Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixed‐Halide Perovskites
Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the pha...
Saved in:
Published in | Advanced science Vol. 9; no. 5; pp. e2103948 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.02.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution.
Photoluminescence imaging microscopy is employed to investigate the phase transformation of MAPb(I1−xBrx)3 under continuous irradiation. Due to the charge injection from Br‐rich to I‐rich domains, an irreversible reconstruction of MAPbBr3 is induced. This work reveals the mechanisms of photo‐induced phase reconstruction, and deepens the understanding of the stability of mixed‐halide perovskites. |
---|---|
AbstractList | Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution.
Photoluminescence imaging microscopy is employed to investigate the phase transformation of MAPb(I1−xBrx)3 under continuous irradiation. Due to the charge injection from Br‐rich to I‐rich domains, an irreversible reconstruction of MAPbBr3 is induced. This work reveals the mechanisms of photo‐induced phase reconstruction, and deepens the understanding of the stability of mixed‐halide perovskites. Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I Br ) after phase segregation and probe an irreversible phase reconstruction of MAPbBr is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution. Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution. Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I 1− x Br x ) 3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr 3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr 3 . The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. Photoluminescence imaging microscopy is employed to investigate the phase transformation of MAPb(I 1− x Br x ) 3 under continuous irradiation. Due to the charge injection from Br‐rich to I‐rich domains, an irreversible reconstruction of MAPbBr 3 is induced. This work reveals the mechanisms of photo‐induced phase reconstruction, and deepens the understanding of the stability of mixed‐halide perovskites. Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I 1− x Br x ) 3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr 3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr 3 . The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. |
Author | Wang, Yanbo An, Yongkang Cheacharoen, Rongrong Li, Zhe Xiao, Xuan Li, Xiong An, Qinyou Huang, Qingyi Zheng, Xin Wang, Ti Rong, Yaoguang Xu, Hongxing |
AuthorAffiliation | 1 School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of Education Wuhan University Wuhan 430072 China 2 Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China 3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 China 4 State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China 5 Metallurgy and Materials Science Research Institute Chulalongkorn University Bangkok 10330 Thailand |
AuthorAffiliation_xml | – name: 2 Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China – name: 3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 China – name: 1 School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of Education Wuhan University Wuhan 430072 China – name: 4 State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China – name: 5 Metallurgy and Materials Science Research Institute Chulalongkorn University Bangkok 10330 Thailand |
Author_xml | – sequence: 1 givenname: Zhe surname: Li fullname: Li, Zhe organization: Wuhan University – sequence: 2 givenname: Xin surname: Zheng fullname: Zheng, Xin organization: Huazhong University of Science and Technology – sequence: 3 givenname: Xuan surname: Xiao fullname: Xiao, Xuan organization: Huazhong University of Science and Technology – sequence: 4 givenname: Yongkang surname: An fullname: An, Yongkang organization: Wuhan University of Technology – sequence: 5 givenname: Yanbo surname: Wang fullname: Wang, Yanbo organization: Shanghai Jiao Tong University – sequence: 6 givenname: Qingyi surname: Huang fullname: Huang, Qingyi organization: Huazhong University of Science and Technology – sequence: 7 givenname: Xiong surname: Li fullname: Li, Xiong organization: Huazhong University of Science and Technology – sequence: 8 givenname: Rongrong surname: Cheacharoen fullname: Cheacharoen, Rongrong organization: Chulalongkorn University – sequence: 9 givenname: Qinyou surname: An fullname: An, Qinyou organization: Wuhan University of Technology – sequence: 10 givenname: Yaoguang orcidid: 0000-0003-4794-8213 surname: Rong fullname: Rong, Yaoguang email: ygrong@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 11 givenname: Ti surname: Wang fullname: Wang, Ti email: wangti@whu.edu.cn organization: Wuhan University – sequence: 12 givenname: Hongxing surname: Xu fullname: Xu, Hongxing email: hxxu@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34923773$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhi1UREvoliUaiQ2bBN8mtlkglVJopCIqCmwt23Nm4jAZt_ZMSnY8As_Ik-A0bdSyYeXb58_28f8U7XWhA4SeEzwhGNPXplqlCcWUYKa4fIQOKFFyzCTne_f6--gwpQXGmJRMcCKfoH3GFWVCsAPk38E6dFXRz6E4n5sExQU0ERrT-9C9Kc5jsL5rbpZnMcIKYvK2vWO_gAtd6uPgNngR6uKT_wnVn1-_T03rq4xBDKv0w_eQnqHHtWkTHN62I_Ttw8nX49Px2eePs-Ojs7ErqSrHILEUinJla1YbxqmqXQmi4k5YQp2s81BNp9ZQV9paOiGEqSzBJQdJVG3ZCM223iqYhb6MfmniWgfj9c1EiI02sfeuBY0lMJGNOJ_FjQTraK4aJ1aW1FaKZNfbretysEuoHHR9NO0D6cOVzs91E1Za5rqX-VtG6NWtIIarAVKvlz45aFvTQRiSplNCMZsSwTL68h90EYbY5VJlikpOqFAqU5Mt5WJIKUK9uwzBehMKvQmF3oUib3hx_wk7_C4CGeBb4Nq3sP6PTh-9_37BmCzZX6ubxs4 |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_3c04708 crossref_primary_10_1021_acs_jpcc_3c05919 crossref_primary_10_1038_s41570_023_00492_z crossref_primary_10_1021_acssuschemeng_2c05752 crossref_primary_10_1021_acsanm_3c02399 crossref_primary_10_1126_science_add8786 crossref_primary_10_1002_aenm_202203911 crossref_primary_10_1016_j_chempr_2022_07_005 crossref_primary_10_1002_adma_202210834 crossref_primary_10_1039_D3QM00970J crossref_primary_10_1021_acssuschemeng_3c01873 crossref_primary_10_1039_D3TC01362F crossref_primary_10_1002_smtd_202200161 crossref_primary_10_1002_adom_202202118 crossref_primary_10_1016_j_cej_2022_140142 crossref_primary_10_1002_solr_202400216 crossref_primary_10_1039_D2QM01341J |
Cites_doi | 10.1002/adfm.201809129 10.1021/acs.nanolett.6b04453 10.1126/sciadv.1701217 10.1039/D0CS00573H 10.1039/c1nr10867k 10.1038/s41560-018-0190-4 10.1002/anie.201500014 10.1039/C8SE00250A 10.1126/science.aaa5760 10.1126/science.aap9282 10.1002/advs.201801704 10.1021/ja809598r 10.1039/C6TC03592B 10.1038/s41566-021-00761-7 10.1038/s41565-021-00848-w 10.1021/acsenergylett.8b01562 10.1039/D0TC01441A 10.1038/ncomms8497 10.1002/aenm.201501310 10.1021/jacs.7b00516 10.1039/C4SC03141E 10.1021/acs.jpclett.8b02522 10.1021/acs.accounts.5b00229 10.1126/sciadv.abb1336 10.1016/j.apsusc.2016.02.207 10.1021/jacs.9b04568 10.1016/0022-3697(77)90106-8 10.1021/acs.chemrev.8b00336 10.1021/acsenergylett.8b02002 10.1002/aenm.202002934 10.1021/nl501838y 10.1038/nature14133 10.1002/advs.202101418 10.1038/s41586-021-03285-w 10.1016/j.trechm.2020.01.010 10.1039/C4CS00458B 10.1038/nenergy.2016.142 10.1021/acs.nanolett.5b04060 10.1021/jacs.0c00434 10.1021/acs.nanolett.8b00505 10.1007/s12200-021-1227-z 10.1002/advs.202002296 10.1038/nature24032 10.1021/jacs.0c04377 10.1039/C5EE03874J 10.1021/acs.jpclett.8b01512 10.1021/acs.jpclett.8b00212 10.1126/science.aat3583 10.1364/PRJ.402411 10.1002/anie.201701724 10.1002/advs.202001433 10.1021/nl400349b 10.1016/j.joule.2019.08.006 10.1038/nnano.2015.90 10.1038/ncomms11683 10.1016/j.scib.2021.01.031 10.1021/acs.jpclett.6b00433 10.1126/science.aay7044 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202103948 |
DatabaseName | Wiley Online Library Wiley Online Library Open Access PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_08e378ff0bf34a8ebc221941b852bd91 10_1002_advs_202103948 34923773 ADVS3385 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China funderid: 2019YFE0120300 – fundername: Shanghai Sailing Program funderid: 21YF1421600 – fundername: Foundation of State Key Laboratory of Coal Conversion funderid: J18‐19‐913 – fundername: Open Project Program of Wuhan National Laboratory for Optoelectronics funderid: 2020WNLOKF014 – fundername: Fundamental Research Funds for the Central Universities funderid: 2042021kf0202 – fundername: Frontier Project of the Application Foundation of Wuhan Science and Technology Plan Project funderid: 2020010601012202 – fundername: Chinese National 1000‐Talent‐Plan program – fundername: National Natural Science Foundation of China funderid: 52172200; 11904266; 21875081 – fundername: Foundation of State Key Laboratory of Coal Conversion grantid: J18-19-913 – fundername: Frontier Project of the Application Foundation of Wuhan Science and Technology Plan Project grantid: 2020010601012202 – fundername: Shanghai Sailing Program grantid: 21YF1421600 – fundername: National Natural Science Foundation of China grantid: 11904266 – fundername: Chinese National 1000-Talent-Plan program – fundername: Fundamental Research Funds for the Central Universities grantid: 2042021kf0202 – fundername: Open Project Program of Wuhan National Laboratory for Optoelectronics grantid: 2020WNLOKF014 – fundername: Ministry of Science and Technology of China grantid: 2019YFE0120300 – fundername: National Natural Science Foundation of China grantid: 52172200 – fundername: National Natural Science Foundation of China grantid: 21875081 – fundername: ; grantid: 52172200; 11904266; 21875081 – fundername: ; grantid: 2042021kf0202 – fundername: Foundation of State Key Laboratory of Coal Conversion grantid: J18‐19‐913 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c5295-e80879249bf3fa3429fc5e7d4c7b12c8ffc5966ba2c5bf8c777adb1054e819fb3 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:13:42 EDT 2024 Tue Sep 17 21:03:17 EDT 2024 Sat Oct 26 04:26:16 EDT 2024 Thu Oct 10 16:25:12 EDT 2024 Thu Sep 26 17:55:45 EDT 2024 Sat Nov 02 12:30:27 EDT 2024 Sat Aug 24 00:57:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mixed-halide perovskite phase reconstruction photoluminescence imaging stability |
Language | English |
License | Attribution 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5295-e80879249bf3fa3429fc5e7d4c7b12c8ffc5966ba2c5bf8c777adb1054e819fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4794-8213 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844510/ |
PMID | 34923773 |
PQID | 2628412799 |
PQPubID | 4365299 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_08e378ff0bf34a8ebc221941b852bd91 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844510 proquest_miscellaneous_2612036173 proquest_journals_2628412799 crossref_primary_10_1002_advs_202103948 pubmed_primary_34923773 wiley_primary_10_1002_advs_202103948_ADVS3385 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 362 2017; 2 2018; 360 2017; 3 2021; 66 2015; 347 2019; 366 2017; 550 2020; 8 2020; 7 2015; 48 2020; 6 2018; 9 2018; 3 2018; 2 2020; 2 2013; 13 1977; 38 2020; 49 2014; 14 2021; 590 2019; 29 2019; 119 2016; 45 2021; 8 2015; 6 2019; 4 2015; 5 2019; 3 2019; 6 2020; 142 2015; 10 2015; 54 2009; 131 2011; 3 2019; 141 2016; 16 2017; 139 2021; 14 2016; 4 2018; 18 2021; 16 2021; 15 2016; 7 2016; 1 2021; 11 2017; 17 2017; 56 2015; 517 2016; 9 2016; 371 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 Wang Z. P. (e_1_2_8_50_1) 2017; 2 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 |
References_xml | – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 282 year: 2020 publication-title: Trends Chem. – volume: 3 start-page: 2716 year: 2019 publication-title: Joule – volume: 16 start-page: 1009 year: 2016 publication-title: Nano Lett. – volume: 10 start-page: 391 year: 2015 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 584 year: 2021 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 7497 year: 2015 publication-title: Nat. Commun. – volume: 142 start-page: 5362 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 346 year: 2021 publication-title: Nat. Photonics – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 56 start-page: 7755 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 75 year: 2019 publication-title: ACS Energy Lett. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2062 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 1028 year: 2017 publication-title: Nano Lett. – volume: 18 start-page: 2172 year: 2018 publication-title: Nano Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 14 start-page: 4158 year: 2014 publication-title: Nano Lett. – volume: 3 start-page: 4088 year: 2011 publication-title: Nanoscale – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7509 year: 2020 publication-title: J. Mater. Chem. C – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 66 start-page: 962 year: 2021 publication-title: Sci. Bull. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 49 start-page: 8235 year: 2020 publication-title: Chem. Soc. Rev. – volume: 362 start-page: 449 year: 2018 publication-title: Science – volume: 9 start-page: 5474 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 366 start-page: 749 year: 2019 publication-title: Science – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 139 start-page: 4866 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 9172 year: 2016 publication-title: J. Mater. Chem. C – volume: 48 start-page: 2791 year: 2015 publication-title: Acc. Chem. Res. – volume: 2 start-page: 2398 year: 2018 publication-title: Sustainable Energy Fuels – volume: 8 start-page: A56 year: 2020 publication-title: Photonics Res. – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 3998 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 54 start-page: 7905 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 38 start-page: 297 year: 1977 publication-title: J. Phys. Chem. Solids – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 550 start-page: 87 year: 2017 publication-title: Nature – volume: 3 start-page: 2694 year: 2018 publication-title: ACS Energy Lett. – volume: 371 start-page: 112 year: 2016 publication-title: Appl. Surf. Sci. – volume: 14 start-page: 252 year: 2021 publication-title: Front. Optoelectron. – volume: 3 start-page: 828 year: 2018 publication-title: Nat. Energy – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 2 start-page: 10 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 7 start-page: 1368 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 590 start-page: 587 year: 2021 publication-title: Nature – volume: 119 start-page: 3418 year: 2019 publication-title: Chem. Rev. – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201809129 – ident: e_1_2_8_39_1 doi: 10.1021/acs.nanolett.6b04453 – ident: e_1_2_8_40_1 doi: 10.1126/sciadv.1701217 – ident: e_1_2_8_29_1 doi: 10.1039/D0CS00573H – ident: e_1_2_8_2_1 doi: 10.1039/c1nr10867k – ident: e_1_2_8_26_1 doi: 10.1038/s41560-018-0190-4 – ident: e_1_2_8_59_1 doi: 10.1002/anie.201500014 – ident: e_1_2_8_32_1 doi: 10.1039/C8SE00250A – ident: e_1_2_8_3_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_8_4_1 doi: 10.1126/science.aap9282 – ident: e_1_2_8_27_1 doi: 10.1002/advs.201801704 – ident: e_1_2_8_1_1 doi: 10.1021/ja809598r – ident: e_1_2_8_17_1 doi: 10.1039/C6TC03592B – ident: e_1_2_8_28_1 doi: 10.1038/s41566-021-00761-7 – ident: e_1_2_8_47_1 doi: 10.1038/s41565-021-00848-w – ident: e_1_2_8_37_1 doi: 10.1021/acsenergylett.8b01562 – ident: e_1_2_8_56_1 doi: 10.1039/D0TC01441A – ident: e_1_2_8_60_1 doi: 10.1038/ncomms8497 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201501310 – ident: e_1_2_8_55_1 doi: 10.1021/jacs.7b00516 – ident: e_1_2_8_33_1 doi: 10.1039/C4SC03141E – ident: e_1_2_8_35_1 doi: 10.1021/acs.jpclett.8b02522 – volume: 2 start-page: 10 year: 2017 ident: e_1_2_8_50_1 publication-title: Nat. Energy contributor: fullname: Wang Z. P. – ident: e_1_2_8_6_1 doi: 10.1021/acs.accounts.5b00229 – ident: e_1_2_8_21_1 doi: 10.1126/sciadv.abb1336 – ident: e_1_2_8_46_1 doi: 10.1016/j.apsusc.2016.02.207 – ident: e_1_2_8_45_1 doi: 10.1021/jacs.9b04568 – ident: e_1_2_8_53_1 doi: 10.1016/0022-3697(77)90106-8 – ident: e_1_2_8_30_1 doi: 10.1021/acs.chemrev.8b00336 – ident: e_1_2_8_11_1 – ident: e_1_2_8_36_1 doi: 10.1021/acsenergylett.8b02002 – ident: e_1_2_8_43_1 doi: 10.1002/aenm.202002934 – ident: e_1_2_8_49_1 doi: 10.1021/nl501838y – ident: e_1_2_8_19_1 doi: 10.1038/nature14133 – ident: e_1_2_8_8_1 doi: 10.1002/advs.202101418 – ident: e_1_2_8_10_1 doi: 10.1038/s41586-021-03285-w – ident: e_1_2_8_34_1 doi: 10.1016/j.trechm.2020.01.010 – ident: e_1_2_8_16_1 doi: 10.1039/C4CS00458B – ident: e_1_2_8_20_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_8_24_1 doi: 10.1021/acs.nanolett.5b04060 – ident: e_1_2_8_44_1 doi: 10.1021/jacs.0c00434 – ident: e_1_2_8_42_1 doi: 10.1021/acs.nanolett.8b00505 – ident: e_1_2_8_7_1 doi: 10.1007/s12200-021-1227-z – ident: e_1_2_8_13_1 doi: 10.1002/advs.202002296 – ident: e_1_2_8_15_1 doi: 10.1038/nature24032 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.0c04377 – ident: e_1_2_8_18_1 doi: 10.1039/C5EE03874J – ident: e_1_2_8_38_1 doi: 10.1021/acs.jpclett.8b01512 – ident: e_1_2_8_48_1 doi: 10.1021/acs.jpclett.8b00212 – ident: e_1_2_8_22_1 doi: 10.1126/science.aat3583 – ident: e_1_2_8_41_1 doi: 10.1364/PRJ.402411 – ident: e_1_2_8_58_1 doi: 10.1002/anie.201701724 – ident: e_1_2_8_12_1 doi: 10.1002/advs.202001433 – ident: e_1_2_8_25_1 doi: 10.1021/nl400349b – ident: e_1_2_8_57_1 doi: 10.1016/j.joule.2019.08.006 – ident: e_1_2_8_14_1 doi: 10.1038/nnano.2015.90 – ident: e_1_2_8_51_1 doi: 10.1038/ncomms11683 – ident: e_1_2_8_54_1 doi: 10.1016/j.scib.2021.01.031 – ident: e_1_2_8_52_1 doi: 10.1021/acs.jpclett.6b00433 – ident: e_1_2_8_9_1 doi: 10.1126/science.aay7044 |
SSID | ssj0001537418 |
Score | 2.3767314 |
Snippet | Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is... Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is... Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is... Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2103948 |
SubjectTerms | Glass substrates Grain boundaries Light Microscopy mixed‐halide perovskite phase reconstruction Phase transitions photoluminescence imaging stability Thin films |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEB5KTr2UJv3bNgkqFNoeFu9KK0ubWxIa3EJKIDX4tkhayTGEdbHbkGMfoc-YJ8mMtHZtWsilV8_AivlhvvFoPgG887UVYdg6zO9Q55WUNkdUVOZyiOBa8VA5RdvI51-Ho3H1ZSInG0990Z2wRA-cDDcotBdKh1DYICqjvXUck6wqrZbctnVqfIp6o5lK-8GCaFlWLI0FH5j2hti5OY0-6bGfjSoUyfr_hTD_vii5CWBjBTp7Ck966MiO05F34ZHv9mC3T84l-9AzSH98BrO0l8IQ3LGLK6xT7NJjXz2NXjhiF8S91E2j-POCOJwWmBjXK13qSP_wyrJ5YOezW9_e_fo9QtDeoppfzG-W9Lfv8jmMzz59Ox3l_ZsKuaORXu51oRX1XGjOYARWo-CkVy35pOQODe0kdkDWcCdt0E4pZVqLIKzyiB2CFS9gp5t3_hUwzi1iRWW1caZyQlhhhNPYLnInWm9VBu9XNm6-J-qMJpEk84a80ay9kcEJuWCtRZTX8QcMhKYPhOahQMhgf-XAps9D_MQQy2_JVV1n8HYtxgyisYjp_Pwn6ZQ0jS2VyOBl8vf6JMTdKBRJ1FYkbB11W9LNriJLt9bE_VZkkMeYecAEDaKQSyG0fP0_bPEGHnNa04i3y_dhB0PGHyB4-mEPY57cA5tlGKA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB7B9sIFUX4DBQUJCThETex47XBBFLVakFqtKJV6i2zH3q5UJWUXKo48As_IkzDjOGlXIDgmthTH45n5Zsb-DPDCVYb7aWNRv32VlUKYDFFRkYkpgmvJfGklnUY-PJrOTsqPp-I0JtzWcVvlYBODoW46SznyXTZFQ1owWVVvL75kdGsUVVfjFRo3YYthpJBPYGtv_2j-6SrLIjjRswxsjTnb1c0lsXQzKoHSpT_XvFEg7f8b0vxzw-R1IBs80cEduB0hZPqul_k23HDtXdiOSrpOX0Um6df3YNmfT0kR5KXzM_RX6bHD-HoRpPEmnRMHU7sIzR9WxOW0QgU5H_pSZHrFL5t2Pj1cfnfNrx8_ZwjeG-zmVt3lmtK_6_twcrD_-f0si3crZJZKe5lTuZIUexnPvebolbwVTjYkm4JZ5fERIyGjmRXGKyul1I1BMFY6xBDe8AcwabvWPYKUMYOYURqlrS4t54ZrbhWGjczyxhmZwMthjuuLnkKj7smSWU3SqEdpJLBHIhh7EfV1eNGtFnXUpDpXjkscX44jL7VyxjK0umVhlGCmqYoEdgYB1lEf8RPj6kng-diMmkTlEd267hv1KagqW0iewMNe3uNIiMORS2qRGythY6ibLe3yLLB1K0UccHkCWVgz_5mCGtHIMedKPP73bzyBW4wOYoT94zswwcXgniI8-mqeRR34DTdpEXI priority: 102 providerName: ProQuest – databaseName: Wiley Online Library dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9QwFL3o-uKLuH5WV4kgqA9l23xMUt9UXEZhZWBd2LeSpMnswNLKjC4--hP8jf4S7007nS0K4mObSxt6cnrPTZpTgOehciLOGo_8jlUulXI5qqIyVzMU15pH6TXtRj7-NJufyo9n6uzKLv7eH2KccCNmpPc1Edy6zeHONNQ2l2S3zWktU5rrcINsY8g9n8vFbpZFCbJnoT_MYXWdCyPl1rmx4IfTS0wyUzLw_5vq_PPjyauiNmWlo9twa5CT7E2P_z5cC-0d2B8Iu2EvB1fpV3dh1e9VYSj42OIccxc7CVhrLxMyr9mC_JjaZWr-sCZfpzWS5WIbS1XqzmuWdZEdr76H5tePn3MU8g2GhXV3uaGp4M09OD16__ndPB_-s5B7WubLgymMpjrMRRGtwAwVvQq6IZxK7k3EQ6yKnOVeuWi81to2DoWZDKgnohP3Ya_t2vAQGOcO9aN2xnorvRBOWOENlpDciyY4ncGL7TOuv_R2GnVvnMxrQqMe0cjgLUEwRpENdjrRrZf1wKq6MEFo7F-BPZfWBOc54ixLZxR3TVVmcLAFsB64ibeYYUouua6qDJ6NzcgqWiqxbei-UUxJK7SlFhk86PEee0J-jkJTi56MhElXpy3t6jw5dxtDfnBFBnkaM_94BDUqkxMhjHr0n_GP4SanXRrp4_ID2MPREZ6gdvrqniZ6_Aa3GxSX priority: 102 providerName: Wiley-Blackwell |
Title | Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixed‐Halide Perovskites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202103948 https://www.ncbi.nlm.nih.gov/pubmed/34923773 https://www.proquest.com/docview/2628412799 https://www.proquest.com/docview/2612036173 https://pubmed.ncbi.nlm.nih.gov/PMC8844510 https://doaj.org/article/08e378ff0bf34a8ebc221941b852bd91 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB6y6aWX0qR_btPFhULbg7O2ZK_k3pKQsC1sME0DuRlJljYLiR12m5BjH6HP2CfpjGxvsqRQ6NGWQINnxvONNPMJ4L3NNXfjyqB_uzxKs0xHiIqSKBsjuBbMpUZQN_L0eDw5Tb-eZWcbkPW9ML5o3-j5bn1xuVvPz31t5dWlGfV1YqNieiAl0WrFowEM0EDvpehtazAnRpaeoDFmI1XdEDE3o1PPlC7oI0Y-LgRfi0Wesv9vOPNhueR9GOvj0NFTeNIByHCvFXQLNmy9DVudiy7Djx2P9KdnMG-7U0KEeGFxjtEqPLGYXc-8Lj6HBTEw1TM__GVBTE4LdI-Lfi7lpXfssmHjwun81la_f_6aIHSvcJpdNDdL2vxdPofTo8PvB5Oou1khMnSwF1kZS0GZl3bcKY4xyZnMioo0kzAjHT5iHqQVM5l20gghVKURiqUWEYTT_AVs1k1tX0HImEbEKLRURqWGc80VNxKTRmZ4ZbUI4EP_jcurlkCjbKmSWUmKKVeKCWCfVLCaRcTX_kWzmJWd-stYWi5QvhglT5W02jD856aJlhnTVZ4EsNMrsOy8EZcYYxBOmMjzAN6thtGP6HBE1ba5pjkJnckmggfwstX3SpLeXgIQa5awJur6CJqu5-ruTDWAyNvMPz5BiVjkhHOZvf7vld7AY0YdGr6wfAc20U7sW8RNP_QQBiwthvBo__C4-Db0uw9D7zt_AC7jHGM |
link.rule.ids | 230,315,730,783,787,867,888,2109,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,53804,53806,74636 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5Be4ALovwGCgQJCThETexk7XBBFLXaQne1oq3UW-Tf7UooKbtQceQReEaehJnESbsCwTGxpTgez8w3M_ZngBeu1NyPrEH99mWSF4VOEBVlSTFCcC2Yz42g08iT6Wh8kn84LU5Dwm0VtlX2NrE11LYxlCPfYSM0pBkTZfn2_EtCt0ZRdTVcoXEdNomqCoOvzd296ezTZZal4ETP0rM1pmxH2Qti6WZUAqVLf654o5a0_29I888Nk1eBbOuJ9m_DrQAh43edzLfgmqvvwFZQ0lX8KjBJv74Li-58SowgL56dob-KjxzG1_NWGm_iGXEw1fO2-WBJXE5LVJDPfV-KTC_5ZePGx5PFd2d__fg5RvBusZtbNhcrSv-u7sHJ_t7x-3ES7lZIDJX2EidTKSj20p57xdEreVM4YUk2GTPS4yNGQloxU2gvjRBCWY1gLHeIIbzm92Gjbmr3EGLGNGJGoaUyKjeca664kRg2MsOt0yKCl_0cV-cdhUbVkSWziqRRDdKIYJdEMPQi6uv2RbOcV0GTqlQ6LnB8KY48V9Jpw9Dq5pmWBdO2zCLY7gVYBX3ETwyrJ4LnQzNqEpVHVO2ab9Qno6psJngEDzp5DyMhDkcuqEWsrYS1oa631Iuzlq1bSuKASyNI2jXznymoEI0ccS6LR__-jWdwY3w8OawOD6YfH8NNRocy2r3k27CBC8M9Qaj0VT8N-vAbWhUUbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB7BVkJcEOWvgRaChAQcok3sZO1wqejPagt0taJU6i2yHXu7EkrKLlQceQSekSdhJnHSrkBwTGwpjscz841n_Bnghc01d6PSoH67PEqzTEeIipIoGyG4FsylRtBp5OPpaHKavjvLznz908qXVXY2sTHUZW1oj3zIRmhIEybyfOh8WcTsYLx78SWiG6Qo0-qv07gJG4JYsAawsXc4nX282nHJOFG1dMyNMRuq8pIYuxmlQ-kCoGueqSHw_xvq_LN48jqobbzS-C7c8XAyfNvKfxNu2OoebHqFXYWvPKv06_uwaM-qhAj4wtk5-q7wxGKsPW8k8yacER9TNW-aj5bE67REZfnc9aUo9YprNqxdeLz4bstfP35OEMiX2M0u68sVbQWvHsDp-PDT_iTy9yxEhtJ8kZWxFBSHaced4uihnMmsKElOCTPS4SNGRVoxk2knjRBClRqBWWoRTzjNH8Kgqiu7BSFjGvGj0FIZlRrONVfcSAwhmeGl1SKAl90cFxctnUbREiezgqRR9NIIYI9E0PciGuzmRb2cF16rilhaLnB8MY48VdJqw9ACp4mWGdNlngSw3Qmw8LqJn-hXUgDP-2bUKkqVqMrW36hPQhnaRPAAHrXy7kdCfI5cUItYWwlrQ11vqRbnDXO3lMQHFwcQNWvmP1NQIDI54Vxmj__9G8_gFqpC8eFo-v4J3GZ0PqMpK9-GAa4Lu4Oo6at-6tXhNzzbGKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Phase+Segregation%3A+Probing+the+Irreversible+Phase+Reconstruction+of+Mixed%E2%80%90Halide+Perovskites&rft.jtitle=Advanced+science&rft.au=Li%2C+Zhe&rft.au=Zheng%2C+Xin&rft.au=Xiao%2C+Xuan&rft.au=An%2C+Yongkang&rft.date=2022-02-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202103948&rft.externalDBID=10.1002%252Fadvs.202103948&rft.externalDocID=ADVS3385 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |