Low‐Thermal‐Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron‐Doped Reduced Graphene Oxide

Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 7; pp. 1903318 - n/a
Main Authors Cha, Jun‐Hwe, Kim, Dong‐Ha, Park, Cheolmin, Choi, Seon‐Jin, Jang, Ji‐Soo, Yang, Sang Yoon, Kim, Il‐Doo, Choi, Sung‐Yool
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 105 °C s−1). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 106‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties. Simultaneous heteroatom doping and reduction of graphene oxide (GO) in ambient air by a low‐thermal‐budget process is carried out through single‐shot irradiation using a Xe flash lamp. Compared to pristine reduced GO (rGO), B‐doped rGO features improve NO2 sensing performance (better response and reversibility), especially in a highly humid atmosphere.
AbstractList Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low-thermal-budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B-doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in-depth sequential doping and reduction mechanisms are investigated by ex situ X-ray photoelectron spectroscopy and direct millisecond-scale temperature measurements (temperature >1600 °C, < 10-millisecond duration, ramping rate of 5.3 × 10 °C s ). Single-flash IPL allows the large-scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 10 -fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room-temperature NO sensing. Thus, this work showcases the great potential of optical annealing for millisecond-scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties.
Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 105 °C s−1). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 106‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties.
Abstract Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 10 5 °C s −1 ). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 10 6 ‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO 2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties.
Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 10 5 °C s −1 ). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 10 6 ‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO 2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties. Simultaneous heteroatom doping and reduction of graphene oxide (GO) in ambient air by a low‐thermal‐budget process is carried out through single‐shot irradiation using a Xe flash lamp. Compared to pristine reduced GO (rGO), B‐doped rGO features improve NO 2 sensing performance (better response and reversibility), especially in a highly humid atmosphere.
Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 105 °C s−1). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 106‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties. Simultaneous heteroatom doping and reduction of graphene oxide (GO) in ambient air by a low‐thermal‐budget process is carried out through single‐shot irradiation using a Xe flash lamp. Compared to pristine reduced GO (rGO), B‐doped rGO features improve NO2 sensing performance (better response and reversibility), especially in a highly humid atmosphere.
Abstract Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 105 °C s−1). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 106‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties.
Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low-thermal-budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B-doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in-depth sequential doping and reduction mechanisms are investigated by ex situ X-ray photoelectron spectroscopy and direct millisecond-scale temperature measurements (temperature >1600 °C, < 10-millisecond duration, ramping rate of 5.3 × 105 °C s-1). Single-flash IPL allows the large-scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 106-fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room-temperature NO2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond-scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties.
Author Cha, Jun‐Hwe
Park, Cheolmin
Jang, Ji‐Soo
Choi, Sung‐Yool
Choi, Seon‐Jin
Kim, Il‐Doo
Yang, Sang Yoon
Kim, Dong‐Ha
AuthorAffiliation 3 Division of Materials Science and Engineering Hanyang University Wangsimni‐ro, Seongdong‐gu Seoul 04763 Republic of Korea
2 Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
1 School of Electrical Engineering Graphene/2D Materials Research Center Center for Advanced Materials Discovery towards 3D Displays Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
AuthorAffiliation_xml – name: 2 Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
– name: 1 School of Electrical Engineering Graphene/2D Materials Research Center Center for Advanced Materials Discovery towards 3D Displays Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
– name: 3 Division of Materials Science and Engineering Hanyang University Wangsimni‐ro, Seongdong‐gu Seoul 04763 Republic of Korea
Author_xml – sequence: 1
  givenname: Jun‐Hwe
  surname: Cha
  fullname: Cha, Jun‐Hwe
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 2
  givenname: Dong‐Ha
  surname: Kim
  fullname: Kim, Dong‐Ha
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 3
  givenname: Cheolmin
  surname: Park
  fullname: Park, Cheolmin
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 4
  givenname: Seon‐Jin
  surname: Choi
  fullname: Choi, Seon‐Jin
  organization: Hanyang University
– sequence: 5
  givenname: Ji‐Soo
  surname: Jang
  fullname: Jang, Ji‐Soo
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 6
  givenname: Sang Yoon
  surname: Yang
  fullname: Yang, Sang Yoon
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 7
  givenname: Il‐Doo
  surname: Kim
  fullname: Kim, Il‐Doo
  email: idkim@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 8
  givenname: Sung‐Yool
  orcidid: 0000-0002-0960-7146
  surname: Choi
  fullname: Choi, Sung‐Yool
  email: sungyool.choi@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32274315$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv0zAUxyM0xMbYlSOyxIVLix3HsXNB6tYxJhVNYoOr5dgvravE7uxkWw9I-wj7jHwSXDqqjQsnW_bPP733_H-d7TnvIMveEjwmGOcflbmJ4xyTClNKxIvsICeVGFFRFHtP9vvZUYxLjDFhlBdEvMr2aZ7zghJ2kP2c-dtf9w9XCwidatPueDBz6NHUr6ybI9-gfIq-qh6CVW1E1qFJV1twPZrYgE7voFu1trFgUL1Gl2vXLyDauHl37IN3SZhM6fYbmEGn9Syo1QIcoIs7a-BN9rJJWjh6XA-z759Pr06-jGYXZ-cnk9lIs7ziI1Y1zBhFDKe4Tj2AAKMawDVraFlrIkpaClbWBgwzjeJcNTkXuEgkgdxoepidb73Gq6VcBdupsJZeWfnnwIe5VKG3ugXJqeamxqQQ2hSqrEStGoYZJSXWlBmVXJ-2rtVQd2B0mkVQ7TPp8xtnF3LubyQnBa4qlgQfHgXBXw8Qe9nZqKFtlQM_RJlTIQQlqYKEvv8HXfohuDSqRFXp40ssqkSNt5QOPsYAza4YguUmKHITFLkLSnrw7mkLO_xvLBJQbIFb28L6Pzo5mf64TOPh9DdCeM6_
CitedBy_id crossref_primary_10_1002_inf2_12412
crossref_primary_10_1016_j_susmat_2020_e00214
crossref_primary_10_1021_acsnano_3c01241
crossref_primary_10_1016_j_mattod_2022_07_003
crossref_primary_10_1016_j_scitotenv_2022_155720
crossref_primary_10_1002_adma_202305222
crossref_primary_10_1021_acsnano_2c05128
crossref_primary_10_1016_j_apsusc_2021_152025
crossref_primary_10_46670_JSST_2022_31_4_187
crossref_primary_10_1002_eom2_12416
crossref_primary_10_1021_acsnano_3c02968
crossref_primary_10_1021_acs_langmuir_3c01180
Cites_doi 10.1038/nnano.2017.21
10.1021/nn3005262
10.1038/am.2016.150
10.1002/cssc.201100467
10.1002/adfm.201606026
10.1063/1.1408274
10.1039/C5TA10599D
10.1201/b18835
10.1021/acsami.6b04774
10.1039/C7RA01429E
10.1021/nn400280c
10.1016/j.snb.2018.07.002
10.1021/nn203393d
10.1021/nn4023679
10.1016/j.electacta.2012.11.105
10.1002/adma.201606586
10.1002/ppsc.201600429
10.1021/acsami.6b12060
10.1016/j.apsusc.2018.08.098
10.1038/srep02714
10.1021/acsami.6b05403
10.1039/C6CC04052G
10.1073/pnas.1505993112
10.1039/C1JM14694G
10.1002/adom.201300317
10.1063/1.474079
10.1002/adma.201702308
10.1038/nchem.907
10.1021/jp206348s
10.1021/acs.jpcc.5b07359
10.1063/1.3541249
10.1002/anie.201602708
10.1016/j.snb.2019.03.134
10.1007/s00226-004-0246-4
10.1002/smll.201001384
10.1002/adma.201104417
10.1002/adma.201203172
10.1039/c3ta10337d
10.1021/nn300989g
10.1002/smll.201703934
10.1021/la046867i
10.1016/0039-6028(95)00451-3
10.1002/elan.200900571
10.1063/1.4742327
10.1021/cm0630800
10.1038/s41598-018-21686-2
10.1021/am404581b
10.1364/AO.29.000979
10.1021/acs.chemrev.5b00620
10.1038/nature11458
10.1021/am5084122
10.1103/RevModPhys.81.109
10.1021/cs200652y
10.1002/adma.201090156
10.1002/adma.201201948
10.3390/nano8110889
10.1021/nn404889b
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201903318
DatabaseName Wiley Online Library
Wiley Free Archive
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest research library
ProQuest Science Journals
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_73c7db0148cd4a698baf5053160c35da
10_1002_advs_201903318
32274315
ADVS1607
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science, ICT and Future Planning
  funderid: NRF‐2016M3D1A1900035
– fundername: National Research Foundation of Korea
– fundername: Ministry of Trade, Industry and Energy
  funderid: 20000230
– fundername: Ministry of Science and ICT
– fundername: ;
– fundername: ;
  grantid: 20000230
– fundername: ;
  grantid: NRF‐2016M3D1A1900035
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
EJD
IAO
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5297-59f5dda1d730b374e8edafe0b5f36bc18636856bded5dfa77af2780474e1e2dc3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Thu Jul 04 21:09:16 EDT 2024
Tue Sep 17 21:05:10 EDT 2024
Fri Jun 28 20:12:09 EDT 2024
Fri Sep 13 07:42:08 EDT 2024
Thu Sep 26 16:47:35 EDT 2024
Sat Sep 28 08:16:02 EDT 2024
Sat Aug 24 01:07:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords graphene oxide
low‐thermal‐budget doping
flash irradiation
gas sensors
Language English
License Attribution
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5297-59f5dda1d730b374e8edafe0b5f36bc18636856bded5dfa77af2780474e1e2dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0960-7146
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140995/
PMID 32274315
PQID 2390196089
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_73c7db0148cd4a698baf5053160c35da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7140995
proquest_miscellaneous_2388831148
proquest_journals_2390196089
crossref_primary_10_1002_advs_201903318
pubmed_primary_32274315
wiley_primary_10_1002_advs_201903318_ADVS1607
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2011; 115
2017; 7
2007; 19
2018; 462
2013; 3
2019; 290
2013; 25
2012; 101
2013; 1
2009; 81
2017; 27
2013; 90
2016; 52
2005; 21
2017; 29
2013; 7
2015; 7
1995 1997; 335 106
2017; 9
2011; 134
2016; 55
2016; 4
2018; 7
2010; 22
2018; 273
2018; 8
2012; 2
2014; 2
2004; 38
1990; 29
2015; 112
2012; 490
2017; 34
2017; 12
2015; 119
2016; 116
2015
2012; 6
2010; 2
2012; 24
2001; 79
2014; 6
2012; 5
2012; 22
2016; 8
2010; 6
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Mannan M. (e_1_2_7_37_1) 2018; 7
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1
  year: 2018
  publication-title: J. Mater. Sci. Eng.
– volume: 79
  start-page: 2258
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 390
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 2898
  year: 2013
  publication-title: ACS Nano
– volume: 2
  start-page: 781
  year: 2012
  publication-title: ACS Catal.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 34
  year: 2017
  publication-title: Part. Part. Syst. Charact.
– volume: 462
  start-page: 378
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 10
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 2189
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 290
  start-page: 293
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 1
  start-page: 4431
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 273
  start-page: 1269
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 8
  start-page: 3537
  year: 2018
  publication-title: Sci. Rep.
– volume: 22
  start-page: 1027
  year: 2010
  publication-title: Electroanalysis
– volume: 5
  start-page: 642
  year: 2012
  publication-title: ChemSusChem
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 4
  start-page: 5002
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 205
  year: 2012
  publication-title: ACS Nano
– volume: 134
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 2535
  year: 2010
  publication-title: Small
– volume: 3
  start-page: 2714
  year: 2013
  publication-title: Sci. Rep.
– year: 2015
– volume: 12
  start-page: 546
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 4396
  year: 2007
  publication-title: Chem. Mater.
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 81
  start-page: 109
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 7
  start-page: 6310
  year: 2013
  publication-title: ACS Nano
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 115
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1015
  year: 2010
  publication-title: Nat. Chem.
– volume: 335 106
  start-page: 416 6647
  year: 1995 1997
  publication-title: Surf. Sci. J. Chem. Phys.
– volume: 22
  start-page: 5226
  year: 2010
  publication-title: Adv. Mater.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 5192
  year: 2005
  publication-title: Langmuir
– volume: 25
  start-page: 766
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1970
  year: 2012
  publication-title: ACS Nano
– volume: 9
  start-page: 4558
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 375
  year: 2004
  publication-title: Wood Sci. Technol.
– volume: 24
  start-page: 2620
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 979
  year: 1990
  publication-title: Appl. Opt.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 52
  year: 2016
  publication-title: Chem. Commun.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 8003
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 90
  start-page: 492
  year: 2013
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 1682
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 3677
  year: 2012
  publication-title: ACS Nano
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 24
  start-page: 5130
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 889
  year: 2018
  publication-title: Nanomaterials‐Basel
– volume: 116
  start-page: 5464
  year: 2016
  publication-title: Chem. Rev.
– ident: e_1_2_7_57_1
  doi: 10.1038/nnano.2017.21
– ident: e_1_2_7_11_1
  doi: 10.1021/nn3005262
– ident: e_1_2_7_36_1
  doi: 10.1038/am.2016.150
– ident: e_1_2_7_31_1
  doi: 10.1002/cssc.201100467
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201606026
– ident: e_1_2_7_54_1
  doi: 10.1063/1.1408274
– ident: e_1_2_7_10_1
  doi: 10.1039/C5TA10599D
– ident: e_1_2_7_28_1
  doi: 10.1201/b18835
– ident: e_1_2_7_16_1
  doi: 10.1021/acsami.6b04774
– ident: e_1_2_7_24_1
  doi: 10.1039/C7RA01429E
– ident: e_1_2_7_1_1
  doi: 10.1021/nn400280c
– ident: e_1_2_7_50_1
  doi: 10.1016/j.snb.2018.07.002
– ident: e_1_2_7_8_1
  doi: 10.1021/nn203393d
– volume: 7
  start-page: 1
  year: 2018
  ident: e_1_2_7_37_1
  publication-title: J. Mater. Sci. Eng.
  contributor:
    fullname: Mannan M.
– ident: e_1_2_7_33_1
  doi: 10.1021/nn4023679
– ident: e_1_2_7_14_1
  doi: 10.1016/j.electacta.2012.11.105
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201606586
– ident: e_1_2_7_22_1
  doi: 10.1002/ppsc.201600429
– ident: e_1_2_7_39_1
  doi: 10.1021/acsami.6b12060
– ident: e_1_2_7_25_1
  doi: 10.1016/j.apsusc.2018.08.098
– ident: e_1_2_7_45_1
  doi: 10.1038/srep02714
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.6b05403
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.6b12060
– ident: e_1_2_7_18_1
  doi: 10.1039/C6CC04052G
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.1505993112
– ident: e_1_2_7_38_1
  doi: 10.1039/C1JM14694G
– ident: e_1_2_7_30_1
  doi: 10.1002/adom.201300317
– ident: e_1_2_7_56_2
  doi: 10.1063/1.474079
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201702308
– ident: e_1_2_7_3_1
  doi: 10.1038/nchem.907
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.1505993112
– ident: e_1_2_7_32_1
  doi: 10.1021/jp206348s
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.jpcc.5b07359
– ident: e_1_2_7_49_1
  doi: 10.1063/1.3541249
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201602708
– ident: e_1_2_7_51_1
  doi: 10.1016/j.snb.2019.03.134
– ident: e_1_2_7_26_1
  doi: 10.1007/s00226-004-0246-4
– ident: e_1_2_7_47_1
  doi: 10.1002/smll.201001384
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201104417
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201203172
– ident: e_1_2_7_58_1
  doi: 10.1039/c3ta10337d
– ident: e_1_2_7_9_1
  doi: 10.1021/nn300989g
– ident: e_1_2_7_48_1
  doi: 10.1002/smll.201703934
– ident: e_1_2_7_59_1
  doi: 10.1021/la046867i
– ident: e_1_2_7_56_1
  doi: 10.1016/0039-6028(95)00451-3
– ident: e_1_2_7_15_1
  doi: 10.1002/elan.200900571
– ident: e_1_2_7_55_1
  doi: 10.1063/1.4742327
– ident: e_1_2_7_41_1
  doi: 10.1021/cm0630800
– ident: e_1_2_7_34_1
  doi: 10.1038/s41598-018-21686-2
– ident: e_1_2_7_23_1
  doi: 10.1021/am404581b
– ident: e_1_2_7_29_1
  doi: 10.1364/AO.29.000979
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.chemrev.5b00620
– ident: e_1_2_7_2_1
  doi: 10.1038/nature11458
– ident: e_1_2_7_53_1
  doi: 10.1021/am5084122
– ident: e_1_2_7_5_1
  doi: 10.1103/RevModPhys.81.109
– ident: e_1_2_7_7_1
  doi: 10.1021/cs200652y
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201090156
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201201948
– ident: e_1_2_7_27_1
  doi: 10.3390/nano8110889
– ident: e_1_2_7_44_1
  doi: 10.1021/nn404889b
SSID ssj0001537418
Score 2.2805264
Snippet Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of...
Abstract Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of...
Abstract Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1903318
SubjectTerms Annealing
Energy
flash irradiation
gas sensors
Glass substrates
Graphene
graphene oxide
Light
low‐thermal‐budget doping
Morphology
Nanomaterials
Nanowires
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMetqicuFQVaAgUZCalwiJrYayc-7vaDCtEiUSr1FtnxGCJBFnV3oT0g8Qh9Rp6EmTi72lWReukpUewk1ngm_tuxf2bstYA8aDfIUxGsTQd15lKD6ijNdBCE55IOaLzj5FQfnw_eX6iLpa2-aE5YxANHw-0Vsi68o3Gv2g-sNqWzQZHn6KyWykdplKulzlRcHywJyzKnNGZiz_qfROfG9k9K2uFjqRXqYP3_U5i3J0ouC9iuBTp6yDZ66ciHscibbA3aR2yzD84Jf9MTpN8-Zr8_jH_9_XODLoCf3W94Npr5LzDlB93qKD4OXBzwEzuN3seblg-_O1oYyYfNJT-8AppmHlCccnfNz65bFImTZkL3jQh4gA_EJ2HqJ-K-4vEdUa_x7fzjVePhCTs_Ovy8f5z2-yyktRKmSJUJynube4x2h3aDErwNkDkVpHZ1Xmqi1GvnwSsfbFHYIIhbhDlzEL6WW2y9HbfwlHEFtQjSuFBkDqVgMNiBLAEkqhjtZB4Stju3e_Uj4jSqCE4WFdVQtaihhI2oWha5CIPdXUDnqHrnqO5yjoTtzCu16mMTX0HDPNhxK03CXi2SMaroV4ltYTyjPGVZSuorJmw7-sCiJPgJJNmlElaseMdKUVdT2uZrR-4mOqIxeGfa-dEdJqhQmZwRAPDZfdjiOXsgaKygm3W0w9anlzN4gYJq6l52sfMP0IggSw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Jb9QwFLZKe-GCaNkCBRkJCThEk9hxlhOaoVNGiBbUUqm3yGsbCZIyk4H2UKk_gd_IL-l72egIBKdE8ZLEb_HnZ_szIS-YDV2sotBnTko_0oHyM0BHfhA7hvRcXFmMd-ztx7Oj6P2xOF4js34vDC6r7H1i46hNpTFGPmI4OAe4nWYjqTAKoOvRm7NvPp4fhfOs3WEat8gGCyOcsN2YTPc_HfyOtwiORC09b2PARtJ8R75u6BE5xzM_bvRLDX3_3zDnn0snb0Lapk_avUvudGCSjlvpb5I1W26Rzc5cF_RVxyn9-h65_FD9-HX1E5QCHPEXuJsszYmt6U6zX4pWjrIduifrVh9pUdLxV4VbJem4mNPpucWF5w7gKlUX9PCiBNi4KBZYboIUCFAh1ASpB8gEC9d3yIMNb6cfzwtj75Oj3enntzO_O3nB14JliS8yJ4yRoQH7V9BuNrVGOhso4XisdJjGyFsfK2ONME4miXQMmYwgZ2iZ0fwBWS-r0j4iVFjNHM-USwIF4NBlMKRMreWAa2LFQ-eRl32752ctwUbeUimzHCWUDxLyyATFMuRCYuzmQTU_yTs7yxOuE6MwTKpNJOMsVdIJdDRxoLkw0iPbvVDzzlrhFYNueeT5kAx2hpMnsrTVEvOkacpx9OiRh60ODF8CThGBmPBIsqIdK5-6mlIWpw2XN_IlZhmU9Bs9-k8T5IBVDpES8PG_f-MJuc0wLtCsMNom6_V8aZ8CeKrVs84urgEzIBzx
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEMctKBcuiPIZKJWRkICD1cSOHee4S1sqRAFRKvUW2bHdRoIE7Qe0h0p9BJ6RJ-lMkk0bgYQ47WrtOJFnxv571v6FkBfcJ0HZNGE8GMPSMrYsB3XEYhU44rmE9Zjv2P-g9g7Td0fy6Nop_o4PMSTcMDLa8RoD3Nj51hU01LgfiNuGCU2AX94kt0DbaPRrnn66yrJIgXgWfMMcrK6Z0Gm6IjfGfGvcxGhmagH-f1Odf26evC5q21lp9y6508tJOunsv05u-PoeWe8Ddk5f9VTp1_fJ-fvm5--LX-AWMBR_hW_TpTv2C7rdnpiiTaB8m-6bReeRtKrp5JvFw5J0Us3ozqnHrecBBCu1Z_TgrAbhOK_meN0UIQjQILQEpZ-RBQufb5GEDXenH08r5x-Qw92dL2_2WP_uBVZKnmdM5kE6ZxIHI4CFPvTaOxN8bGUQypaJVkiuV9Z5J10wWWYCR5YR1Ew8d6V4SNbqpvaPCZW-5EHkNmSxBXkYclhUau8FKBtlRRIi8nLV78X3DrFRdDBlXqCFisFCEZmiWYZaiMZuf2hmx0UfaUUmysxZTJSWLjUq19YEiUONikshnYnIxsqoRR-vcAtM_cBiTucReT4UQ6Th3yem9s0S62itBa4fI_Ko84HhSWBYRCkmI5KNvGP0qOOSujppad5ITMxzuJK1fvSPLihArRwgFPDJf9Z_Sm5zTBW0m442yNpitvTPQE8t7GYbMpfmjhxW
  priority: 102
  providerName: Wiley-Blackwell
Title Low‐Thermal‐Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron‐Doped Reduced Graphene Oxide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903318
https://www.ncbi.nlm.nih.gov/pubmed/32274315
https://www.proquest.com/docview/2390196089/abstract/
https://search.proquest.com/docview/2388831148
https://pubmed.ncbi.nlm.nih.gov/PMC7140995
https://doaj.org/article/73c7db0148cd4a698baf5053160c35da
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7ahoT2ghi3BUZlJCTgIWti17k8tlvHhOioNibtLbJje0Ra06kX2B6Q-An8Rn4J5-RSrQIJiadEsWNb9nfszyfHXwBecxu6SPdCnzul_F4eaD9FduQHkeMkzyW0JX_H6CQ6Pu99uJAXGyDbszBV0H6ui_3yarJfFl-q2MrrSd5t48S649EBicylqexuwmYsxJ0ten00WJAiSyvQGPCuMl9JmBuXPoEI3ob7CGJaOOXaWlRJ9v-NZ_4ZLnmXxlbr0NFDeNAQSNavG7oDG7Z8BDuNic7Z20ZH-t1j-P5x-u3Xj58IBJx8r_BusDSXdsEOqzNSbOoYP2QjtagxyIqS9SeajkeyfjFjwxtLweYOKSrTt-zstkSqOC_m9N6AZA-wQCwJU09J_RWv70n7Gmtnn24KY5_A-dHw88Gx3_xtwc8lT2Nfpk4ao0KDNq-xC21ijXI20NKJSOdhEpFWfaSNNdI4FcfKcVIvwpyh5SYXT2GrnJZ2F5i0OXci1S4ONBJCl-I2MrFWIJeJtAidB2_afs-ua1GNrJZP5hkNVrYaLA8GNCyrXCSGXT2Yzi6zBhJZLPLYaHKN5qanojTRykmaXKIgF9IoD_baQc0aC8UqyNmD27ck9eDVKhltiz6YqNJOl5QnSRJBO0YPntUYWLWkxZAH8Ro61pq6noJwrvS7G_h64Fc4-kcXZMhPzkgG8Pl_1_QCtjm5CaqAoz3YWsyW9iVyqYXuwCbvjTtwbzA8GZ92Ko9Ep7Kn3_YpJCc
link.rule.ids 230,315,733,786,790,870,891,2115,11589,21416,27957,27958,33779,33780,43840,46087,46511,50849,50958,53827,53829,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVguoANojxTChgJCVhETew4jxWaoVMGmBlQH1J3kR3bJRJNyjygXSDxCXwjX8K9iSd0BIJVotiJHd-Hj29ujgl5ykxoYxWFPrNS-lERKD8DdOQHsWVIz8WVwXjHZBqPjqK3x-LYBdzmLq1y5RMbR63rAmPkOwwX5wC30-zl2Wcfd43Cr6tuC42rZCPisFTpkY3BcPph_3eURXCkZ1mxNQZsR-ovyNIN8yDnuNPHpdmoIe3_G9L8M2HyMpBtZqK9m-SGg5C038p8k1wx1S2y6Yx0Tp87JukXt8m3cf315_cfoArgfj_B2WCpT8yC7jZ_SdHaUrZLJ3LRaiEtK9o_VfiDJO2XMzo8N5hubgGkUnVBDy4qAIvzco73DZD4AB4IT4LSfeR_heNrZL-G1un781KbO-Rob3j4auS7_Rb8QrAs8UVmhdYy1GD1CsbNpEZLawIlLI9VEaYxstXHShsttJVJIi1D_iKoGRqmC36X9Kq6MvcJFaZglmfKJoECSGgzWEimxnBAM7HiofXIs9W452ctrUbeEiizHCWUdxLyyADF0tVCOuzmQj07yZ115QkvEq0wOFroSMZZqqQV6F7ioOBCS49sr4SaOxuFJjqN8siTrhisCz-ZyMrUS6yTpinHNaNH7rU60PUEXCHCL-GRZE071rq6XlKVHxsGb2RJzDK402_06D9DkANCOUAiwK1_v8Zjcm10OBnn4zfTdw_IdYaRgSbHaJv0FrOleQjwaaEeORv5BViAHCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLWglRAbRHkGChgJCVhEk9jjPFZohpmhQDtULZW6i_wskSAp84B2gcQn8I18CfcmntARCFaJYid2fB8-vrk5JuQJs7FLVD8OmZMy7OtIhTmgozBKHEN6Lq4sxjv2psnOUf_NsTj2-U9zn1a58omNoza1xhh5j-HiHOB2lvecT4vYH01enH4OcQcp_NLqt9O4TDZTaAU0fHM4nu4f_I64CI5ULSvmxoj1pPmCjN0wJ3KOu35cmJkaAv-_oc4_kycvgtpmVppcJ9c8nKSDVv5b5JKtbpAtb7Bz-syzSj-_Sb7t1l9_fv8BagGu-COcDZfmxC7oqPljitaOshHdk4tWI2lZ0cEnhT9L0kE5o-Mzi6nnDgArVef08LwC4Dgv53jfEEkQ4IHwJCg9QC5YOL5CJmxonb47K429RY4m4_cvd0K_90KoBcvTUOROGCNjAx5AwbjZzBrpbKSE44nScZYgc32ijDXCOJmm0jHkMoKasWVG89tko6ore5dQYTVzPFcujRTAQ5fDojKzlgOySRSPXUCersa9OG0pNoqWTJkVKKGik1BAhiiWrhZSYzcX6tlJ4S2tSLlOjcJAqTZ9meSZkk6gq0kizYWRAdleCbXw9gpNdNoVkMddMVgafj6Rla2XWCfLMo7rx4DcaXWg6wm4RYRiIiDpmnasdXW9pCo_NGzeyJiY53Bn2OjRf4agALRyiKSA9_79Go_IFTCPYvf19O19cpVhkKBJN9omG4vZ0j4AJLVQD72J_AKr0SBh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Thermal-Budget+Doping+of+2D+Materials+in+Ambient+Air+Exemplified+by+Synthesis+of+Boron-Doped+Reduced+Graphene+Oxide&rft.jtitle=Advanced+science&rft.au=Cha%2C+Jun-Hwe&rft.au=Kim%2C+Dong-Ha&rft.au=Park%2C+Cheolmin&rft.au=Choi%2C+Seon-Jin&rft.date=2020-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=7&rft.spage=1903318&rft.epage=1903318&rft_id=info:doi/10.1002%2Fadvs.201903318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon