Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock
Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implicati...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 191; no. 3; pp. 309 - 315 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock.
To develop and validate a real-time subclassification method for septic shock.
Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132).
The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011).
We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions. |
---|---|
AbstractList | Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock.
To develop and validate a real-time subclassification method for septic shock.
Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132).
The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011).
We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions. Rationale: Using microarray data, we previously identified gene expression–based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. Objectives: To develop and validate a real-time subclassification method for septic shock. Methods: Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects ( n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort ( n = 132). Measurements and Main Results: The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI 95 ] = 0.96–0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI 95 = 1.2–6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI 95 = 1.4–12.0; P = 0.011). Conclusions: We developed and tested a gene expression–based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions. Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock.RATIONALEUsing microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock.To develop and validate a real-time subclassification method for septic shock.OBJECTIVESTo develop and validate a real-time subclassification method for septic shock.Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132).METHODSGene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132).The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011).MEASUREMENTS AND MAIN RESULTSThe NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011).We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.CONCLUSIONSWe developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions. Rationale: Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. Objectives: To develop and validate a real-time subclassification method for septic shock. Methods: Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarraybased reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132). Measurements and Main Results: The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011). Conclusions: We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions. 27 references |
Author | Weiss, Scott L. Gertz, Shira Bigham, Michael T. Meyer, Keith Allen, Geoffrey L. Beckman, Eileen Wong, Hector R. Freishtat, Robert J. Dawson, Emily Shekhar, Raj S. Thomas, Neal J. Shanley, Thomas P. Hall, Mark Howard, Kelli Lindsell, Christopher J. Fitzgerald, Julie Cvijanovich, Natalie Z. Quasney, Michael Frank, Erin Checchia, Paul A. Gedeit, Rainer Harmon, Kelli Nowak, Jeffrey Anas, Nick |
Author_xml | – sequence: 1 givenname: Hector R. surname: Wong fullname: Wong, Hector R. organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio – sequence: 2 givenname: Natalie Z. surname: Cvijanovich fullname: Cvijanovich, Natalie Z. organization: University of California San Francisco Benioff Children’s Hospital Oakland, Oakland, California – sequence: 3 givenname: Nick surname: Anas fullname: Anas, Nick organization: Children’s Hospital of Orange County, Orange, California – sequence: 4 givenname: Geoffrey L. surname: Allen fullname: Allen, Geoffrey L. organization: Children’s Mercy Hospital, Kansas City, Missouri – sequence: 5 givenname: Neal J. surname: Thomas fullname: Thomas, Neal J. organization: Penn State Hershey Children’s Hospital, Hershey, Pennsylvania – sequence: 6 givenname: Michael T. surname: Bigham fullname: Bigham, Michael T. organization: Akron Children’s Hospital, Akron, Ohio – sequence: 7 givenname: Scott L. surname: Weiss fullname: Weiss, Scott L. organization: The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania – sequence: 8 givenname: Julie surname: Fitzgerald fullname: Fitzgerald, Julie organization: The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania – sequence: 9 givenname: Paul A. surname: Checchia fullname: Checchia, Paul A. organization: Texas Children’s Hospital, Houston, Texas – sequence: 10 givenname: Keith surname: Meyer fullname: Meyer, Keith organization: Miami Children’s Hospital, Miami, Florida – sequence: 11 givenname: Thomas P. surname: Shanley fullname: Shanley, Thomas P. organization: C. S. Mott Children’s Hospital at the University of Michigan, Ann Arbor, Michigan – sequence: 12 givenname: Michael surname: Quasney fullname: Quasney, Michael organization: C. S. Mott Children’s Hospital at the University of Michigan, Ann Arbor, Michigan – sequence: 13 givenname: Mark surname: Hall fullname: Hall, Mark organization: Nationwide Children’s Hospital, Columbus, Ohio – sequence: 14 givenname: Rainer surname: Gedeit fullname: Gedeit, Rainer organization: Children’s Hospital of Wisconsin, Milwaukee, Wisconsin – sequence: 15 givenname: Robert J. surname: Freishtat fullname: Freishtat, Robert J. organization: Children’s National Medical Center, Washington, DC – sequence: 16 givenname: Jeffrey surname: Nowak fullname: Nowak, Jeffrey organization: Children’s Hospital and Clinics of Minnesota, Minneapolis, Minnesota – sequence: 17 givenname: Raj S. surname: Shekhar fullname: Shekhar, Raj S. organization: Riley Hospital for Children, Indianapolis, Indiana – sequence: 18 givenname: Shira surname: Gertz fullname: Gertz, Shira organization: Hackensack University Medical Center, Joseph M. Sanzari Children’s Hospital, Hackensack, New Jersey – sequence: 19 givenname: Emily surname: Dawson fullname: Dawson, Emily organization: The University of Chicago Comer Children’s Hospital, Chicago, Illinois; and – sequence: 20 givenname: Kelli surname: Howard fullname: Howard, Kelli organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio – sequence: 21 givenname: Kelli surname: Harmon fullname: Harmon, Kelli organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio – sequence: 22 givenname: Eileen surname: Beckman fullname: Beckman, Eileen organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio – sequence: 23 givenname: Erin surname: Frank fullname: Frank, Erin organization: Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, Ohio – sequence: 24 givenname: Christopher J. surname: Lindsell fullname: Lindsell, Christopher J. organization: Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25489881$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFTEQhoNU7If-AS9kwRtvtmbytdkboRytCpUKKuhVyMnO9qTmJNtkT6H-enM8rWgvxKsZmOd9mWTeQ7IXU0RCngI9BlDiZXZufcwoCKAtaCXOFw_IAUguW9F3dK_2tOOtEP3XfXJYyiWlwDTQR2SfSaF7reGAfHuN1xjS5ONFY5tF8NE7G8JNc4q2-GXA5iPmkqIN_gcOzQccvPMRm5Npysm6VTOnSgzeztm75hNO87askvv-mDwcbSj45LYekS-nbz4v3rVn52_fL07OWidZP7ccFCqx5A57B6g60ExLplE66AY5KtTIlRg7arWly6HXfedEh0JKxJEpxY_Iq53vtFmucXAY52yDmbJf23xjkvXm70n0K3ORro3gEqSm1eDFrUFOVxsss1n74jAEGzFtigGlQEFPlfwPVDIBXHBW0ef30Mu0yfUff1GUgajnqNSzP5f_vfXdgSqgd4DLqZSMo3F-trNP27f4YICabRbMNgtmlwWzy0KVsnvSO_d_iH4Cvli3wQ |
CitedBy_id | crossref_primary_10_3928_19382359_20220803_04 crossref_primary_10_1186_s13054_019_2446_1 crossref_primary_10_1186_s13054_022_04070_5 crossref_primary_10_21292_2078_5658_2020_17_6_54_62 crossref_primary_10_1016_j_chstcc_2024_100120 crossref_primary_10_1038_s41574_019_0185_7 crossref_primary_10_1097_CCM_0000000000004786 crossref_primary_10_1097_PCC_0000000000001146 crossref_primary_10_1097_SLA_0000000000003204 crossref_primary_10_1111_imm_12841 crossref_primary_10_1002_cpt_1034 crossref_primary_10_1016_j_ccc_2019_08_007 crossref_primary_10_1586_14737159_2016_1133300 crossref_primary_10_1016_j_pcl_2017_06_008 crossref_primary_10_3389_fped_2017_00139 crossref_primary_10_1164_rccm_201701_0143ED crossref_primary_10_1097_PCC_0000000000001255 crossref_primary_10_1097_PCC_0000000000001132 crossref_primary_10_3389_fimmu_2018_02147 crossref_primary_10_1016_j_jpeds_2016_05_020 crossref_primary_10_1016_S2213_2600_16_00046_1 crossref_primary_10_1097_PCC_0000000000001808 crossref_primary_10_1186_s13054_023_04762_6 crossref_primary_10_1097_CCM_0000000000004091 crossref_primary_10_1080_14787210_2019_1581606 crossref_primary_10_1186_s13054_023_04494_7 crossref_primary_10_1039_C8LC01102H crossref_primary_10_1097_CCM_0000000000002932 crossref_primary_10_1016_j_pcl_2017_06_010 crossref_primary_10_1016_S2213_2600_22_00483_0 crossref_primary_10_1097_PCC_0000000000000632 crossref_primary_10_1097_PCC_0000000000001835 crossref_primary_10_1097_CCM_0000000000004320 crossref_primary_10_3389_fped_2021_663435 crossref_primary_10_1038_s41390_021_01620_5 crossref_primary_10_1164_rccm_202201_0161OC crossref_primary_10_1007_s00134_015_3812_3 crossref_primary_10_15360_1813_9779_2022_4_45_54 crossref_primary_10_1097_PCC_0000000000002481 crossref_primary_10_3390_ijms25073871 crossref_primary_10_3310_eme08100 crossref_primary_10_17816_psaic969 crossref_primary_10_1097_MOP_0000000000000337 crossref_primary_10_1017_pcm_2023_4 crossref_primary_10_1097_CCM_0000000000001833 crossref_primary_10_1097_PCC_0000000000003449 crossref_primary_10_1186_s13054_023_04689_y crossref_primary_10_1038_pr_2017_134 crossref_primary_10_1097_PCC_0000000000000862 crossref_primary_10_1097_CCM_0000000000003225 crossref_primary_10_1038_s41581_018_0005_7 crossref_primary_10_4103_JTCCM_D_22_00016 crossref_primary_10_2119_molmed_2015_00064 crossref_primary_10_1093_ajhp_zxae134 crossref_primary_10_1186_s13054_024_04959_3 crossref_primary_10_3389_fped_2016_00074 crossref_primary_10_1186_s13054_022_04265_w crossref_primary_10_15252_msb_20177998 crossref_primary_10_1186_s13054_018_2177_8 crossref_primary_10_1016_j_ccc_2023_03_002 crossref_primary_10_1186_s13054_015_1026_2 crossref_primary_10_1007_s00134_018_5175_z crossref_primary_10_1097_PCC_0000000000000532 crossref_primary_10_1186_s13054_022_04121_x crossref_primary_10_1016_j_pharmthera_2019_107428 crossref_primary_10_1097_AIA_0000000000000220 crossref_primary_10_1038_s41390_021_01879_8 crossref_primary_10_1177_2150135115606087 crossref_primary_10_1016_S2213_2600_20_30124_7 crossref_primary_10_3390_ijms231911740 crossref_primary_10_1373_jalm_2017_025908 crossref_primary_10_1097_MOP_0000000000000753 crossref_primary_10_1097_PCC_0000000000000513 crossref_primary_10_1097_PCC_0000000000003117 crossref_primary_10_1097_PCC_0000000000001058 crossref_primary_10_1097_PCC_0000000000001053 crossref_primary_10_1097_PCC_0000000000001052 crossref_primary_10_1097_PCC_0000000000001050 crossref_primary_10_1097_CCM_0000000000003084 crossref_primary_10_1016_S1473_3099_19_30567_5 crossref_primary_10_1055_s_0040_1716668 crossref_primary_10_1016_S2213_2600_18_30177_2 crossref_primary_10_1097_PCC_0000000000003141 crossref_primary_10_1164_rccm_201710_2006OC crossref_primary_10_3390_cells12071003 crossref_primary_10_1007_s00134_021_06504_0 crossref_primary_10_1097_MAJ_0000000000000558 crossref_primary_10_1038_s41581_019_0199_3 crossref_primary_10_1097_PCC_0000000000000796 crossref_primary_10_1097_PCC_0000000000001401 crossref_primary_10_1186_s12931_022_02098_3 crossref_primary_10_1007_s00134_019_05923_4 crossref_primary_10_1097_CCM_0000000000002102 crossref_primary_10_1038_s41390_024_03289_y crossref_primary_10_7554_eLife_77405 crossref_primary_10_1016_j_jpeds_2016_06_039 crossref_primary_10_1007_s00134_016_4482_5 crossref_primary_10_14814_phy2_14078 crossref_primary_10_1097_PCC_0000000000003499 crossref_primary_10_1093_jamia_ocz106 crossref_primary_10_1097_PCC_0000000000003009 crossref_primary_10_1001_jamanetworkopen_2020_9271 crossref_primary_10_3389_fendo_2024_1452993 crossref_primary_10_1097_CCM_0000000000006135 crossref_primary_10_1016_j_ccc_2017_08_012 crossref_primary_10_1080_17512433_2019_1643235 crossref_primary_10_1186_s13054_015_1052_0 crossref_primary_10_3389_fimmu_2021_733834 crossref_primary_10_1097_SHK_0000000000002226 crossref_primary_10_1186_s13054_025_05319_5 crossref_primary_10_1016_j_jcrc_2018_01_018 crossref_primary_10_1016_S2352_4642_24_00017_8 crossref_primary_10_1097_PCC_0000000000002198 crossref_primary_10_1186_s13054_017_1910_z crossref_primary_10_2217_bmm_2020_0016 crossref_primary_10_1016_j_biocel_2018_04_019 crossref_primary_10_1007_s00134_017_4727_y crossref_primary_10_1164_rccm_201806_1197OC crossref_primary_10_1146_annurev_med_043021_014005 crossref_primary_10_1007_s00134_017_4677_4 crossref_primary_10_1038_s41598_017_09619_x crossref_primary_10_1097_CCM_0000000000003834 crossref_primary_10_1097_CCM_0000000000003833 crossref_primary_10_15360_1813_9779_2024_6_2470 crossref_primary_10_3390_jcm13175002 crossref_primary_10_1097_PCC_0000000000000562 crossref_primary_10_1164_rccm_201412_2299ED crossref_primary_10_1002_prca_202100036 crossref_primary_10_1152_ajplung_00380_2014 crossref_primary_10_1097_SHK_0000000000001910 crossref_primary_10_1186_s12920_020_00771_4 crossref_primary_10_4049_jimmunol_1500856 crossref_primary_10_1097_CCM_0000000000001323 crossref_primary_10_1186_s13054_024_05020_z crossref_primary_10_1097_CCM_0000000000002781 crossref_primary_10_1097_PCC_0000000000001678 crossref_primary_10_1016_j_jpeds_2018_12_041 crossref_primary_10_1097_MCC_0000000000000571 crossref_primary_10_1097_SHK_0000000000001906 crossref_primary_10_1016_j_ebiom_2022_104394 crossref_primary_10_1164_rccm_201606_1171ED crossref_primary_10_3389_fimmu_2025_1546474 crossref_primary_10_1164_rccm_201608_1685OC crossref_primary_10_15252_emmm_201810128 crossref_primary_10_1097_PCC_0000000000003292 crossref_primary_10_1128_IAI_00437_16 crossref_primary_10_1097_CCM_0000000000004709 crossref_primary_10_3390_jcm13237038 crossref_primary_10_1007_s00134_015_3953_4 crossref_primary_10_1016_S2213_2600_17_30187_X crossref_primary_10_3390_biomedicines12050984 crossref_primary_10_1007_s00134_017_4701_8 crossref_primary_10_1016_j_ebiom_2023_104938 crossref_primary_10_1080_14787210_2016_1222272 crossref_primary_10_1056_NEJMoa1701380 crossref_primary_10_1097_QCO_0000000000000583 crossref_primary_10_1016_j_yasu_2016_04_002 crossref_primary_10_1097_CCM_0000000000005675 crossref_primary_10_1097_ACO_0000000000000210 crossref_primary_10_1097_CCM_0000000000001079 crossref_primary_10_1097_CCM_0000000000001990 crossref_primary_10_1164_rccm_201604_0697ED crossref_primary_10_1016_S2589_7500_24_00141_9 crossref_primary_10_1186_s13054_023_04507_5 crossref_primary_10_1097_CCM_0000000000001852 crossref_primary_10_3389_fmed_2024_1445451 crossref_primary_10_3389_fgene_2023_1100352 crossref_primary_10_1038_s41591_022_01843_x crossref_primary_10_1016_j_imu_2023_101293 crossref_primary_10_1177_08850666231194535 crossref_primary_10_1038_s41467_018_03078_2 crossref_primary_10_1097_PCC_0000000000002570 crossref_primary_10_1152_ajpregu_00324_2020 crossref_primary_10_1038_s41598_018_33039_0 crossref_primary_10_1164_rccm_201601_0056OC crossref_primary_10_1097_CCM_0000000000002733 crossref_primary_10_1186_s40635_021_00383_x crossref_primary_10_1016_j_pcl_2022_01_015 crossref_primary_10_1016_S1473_3099_15_70112_X crossref_primary_10_1016_j_ccc_2022_09_013 crossref_primary_10_3390_pathogens11010096 crossref_primary_10_1097_PCC_0000000000000942 crossref_primary_10_1097_CCM_0000000000004487 crossref_primary_10_1097_SHK_0000000000002081 crossref_primary_10_1097_MD_0000000000020762 crossref_primary_10_1097_CCM_0000000000002980 crossref_primary_10_1164_rccm_201807_1419OC crossref_primary_10_1186_s13054_020_03266_x crossref_primary_10_1042_CS20220713 crossref_primary_10_1007_s00134_017_4821_1 crossref_primary_10_1016_j_accpm_2019_05_001 crossref_primary_10_1007_s00134_019_05878_6 crossref_primary_10_1136_bmjopen_2022_066496 crossref_primary_10_1124_jpet_115_230797 crossref_primary_10_1016_j_ebiom_2015_11_035 crossref_primary_10_1097_PCC_0000000000001237 crossref_primary_10_1111_anae_13870 crossref_primary_10_1016_j_heliyon_2024_e28520 crossref_primary_10_21292_2078_5658_2019_16_2_15_24 crossref_primary_10_3390_pathogens10101239 crossref_primary_10_1164_rccm_201512_2544CP crossref_primary_10_1016_S2213_2600_16_00068_0 crossref_primary_10_1164_rccm_201607_1535LE crossref_primary_10_1164_rccm_201701_0066OC crossref_primary_10_1016_j_immuni_2021_10_012 |
Cites_doi | 10.1152/physiolgenomics.00024.2007 10.1056/NEJMra021333 10.1097/CCM.0b013e3182a64607 10.1371/journal.pone.0112702 10.1038/nbt1385 10.1038/nm.2205 10.1097/CCM.0b013e318277131c 10.1038/nri3552 10.1038/pr.2013.11 10.1164/rccm.201011-1897CI 10.2119/molmed.2009.00027 10.1155/JBB/2006/69141 10.1001/jama.288.7.862 10.1164/rccm.201209-1726OC 10.1097/PCC.0000000000000203 10.1056/NEJMcibr1004371 10.1016/S0022-3476(97)70065-9 10.1093/bioinformatics/btg307 10.1016/j.molmed.2014.01.002 10.1056/NEJMoa071366 10.1186/1741-7015-7-34 10.1038/labinvest.2011.94 10.1164/rccm.201401-0171OC 10.1016/j.ccc.2012.11.003 10.1097/CCM.0b013e3182257675 10.1016/j.molmed.2014.01.006 10.1097/CCM.0b013e3181b427e8 |
ContentType | Journal Article |
Copyright | Copyright American Thoracic Society Feb 1, 2015 Copyright © 2015 by the American Thoracic Society 2015 |
Copyright_xml | – notice: Copyright American Thoracic Society Feb 1, 2015 – notice: Copyright © 2015 by the American Thoracic Society 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA AN0 BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ASE FPQ K6X 5PM |
DOI | 10.1164/rccm.201410-1864OC |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic British Nursing Index British Nursing Index (BNI) (1985 to Present) British Nursing Index PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic British Nursing Index |
DatabaseTitleList | MEDLINE MEDLINE - Academic British Nursing Index |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 315 |
ExternalDocumentID | PMC4351580 3576345361 25489881 10_1164_rccm_201410_1864OC |
Genre | Validation Studies Comparative Study Journal Article Research Support, N.I.H., Extramural General Information |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: K12 HD047349 – fundername: NIGMS NIH HHS grantid: R01GM064619 – fundername: NIGMS NIH HHS grantid: R01GM108025 – fundername: NCATS NIH HHS grantid: 8 UL1 TR000077 – fundername: NIGMS NIH HHS grantid: R01GM099773 – fundername: NCATS NIH HHS grantid: UL1 TR000077 – fundername: NIGMS NIH HHS grantid: R01 GM099773 – fundername: NIGMS NIH HHS grantid: R01 GM064619 – fundername: NIGMS NIH HHS grantid: R01 GM108025 |
GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAWTL AAYXX ABJNI ABOCM ABPMR ABUWG ACGFO ACGFS ADBBV AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HMCUK HZ~ IH2 J5H KQ8 L7B M1P M5~ NAPCQ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RWL SJN TAE TEORI THO TR2 UKHRP W8F WH7 WOQ WOW X7M ZXP ~02 CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 ASE FPQ K6X 5PM |
ID | FETCH-LOGICAL-c529t-316e64b3ce9c1e671828528e5c17d5f6e8e364f70a8a0bd9897c47e455eef2663 |
IEDL.DBID | 7X7 |
ISSN | 1073-449X 1535-4970 |
IngestDate | Thu Aug 21 14:00:33 EDT 2025 Fri Jul 11 08:11:54 EDT 2025 Thu Jul 10 22:51:06 EDT 2025 Fri Jul 25 08:02:41 EDT 2025 Thu Apr 03 07:00:41 EDT 2025 Tue Jul 01 02:00:57 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | glucocorticoids subclassification adaptive immunity gene expression sepsis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-316e64b3ce9c1e671828528e5c17d5f6e8e364f70a8a0bd9897c47e455eef2663 |
Notes | SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://doi.org/10.1164/rccm.201410-1864OC |
PMID | 25489881 |
PQID | 1650214001 |
PQPubID | 40575 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351580 proquest_miscellaneous_1661619065 proquest_miscellaneous_1652413432 proquest_journals_1650214001 pubmed_primary_25489881 crossref_citationtrail_10_1164_rccm_201410_1864OC crossref_primary_10_1164_rccm_201410_1864OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 2015-Feb-01 20150201 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2015 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib14 bib15 bib12 bib13 bib10 bib11 bib27 bib25 bib26 bib23 bib24 bib21 bib22 bib20 bib9 bib7 bib8 bib5 bib18 bib6 bib19 bib3 bib16 bib4 bib17 bib1 bib2 21931299 - Lab Invest. 2011 Dec;91(12):1787-95 25280145 - Pediatr Crit Care Med. 2014 Oct;15(8):769-71 20802500 - Nat Med. 2010 Sep;16(9):1042-7 24548661 - Trends Mol Med. 2014 Apr;20(4):204-13 17489018 - J Biomed Biotechnol. 2006;2006(5):69141 23329198 - Pediatr Res. 2013 Apr;73(4 Pt 2):564-9 21705885 - Crit Care Med. 2011 Nov;39(11):2511-7 21680949 - Am J Respir Crit Care Med. 2012 Jan 15;185(2):133-9 23471468 - Am J Respir Crit Care Med. 2013 May 1;187(9):967-76 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 9386662 - J Pediatr. 1997 Oct;131(4):575-81 18184957 - N Engl J Med. 2008 Jan 10;358(2):111-24 25635486 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):247-8 19624809 - BMC Med. 2009;7:34 12519925 - N Engl J Med. 2003 Jan 9;348(2):138-50 19593405 - Mol Med. 2009 Jul-Aug;15(7-8):220-7 20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9 24232462 - Nat Rev Immunol. 2013 Dec;13(12):862-74 25386653 - PLoS One. 2014;9(11):e112702 12186604 - JAMA. 2002 Aug 21;288(7):862-71 17374846 - Physiol Genomics. 2007 Jul 18;30(2):146-55 20639748 - Crit Care Med. 2010 Oct;38(10):1955-61 23537672 - Crit Care Clin. 2013 Apr;29(2):203-22 24145842 - Crit Care Med. 2014 Feb;42(2):397-403 23388514 - Crit Care Med. 2013 May;41(5):1175-85 24650276 - Am J Respir Crit Care Med. 2014 Apr 15;189(8):940-6 14630665 - Bioinformatics. 2003 Nov 22;19(17):2321-2 24485901 - Trends Mol Med. 2014 Apr;20(4):224-33 |
References_xml | – ident: bib11 doi: 10.1152/physiolgenomics.00024.2007 – ident: bib2 doi: 10.1056/NEJMra021333 – ident: bib18 doi: 10.1097/CCM.0b013e3182a64607 – ident: bib20 doi: 10.1371/journal.pone.0112702 – ident: bib14 doi: 10.1038/nbt1385 – ident: bib22 doi: 10.1038/nm.2205 – ident: bib10 doi: 10.1097/CCM.0b013e318277131c – ident: bib1 doi: 10.1038/nri3552 – ident: bib12 doi: 10.1038/pr.2013.11 – ident: bib8 doi: 10.1164/rccm.201011-1897CI – ident: bib21 doi: 10.2119/molmed.2009.00027 – ident: bib16 doi: 10.1155/JBB/2006/69141 – ident: bib24 doi: 10.1001/jama.288.7.862 – ident: bib19 doi: 10.1164/rccm.201209-1726OC – ident: bib26 doi: 10.1097/PCC.0000000000000203 – ident: bib27 doi: 10.1056/NEJMcibr1004371 – ident: bib13 doi: 10.1016/S0022-3476(97)70065-9 – ident: bib15 doi: 10.1093/bioinformatics/btg307 – ident: bib7 doi: 10.1016/j.molmed.2014.01.002 – ident: bib25 doi: 10.1056/NEJMoa071366 – ident: bib4 doi: 10.1186/1741-7015-7-34 – ident: bib23 doi: 10.1038/labinvest.2011.94 – ident: bib17 doi: 10.1164/rccm.201401-0171OC – ident: bib3 doi: 10.1016/j.ccc.2012.11.003 – ident: bib5 doi: 10.1097/CCM.0b013e3182257675 – ident: bib9 doi: 10.1016/j.molmed.2014.01.006 – ident: bib6 doi: 10.1097/CCM.0b013e3181b427e8 – reference: 12519925 - N Engl J Med. 2003 Jan 9;348(2):138-50 – reference: 25280145 - Pediatr Crit Care Med. 2014 Oct;15(8):769-71 – reference: 9386662 - J Pediatr. 1997 Oct;131(4):575-81 – reference: 24232462 - Nat Rev Immunol. 2013 Dec;13(12):862-74 – reference: 20592301 - N Engl J Med. 2010 Jul 1;363(1):87-9 – reference: 21705885 - Crit Care Med. 2011 Nov;39(11):2511-7 – reference: 24650276 - Am J Respir Crit Care Med. 2014 Apr 15;189(8):940-6 – reference: 20639748 - Crit Care Med. 2010 Oct;38(10):1955-61 – reference: 25386653 - PLoS One. 2014;9(11):e112702 – reference: 17374846 - Physiol Genomics. 2007 Jul 18;30(2):146-55 – reference: 14630665 - Bioinformatics. 2003 Nov 22;19(17):2321-2 – reference: 23471468 - Am J Respir Crit Care Med. 2013 May 1;187(9):967-76 – reference: 23388514 - Crit Care Med. 2013 May;41(5):1175-85 – reference: 23329198 - Pediatr Res. 2013 Apr;73(4 Pt 2):564-9 – reference: 17489018 - J Biomed Biotechnol. 2006;2006(5):69141 – reference: 18184957 - N Engl J Med. 2008 Jan 10;358(2):111-24 – reference: 24145842 - Crit Care Med. 2014 Feb;42(2):397-403 – reference: 21931299 - Lab Invest. 2011 Dec;91(12):1787-95 – reference: 24485901 - Trends Mol Med. 2014 Apr;20(4):224-33 – reference: 12186604 - JAMA. 2002 Aug 21;288(7):862-71 – reference: 19593405 - Mol Med. 2009 Jul-Aug;15(7-8):220-7 – reference: 21680949 - Am J Respir Crit Care Med. 2012 Jan 15;185(2):133-9 – reference: 25635486 - Am J Respir Crit Care Med. 2015 Feb 1;191(3):247-8 – reference: 19624809 - BMC Med. 2009;7:34 – reference: 20802500 - Nat Med. 2010 Sep;16(9):1042-7 – reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 – reference: 24548661 - Trends Mol Med. 2014 Apr;20(4):204-13 – reference: 23537672 - Crit Care Clin. 2013 Apr;29(2):203-22 |
SSID | ssj0012810 |
Score | 2.5769553 |
Snippet | Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining... Rationale: Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The... Rationale: Using microarray data, we previously identified gene expression–based subclasses of septic shock with important phenotypic differences. The... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 309 |
SubjectTerms | Child Child, Preschool Feasibility Studies Female Gene Expression Regulation Glucocorticoids - therapeutic use Humans Infant Intensive Care Units, Pediatric Male Mathematical Computing Odds Ratio Original Phenotype Precision Medicine Prospective Studies Reproducibility of Results Severity of Illness Index Shock, Septic - diagnosis Shock, Septic - genetics Shock, Septic - mortality Shock, Septic - therapy Signal Transduction - genetics |
Title | Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25489881 https://www.proquest.com/docview/1650214001 https://www.proquest.com/docview/1652413432 https://www.proquest.com/docview/1661619065 https://pubmed.ncbi.nlm.nih.gov/PMC4351580 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddC2MvY91Xb2uLC3sroXZiO_bT6G4tZdCubCvcnkLsKLRwJP24PrR__eTEyXob3EsSsEIcyZZ_smQJ4FOZmZqQchYkUCUS6cmVtUqcEl4qY0vHwwHn0zN9ciG_zdQsbrjdxbDKQSd2irpqfdgjPxAEJVKyBrj4fH2ThKpRwbsaS2g8g42QuiyM6nw2GlzBSdRnI8izREo7Gw7NaHlw6304hx6iHBNhtGz98sL0H9r8N2jyySp0_ApeRvjIDnt5b8IaNq_h-Wl0kL-B31_HQ1CsZDHp53z-wAjq0eCfIzsf0PcjVmx4kR3G1OJs0bKxegf7GUJe6HZJSvMtXBwf_ZqeJLF6QuJVahekXDVq6TKP1gvUtAalRqUGlRd5pWqNBjMt65yXpuSussbmXuYolUKsadnO3sF60za4BSzldeVq47lxKEvk1pEKFb7miktRZWoCYmBd4WNq8VDhYl50JoaWRWB30bO7COz-Pp3A_vjOdZ9YYyX19iCRIk6yu-LvkJjA3thM0yP4PMoG2_uOJngOZZauotGEey2BsQm874U8donsZ2ONoS_kS-IfCUJ67uWW5uqyS9NNQFQowz-s7vpHeEF_qvpA8G1YX9ze4w7hnIXb7QYzXc1U7MLGl6Oz8x9_AO_1_jI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkaCE4pqJ7ZjHxCqtlRb2i1ItNJyCrEzUSutkj62QuVH8RsZ5wUL0t56SiTbiTPjGX_OvADe5IkpCSkngQNFJJHuXF6qyCnhpTI2dzwEOE8P9ORIfpqp2Rr86mNhgltlrxMbRV3UPvwj3xQEJWI6DXDx4fQsClWjgnW1L6HRLos9vPpBR7aL97vbxN-3cbzz8XA8ibqqApFXsV2Q0tGopUs8Wi9Qk26OjYoNKi_SQpUaDSZalinPTc5dYY1NvUxRKoVY0naW0HNvwE2ZkGiGyPTx4FISjFJt9oM0iaS0sz5IR8vNc-9D3HvwqoyE0bL2yxvhf-j2XyfNv3a9nXtwt4OrbKtdX_dhDasHcGvaGeQfwrftIeiK5axLMjqfXzGCliRsc2RferT_EwvWD2RbXSpztqjZUC2EfQ0uNnQ5JiX9CI6uha6PYb2qK3wKLOZl4UrjuXEoc-TWkcoWvuSKS1EkagSiJ13mu1TmoaLGPGuONFpmgdxZS-4skPvzeATvhjGnbSKPlb03eo5knVBfZH-W4AheD80kjsHGkldYXzZ9gqVSJvGqPppwtiXwN4InLZOHKdF53Vhj6A3pEvuHDiEd-HJLdXLcpAUn4CuU4c9WT_0V3J4cTvez_d2Dvedwh75atU7oG7C-OL_EF4SxFu5ls7AZfL9uSfoNP8035Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFDASnFC0dmI7zgGhapdVS2mpBJWWU4idsYq0Skq7FSo_jV_HOC9YkPbWUyLZTpwZz_hz5gXwskiMJ6ScBA6UkUS6s4VXkVXCSWWywvIQ4Hx4pPdO5Pu5mm_Arz4WJrhV9jqxUdRl7cI_8rEgKBHTaYCLse_cIo6ns7dn36NQQSpYWvtyGu0SOcCrH3R8u3izPyVev4rj2bvPk72oqzAQORVnS1JAGrW0icPMCdSkp2OjYoPKibRUXqPBREuf8sIU3JaZyVInU5RKIXra2hJ67g24mSapCTJmJoN7STBQtZkQ0iSSMpv3ATtajs-dCzHwwcMyEkbL2q1uiv8h3X8dNv_aAWd34HYHXdluu9buwgZW92DrsDPO34cv0yEAixWsSzi6WFwxgpkkeAtkxz3y_4kl6wey3S6tOVvWbKgcwj4Fdxu6nJLCfgAn10LXh7BZ1RVuA4u5L603jhuLskCeWVLfwnmuuBRlokYgetLlrktrHqprLPLmeKNlHsidt-TOA7k_Tkbwehhz1ib1WNt7p-dI3gn4Rf5nOY7gxdBMohnsLUWF9WXTJ1gtZRKv66MJc2cEBEfwqGXyMCU6u5vMGHpDusL-oUNIDb7aUn07bVKEEwgWyvDH66f-HLZIhvIP-0cHT-AWfbRq_dF3YHN5folPCW4t7bNmXTP4et2C9Bu9iDwb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Clinically+Feasible+Personalized+Medicine+Approach+to+Pediatric+Septic+Shock&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Wong%2C+Hector+R.&rft.au=Cvijanovich%2C+Natalie+Z.&rft.au=Anas%2C+Nick&rft.au=Allen%2C+Geoffrey+L.&rft.date=2015-02-01&rft.issn=1073-449X&rft.eissn=1535-4970&rft.volume=191&rft.issue=3&rft.spage=309&rft.epage=315&rft_id=info:doi/10.1164%2Frccm.201410-1864OC&rft.externalDBID=n%2Fa&rft.externalDocID=10_1164_rccm_201410_1864OC |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |