Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force‐Reeled Silks
Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniqu...
Saved in:
Published in | Advanced science Vol. 7; no. 6; pp. 1902743 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.03.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators.
A new kind of robust and fast‐responsive silk microactuators, by integrating experimental and theoretical designs, are presented. These microactuators feature an ultrafast response speed for humidity change with performance that can compare with the most advanced microactuator systems. |
---|---|
AbstractList | Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. A new kind of robust and fast‐responsive silk microactuators, by integrating experimental and theoretical designs, are presented. These microactuators feature an ultrafast response speed for humidity change with performance that can compare with the most advanced microactuator systems. Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast-responsive, and humidity-induced silk fiber microactuator is developed by integrating force-reeling and yarn-spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water-induced microactuators. Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s −1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg −1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s −1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg −1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. A new kind of robust and fast‐responsive silk microactuators, by integrating experimental and theoretical designs, are presented. These microactuators feature an ultrafast response speed for humidity change with performance that can compare with the most advanced microactuator systems. Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast-responsive, and humidity-induced silk fiber microactuator is developed by integrating force-reeling and yarn-spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s-1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg-1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water-induced microactuators.Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast-responsive, and humidity-induced silk fiber microactuator is developed by integrating force-reeling and yarn-spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s-1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg-1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water-induced microactuators. Abstract Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study, a robust, fast‐responsive, and humidity‐induced silk fiber microactuator is developed by integrating force‐reeling and yarn‐spinning techniques. The shape gradient, together with hierarchical rough surface, allows these silk fiber microactuators to respond rapidly to humidity. The silk fiber microactuator can reach maximum rotation speed of 6179.3° s−1 in 4.8 s. Such a response speed (1030 rotations per minute) is comparable with the most advanced microactuators. Moreover, this microactuator generates 2.1 W kg−1 of average actuation power, which is twice higher than fiber actuators constructed by cocoon silks. The actuating powers of silk fiber microactuators can be precisely programmed by controlling the number of fibers used. Lastly, theory predicts the observed performance merits of silk fiber microactuators toward inspiring the rational design of water‐induced microactuators. |
Author | Lin, Shihui Chen, Xinyan Ling, Shengjie Ren, Jing Wang, Zhen |
AuthorAffiliation | 1 School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China |
AuthorAffiliation_xml | – name: 1 School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China |
Author_xml | – sequence: 1 givenname: Shihui surname: Lin fullname: Lin, Shihui organization: ShanghaiTech University – sequence: 2 givenname: Zhen surname: Wang fullname: Wang, Zhen organization: ShanghaiTech University – sequence: 3 givenname: Xinyan surname: Chen fullname: Chen, Xinyan organization: ShanghaiTech University – sequence: 4 givenname: Jing surname: Ren fullname: Ren, Jing organization: ShanghaiTech University – sequence: 5 givenname: Shengjie orcidid: 0000-0003-1156-0479 surname: Ling fullname: Ling, Shengjie email: lingshj@shanghaitech.edu.cn organization: ShanghaiTech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32195093$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXaEiWkqvHNFKXHpJ8NfauxekKjS0UhESoUicLK89mzo462J7g3LjJ_Ab-SV1mrRqKyFOtmbee_M0814We73voSheYzTGCJF3yqzimCDcICIYfVYcENzUI1oztvfgv18cxbhACOGKCobrF8U-zc0KNfSg-H7pUlAxBd_PS9Wb8szOr9y6nEEfbbIrKKe2hVB-sjp4pdOgkg-xnPg-cwadwJTtupz6oOHv7z9fAFyuzKz7EV8VzzvlIhzt3sPicnr6dXI2uvj88XxycjHSFWn4CLRBmBEEBneo6gTlmtUVwnVLBelMyykmiireMESRrpESncAaeMt4VdFcPCzOt7rGq4W8Dnapwlp6ZeVtwYe5VCFZ7UC2XdUpoTmhlWG8NUopoxlAZwTSBnjWer_Vuh7aJRgNfV6OeyT6uNPbKzn3KylQjSq6MXO8Ewj-5wAxyaWNGpxTPfghSkJrnMc3nGXo2yfQhR9Cn1eVUaImWDCCM-rNQ0f3Vu4umAFsC8j3iTFAJ7VNKlm_MWidxEhusiI3WZH3Wcm08RPanfI_Cbs5v6yD9X_Q8uTDtxlmNac3UvjSTw |
CitedBy_id | crossref_primary_10_1002_adfm_202501380 crossref_primary_10_1016_j_coco_2021_100960 crossref_primary_10_1002_adfm_202401732 crossref_primary_10_1002_marc_202100891 crossref_primary_10_1021_acsami_1c16323 crossref_primary_10_1002_admt_202100124 crossref_primary_10_1021_acsnano_1c09465 crossref_primary_10_1016_j_giant_2020_100029 crossref_primary_10_3389_fchem_2021_650358 crossref_primary_10_1021_acs_macromol_0c02492 crossref_primary_10_1016_j_cej_2022_136556 crossref_primary_10_1002_smll_202300589 crossref_primary_10_1021_acsbiomaterials_0c01510 crossref_primary_10_1002_mame_202000822 crossref_primary_10_1002_adma_202104313 crossref_primary_10_1007_s10570_024_05829_5 crossref_primary_10_1007_s42765_022_00254_4 crossref_primary_10_1038_s44287_024_00029_6 crossref_primary_10_1016_j_compositesb_2022_110238 crossref_primary_10_1021_acsapm_1c00335 crossref_primary_10_34133_2022_9854063 crossref_primary_10_1039_D3MH00494E crossref_primary_10_1007_s42765_021_00101_y crossref_primary_10_1039_D1RA08174H crossref_primary_10_1002_adma_202408385 crossref_primary_10_3390_nano12122039 crossref_primary_10_1039_D4MH00631C crossref_primary_10_1021_acs_nanolett_2c00250 crossref_primary_10_1002_adfm_202304109 crossref_primary_10_1016_j_cej_2022_134901 crossref_primary_10_1021_acs_biomac_1c00263 crossref_primary_10_1021_acsbiomaterials_1c00181 crossref_primary_10_1016_j_xcrp_2022_100793 crossref_primary_10_1002_adma_202308748 crossref_primary_10_1002_SMMD_20230004 crossref_primary_10_1088_1361_665X_ac03c5 crossref_primary_10_3389_fbioe_2023_1083857 crossref_primary_10_1007_s42765_023_00301_8 crossref_primary_10_1007_s42765_021_00064_0 crossref_primary_10_1039_D2SM00519K crossref_primary_10_1016_j_colsurfa_2024_134642 crossref_primary_10_1038_s41467_023_41084_1 crossref_primary_10_1002_advs_202400557 crossref_primary_10_1002_advs_202103981 crossref_primary_10_1002_smll_202309364 crossref_primary_10_1109_JSEN_2024_3441630 crossref_primary_10_1002_adfm_202412397 crossref_primary_10_1021_acsnano_3c09307 crossref_primary_10_1039_D1QM00499A crossref_primary_10_1002_smll_202200180 crossref_primary_10_1016_j_bios_2021_113690 crossref_primary_10_1016_j_esci_2024_100250 |
Cites_doi | 10.1021/bm401013k 10.1021/bm2006032 10.1103/PhysRevLett.120.158001 10.1038/ncomms2253 10.1016/j.matt.2019.07.016 10.1017/S0022112004009152 10.1021/bm400267m 10.1126/science.1246906 10.1038/ncomms4322 10.1002/bip.22024 10.1002/smll.201500424 10.1126/science.aaw2403 10.1021/acsami.7b02335 10.1038/natrevmats.2018.16 10.1080/14786430410001680935 10.1002/biot.201700753 10.1002/adfm.201808241 10.1016/S0141-8130(01)00166-0 10.1038/nature08729 10.1242/jeb.118.1.379 10.1002/pat.1994.220050801 10.1126/science.aaw2502 10.1039/c0sm01492c 10.1038/nmat2704 10.1021/acsnano.6b04648 10.1126/science.291.5504.633 10.1038/nnano.2015.198 10.1002/adfm.201805305 10.1002/adma.201305708 10.1126/sciadv.aau9183 10.1016/j.coco.2019.03.004 10.1021/acsbiomaterials.9b00305 10.1126/science.1211220 10.1038/418741a 10.1002/adfm.201806380 10.2108/zsj.16.215 10.1242/jeb.202.23.3295 10.1038/nature10739 10.1002/adfm.201001046 10.1016/j.actbio.2014.09.021 10.1038/s41467-017-00613-5 10.1021/nl203108t |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201902743 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_bf5fa7c6235d46bdaaadc4eefd70cde6 PMC7080530 32195093 10_1002_advs_201902743 ADVS1486 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: ShanghaiTech University and Shanghai Sailing Program funderid: 17YF1411500 – fundername: National Natural Science Foundation of China funderid: 51973116; U1832109; 21935002 – fundername: Excellence Program of Hefei Science Center CAS funderid: 2019HSC‐UE003 – fundername: Shanghai Pujiang Program funderid: 18PJ1408600 – fundername: ; grantid: 51973116; U1832109; 21935002 – fundername: Excellence Program of Hefei Science Center CAS grantid: 2019HSC‐UE003 – fundername: Shanghai Pujiang Program grantid: 18PJ1408600 – fundername: ShanghaiTech University and Shanghai Sailing Program grantid: 17YF1411500 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IAO IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5296-ecd01420ed1f05f736c485018b372fdb6312a3a694030c80a7f71ce6b46553403 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Thu Aug 21 18:01:59 EDT 2025 Fri Jul 11 09:13:15 EDT 2025 Fri Jul 25 07:52:31 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 03:59:21 EDT 2025 Wed Jan 22 16:35:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | silk fibers mechanical property actuators force reeling artificial muscle |
Language | English |
License | Attribution 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5296-ecd01420ed1f05f736c485018b372fdb6312a3a694030c80a7f71ce6b46553403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1156-0479 |
OpenAccessLink | https://www.proquest.com/docview/2378217421?pq-origsite=%requestingapplication% |
PMID | 32195093 |
PQID | 2378217421 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf5fa7c6235d46bdaaadc4eefd70cde6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080530 proquest_miscellaneous_2381623964 proquest_journals_2378217421 pubmed_primary_32195093 crossref_citationtrail_10_1002_advs_201902743 crossref_primary_10_1002_advs_201902743 wiley_primary_10_1002_advs_201902743_ADVS1486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 120 2011; 334 2012; 482 2018; 28 2017; 8 2004; 84 2019; 5 2019; 1 2019; 13 2015; 11 2015; 10 2016; 10 2014; 26 2010; 463 2011; 11 2002; 418 2011; 12 1999; 202 2001; 29 2017; 9 2019; 365 2012; 97 2010; 62 2011; 7 2014; 5 2018; 3 2013; 14 2012; 3 2004; 510 2001; 291 1999; 16 1992; 256 1936; 28 2011; 21 2019; 29 1985; 118 1994; 5 2018; 14 2010; 9 2014; 343 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Mikihiko M. (e_1_2_8_22_1) 2010; 62 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_45_1 e_1_2_8_23_1 Wenzel R. N. (e_1_2_8_40_1) 1936; 28 e_1_2_8_1_1 Work R. W. (e_1_2_8_38_1) 1985; 118 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Whitesides G. M. (e_1_2_8_44_1) 1992; 256 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 5 start-page: 3322 year: 2014 publication-title: Nat. Commun. – volume: 14 year: 2018 publication-title: Biotechnol. J. – volume: 1 start-page: 1411 year: 2019 publication-title: Matter – volume: 334 start-page: 494 year: 2011 publication-title: Science – volume: 463 start-page: 640 year: 2010 publication-title: Nature – volume: 11 start-page: 5038 year: 2011 publication-title: Nano Lett. – volume: 11 start-page: 247 year: 2015 publication-title: Acta Biomater. – volume: 118 start-page: 379 year: 1985 publication-title: J. Exp. Biol. – volume: 5 start-page: 3161 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 256 start-page: 1593 year: 1992 publication-title: Science – volume: 97 start-page: 455 year: 2012 publication-title: Biopolymers – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces. – volume: 418 start-page: 741 year: 2002 publication-title: Nature – volume: 28 start-page: 988 year: 1936 publication-title: Trans. Faraday Soc. – volume: 8 start-page: 1387 year: 2017 publication-title: Nat. Commun. – volume: 3 start-page: 1247 year: 2012 publication-title: Nat. Commun. – volume: 26 start-page: 2909 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 1077 year: 2015 publication-title: Nat. Nanotechnol. – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 84 start-page: 2167 year: 2004 publication-title: Philos. Mag. A – volume: 202 start-page: 3295 year: 1999 publication-title: J. Exp. Biol. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 21 start-page: 729 year: 2011 publication-title: Adv. Funct. Mater. – volume: 482 start-page: 72 year: 2012 publication-title: Nature – volume: 13 start-page: 85 year: 2019 publication-title: Compos. Commun. – volume: 14 start-page: 1885 year: 2013 publication-title: Biomacromolecules – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 343 start-page: 868 year: 2014 publication-title: Science – volume: 365 start-page: 150 year: 2019 publication-title: Science – volume: 62 start-page: 382 year: 2010 publication-title: J. Seric. Sci. Jpn. – volume: 9 start-page: 359 year: 2010 publication-title: Nat. Mater. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 11 start-page: 3113 year: 2015 publication-title: Small – volume: 5 start-page: 401 year: 1994 publication-title: Polym. Adv. Technol. – volume: 510 start-page: 29 year: 2004 publication-title: J. Fluid Mech. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 5188 year: 2011 publication-title: Soft Matter – volume: 14 start-page: 3653 year: 2013 publication-title: Biomacromolecules – volume: 365 start-page: 145 year: 2019 publication-title: Science – volume: 16 start-page: 215 year: 1999 publication-title: Zool. Sci. – volume: 291 start-page: 633 year: 2001 publication-title: Science – volume: 29 start-page: 203 year: 2001 publication-title: Int. J. Biol. Macromol. – volume: 12 start-page: 3344 year: 2011 publication-title: Biomacromolecules – ident: e_1_2_8_11_1 doi: 10.1021/bm401013k – ident: e_1_2_8_16_1 doi: 10.1021/bm2006032 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevLett.120.158001 – ident: e_1_2_8_43_1 doi: 10.1038/ncomms2253 – ident: e_1_2_8_30_1 doi: 10.1016/j.matt.2019.07.016 – ident: e_1_2_8_42_1 doi: 10.1017/S0022112004009152 – ident: e_1_2_8_17_1 doi: 10.1021/bm400267m – ident: e_1_2_8_37_1 doi: 10.1126/science.1246906 – ident: e_1_2_8_3_1 doi: 10.1038/ncomms4322 – ident: e_1_2_8_20_1 doi: 10.1002/bip.22024 – ident: e_1_2_8_39_1 doi: 10.1002/smll.201500424 – ident: e_1_2_8_15_1 doi: 10.1126/science.aaw2403 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.7b02335 – ident: e_1_2_8_7_1 doi: 10.1038/natrevmats.2018.16 – ident: e_1_2_8_24_1 doi: 10.1080/14786430410001680935 – ident: e_1_2_8_5_1 doi: 10.1002/biot.201700753 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201808241 – ident: e_1_2_8_10_1 doi: 10.1016/S0141-8130(01)00166-0 – ident: e_1_2_8_41_1 doi: 10.1038/nature08729 – volume: 118 start-page: 379 year: 1985 ident: e_1_2_8_38_1 publication-title: J. Exp. Biol. doi: 10.1242/jeb.118.1.379 – ident: e_1_2_8_25_1 doi: 10.1002/pat.1994.220050801 – ident: e_1_2_8_14_1 doi: 10.1126/science.aaw2502 – ident: e_1_2_8_34_1 doi: 10.1039/c0sm01492c – volume: 28 start-page: 988 year: 1936 ident: e_1_2_8_40_1 publication-title: Trans. Faraday Soc. – ident: e_1_2_8_28_1 doi: 10.1038/nmat2704 – ident: e_1_2_8_35_1 doi: 10.1021/acsnano.6b04648 – ident: e_1_2_8_45_1 doi: 10.1126/science.291.5504.633 – ident: e_1_2_8_13_1 doi: 10.1038/nnano.2015.198 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201805305 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201305708 – ident: e_1_2_8_1_1 doi: 10.1126/sciadv.aau9183 – ident: e_1_2_8_6_1 doi: 10.1016/j.coco.2019.03.004 – ident: e_1_2_8_29_1 doi: 10.1021/acsbiomaterials.9b00305 – ident: e_1_2_8_2_1 doi: 10.1126/science.1211220 – ident: e_1_2_8_8_1 doi: 10.1038/418741a – ident: e_1_2_8_19_1 doi: 10.1002/adfm.201806380 – volume: 256 start-page: 1593 year: 1992 ident: e_1_2_8_44_1 publication-title: Science – ident: e_1_2_8_21_1 doi: 10.2108/zsj.16.215 – ident: e_1_2_8_26_1 doi: 10.1242/jeb.202.23.3295 – ident: e_1_2_8_4_1 doi: 10.1038/nature10739 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201001046 – ident: e_1_2_8_12_1 doi: 10.1016/j.actbio.2014.09.021 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-017-00613-5 – volume: 62 start-page: 382 year: 2010 ident: e_1_2_8_22_1 publication-title: J. Seric. Sci. Jpn. – ident: e_1_2_8_27_1 doi: 10.1021/nl203108t |
SSID | ssj0001537418 |
Score | 2.3999305 |
Snippet | Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the present study,... Abstract Fiber microactuators are interesting in wide variety of emerging fields, including artificial muscles, biosensors, and wearable devices. In the... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1902743 |
SubjectTerms | actuators artificial muscle force reeling Fourier transforms Humidity Interfacial bonding Mechanical properties mechanical property Scanning electron microscopy Silk silk fibers Synthetic products |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQ5TdQkJGQgEPUxHbs5AiIVYVUDiwrlVM08dhQscoiFir11kfgGfsknXGy0a4A9cLVsRxrfjLf2JNvhHgedQE1wYocKbzlJkJJLgVdriNSqo2uwETqc_zBHi3M-5PqZKvVF9eEDfTAg-AOu1hFcJ6idIXGdggA6E0IkdbxGBLZNsW8rWRq-D9YMy3LhqWxUIeAZ8zOTfGP8jC9E4USWf_fEOafhZLbADZFoNltcWuEjvL1sOV9cSP0d8T-6Jxr-XJkkH51V3xeLGmhNZ9yf5HQo-RqjuW5nHO1On_f5IwLReQxV-MB_0LCPXckN-9MdLIBZXcuZ6sfPlxe_P4YKDShnJ8uv63vicXs3ae3R_nYQyH3fKOaB4-UBKkiYBmLKjptvamZxK_TTkXsrC4VaLCNIW_3dQEuutIH2zGvmqbB-2KvX_XhoZBA0C2S6hobnfEGoCYoQFpBhQhF4zKRb2Ta-pFgnPtcLNuBGlm1rIN20kEmXkzzvw_UGv-c-YZVNM1iSuw0QIbSjobSXmcomTjYKLgd_ZReoQkhUVKmykw8mx6Th_G1CfRh9Yvn1CWt2liTiQeDPUw70Yrb6Da0Q7djKTtb3X3Sn35NLN6OsHqlC5JasqlrRNASSplT6mof_Q9ZPBY3FZ8bpFq6A7FHthWeELj62T1NfnQFq9QlKA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEA96vvginn-rp0QQ1IdybZIm7aOKyyGciOvC-VSmmeQ8XLpyq8K9-RH8jH4SZ7Ld3hUV8bUd0pCZyfwmnfxGiMdRF1ATrMiRwltuIpTkUtDlOiKl2ugKTKQ-h2_swcK8PqqOLtzi3_BDjAdu7Blpv2YHh269f04aCviN6bYpoFFipS-LK3y_ltnzlXl7fspSaaZn4Q5zlF3nujZmy9xYqP3pEJPIlAj8_4Q6fy-evAhqU1SaXRfXBjgpn2_0vysuhf6G2B0cdi2fDqzSz26KD4slDbTmk-9jCT1KrvBYnsk5V7DznidnXDwiD7lCD_haCffhkdzQM1HMBpTdmZytTn34-f3Hu0DhCuX8ZPlpfUssZq_evzzIh74Kuee_rHnwSImRKgKWsaii09abmon9Ou1UxM7qUoEG2xjaAXxdgIuu9MF2zLWm6eFtsdOv-nBXSCA4F0mdjY3OeANQEzzQFaJChKJxmci3a9r6gXSce18s2w1dsmpZB-2og0w8GeU_b-g2_ir5glU0SjFNdnqwOj1uB69ru1hFcJ4gXoXGdggA6E0IkYzQY7CZ2NsquB18lz6hCTVRoqbKTDwaX5PX8a8U6MPqK8vUJY3aWJOJOxt7GGeiFbfWbWiGbmIpk6lO3_QnHxOztyP8XumCVi3Z1D-WoCXkMqd01t77T_n74qriY4NUSrcndsiMwgPCVl-6h8l9fgFCIh4j priority: 102 providerName: Wiley-Blackwell |
Title | Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force‐Reeled Silks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201902743 https://www.ncbi.nlm.nih.gov/pubmed/32195093 https://www.proquest.com/docview/2378217421 https://www.proquest.com/docview/2381623964 https://pubmed.ncbi.nlm.nih.gov/PMC7080530 https://doaj.org/article/bf5fa7c6235d46bdaaadc4eefd70cde6 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZo98IFUX6XlpWRkIBD1MR27OSEWuiqQmxVdVmpnCLHY5eKVdJ2Aak3HoFn5EmYyXoDK_6uiZU4nhnPN-PJN4w9DTK1BcKKBNC9JSrYDE3K1okMgKE2mBQ6Up_JkT6cqTen-WlMuC1iWeVqT-w2amgd5ch3hURfhvBZZC8vLhPqGkWnq7GFxgYb4BZcYPA12D84Oj75mWXJJdGzrNgaU7Fr4QuxdKMfxHhMrnmjjrT_T0jz94LJX4Fs54nGt9mtCCH53lLmW-yGb-6wrWikC_48Mkm_uMvez-b4oAVlu8-4bYBTVcf8mk-pap32OT6mghE-oao8S7-SUO8dTk08O1pZD7y-5uP2yvnvX7-deHRRwKfn84-Le2w2Pnj36jCJvRQSRyeriXeAwZBIPWQhzYOR2qmCyPxqaUSAWstMWGl1qdDqXZFaE0zmvK6JX03ixftss2kb_5BxixAuoAhLHYxyytoCIYHMAQSATUszZMlqTSsXicap38W8WlIki4pkUPUyGLJn_fiLJcXGX0fuk4j6UUSN3V1or86qaGlVHfJgjUNYl4PSNVhrwSnvAyqeA6-HbGcl4CraK76i164he9LfRkuj4xPb-PYzjSkyfGqp1ZA9WOpDPxMpqJ1uiTM0a5qyNtX1O835h47N2yBmz2WKq9bp1H-WoEK0MsUQVj_692dss5uCMgNdtdwO20St8Y8RPn2qR2xDqOMRG-y9nrydjqLFjLpkxA9_5x5V |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHm6FFgkEHCwau_a6_iAEIVGKW0i1DRSOZn1PtqKyC4ND-XGT-CX8KP4Jcz4BRGvU6_2arPZeX2zO_4G4IETgeojrPANhjc_cipEk1K5L5zBVNskgalIfUZjOZxGrw7jwxX41n4LQ2WVrU-sHLUpNZ2Rb3KBsQzhMw-fnb73qWsU3a62LTRqtdi1i8-Yss2f7rxE-T7kfLB98GLoN10FfE13jL7VBtMCHlgTuiB2iZA66hOtXS4S7kwuRciVUDKNUP91P1CJS0JtZU5MYwIf4rwXYDUSmMr0YHVre_x6_-epTiyIDqZlhwz4pjKfiBUc4y7mf2Ip-lVNAv6EbH8v0PwVOFeRb3AFLjeQlT2vdWwNVmxxFdYapzBnjxvm6ifX4M10hhPN6XT9iKnCMKoimS3YhKrkya-yARWosBFVASr6dIV6_TBqGlrR2FrD8gUblGfafv_ydd9iSDRscjJ7N78O03PZ5RvQK8rC3gKmEDI6VJlUuiTSkVJ9hCAiNoYbo4I08cBv9zTTDbE59deYZTUlM89IBlknAw8edeNPa0qPv47cIhF1o4iKu3pQnh1ljWVnuYudSjTCyNhEMjdKKaMjax0qujZWerDRCjhr_AP-RKfNHtzvXqNl03WNKmz5kcb0Q5w1lZEHN2t96FYiOLXvTXGFyZKmLC11-U1xclyxhyeYI8QiwF2rdOo_W5AhOppgyizX__037sHF4cFoL9vbGe_ehkucTiWqSr0N6KEG2TsI3T7kdxt7YfD2vE30B9BgVWo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMozUMBIIOAQbWIncXJAiNJGLaWrqstK5RQcP0rFKildHtobP4Hfw8_hlzCTTQIrXqdeE8vr9by-sSffANx3IlApwgrfYHjzI6dCNClV-sIZTLWNDExD6rM3SrYn0YvD-HAFvnXfwlBZZecTG0dtak1n5EMuMJYhfObh0LVlEfub-dOT9z51kKKb1q6dxkJFdu38M6Zvsyc7myjrB5znW6-eb_tthwFf032jb7XBFIEH1oQuiJ0UiY5SorgrheTOlIkIuRIqySK0BZ0GSjoZapuUxDom8CHOew5WJWZFwQBWN7ZG-wc_T3hiQdQwHVNkwIfKfCKGcIzBmAuKpUjYNAz4E8r9vVjzVxDdRMH8Elxs4St7ttC3NVix1WVYax3EjD1qWawfX4HXkylONKOT9iOmKsOoomQ6Z2OqmCcfy3IqVmF7VBGo6DMW6vvDqIFoQ2lrDSvnLK9Ptf3-5euBxfBo2Ph4-m52FSZnssvXYFDVlb0BTCF8dKg-WeJkpCOlUoQjIjaGG6OCTHrgd3ta6JbknHptTIsFPTMvSAZFLwMPHvbjTxb0Hn8duUEi6kcRLXfzoD49KlorL0oXOyU1QsrYRElplFJGR9Y6VHptbOLBeifgovUV-BO9Zntwr3-NVk5XN6qy9Ucak4Y4a5ZEHlxf6EO_EsGplW-GK5RLmrK01OU31fHbhklcYr4QiwB3rdGp_2xBgUhpjOlzcvPff-MunEfTLF7ujHZvwQVOBxRN0d46DFCB7G1EcR_KO625MHhz1hb6A8HrWZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastrong+and+Highly+Sensitive+Fiber+Microactuators+Constructed+by+Force%E2%80%90Reeled+Silks&rft.jtitle=Advanced+science&rft.au=Lin%2C+Shihui&rft.au=Wang%2C+Zhen&rft.au=Chen%2C+Xinyan&rft.au=Ren%2C+Jing&rft.date=2020-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1002%2Fadvs.201902743&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |