;187(9):967-76
18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25
9386662 - J Pediatr. 1997 Oct;131(4):575-81
18184957 - N Engl J Med. 2008 Jan 10;358(2):111-24
25635486 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):247-8
19624809 - BMC Med. 2009;7:34
12519925 - N Engl J Med. 2003 Jan 9;348(2):138-50
19593405 - Mol Med. 2009 Jul-Aug;15(7-8):220-7
20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9
24232462 - Nat Rev Immunol. 2013 Dec;13(12):862-74
25386653 - PLoS One. 2014;9(11):e112702
12186604 - JAMA. 2002 Aug 21;288(7):862-71
17374846 - Physiol Genomics. 2007 Jul 18;30(2):146-55
20639748 - Crit Care Med. 2010 Oct;38(10):1955-61
23537672 - Crit Care Clin. 2013 Apr;29(2):203-22
24145842 - Crit Care Med. 2014 Feb;42(2):397-403
23388514 - Crit Care Med. 2013 May;41(5):1175-85
24650276 - Am J Respir Crit Care Med. 2014 Apr 15;189(8):940-6
14630665 - Bioinformatics. 2003 Nov 22;19(17):2321-2
24485901 - Trends Mol Med. 2014 Apr;20(4):224-33
References_xml – ident: bib11
  doi: 10.1152/physiolgenomics.00024.2007
– ident: bib2
  doi: 10.1056/NEJMra021333
– ident: bib18
  doi: 10.1097/CCM.0b013e3182a64607
– ident: bib20
  doi: 10.1371/journal.pone.0112702
– ident: bib14
  doi: 10.1038/nbt1385
– ident: bib22
  doi: 10.1038/nm.2205
– ident: bib10
  doi: 10.1097/CCM.0b013e318277131c
– ident: bib1
  doi: 10.1038/nri3552
– ident: bib12
  doi: 10.1038/pr.2013.11
– ident: bib8
  doi: 10.1164/rccm.201011-1897CI
– ident: bib21
  doi: 10.2119/molmed.2009.00027
– ident: bib16
  doi: 10.1155/JBB/2006/69141
– ident: bib24
  doi: 10.1001/jama.288.7.862
– ident: bib19
  doi: 10.1164/rccm.201209-1726OC
– ident: bib26
  doi: 10.1097/PCC.0000000000000203
– ident: bib27
  doi: 10.1056/NEJMcibr1004371
– ident: bib13
  doi: 10.1016/S0022-3476(97)70065-9
– ident: bib15
  doi: 10.1093/bioinformatics/btg307
– ident: bib7
  doi: 10.1016/j.molmed.2014.01.002
– ident: bib25
  doi: 10.1056/NEJMoa071366
– ident: bib4
  doi: 10.1186/1741-7015-7-34
– ident: bib23
  doi: 10.1038/labinvest.2011.94
– ident: bib17
  doi: 10.1164/rccm.201401-0171OC
– ident: bib3
  doi: 10.1016/j.ccc.2012.11.003
– ident: bib5
  doi: 10.1097/CCM.0b013e3182257675
– ident: bib9
  doi: 10.1016/j.molmed.2014.01.006
– ident: bib6
  doi: 10.1097/CCM.0b013e3181b427e8
– reference: 12519925 - N Engl J Med. 2003 Jan 9;348(2):138-50
– reference: 25280145 - Pediatr Crit Care Med. 2014 Oct;15(8):769-71
– reference: 9386662 - J Pediatr. 1997 Oct;131(4):575-81
– reference: 24232462 - Nat Rev Immunol. 2013 Dec;13(12):862-74
– reference: 20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9
– reference: 21705885 - Crit Care Med. 2011 Nov;39(11):2511-7
– reference: 24650276 - Am J Respir Crit Care Med. 2014 Apr 15;189(8):940-6
– reference: 20639748 - Crit Care Med. 2010 Oct;38(10):1955-61
– reference: 25386653 - PLoS One. 2014;9(11):e112702
– reference: 17374846 - Physiol Genomics. 2007 Jul 18;30(2):146-55
– reference: 14630665 - Bioinformatics. 2003 Nov 22;19(17):2321-2
– reference: 23471468 - Am J Respir Crit Care Med. 2013 May 1;187(9):967-76
– reference: 23388514 - Crit Care Med. 2013 May;41(5):1175-85
– reference: 23329198 - Pediatr Res. 2013 Apr;73(4 Pt 2):564-9
– reference: 17489018 - J Biomed Biotechnol. 2006;2006(5):69141
– reference: 18184957 - N Engl J Med. 2008 Jan 10;358(2):111-24
– reference: 24145842 - Crit Care Med. 2014 Feb;42(2):397-403
– reference: 21931299 - Lab Invest. 2011 Dec;91(12):1787-95
– reference: 24485901 - Trends Mol Med. 2014 Apr;20(4):224-33
– reference: 12186604 - JAMA. 2002 Aug 21;288(7):862-71
– reference: 19593405 - Mol Med. 2009 Jul-Aug;15(7-8):220-7
– reference: 21680949 - Am J Respir Crit Care Med. 2012 Jan 15;185(2):133-9
– reference: 25635486 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):247-8
– reference: 19624809 - BMC Med. 2009;7:34
– reference: 20802500 - Nat Med. 2010 Sep;16(9):1042-7
– reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25
– reference: 24548661 - Trends Mol Med. 2014 Apr;20(4):204-13
– reference: 23537672 - Crit Care Clin. 2013 Apr;29(2):203-22
SSID ssj0012810
Score 2.5769553
Snippet Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining...
Rationale: Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The...
Rationale: Using microarray data, we previously identified gene expression–based subclasses of septic shock with important phenotypic differences. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 309
SubjectTerms Child
Child, Preschool
Feasibility Studies
Female
Gene Expression Regulation
Glucocorticoids - therapeutic use
Humans
Infant
Intensive Care Units, Pediatric
Male
Mathematical Computing
Odds Ratio
Original
Phenotype
Precision Medicine
Prospective Studies
Reproducibility of Results
Severity of Illness Index
Shock, Septic - diagnosis
Shock, Septic - genetics
Shock, Septic - mortality
Shock, Septic - therapy
Signal Transduction - genetics
Title Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock
URI https://www.ncbi.nlm.nih.gov/pubmed/25489881
https://www.proquest.com/docview/1650214001
https://www.proquest.com/docview/1652413432
https://www.proquest.com/docview/1661619065
https://pubmed.ncbi.nlm.nih.gov/PMC4351580
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddC2MvY91Xb2uLC3sroXZiO_bT6G4tZdCubCvcnkLsKLRwJP24PrR__eTEyXob3EsSsEIcyZZ_smQJ4FOZmZqQchYkUCUS6cmVtUqcEl4qY0vHwwHn0zN9ciG_zdQsbrjdxbDKQSd2irpqfdgjPxAEJVKyBrj4fH2ThKpRwbsaS2g8g42QuiyM6nw2GlzBSdRnI8izREo7Gw7NaHlw6304hx6iHBNhtGz98sL0H9r8N2jyySp0_ApeRvjIDnt5b8IaNq_h-Wl0kL-B31_HQ1CsZDHp53z-wAjq0eCfIzsf0PcjVmx4kR3G1OJs0bKxegf7GUJe6HZJSvMtXBwf_ZqeJLF6QuJVahekXDVq6TKP1gvUtAalRqUGlRd5pWqNBjMt65yXpuSussbmXuYolUKsadnO3sF60za4BSzldeVq47lxKEvk1pEKFb7miktRZWoCYmBd4WNq8VDhYl50JoaWRWB30bO7COz-Pp3A_vjOdZ9YYyX19iCRIk6yu-LvkJjA3thM0yP4PMoG2_uOJngOZZauotGEey2BsQm874U8donsZ2ONoS_kS-IfCUJ67uWW5uqyS9NNQFQowz-s7vpHeEF_qvpA8G1YX9ze4w7hnIXb7QYzXc1U7MLGl6Oz8x9_AO_1_jI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkaCE4pqJ7ZjHxCqtlRb2i1ItNJyCrEzUSutkj62QuVH8RsZ5wUL0t56SiTbiTPjGX_OvADe5IkpCSkngQNFJJHuXF6qyCnhpTI2dzwEOE8P9ORIfpqp2Rr86mNhgltlrxMbRV3UPvwj3xQEJWI6DXDx4fQsClWjgnW1L6HRLos9vPpBR7aL97vbxN-3cbzz8XA8ibqqApFXsV2Q0tGopUs8Wi9Qk26OjYoNKi_SQpUaDSZalinPTc5dYY1NvUxRKoVY0naW0HNvwE2ZkGiGyPTx4FISjFJt9oM0iaS0sz5IR8vNc-9D3HvwqoyE0bL2yxvhf-j2XyfNv3a9nXtwt4OrbKtdX_dhDasHcGvaGeQfwrftIeiK5axLMjqfXzGCliRsc2RferT_EwvWD2RbXSpztqjZUC2EfQ0uNnQ5JiX9CI6uha6PYb2qK3wKLOZl4UrjuXEoc-TWkcoWvuSKS1EkagSiJ13mu1TmoaLGPGuONFpmgdxZS-4skPvzeATvhjGnbSKPlb03eo5knVBfZH-W4AheD80kjsHGkldYXzZ9gqVSJvGqPppwtiXwN4InLZOHKdF53Vhj6A3pEvuHDiEd-HJLdXLcpAUn4CuU4c9WT_0V3J4cTvez_d2Dvedwh75atU7oG7C-OL_EF4SxFu5ls7AZfL9uSfoNP8035Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFDASnFC0dmI7zgGhapdVS2mpBJWWU4idsYq0Skq7FSo_jV_HOC9YkPbWUyLZTpwZz_hz5gXwskiMJ6ScBA6UkUS6s4VXkVXCSWWywvIQ4Hx4pPdO5Pu5mm_Arz4WJrhV9jqxUdRl7cI_8rEgKBHTaYCLse_cIo6ns7dn36NQQSpYWvtyGu0SOcCrH3R8u3izPyVev4rj2bvPk72oqzAQORVnS1JAGrW0icPMCdSkp2OjYoPKibRUXqPBREuf8sIU3JaZyVInU5RKIXra2hJ67g24mSapCTJmJoN7STBQtZkQ0iSSMpv3ATtajs-dCzHwwcMyEkbL2q1uiv8h3X8dNv_aAWd34HYHXdluu9buwgZW92DrsDPO34cv0yEAixWsSzi6WFwxgpkkeAtkxz3y_4kl6wey3S6tOVvWbKgcwj4Fdxu6nJLCfgAn10LXh7BZ1RVuA4u5L603jhuLskCeWVLfwnmuuBRlokYgetLlrktrHqprLPLmeKNlHsidt-TOA7k_Tkbwehhz1ib1WNt7p-dI3gn4Rf5nOY7gxdBMohnsLUWF9WXTJ1gtZRKv66MJc2cEBEfwqGXyMCU6u5vMGHpDusL-oUNIDb7aUn07bVKEEwgWyvDH66f-HLZIhvIP-0cHT-AWfbRq_dF3YHN5folPCW4t7bNmXTP4et2C9Bu9iDwb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Clinically+Feasible+Personalized+Medicine+Approach+to+Pediatric+Septic+Shock&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Wong%2C+Hector+R.&rft.au=Cvijanovich%2C+Natalie+Z.&rft.au=Anas%2C+Nick&rft.au=Allen%2C+Geoffrey+L.&rft.date=2015-02-01&rft.issn=1073-449X&rft.eissn=1535-4970&rft.volume=191&rft.issue=3&rft.spage=309&rft.epage=315&rft_id=info:doi/10.1164%2Frccm.201410-1864OC&rft.externalDBID=n%2Fa&rft.externalDocID=10_1164_rccm_201410_1864OC
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon