Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force‐Reeled Silks

Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniqu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 6; pp. 1902743 - n/a
Main Authors Lin, Shihui, Wang, Zhen, Chen, Xinyan, Ren, Jing, Ling, Shengjie
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.03.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. A new kind of robust and fast‐responsive silk microactuators, by integrating experimental and theoretical designs, are presented. These microactuators feature an ultrafast response speed for humidity change with performance that can compare with the most advanced microactuator systems.
AbstractList Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators.
Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. A new kind of robust and fast‐responsive silk microactuators, by integrating experimental and theoretical designs, are presented. These microactuators feature an ultrafast response speed for humidity change with performance that can compare with the most advanced microactuator systems.
Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast-responsive, and humidity-induced silk fiber microactuator is developed by integrating force-reeling and yarn-spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water-induced microactuators.
Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s −1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg −1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators.
Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s −1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg −1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. A new kind of robust and fast‐responsive silk microactuators, by integrating experimental and theoretical designs, are presented. These microactuators feature an ultrafast response speed for humidity change with performance that can compare with the most advanced microactuator systems.
Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast-responsive, and humidity-induced silk fiber microactuator is developed by integrating force-reeling and yarn-spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s-1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg-1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water-induced microactuators.Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast-responsive, and humidity-induced silk fiber microactuator is developed by integrating force-reeling and yarn-spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s-1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg-1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water-induced microactuators.
Abstract Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators.
Author Lin, Shihui
Chen, Xinyan
Ling, Shengjie
Ren, Jing
Wang, Zhen
AuthorAffiliation 1 School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
AuthorAffiliation_xml – name: 1 School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
Author_xml – sequence: 1
  givenname: Shihui
  surname: Lin
  fullname: Lin, Shihui
  organization: ShanghaiTech University
– sequence: 2
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: ShanghaiTech University
– sequence: 3
  givenname: Xinyan
  surname: Chen
  fullname: Chen, Xinyan
  organization: ShanghaiTech University
– sequence: 4
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
  organization: ShanghaiTech University
– sequence: 5
  givenname: Shengjie
  orcidid: 0000-0003-1156-0479
  surname: Ling
  fullname: Ling, Shengjie
  email: lingshj@shanghaitech.edu.cn
  organization: ShanghaiTech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32195093$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQXaEiWkqvHNFKXHpJ8NfauxekKjS0UhESoUicLK89mzo462J7g3LjJ_Ab-SV1mrRqKyFOtmbee_M0814We73voSheYzTGCJF3yqzimCDcICIYfVYcENzUI1oztvfgv18cxbhACOGKCobrF8U-zc0KNfSg-H7pUlAxBd_PS9Wb8szOr9y6nEEfbbIrKKe2hVB-sjp4pdOgkg-xnPg-cwadwJTtupz6oOHv7z9fAFyuzKz7EV8VzzvlIhzt3sPicnr6dXI2uvj88XxycjHSFWn4CLRBmBEEBneo6gTlmtUVwnVLBelMyykmiireMESRrpESncAaeMt4VdFcPCzOt7rGq4W8Dnapwlp6ZeVtwYe5VCFZ7UC2XdUpoTmhlWG8NUopoxlAZwTSBnjWer_Vuh7aJRgNfV6OeyT6uNPbKzn3KylQjSq6MXO8Ewj-5wAxyaWNGpxTPfghSkJrnMc3nGXo2yfQhR9Cn1eVUaImWDCCM-rNQ0f3Vu4umAFsC8j3iTFAJ7VNKlm_MWidxEhusiI3WZH3Wcm08RPanfI_Cbs5v6yD9X_Q8uTDtxlmNac3UvjSTw
CitedBy_id crossref_primary_10_1002_adfm_202501380
crossref_primary_10_1016_j_coco_2021_100960
crossref_primary_10_1002_adfm_202401732
crossref_primary_10_1002_marc_202100891
crossref_primary_10_1021_acsami_1c16323
crossref_primary_10_1002_admt_202100124
crossref_primary_10_1021_acsnano_1c09465
crossref_primary_10_1016_j_giant_2020_100029
crossref_primary_10_3389_fchem_2021_650358
crossref_primary_10_1021_acs_macromol_0c02492
crossref_primary_10_1016_j_cej_2022_136556
crossref_primary_10_1002_smll_202300589
crossref_primary_10_1021_acsbiomaterials_0c01510
crossref_primary_10_1002_mame_202000822
crossref_primary_10_1002_adma_202104313
crossref_primary_10_1007_s10570_024_05829_5
crossref_primary_10_1007_s42765_022_00254_4
crossref_primary_10_1038_s44287_024_00029_6
crossref_primary_10_1016_j_compositesb_2022_110238
crossref_primary_10_1021_acsapm_1c00335
crossref_primary_10_34133_2022_9854063
crossref_primary_10_1039_D3MH00494E
crossref_primary_10_1007_s42765_021_00101_y
crossref_primary_10_1039_D1RA08174H
crossref_primary_10_1002_adma_202408385
crossref_primary_10_3390_nano12122039
crossref_primary_10_1039_D4MH00631C
crossref_primary_10_1021_acs_nanolett_2c00250
crossref_primary_10_1002_adfm_202304109
crossref_primary_10_1016_j_cej_2022_134901
crossref_primary_10_1021_acs_biomac_1c00263
crossref_primary_10_1021_acsbiomaterials_1c00181
crossref_primary_10_1016_j_xcrp_2022_100793
crossref_primary_10_1002_adma_202308748
crossref_primary_10_1002_SMMD_20230004
crossref_primary_10_1088_1361_665X_ac03c5
crossref_primary_10_3389_fbioe_2023_1083857
crossref_primary_10_1007_s42765_023_00301_8
crossref_primary_10_1007_s42765_021_00064_0
crossref_primary_10_1039_D2SM00519K
crossref_primary_10_1016_j_colsurfa_2024_134642
crossref_primary_10_1038_s41467_023_41084_1
crossref_primary_10_1002_advs_202400557
crossref_primary_10_1002_advs_202103981
crossref_primary_10_1002_smll_202309364
crossref_primary_10_1109_JSEN_2024_3441630
crossref_primary_10_1002_adfm_202412397
crossref_primary_10_1021_acsnano_3c09307
crossref_primary_10_1039_D1QM00499A
crossref_primary_10_1002_smll_202200180
crossref_primary_10_1016_j_bios_2021_113690
crossref_primary_10_1016_j_esci_2024_100250
Cites_doi 10.1021/bm401013k
10.1021/bm2006032
10.1103/PhysRevLett.120.158001
10.1038/ncomms2253
10.1016/j.matt.2019.07.016
10.1017/S0022112004009152
10.1021/bm400267m
10.1126/science.1246906
10.1038/ncomms4322
10.1002/bip.22024
10.1002/smll.201500424
10.1126/science.aaw2403
10.1021/acsami.7b02335
10.1038/natrevmats.2018.16
10.1080/14786430410001680935
10.1002/biot.201700753
10.1002/adfm.201808241
10.1016/S0141-8130(01)00166-0
10.1038/nature08729
10.1242/jeb.118.1.379
10.1002/pat.1994.220050801
10.1126/science.aaw2502
10.1039/c0sm01492c
10.1038/nmat2704
10.1021/acsnano.6b04648
10.1126/science.291.5504.633
10.1038/nnano.2015.198
10.1002/adfm.201805305
10.1002/adma.201305708
10.1126/sciadv.aau9183
10.1016/j.coco.2019.03.004
10.1021/acsbiomaterials.9b00305
10.1126/science.1211220
10.1038/418741a
10.1002/adfm.201806380
10.2108/zsj.16.215
10.1242/jeb.202.23.3295
10.1038/nature10739
10.1002/adfm.201001046
10.1016/j.actbio.2014.09.021
10.1038/s41467-017-00613-5
10.1021/nl203108t
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201902743
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bf5fa7c6235d46bdaaadc4eefd70cde6
PMC7080530
32195093
10_1002_advs_201902743
ADVS1486
Genre article
Journal Article
GrantInformation_xml – fundername: ShanghaiTech University and Shanghai Sailing Program
  funderid: 17YF1411500
– fundername: National Natural Science Foundation of China
  funderid: 51973116; U1832109; 21935002
– fundername: Excellence Program of Hefei Science Center CAS
  funderid: 2019HSC‐UE003
– fundername: Shanghai Pujiang Program
  funderid: 18PJ1408600
– fundername: ;
  grantid: 51973116; U1832109; 21935002
– fundername: Excellence Program of Hefei Science Center CAS
  grantid: 2019HSC‐UE003
– fundername: Shanghai Pujiang Program
  grantid: 18PJ1408600
– fundername: ShanghaiTech University and Shanghai Sailing Program
  grantid: 17YF1411500
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5296-ecd01420ed1f05f736c485018b372fdb6312a3a694030c80a7f71ce6b46553403
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:31:05 EDT 2025
Thu Aug 21 18:01:59 EDT 2025
Fri Jul 11 09:13:15 EDT 2025
Fri Jul 25 07:52:31 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 03:59:21 EDT 2025
Wed Jan 22 16:35:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords silk fibers
mechanical property
actuators
force reeling
artificial muscle
Language English
License Attribution
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5296-ecd01420ed1f05f736c485018b372fdb6312a3a694030c80a7f71ce6b46553403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1156-0479
OpenAccessLink https://www.proquest.com/docview/2378217421?pq-origsite=%requestingapplication%
PMID 32195093
PQID 2378217421
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_bf5fa7c6235d46bdaaadc4eefd70cde6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080530
proquest_miscellaneous_2381623964
proquest_journals_2378217421
pubmed_primary_32195093
crossref_citationtrail_10_1002_advs_201902743
crossref_primary_10_1002_advs_201902743
wiley_primary_10_1002_advs_201902743_ADVS1486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 120
2011; 334
2012; 482
2018; 28
2017; 8
2004; 84
2019; 5
2019; 1
2019; 13
2015; 11
2015; 10
2016; 10
2014; 26
2010; 463
2011; 11
2002; 418
2011; 12
1999; 202
2001; 29
2017; 9
2019; 365
2012; 97
2010; 62
2011; 7
2014; 5
2018; 3
2013; 14
2012; 3
2004; 510
2001; 291
1999; 16
1992; 256
1936; 28
2011; 21
2019; 29
1985; 118
1994; 5
2018; 14
2010; 9
2014; 343
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Mikihiko M. (e_1_2_8_22_1) 2010; 62
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_23_1
Wenzel R. N. (e_1_2_8_40_1) 1936; 28
e_1_2_8_1_1
Work R. W. (e_1_2_8_38_1) 1985; 118
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Whitesides G. M. (e_1_2_8_44_1) 1992; 256
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 5
  start-page: 3322
  year: 2014
  publication-title: Nat. Commun.
– volume: 14
  year: 2018
  publication-title: Biotechnol. J.
– volume: 1
  start-page: 1411
  year: 2019
  publication-title: Matter
– volume: 334
  start-page: 494
  year: 2011
  publication-title: Science
– volume: 463
  start-page: 640
  year: 2010
  publication-title: Nature
– volume: 11
  start-page: 5038
  year: 2011
  publication-title: Nano Lett.
– volume: 11
  start-page: 247
  year: 2015
  publication-title: Acta Biomater.
– volume: 118
  start-page: 379
  year: 1985
  publication-title: J. Exp. Biol.
– volume: 5
  start-page: 3161
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 256
  start-page: 1593
  year: 1992
  publication-title: Science
– volume: 97
  start-page: 455
  year: 2012
  publication-title: Biopolymers
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 418
  start-page: 741
  year: 2002
  publication-title: Nature
– volume: 28
  start-page: 988
  year: 1936
  publication-title: Trans. Faraday Soc.
– volume: 8
  start-page: 1387
  year: 2017
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1247
  year: 2012
  publication-title: Nat. Commun.
– volume: 26
  start-page: 2909
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1077
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 84
  start-page: 2167
  year: 2004
  publication-title: Philos. Mag. A
– volume: 202
  start-page: 3295
  year: 1999
  publication-title: J. Exp. Biol.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 729
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 482
  start-page: 72
  year: 2012
  publication-title: Nature
– volume: 13
  start-page: 85
  year: 2019
  publication-title: Compos. Commun.
– volume: 14
  start-page: 1885
  year: 2013
  publication-title: Biomacromolecules
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 343
  start-page: 868
  year: 2014
  publication-title: Science
– volume: 365
  start-page: 150
  year: 2019
  publication-title: Science
– volume: 62
  start-page: 382
  year: 2010
  publication-title: J. Seric. Sci. Jpn.
– volume: 9
  start-page: 359
  year: 2010
  publication-title: Nat. Mater.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 11
  start-page: 3113
  year: 2015
  publication-title: Small
– volume: 5
  start-page: 401
  year: 1994
  publication-title: Polym. Adv. Technol.
– volume: 510
  start-page: 29
  year: 2004
  publication-title: J. Fluid Mech.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 5188
  year: 2011
  publication-title: Soft Matter
– volume: 14
  start-page: 3653
  year: 2013
  publication-title: Biomacromolecules
– volume: 365
  start-page: 145
  year: 2019
  publication-title: Science
– volume: 16
  start-page: 215
  year: 1999
  publication-title: Zool. Sci.
– volume: 291
  start-page: 633
  year: 2001
  publication-title: Science
– volume: 29
  start-page: 203
  year: 2001
  publication-title: Int. J. Biol. Macromol.
– volume: 12
  start-page: 3344
  year: 2011
  publication-title: Biomacromolecules
– ident: e_1_2_8_11_1
  doi: 10.1021/bm401013k
– ident: e_1_2_8_16_1
  doi: 10.1021/bm2006032
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevLett.120.158001
– ident: e_1_2_8_43_1
  doi: 10.1038/ncomms2253
– ident: e_1_2_8_30_1
  doi: 10.1016/j.matt.2019.07.016
– ident: e_1_2_8_42_1
  doi: 10.1017/S0022112004009152
– ident: e_1_2_8_17_1
  doi: 10.1021/bm400267m
– ident: e_1_2_8_37_1
  doi: 10.1126/science.1246906
– ident: e_1_2_8_3_1
  doi: 10.1038/ncomms4322
– ident: e_1_2_8_20_1
  doi: 10.1002/bip.22024
– ident: e_1_2_8_39_1
  doi: 10.1002/smll.201500424
– ident: e_1_2_8_15_1
  doi: 10.1126/science.aaw2403
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.7b02335
– ident: e_1_2_8_7_1
  doi: 10.1038/natrevmats.2018.16
– ident: e_1_2_8_24_1
  doi: 10.1080/14786430410001680935
– ident: e_1_2_8_5_1
  doi: 10.1002/biot.201700753
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201808241
– ident: e_1_2_8_10_1
  doi: 10.1016/S0141-8130(01)00166-0
– ident: e_1_2_8_41_1
  doi: 10.1038/nature08729
– volume: 118
  start-page: 379
  year: 1985
  ident: e_1_2_8_38_1
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.118.1.379
– ident: e_1_2_8_25_1
  doi: 10.1002/pat.1994.220050801
– ident: e_1_2_8_14_1
  doi: 10.1126/science.aaw2502
– ident: e_1_2_8_34_1
  doi: 10.1039/c0sm01492c
– volume: 28
  start-page: 988
  year: 1936
  ident: e_1_2_8_40_1
  publication-title: Trans. Faraday Soc.
– ident: e_1_2_8_28_1
  doi: 10.1038/nmat2704
– ident: e_1_2_8_35_1
  doi: 10.1021/acsnano.6b04648
– ident: e_1_2_8_45_1
  doi: 10.1126/science.291.5504.633
– ident: e_1_2_8_13_1
  doi: 10.1038/nnano.2015.198
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201805305
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201305708
– ident: e_1_2_8_1_1
  doi: 10.1126/sciadv.aau9183
– ident: e_1_2_8_6_1
  doi: 10.1016/j.coco.2019.03.004
– ident: e_1_2_8_29_1
  doi: 10.1021/acsbiomaterials.9b00305
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1211220
– ident: e_1_2_8_8_1
  doi: 10.1038/418741a
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.201806380
– volume: 256
  start-page: 1593
  year: 1992
  ident: e_1_2_8_44_1
  publication-title: Science
– ident: e_1_2_8_21_1
  doi: 10.2108/zsj.16.215
– ident: e_1_2_8_26_1
  doi: 10.1242/jeb.202.23.3295
– ident: e_1_2_8_4_1
  doi: 10.1038/nature10739
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201001046
– ident: e_1_2_8_12_1
  doi: 10.1016/j.actbio.2014.09.021
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-017-00613-5
– volume: 62
  start-page: 382
  year: 2010
  ident: e_1_2_8_22_1
  publication-title: J. Seric. Sci. Jpn.
– ident: e_1_2_8_27_1
  doi: 10.1021/nl203108t
SSID ssj0001537418
Score 2.3999305
Snippet Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study,...
Abstract Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1902743
SubjectTerms actuators
artificial muscle
force reeling
Fourier transforms
Humidity
Interfacial bonding
Mechanical properties
mechanical property
Scanning electron microscopy
Silk
silk fibers
Synthetic products
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQ5TdQkJGQgEPUxHbs5AiIVYVUDiwrlVM08dhQscoiFir11kfgGfsknXGy0a4A9cLVsRxrfjLf2JNvhHgedQE1wYocKbzlJkJJLgVdriNSqo2uwETqc_zBHi3M-5PqZKvVF9eEDfTAg-AOu1hFcJ6idIXGdggA6E0IkdbxGBLZNsW8rWRq-D9YMy3LhqWxUIeAZ8zOTfGP8jC9E4USWf_fEOafhZLbADZFoNltcWuEjvL1sOV9cSP0d8T-6Jxr-XJkkH51V3xeLGmhNZ9yf5HQo-RqjuW5nHO1On_f5IwLReQxV-MB_0LCPXckN-9MdLIBZXcuZ6sfPlxe_P4YKDShnJ8uv63vicXs3ae3R_nYQyH3fKOaB4-UBKkiYBmLKjptvamZxK_TTkXsrC4VaLCNIW_3dQEuutIH2zGvmqbB-2KvX_XhoZBA0C2S6hobnfEGoCYoQFpBhQhF4zKRb2Ta-pFgnPtcLNuBGlm1rIN20kEmXkzzvw_UGv-c-YZVNM1iSuw0QIbSjobSXmcomTjYKLgd_ZReoQkhUVKmykw8mx6Th_G1CfRh9Yvn1CWt2liTiQeDPUw70Yrb6Da0Q7djKTtb3X3Sn35NLN6OsHqlC5JasqlrRNASSplT6mof_Q9ZPBY3FZ8bpFq6A7FHthWeELj62T1NfnQFq9QlKA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEA96vvginn-rp0QQ1IdybZIm7aOKyyGciOvC-VSmmeQ8XLpyq8K9-RH8jH4SZ7Ld3hUV8bUd0pCZyfwmnfxGiMdRF1ATrMiRwltuIpTkUtDlOiKl2ugKTKQ-h2_swcK8PqqOLtzi3_BDjAdu7Blpv2YHh269f04aCviN6bYpoFFipS-LK3y_ltnzlXl7fspSaaZn4Q5zlF3nujZmy9xYqP3pEJPIlAj8_4Q6fy-evAhqU1SaXRfXBjgpn2_0vysuhf6G2B0cdi2fDqzSz26KD4slDbTmk-9jCT1KrvBYnsk5V7DznidnXDwiD7lCD_haCffhkdzQM1HMBpTdmZytTn34-f3Hu0DhCuX8ZPlpfUssZq_evzzIh74Kuee_rHnwSImRKgKWsaii09abmon9Ou1UxM7qUoEG2xjaAXxdgIuu9MF2zLWm6eFtsdOv-nBXSCA4F0mdjY3OeANQEzzQFaJChKJxmci3a9r6gXSce18s2w1dsmpZB-2og0w8GeU_b-g2_ir5glU0SjFNdnqwOj1uB69ru1hFcJ4gXoXGdggA6E0IkYzQY7CZ2NsquB18lz6hCTVRoqbKTDwaX5PX8a8U6MPqK8vUJY3aWJOJOxt7GGeiFbfWbWiGbmIpk6lO3_QnHxOztyP8XumCVi3Z1D-WoCXkMqd01t77T_n74qriY4NUSrcndsiMwgPCVl-6h8l9fgFCIh4j
  priority: 102
  providerName: Wiley-Blackwell
Title Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force‐Reeled Silks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201902743
https://www.ncbi.nlm.nih.gov/pubmed/32195093
https://www.proquest.com/docview/2378217421
https://www.proquest.com/docview/2381623964
https://pubmed.ncbi.nlm.nih.gov/PMC7080530
https://doaj.org/article/bf5fa7c6235d46bdaaadc4eefd70cde6
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZo98IFUX6XlpWRkIBD1MR27OSEWuiqQmxVdVmpnCLHY5eKVdJ2Aak3HoFn5EmYyXoDK_6uiZU4nhnPN-PJN4w9DTK1BcKKBNC9JSrYDE3K1okMgKE2mBQ6Up_JkT6cqTen-WlMuC1iWeVqT-w2amgd5ch3hURfhvBZZC8vLhPqGkWnq7GFxgYb4BZcYPA12D84Oj75mWXJJdGzrNgaU7Fr4QuxdKMfxHhMrnmjjrT_T0jz94LJX4Fs54nGt9mtCCH53lLmW-yGb-6wrWikC_48Mkm_uMvez-b4oAVlu8-4bYBTVcf8mk-pap32OT6mghE-oao8S7-SUO8dTk08O1pZD7y-5uP2yvnvX7-deHRRwKfn84-Le2w2Pnj36jCJvRQSRyeriXeAwZBIPWQhzYOR2qmCyPxqaUSAWstMWGl1qdDqXZFaE0zmvK6JX03ixftss2kb_5BxixAuoAhLHYxyytoCIYHMAQSATUszZMlqTSsXicap38W8WlIki4pkUPUyGLJn_fiLJcXGX0fuk4j6UUSN3V1or86qaGlVHfJgjUNYl4PSNVhrwSnvAyqeA6-HbGcl4CraK76i164he9LfRkuj4xPb-PYzjSkyfGqp1ZA9WOpDPxMpqJ1uiTM0a5qyNtX1O835h47N2yBmz2WKq9bp1H-WoEK0MsUQVj_692dss5uCMgNdtdwO20St8Y8RPn2qR2xDqOMRG-y9nrydjqLFjLpkxA9_5x5V
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHm6FFgkEHCwau_a6_iAEIVGKW0i1DRSOZn1PtqKyC4ND-XGT-CX8KP4Jcz4BRGvU6_2arPZeX2zO_4G4IETgeojrPANhjc_cipEk1K5L5zBVNskgalIfUZjOZxGrw7jwxX41n4LQ2WVrU-sHLUpNZ2Rb3KBsQzhMw-fnb73qWsU3a62LTRqtdi1i8-Yss2f7rxE-T7kfLB98GLoN10FfE13jL7VBtMCHlgTuiB2iZA66hOtXS4S7kwuRciVUDKNUP91P1CJS0JtZU5MYwIf4rwXYDUSmMr0YHVre_x6_-epTiyIDqZlhwz4pjKfiBUc4y7mf2Ip-lVNAv6EbH8v0PwVOFeRb3AFLjeQlT2vdWwNVmxxFdYapzBnjxvm6ifX4M10hhPN6XT9iKnCMKoimS3YhKrkya-yARWosBFVASr6dIV6_TBqGlrR2FrD8gUblGfafv_ydd9iSDRscjJ7N78O03PZ5RvQK8rC3gKmEDI6VJlUuiTSkVJ9hCAiNoYbo4I08cBv9zTTDbE59deYZTUlM89IBlknAw8edeNPa0qPv47cIhF1o4iKu3pQnh1ljWVnuYudSjTCyNhEMjdKKaMjax0qujZWerDRCjhr_AP-RKfNHtzvXqNl03WNKmz5kcb0Q5w1lZEHN2t96FYiOLXvTXGFyZKmLC11-U1xclyxhyeYI8QiwF2rdOo_W5AhOppgyizX__037sHF4cFoL9vbGe_ehkucTiWqSr0N6KEG2TsI3T7kdxt7YfD2vE30B9BgVWo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMozUMBIIOAQbWIncXJAiNJGLaWrqstK5RQcP0rFKildHtobP4Hfw8_hlzCTTQIrXqdeE8vr9by-sSffANx3IlApwgrfYHjzI6dCNClV-sIZTLWNDExD6rM3SrYn0YvD-HAFvnXfwlBZZecTG0dtak1n5EMuMJYhfObh0LVlEfub-dOT9z51kKKb1q6dxkJFdu38M6Zvsyc7myjrB5znW6-eb_tthwFf032jb7XBFIEH1oQuiJ0UiY5SorgrheTOlIkIuRIqySK0BZ0GSjoZapuUxDom8CHOew5WJWZFwQBWN7ZG-wc_T3hiQdQwHVNkwIfKfCKGcIzBmAuKpUjYNAz4E8r9vVjzVxDdRMH8Elxs4St7ttC3NVix1WVYax3EjD1qWawfX4HXkylONKOT9iOmKsOoomQ6Z2OqmCcfy3IqVmF7VBGo6DMW6vvDqIFoQ2lrDSvnLK9Ptf3-5euBxfBo2Ph4-m52FSZnssvXYFDVlb0BTCF8dKg-WeJkpCOlUoQjIjaGG6OCTHrgd3ta6JbknHptTIsFPTMvSAZFLwMPHvbjTxb0Hn8duUEi6kcRLXfzoD49KlorL0oXOyU1QsrYRElplFJGR9Y6VHptbOLBeifgovUV-BO9Zntwr3-NVk5XN6qy9Ucak4Y4a5ZEHlxf6EO_EsGplW-GK5RLmrK01OU31fHbhklcYr4QiwB3rdGp_2xBgUhpjOlzcvPff-MunEfTLF7ujHZvwQVOBxRN0d46DFCB7G1EcR_KO625MHhz1hb6A8HrWZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastrong+and+Highly+Sensitive+Fiber+Microactuators+Constructed+by+Force%E2%80%90Reeled+Silks&rft.jtitle=Advanced+science&rft.au=Lin%2C+Shihui&rft.au=Wang%2C+Zhen&rft.au=Chen%2C+Xinyan&rft.au=Ren%2C+Jing&rft.date=2020-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1002%2Fadvs.201902743&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon