Distinct roles for TET family proteins in regulating human erythropoiesis
The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expres...
Saved in:
Published in | Blood Vol. 129; no. 14; pp. 2002 - 2012 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.04.2017
American Society of Hematology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34+ cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS.
•TET3 knockdown impairs terminal erythroid differentiation, whereas TET2 knockdown leads to accumulation of erythroid progenitors.•Global levels of 5mC are not altered by knockdown of either TET2 or TET3. |
---|---|
AbstractList | The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34+ cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS.The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34+ cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS. TET3 knockdown impairs terminal erythroid differentiation, whereas TET2 knockdown leads to accumulation of erythroid progenitors. Global levels of 5mC are not altered by knockdown of either TET2 or TET3. The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34 cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS. The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34+ cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS. •TET3 knockdown impairs terminal erythroid differentiation, whereas TET2 knockdown leads to accumulation of erythroid progenitors.•Global levels of 5mC are not altered by knockdown of either TET2 or TET3. TET3 knockdown impairs terminal erythroid differentiation, whereas TET2 knockdown leads to accumulation of erythroid progenitors. Global levels of 5mC are not altered by knockdown of either TET2 or TET3. The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34 + cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS. |
Author | Wang, Yaomei An, Chao Guo, Xinhua Li, Wei Qu, Xiaoli Huang, Yumin Kang, Qiaozhen Chen, Lixiang Hillyer, Christopher D. Hale, John Schulz, Vincent P. Li, Jie Papoin, Julien An, Xiuli Mohandas, Narla Gallagher, Patrick G. Yan, Hongxia |
Author_xml | – sequence: 1 givenname: Hongxia surname: Yan fullname: Yan, Hongxia organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 2 givenname: Yaomei surname: Wang fullname: Wang, Yaomei organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 3 givenname: Xiaoli surname: Qu fullname: Qu, Xiaoli organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 4 givenname: Jie surname: Li fullname: Li, Jie organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 5 givenname: John surname: Hale fullname: Hale, John organization: Red Cell Physiology Laboratory, New York Blood Center, New York, NY – sequence: 6 givenname: Yumin surname: Huang fullname: Huang, Yumin organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 7 givenname: Chao surname: An fullname: An, Chao organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 8 givenname: Julien surname: Papoin fullname: Papoin, Julien organization: Red Cell Physiology Laboratory, New York Blood Center, New York, NY – sequence: 9 givenname: Xinhua surname: Guo fullname: Guo, Xinhua organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 10 givenname: Lixiang surname: Chen fullname: Chen, Lixiang organization: School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China – sequence: 11 givenname: Qiaozhen surname: Kang fullname: Kang, Qiaozhen organization: School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China – sequence: 12 givenname: Wei surname: Li fullname: Li, Wei organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY – sequence: 13 givenname: Vincent P. surname: Schulz fullname: Schulz, Vincent P. organization: Department of Pediatrics, Yale University, New Haven, CT – sequence: 14 givenname: Patrick G. surname: Gallagher fullname: Gallagher, Patrick G. organization: Department of Pediatrics, Yale University, New Haven, CT – sequence: 15 givenname: Christopher D. surname: Hillyer fullname: Hillyer, Christopher D. organization: Red Cell Physiology Laboratory, New York Blood Center, New York, NY – sequence: 16 givenname: Narla surname: Mohandas fullname: Mohandas, Narla organization: Red Cell Physiology Laboratory, New York Blood Center, New York, NY – sequence: 17 givenname: Xiuli surname: An fullname: An, Xiuli email: xan@nybc.org organization: Laboratory of Membrane Biology, New York Blood Center, New York, NY |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28167661$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1U1E4f_wAhL9kErp34MSyQUCltpUpspmvLcW5mjBJ7sJ1K8--bYaYIWMDqLu4535HOOScnIQYk5A2D94xp_qEdYuwqDkxWoCtVS6HVK7JggusKgMMJWQCArJqlYmfkPOfvAKypuTglZ1wzqaRkC3L_xefigys0xQEz7WOiq5sV7e3ohx3dpljQh0x9oAnX02Bn8ZpuptEGimlXNiluo8fs8yV53dsh49XxXpDHrzer67vq4dvt_fXnh8oJvixVDdZxFKoDWAJvhe4ZOI0da1gHAlSL0DDrnNNKW9F2bc9B9jWbPXLZtn19QT4duNupHbFzGEqyg9kmP9q0M9F68-cn-I1Zxycjal1rxWbAuyMgxR8T5mJGnx0Ogw0Yp2yYnqvkQiqYpW9_z_oV8tLfLPh4ELgUc07YG-fL3FHcR_vBMDD7sczPscx-LAPaHMaazc1f5hf-f2zHAnBu-cljMtl5DA47n9AV00X_b8AzBxewNA |
CitedBy_id | crossref_primary_10_3389_fphys_2022_1063294 crossref_primary_10_1182_bloodadvances_2020001535 crossref_primary_10_1158_1541_7786_MCR_20_0453 crossref_primary_10_3389_fbioe_2022_790605 crossref_primary_10_1182_blood_2021012334 crossref_primary_10_1186_s41241_017_0044_6 crossref_primary_10_1016_j_celrep_2021_108723 crossref_primary_10_1186_s12967_021_03214_5 crossref_primary_10_1155_2020_9374240 crossref_primary_10_1016_j_cdtm_2019_12_001 crossref_primary_10_1158_2643_3230_BCD_21_0143 crossref_primary_10_1186_s40779_023_00496_2 crossref_primary_10_3390_ijms20082038 crossref_primary_10_1007_s00277_017_3103_x crossref_primary_10_1053_j_seminhematol_2020_12_005 crossref_primary_10_1038_s41418_024_01305_6 crossref_primary_10_1038_s41375_021_01390_3 crossref_primary_10_1038_s41467_024_44718_0 crossref_primary_10_1182_blood_2019000430 crossref_primary_10_1097_BS9_0000000000000017 crossref_primary_10_1016_j_placenta_2017_09_008 crossref_primary_10_1182_blood_2019003062 crossref_primary_10_1186_s12885_022_09347_0 crossref_primary_10_1097_BS9_0000000000000055 crossref_primary_10_3324_haematol_2020_263558 crossref_primary_10_1016_j_gpb_2023_07_001 crossref_primary_10_1182_bloodadvances_2021005418 crossref_primary_10_1096_fj_202302017R crossref_primary_10_1016_S1470_2045_17_30671_X crossref_primary_10_1111_jcmm_17263 crossref_primary_10_3389_fcell_2020_613885 crossref_primary_10_1016_j_exphem_2021_01_001 crossref_primary_10_1073_pnas_1915085117 crossref_primary_10_1038_s41392_023_01537_x crossref_primary_10_1007_s12551_019_00579_2 crossref_primary_10_3389_fimmu_2022_898827 crossref_primary_10_1038_s41413_024_00398_6 crossref_primary_10_3390_genes12071012 crossref_primary_10_1016_j_bbrc_2017_06_113 crossref_primary_10_1016_j_ymthe_2021_01_022 crossref_primary_10_1186_s13046_022_02496_x crossref_primary_10_1186_s13045_018_0558_8 crossref_primary_10_1053_j_seminhematol_2024_01_013 crossref_primary_10_15252_msb_20209813 crossref_primary_10_1186_s13072_018_0228_7 crossref_primary_10_3389_fgene_2022_805265 crossref_primary_10_3390_epigenomes2010003 crossref_primary_10_1182_blood_2018_05_853291 crossref_primary_10_1182_blood_2020007401 crossref_primary_10_1097_HS9_0000000000000558 crossref_primary_10_1038_s43587_023_00505_y crossref_primary_10_1371_journal_pone_0294187 crossref_primary_10_1016_j_cr_2018_10_001 |
Cites_doi | 10.1038/nm.3512 10.1242/dev.121.1.163 10.1038/nature05918 10.1126/science.1229277 10.1182/blood-2014-07-588806 10.1046/j.1365-2141.1999.01539.x 10.1126/science.1207306 10.1038/nature10008 10.1016/0092-8674(89)90965-3 10.1038/ng.391 10.1128/MCB.00587-15 10.4161/cib.23544 10.1056/NEJMoa0810069 10.1182/blood-2010-12-324707 10.1073/pnas.0904231106 10.1016/j.immuni.2015.07.017 10.1038/35000656 10.1016/j.stem.2011.01.008 10.1126/science.1170116 10.1016/S0092-8674(00)81656-6 10.1182/blood-2011-03-331371 10.1074/jbc.M112.390088 10.1038/289068a0 10.1093/hmg/ddu167 10.4161/cc.9.4.10780 10.1016/j.celrep.2015.10.037 10.1016/0092-8674(95)90234-1 10.1038/nm.3468 10.1002/cbic.201000195 10.1016/j.cell.2007.02.010 10.1128/MCB.01061-13 10.1073/pnas.82.22.7580 10.1182/blood-2013-01-476390 10.1126/science.1210597 10.1038/nature10443 10.1146/annurev.biochem.74.010904.153721 10.1189/jlb.0107014 10.1016/j.celrep.2013.11.044 10.1038/nature11925 10.3109/10428199509059614 10.1016/j.ceb.2015.10.009 10.1182/blood-2014-01-548305 10.1016/j.ygeno.2013.09.005 10.1101/gad.10.2.154 10.1038/nature09303 10.1074/jbc.M112.423756 10.1073/pnas.93.17.9126 |
ContentType | Journal Article |
Copyright | 2017 American Society of Hematology 2017 by The American Society of Hematology. 2017 by The American Society of Hematology 2017 |
Copyright_xml | – notice: 2017 American Society of Hematology – notice: 2017 by The American Society of Hematology. – notice: 2017 by The American Society of Hematology 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1182/blood-2016-08-736587 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology Anatomy & Physiology |
EISSN | 1528-0020 |
EndPage | 2012 |
ExternalDocumentID | PMC5383871 28167661 10_1182_blood_2016_08_736587 S0006497120335229 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK100810 – fundername: NIDDK NIH HHS grantid: R37 DK026263 – fundername: NIDDK NIH HHS grantid: R01 DK026263 – fundername: ; |
GroupedDBID | --- -~X .55 1CY 23N 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6I. 6J9 AAEDW AAFTH AAXUO ABOCM ABVKL ACGFO ADBBV AENEX AFOSN AHPSJ ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD EX3 F5P FDB FRP GS5 GX1 IH2 K-O KQ8 L7B LSO MJL N9A OK1 P2P R.V RHF RHI ROL SJN THE TR2 TWZ W2D W8F WH7 WOQ WOW X7M YHG YKV ZA5 0R~ AALRI AAYXX ACVFH ADCNI ADVLN AEUPX AFETI AFPUW AGCQF AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c529t-30ac2e57d00902b58f10c8ed141d0507be041accc878a5bdbf206f312e569bbf3 |
ISSN | 0006-4971 1528-0020 |
IngestDate | Thu Aug 21 13:40:53 EDT 2025 Thu Jul 10 17:13:29 EDT 2025 Wed Feb 19 02:30:37 EST 2025 Thu Apr 24 22:51:04 EDT 2025 Tue Jul 01 02:15:47 EDT 2025 Fri Feb 23 02:45:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | This article is made available under the Elsevier license. 2017 by The American Society of Hematology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c529t-30ac2e57d00902b58f10c8ed141d0507be041accc878a5bdbf206f312e569bbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 H.Y., Y.W., and X.Q. contributed equally to this study. |
OpenAccessLink | https://dx.doi.org/10.1182/blood-2016-08-736587 |
PMID | 28167661 |
PQID | 1865825670 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5383871 proquest_miscellaneous_1865825670 pubmed_primary_28167661 crossref_citationtrail_10_1182_blood_2016_08_736587 crossref_primary_10_1182_blood_2016_08_736587 elsevier_sciencedirect_doi_10_1182_blood_2016_08_736587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-06 20170406 |
PublicationDateYYYYMMDD | 2017-04-06 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington, DC |
PublicationTitle | Blood |
PublicationTitleAlternate | Blood |
PublicationYear | 2017 |
Publisher | Elsevier Inc American Society of Hematology |
Publisher_xml | – name: Elsevier Inc – name: American Society of Hematology |
References | Mayer, Niveleau, Walter, Fundele, Haaf (bib8) 2000; 403 Ficz, Branco, Seisenberger (bib10) 2011; 473 Gu, Guo, Yang (bib25) 2011; 477 Ito, D'Alessio, Taranova, Hong, Sowers, Zhang (bib19) 2010; 466 Li, Hale, Bhagia (bib29) 2014; 124 Liu, Yuan, Zhang, Zhang, Wang (bib43) 2007; 82 Siatecka, Bieker (bib7) 2011; 118 Hackett, Sengupta, Zylicz (bib11) 2013; 339 Yang, Wang, Chang (bib45) 2013; 102 Bowen (bib47) 1995; 18 Wu, Liu, Jaenisch, Lodish (bib5) 1995; 83 Koh, Yabuuchi, Rao (bib16) 2011; 8 Krem, Luo, Ing, Horwitz (bib34) 2012; 287 Suragani, Cadena, Cawley (bib42) 2014; 20 Jurkowska, Jurkowski, Jeltsch (bib14) 2011; 12 Reik (bib9) 2007; 447 Lin, Suggs, Lin (bib4) 1985; 82 Delhommeau, Dupont, Della Valle (bib20) 2009; 360 Costa, Ding, Theunissen (bib40) 2013; 495 Dussiot, Maciel, Fricot (bib41) 2014; 20 Robinson, Sieff, Delia, Edwards, Greaves (bib30) 1981; 289 Pronier, Almire, Mokrani (bib23) 2011; 118 Madzo, Liu, Rodriguez (bib22) 2014; 6 Pevny, Lin, D'Agati, Simon, Orkin, Costantini (bib6) 1995; 121 Tahiliani, Koh, Shen (bib15) 2009; 324 Kieran, Perkins, Orkin, Zon (bib2) 1996; 93 Lin, Lim, D'Agati, Costantini (bib3) 1996; 10 Wiehle, Raddatz, Musch (bib37) 2015; 36 Salipante, Mealiffe, Wechsler (bib32) 2009; 106 Krem, Horwitz (bib35) 2013; 6 Ge, Zhang, Wan (bib24) 2014; 34 An, Schulz, Li (bib28) 2014; 123 Ko, An, Rao (bib36) 2015; 37 D'Andrea, Lodish, Wong (bib1) 1989; 57 Okano, Bell, Haber, Li (bib12) 1999; 99 Krem, Salipante, Horwitz (bib33) 2010; 9 Yang, Qu, Zhou (bib39) 2015; 43 Shearstone, Pop, Bock, Boyle, Meissner, Socolovsky (bib26) 2011; 334 Yu, Mo, Ebenezer (bib27) 2013; 288 Zhao, Chen, Dawlaty (bib38) 2015; 13 Langemeijer, Kuiper, Berends (bib21) 2009; 41 Ito, Shen, Dai (bib17) 2011; 333 Hu, Liu, Xue (bib31) 2013; 121 Surani, Hayashi, Hajkova (bib18) 2007; 128 Fontenay-Roupie, Bouscary, Guesnu (bib46) 1999; 106 Goll, Bestor (bib13) 2005; 74 Shi, Lin, Sierant (bib44) 2014; 23 Goll (2019111903525121300_B13) 2005; 74 Costa (2019111903525121300_B40) 2013; 495 Krem (2019111903525121300_B33) 2010; 9 Siatecka (2019111903525121300_B7) 2011; 118 Dussiot (2019111903525121300_B41) 2014; 20 Yu (2019111903525121300_B27) 2013; 288 An (2019111903525121300_B28) 2014; 123 Reik (2019111903525121300_B9) 2007; 447 Shearstone (2019111903525121300_B26) 2011; 334 Zhao (2019111903525121300_B38) 2015; 13 Kieran (2019111903525121300_B2) 1996; 93 Robinson (2019111903525121300_B30) 1981; 289 Pronier (2019111903525121300_B23) 2011; 118 Surani (2019111903525121300_B18) 2007; 128 Li (2019111903525121300_B29) 2014; 124 Hu (2019111903525121300_B31) 2013; 121 Yang (2019111903525121300_B39) 2015; 43 D’Andrea (2019111903525121300_B1) 1989; 57 Liu (2019111903525121300_B43) 2007; 82 Lin (2019111903525121300_B3) 1996; 10 Ito (2019111903525121300_B17) 2011; 333 Ko (2019111903525121300_B36) 2015; 37 Fontenay-Roupie (2019111903525121300_B46) 1999; 106 Ge (2019111903525121300_B24) 2014; 34 Wiehle (2019111903525121300_B37) 2015; 36 Langemeijer (2019111903525121300_B21) 2009; 41 Krem (2019111903525121300_B34) 2012; 287 Madzo (2019111903525121300_B22) 2014; 6 Koh (2019111903525121300_B16) 2011; 8 Wu (2019111903525121300_B5) 1995; 83 Bowen (2019111903525121300_B47) 1995; 18 Okano (2019111903525121300_B12) 1999; 99 Ito (2019111903525121300_B19) 2010; 466 Gu (2019111903525121300_B25) 2011; 477 Tahiliani (2019111903525121300_B15) 2009; 324 Jurkowska (2019111903525121300_B14) 2011; 12 Ficz (2019111903525121300_B10) 2011; 473 Hackett (2019111903525121300_B11) 2013; 339 Lin (2019111903525121300_B4) 1985; 82 Mayer (2019111903525121300_B8) 2000; 403 Suragani (2019111903525121300_B42) 2014; 20 Yang (2019111903525121300_B45) 2013; 102 Salipante (2019111903525121300_B32) 2009; 106 Shi (2019111903525121300_B44) 2014; 23 Pevny (2019111903525121300_B6) 1995; 121 Delhommeau (2019111903525121300_B20) 2009; 360 Krem (2019111903525121300_B35) 2013; 6 |
References_xml | – volume: 339 start-page: 448 year: 2013 end-page: 452 ident: bib11 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science – volume: 128 start-page: 747 year: 2007 end-page: 762 ident: bib18 article-title: Genetic and epigenetic regulators of pluripotency publication-title: Cell – volume: 41 start-page: 838 year: 2009 end-page: 842 ident: bib21 article-title: Acquired mutations in TET2 are common in myelodysplastic syndromes publication-title: Nat Genet – volume: 82 start-page: 7580 year: 1985 end-page: 7584 ident: bib4 article-title: Cloning and expression of the human erythropoietin gene publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 4528 year: 2014 end-page: 4542 ident: bib44 article-title: Developmental transcriptome analysis of human erythropoiesis publication-title: Hum Mol Genet – volume: 12 start-page: 206 year: 2011 end-page: 222 ident: bib14 article-title: Structure and function of mammalian DNA methyltransferases publication-title: ChemBioChem – volume: 6 start-page: 231 year: 2014 end-page: 244 ident: bib22 article-title: Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis publication-title: Cell Reports – volume: 99 start-page: 247 year: 1999 end-page: 257 ident: bib12 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell – volume: 34 start-page: 989 year: 2014 end-page: 1002 ident: bib24 article-title: TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model publication-title: Mol Cell Biol – volume: 466 start-page: 1129 year: 2010 end-page: 1133 ident: bib19 article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification publication-title: Nature – volume: 37 start-page: 91 year: 2015 end-page: 101 ident: bib36 article-title: DNA methylation and hydroxymethylation in hematologic differentiation and transformation publication-title: Curr Opin Cell Biol – volume: 36 start-page: 452 year: 2015 end-page: 461 ident: bib37 article-title: Tet1 and Tet2 protect DNA methylation canyons against hypermethylation publication-title: Mol Cell Biol – volume: 403 start-page: 501 year: 2000 end-page: 502 ident: bib8 article-title: Demethylation of the zygotic paternal genome publication-title: Nature – volume: 74 start-page: 481 year: 2005 end-page: 514 ident: bib13 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu Rev Biochem – volume: 118 start-page: 2044 year: 2011 end-page: 2054 ident: bib7 article-title: The multifunctional role of EKLF/KLF1 during erythropoiesis publication-title: Blood – volume: 334 start-page: 799 year: 2011 end-page: 802 ident: bib26 article-title: Global DNA demethylation during mouse erythropoiesis in vivo publication-title: Science – volume: 106 start-page: 14920 year: 2009 end-page: 14925 ident: bib32 article-title: Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 398 year: 2014 end-page: 407 ident: bib41 article-title: An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia publication-title: Nat Med – volume: 18 start-page: 243 year: 1995 end-page: 247 ident: bib47 article-title: What is ineffective erythropoiesis in myelodysplastic syndromes? publication-title: Leuk Lymphoma – volume: 9 start-page: 670 year: 2010 end-page: 675 ident: bib33 article-title: Mutations in a gene encoding a midbody protein in binucleated Reed-Sternberg cells of Hodgkin lymphoma publication-title: Cell Cycle – volume: 102 start-page: 431 year: 2013 end-page: 441 ident: bib45 article-title: Transcriptome dynamics during human erythroid differentiation and development publication-title: Genomics – volume: 93 start-page: 9126 year: 1996 end-page: 9131 ident: bib2 article-title: Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 408 year: 2014 end-page: 414 ident: bib42 article-title: Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis publication-title: Nat Med – volume: 289 start-page: 68 year: 1981 end-page: 71 ident: bib30 article-title: Expression of cell-surface HLA-DR, HLA-ABC and glycophorin during erythroid differentiation publication-title: Nature – volume: 43 start-page: 251 year: 2015 end-page: 263 ident: bib39 article-title: Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis publication-title: Immunity – volume: 360 start-page: 2289 year: 2009 end-page: 2301 ident: bib20 article-title: Mutation in TET2 in myeloid cancers publication-title: N Engl J Med – volume: 121 start-page: 163 year: 1995 end-page: 172 ident: bib6 article-title: Development of hematopoietic cells lacking transcription factor GATA-1 publication-title: Development – volume: 124 start-page: 3636 year: 2014 end-page: 3645 ident: bib29 article-title: Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E publication-title: Blood – volume: 473 start-page: 398 year: 2011 end-page: 402 ident: bib10 article-title: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation publication-title: Nature – volume: 13 start-page: 1692 year: 2015 end-page: 1704 ident: bib38 article-title: Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice publication-title: Cell Reports – volume: 287 start-page: 39083 year: 2012 end-page: 39093 ident: bib34 article-title: The kelch protein KLHDC8B guards against mitotic errors, centrosomal amplification, and chromosomal instability publication-title: J Biol Chem – volume: 495 start-page: 370 year: 2013 end-page: 374 ident: bib40 article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency publication-title: Nature – volume: 57 start-page: 277 year: 1989 end-page: 285 ident: bib1 article-title: Expression cloning of the murine erythropoietin receptor publication-title: Cell – volume: 10 start-page: 154 year: 1996 end-page: 164 ident: bib3 article-title: Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis publication-title: Genes Dev – volume: 6 start-page: e23544 year: 2013 ident: bib35 article-title: Mitotic errors, aneuploidy and micronuclei in Hodgkin lymphoma pathogenesis publication-title: Commun Integr Biol – volume: 118 start-page: 2551 year: 2011 end-page: 2555 ident: bib23 article-title: Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors publication-title: Blood – volume: 333 start-page: 1300 year: 2011 end-page: 1303 ident: bib17 article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine publication-title: Science – volume: 288 start-page: 8805 year: 2013 end-page: 8814 ident: bib27 article-title: High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis publication-title: J Biol Chem – volume: 324 start-page: 930 year: 2009 end-page: 935 ident: bib15 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science – volume: 123 start-page: 3466 year: 2014 end-page: 3477 ident: bib28 article-title: Global transcriptome analyses of human and murine terminal erythroid differentiation publication-title: Blood – volume: 82 start-page: 986 year: 2007 end-page: 1002 ident: bib43 article-title: Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage publication-title: J Leukoc Biol – volume: 106 start-page: 464 year: 1999 end-page: 473 ident: bib46 article-title: Ineffective erythropoiesis in myelodysplastic syndromes: correlation with Fas expression but not with lack of erythropoietin receptor signal transduction publication-title: Br J Haematol – volume: 8 start-page: 200 year: 2011 end-page: 213 ident: bib16 article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells publication-title: Cell Stem Cell – volume: 83 start-page: 59 year: 1995 end-page: 67 ident: bib5 article-title: Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor publication-title: Cell – volume: 121 start-page: 3246 year: 2013 end-page: 3253 ident: bib31 article-title: Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo publication-title: Blood – volume: 447 start-page: 425 year: 2007 end-page: 432 ident: bib9 article-title: Stability and flexibility of epigenetic gene regulation in mammalian development publication-title: Nature – volume: 477 start-page: 606 year: 2011 end-page: 610 ident: bib25 article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes publication-title: Nature – volume: 20 start-page: 408 issue: 4 year: 2014 ident: 2019111903525121300_B42 article-title: Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis publication-title: Nat Med doi: 10.1038/nm.3512 – volume: 121 start-page: 163 issue: 1 year: 1995 ident: 2019111903525121300_B6 article-title: Development of hematopoietic cells lacking transcription factor GATA-1 publication-title: Development doi: 10.1242/dev.121.1.163 – volume: 447 start-page: 425 issue: 7143 year: 2007 ident: 2019111903525121300_B9 article-title: Stability and flexibility of epigenetic gene regulation in mammalian development publication-title: Nature doi: 10.1038/nature05918 – volume: 339 start-page: 448 issue: 6118 year: 2013 ident: 2019111903525121300_B11 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science doi: 10.1126/science.1229277 – volume: 124 start-page: 3636 issue: 24 year: 2014 ident: 2019111903525121300_B29 article-title: Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E publication-title: Blood doi: 10.1182/blood-2014-07-588806 – volume: 106 start-page: 464 issue: 2 year: 1999 ident: 2019111903525121300_B46 article-title: Ineffective erythropoiesis in myelodysplastic syndromes: correlation with Fas expression but not with lack of erythropoietin receptor signal transduction publication-title: Br J Haematol doi: 10.1046/j.1365-2141.1999.01539.x – volume: 334 start-page: 799 issue: 6057 year: 2011 ident: 2019111903525121300_B26 article-title: Global DNA demethylation during mouse erythropoiesis in vivo publication-title: Science doi: 10.1126/science.1207306 – volume: 473 start-page: 398 issue: 7347 year: 2011 ident: 2019111903525121300_B10 article-title: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation publication-title: Nature doi: 10.1038/nature10008 – volume: 57 start-page: 277 issue: 2 year: 1989 ident: 2019111903525121300_B1 article-title: Expression cloning of the murine erythropoietin receptor publication-title: Cell doi: 10.1016/0092-8674(89)90965-3 – volume: 41 start-page: 838 issue: 7 year: 2009 ident: 2019111903525121300_B21 article-title: Acquired mutations in TET2 are common in myelodysplastic syndromes publication-title: Nat Genet doi: 10.1038/ng.391 – volume: 36 start-page: 452 issue: 3 year: 2015 ident: 2019111903525121300_B37 article-title: Tet1 and Tet2 protect DNA methylation canyons against hypermethylation publication-title: Mol Cell Biol doi: 10.1128/MCB.00587-15 – volume: 6 start-page: e23544 issue: 3 year: 2013 ident: 2019111903525121300_B35 article-title: Mitotic errors, aneuploidy and micronuclei in Hodgkin lymphoma pathogenesis publication-title: Commun Integr Biol doi: 10.4161/cib.23544 – volume: 360 start-page: 2289 issue: 22 year: 2009 ident: 2019111903525121300_B20 article-title: Mutation in TET2 in myeloid cancers publication-title: N Engl J Med doi: 10.1056/NEJMoa0810069 – volume: 118 start-page: 2551 issue: 9 year: 2011 ident: 2019111903525121300_B23 article-title: Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors publication-title: Blood doi: 10.1182/blood-2010-12-324707 – volume: 106 start-page: 14920 issue: 35 year: 2009 ident: 2019111903525121300_B32 article-title: Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0904231106 – volume: 43 start-page: 251 issue: 2 year: 2015 ident: 2019111903525121300_B39 article-title: Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis publication-title: Immunity doi: 10.1016/j.immuni.2015.07.017 – volume: 403 start-page: 501 issue: 6769 year: 2000 ident: 2019111903525121300_B8 article-title: Demethylation of the zygotic paternal genome publication-title: Nature doi: 10.1038/35000656 – volume: 8 start-page: 200 issue: 2 year: 2011 ident: 2019111903525121300_B16 article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.01.008 – volume: 324 start-page: 930 issue: 5929 year: 2009 ident: 2019111903525121300_B15 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science doi: 10.1126/science.1170116 – volume: 99 start-page: 247 issue: 3 year: 1999 ident: 2019111903525121300_B12 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell doi: 10.1016/S0092-8674(00)81656-6 – volume: 118 start-page: 2044 issue: 8 year: 2011 ident: 2019111903525121300_B7 article-title: The multifunctional role of EKLF/KLF1 during erythropoiesis publication-title: Blood doi: 10.1182/blood-2011-03-331371 – volume: 287 start-page: 39083 issue: 46 year: 2012 ident: 2019111903525121300_B34 article-title: The kelch protein KLHDC8B guards against mitotic errors, centrosomal amplification, and chromosomal instability publication-title: J Biol Chem doi: 10.1074/jbc.M112.390088 – volume: 289 start-page: 68 issue: 5793 year: 1981 ident: 2019111903525121300_B30 article-title: Expression of cell-surface HLA-DR, HLA-ABC and glycophorin during erythroid differentiation publication-title: Nature doi: 10.1038/289068a0 – volume: 23 start-page: 4528 issue: 17 year: 2014 ident: 2019111903525121300_B44 article-title: Developmental transcriptome analysis of human erythropoiesis publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu167 – volume: 9 start-page: 670 issue: 4 year: 2010 ident: 2019111903525121300_B33 article-title: Mutations in a gene encoding a midbody protein in binucleated Reed-Sternberg cells of Hodgkin lymphoma publication-title: Cell Cycle doi: 10.4161/cc.9.4.10780 – volume: 13 start-page: 1692 issue: 8 year: 2015 ident: 2019111903525121300_B38 article-title: Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice publication-title: Cell Reports doi: 10.1016/j.celrep.2015.10.037 – volume: 83 start-page: 59 issue: 1 year: 1995 ident: 2019111903525121300_B5 article-title: Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor publication-title: Cell doi: 10.1016/0092-8674(95)90234-1 – volume: 20 start-page: 398 issue: 4 year: 2014 ident: 2019111903525121300_B41 article-title: An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia publication-title: Nat Med doi: 10.1038/nm.3468 – volume: 12 start-page: 206 issue: 2 year: 2011 ident: 2019111903525121300_B14 article-title: Structure and function of mammalian DNA methyltransferases publication-title: ChemBioChem doi: 10.1002/cbic.201000195 – volume: 128 start-page: 747 issue: 4 year: 2007 ident: 2019111903525121300_B18 article-title: Genetic and epigenetic regulators of pluripotency publication-title: Cell doi: 10.1016/j.cell.2007.02.010 – volume: 34 start-page: 989 issue: 6 year: 2014 ident: 2019111903525121300_B24 article-title: TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model publication-title: Mol Cell Biol doi: 10.1128/MCB.01061-13 – volume: 82 start-page: 7580 issue: 22 year: 1985 ident: 2019111903525121300_B4 article-title: Cloning and expression of the human erythropoietin gene publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.22.7580 – volume: 121 start-page: 3246 issue: 16 year: 2013 ident: 2019111903525121300_B31 article-title: Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo publication-title: Blood doi: 10.1182/blood-2013-01-476390 – volume: 333 start-page: 1300 issue: 6047 year: 2011 ident: 2019111903525121300_B17 article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine publication-title: Science doi: 10.1126/science.1210597 – volume: 477 start-page: 606 issue: 7366 year: 2011 ident: 2019111903525121300_B25 article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes publication-title: Nature doi: 10.1038/nature10443 – volume: 74 start-page: 481 year: 2005 ident: 2019111903525121300_B13 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.010904.153721 – volume: 82 start-page: 986 issue: 4 year: 2007 ident: 2019111903525121300_B43 article-title: Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage publication-title: J Leukoc Biol doi: 10.1189/jlb.0107014 – volume: 6 start-page: 231 issue: 1 year: 2014 ident: 2019111903525121300_B22 article-title: Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis publication-title: Cell Reports doi: 10.1016/j.celrep.2013.11.044 – volume: 495 start-page: 370 issue: 7441 year: 2013 ident: 2019111903525121300_B40 article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency publication-title: Nature doi: 10.1038/nature11925 – volume: 18 start-page: 243 issue: 3-4 year: 1995 ident: 2019111903525121300_B47 article-title: What is ineffective erythropoiesis in myelodysplastic syndromes? publication-title: Leuk Lymphoma doi: 10.3109/10428199509059614 – volume: 37 start-page: 91 year: 2015 ident: 2019111903525121300_B36 article-title: DNA methylation and hydroxymethylation in hematologic differentiation and transformation publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2015.10.009 – volume: 123 start-page: 3466 issue: 22 year: 2014 ident: 2019111903525121300_B28 article-title: Global transcriptome analyses of human and murine terminal erythroid differentiation publication-title: Blood doi: 10.1182/blood-2014-01-548305 – volume: 102 start-page: 431 issue: 5-6 year: 2013 ident: 2019111903525121300_B45 article-title: Transcriptome dynamics during human erythroid differentiation and development publication-title: Genomics doi: 10.1016/j.ygeno.2013.09.005 – volume: 10 start-page: 154 issue: 2 year: 1996 ident: 2019111903525121300_B3 article-title: Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis publication-title: Genes Dev doi: 10.1101/gad.10.2.154 – volume: 466 start-page: 1129 issue: 7310 year: 2010 ident: 2019111903525121300_B19 article-title: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification publication-title: Nature doi: 10.1038/nature09303 – volume: 288 start-page: 8805 issue: 13 year: 2013 ident: 2019111903525121300_B27 article-title: High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis publication-title: J Biol Chem doi: 10.1074/jbc.M112.423756 – volume: 93 start-page: 9126 issue: 17 year: 1996 ident: 2019111903525121300_B2 article-title: Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.17.9126 |
SSID | ssj0014325 |
Score | 2.4573252 |
Snippet | The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to... TET3 knockdown impairs terminal erythroid differentiation, whereas TET2 knockdown leads to accumulation of erythroid progenitors. Global levels of 5mC are not... TET3 knockdown impairs terminal erythroid differentiation, whereas TET2 knockdown leads to accumulation of erythroid progenitors. Global levels of 5mC are not... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2002 |
SubjectTerms | Antigens, CD34 - genetics Antigens, CD34 - metabolism Dioxygenases - genetics Dioxygenases - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Erythropoiesis - physiology Gene Knockdown Techniques Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Humans Mixed Function Oxygenases - genetics Mixed Function Oxygenases - metabolism Myelodysplastic Syndromes - genetics Myelodysplastic Syndromes - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Red Cells, Iron, and Erythropoiesis |
Title | Distinct roles for TET family proteins in regulating human erythropoiesis |
URI | https://dx.doi.org/10.1182/blood-2016-08-736587 https://www.ncbi.nlm.nih.gov/pubmed/28167661 https://www.proquest.com/docview/1865825670 https://pubmed.ncbi.nlm.nih.gov/PMC5383871 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCMYLgg5GuclIiBcUcJyLnccxhspgSIhOKk-R7TgQqUtQl0mMX8_xJUkDRYO9VJGT1Gm_L8fnHJ8LQs_KWMOiUbJAxVkZmIpyQcYFDYqMp0WqBCPc5DsffUxnx_HhIlkM5QlsdkkrX6qfG_NKLoMqjAGuJkv2P5DtvxQG4BjwhU9AGD7_CeM35gWtVWtjBG1hhRfzg3nvtDAlGCoXKL5yLeeNX8B15dOrc9chASzl6nS0tbv0_eOtMHD-0VlTf_1RDRLcO5m_iOZEV4Pv1IwtKtEs-7EPNljgsNLr3gVYsUxQSjq4vLq0l1FUplnjTGs6RwrtJacpdU0oGYlW783wHIrXJSUhdG3VhbnpZonOTYVYF8UPF6XGn8si0JvYsIL1cYWfrYoFD0aJySWj2VV0jYL9YATg-0_D9lIcUdfawv8On1MJc73aNNPfdJY_bZLfQ2vXdJX5bXTLGxl4zzHmDrqi6wna2atF25yc4-fYhv3a_ZQJuv66O9re75r_TdCNIx9zsYPedSzDlmUYWIaBZdixDHcsw1WNB5ZhyzI8ZtlddPz2YL4_C3wDjkAlNGuDiAhFdcIKYqJ3ZcLLkCiuizAOCwKGhNQkDoVSijMuElnIkpK0jEK4J82kLKN7aKtuan0fYes2YzFXNNIxLYgQaSqJjqgSGU9iOUVR9xfnylenN01Slrm1UjnNLTC5ASYnPHfATFHQ3_XdVWe54HrWoZd7DdNpjjnQ7YI7n3Zg5wCF2VUTtW7OTvOQw3kwHBiZol0Hfv8slIcpAw0Y5h3Ror_AFHcfn6mrb7bIOygiEWfhg0s_8UN0c3ihH6GtdnWmH4MC3con9mX4Bda0wtI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+roles+for+TET+family+proteins+in+regulating+human+erythropoiesis&rft.jtitle=Blood&rft.au=Yan%2C+Hongxia&rft.au=Wang%2C+Yaomei&rft.au=Qu%2C+Xiaoli&rft.au=Li%2C+Jie&rft.date=2017-04-06&rft.pub=Elsevier+Inc&rft.issn=0006-4971&rft.eissn=1528-0020&rft.volume=129&rft.issue=14&rft.spage=2002&rft.epage=2012&rft_id=info:doi/10.1182%2Fblood-2016-08-736587&rft.externalDocID=S0006497120335229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon |