Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixed‐Halide Perovskites

Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the pha...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 5; pp. e2103948 - n/a
Main Authors Li, Zhe, Zheng, Xin, Xiao, Xuan, An, Yongkang, Wang, Yanbo, Huang, Qingyi, Li, Xiong, Cheacharoen, Rongrong, An, Qinyou, Rong, Yaoguang, Wang, Ti, Xu, Hongxing
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.02.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. Photoluminescence imaging microscopy is employed to investigate the phase transformation of MAPb(I1−xBrx)3 under continuous irradiation. Due to the charge injection from Br‐rich to I‐rich domains, an irreversible reconstruction of MAPbBr3 is induced. This work reveals the mechanisms of photo‐induced phase reconstruction, and deepens the understanding of the stability of mixed‐halide perovskites.
AbstractList Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. Photoluminescence imaging microscopy is employed to investigate the phase transformation of MAPb(I1−xBrx)3 under continuous irradiation. Due to the charge injection from Br‐rich to I‐rich domains, an irreversible reconstruction of MAPbBr3 is induced. This work reveals the mechanisms of photo‐induced phase reconstruction, and deepens the understanding of the stability of mixed‐halide perovskites.
Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution.
Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I Br ) after phase segregation and probe an irreversible phase reconstruction of MAPbBr is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.
Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.
Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I 1− x Br x ) 3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr 3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr 3 . The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution. Photoluminescence imaging microscopy is employed to investigate the phase transformation of MAPb(I 1− x Br x ) 3 under continuous irradiation. Due to the charge injection from Br‐rich to I‐rich domains, an irreversible reconstruction of MAPbBr 3 is induced. This work reveals the mechanisms of photo‐induced phase reconstruction, and deepens the understanding of the stability of mixed‐halide perovskites.
Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I1−xBrx)3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3. The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution.
Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite‐based devices are still open questions. Here, the phase transformation of MAPb(I 1− x Br x ) 3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr 3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type‐I band alignment of segregated I‐rich and Br‐rich domains can enhance the emission of the I‐rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br‐rich to I‐rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr 3 . The work highlights the significance of ion movements in mixed‐halide perovskites and provides new perspectives to understand the property evolution.
Author Wang, Yanbo
An, Yongkang
Cheacharoen, Rongrong
Li, Zhe
Xiao, Xuan
Li, Xiong
An, Qinyou
Huang, Qingyi
Zheng, Xin
Wang, Ti
Rong, Yaoguang
Xu, Hongxing
AuthorAffiliation 1 School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of Education Wuhan University Wuhan 430072 China
2 Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 China
4 State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
5 Metallurgy and Materials Science Research Institute Chulalongkorn University Bangkok 10330 Thailand
AuthorAffiliation_xml – name: 2 Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
– name: 3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 China
– name: 1 School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of Education Wuhan University Wuhan 430072 China
– name: 4 State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
– name: 5 Metallurgy and Materials Science Research Institute Chulalongkorn University Bangkok 10330 Thailand
Author_xml – sequence: 1
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  organization: Wuhan University
– sequence: 2
  givenname: Xin
  surname: Zheng
  fullname: Zheng, Xin
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Xuan
  surname: Xiao
  fullname: Xiao, Xuan
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Yongkang
  surname: An
  fullname: An, Yongkang
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Yanbo
  surname: Wang
  fullname: Wang, Yanbo
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Qingyi
  surname: Huang
  fullname: Huang, Qingyi
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Xiong
  surname: Li
  fullname: Li, Xiong
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Rongrong
  surname: Cheacharoen
  fullname: Cheacharoen, Rongrong
  organization: Chulalongkorn University
– sequence: 9
  givenname: Qinyou
  surname: An
  fullname: An, Qinyou
  organization: Wuhan University of Technology
– sequence: 10
  givenname: Yaoguang
  orcidid: 0000-0003-4794-8213
  surname: Rong
  fullname: Rong, Yaoguang
  email: ygrong@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 11
  givenname: Ti
  surname: Wang
  fullname: Wang, Ti
  email: wangti@whu.edu.cn
  organization: Wuhan University
– sequence: 12
  givenname: Hongxing
  surname: Xu
  fullname: Xu, Hongxing
  email: hxxu@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34923773$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1UREvoliUaiQ2bBN8mtlkglVJopCIqCmwt23Nm4jAZt_ZMSnY8As_Ik-A0bdSyYeXb58_28f8U7XWhA4SeEzwhGNPXplqlCcWUYKa4fIQOKFFyzCTne_f6--gwpQXGmJRMcCKfoH3GFWVCsAPk38E6dFXRz6E4n5sExQU0ERrT-9C9Kc5jsL5rbpZnMcIKYvK2vWO_gAtd6uPgNngR6uKT_wnVn1-_T03rq4xBDKv0w_eQnqHHtWkTHN62I_Ttw8nX49Px2eePs-Ojs7ErqSrHILEUinJla1YbxqmqXQmi4k5YQp2s81BNp9ZQV9paOiGEqSzBJQdJVG3ZCM223iqYhb6MfmniWgfj9c1EiI02sfeuBY0lMJGNOJ_FjQTraK4aJ1aW1FaKZNfbretysEuoHHR9NO0D6cOVzs91E1Za5rqX-VtG6NWtIIarAVKvlz45aFvTQRiSplNCMZsSwTL68h90EYbY5VJlikpOqFAqU5Mt5WJIKUK9uwzBehMKvQmF3oUib3hx_wk7_C4CGeBb4Nq3sP6PTh-9_37BmCzZX6ubxs4
CitedBy_id crossref_primary_10_1021_acs_jpcc_3c04708
crossref_primary_10_1021_acs_jpcc_3c05919
crossref_primary_10_1038_s41570_023_00492_z
crossref_primary_10_1021_acssuschemeng_2c05752
crossref_primary_10_1021_acsanm_3c02399
crossref_primary_10_1126_science_add8786
crossref_primary_10_1002_aenm_202203911
crossref_primary_10_1016_j_chempr_2022_07_005
crossref_primary_10_1002_adma_202210834
crossref_primary_10_1039_D3QM00970J
crossref_primary_10_1021_acssuschemeng_3c01873
crossref_primary_10_1039_D3TC01362F
crossref_primary_10_1002_smtd_202200161
crossref_primary_10_1002_adom_202202118
crossref_primary_10_1016_j_cej_2022_140142
crossref_primary_10_1002_solr_202400216
crossref_primary_10_1039_D2QM01341J
Cites_doi 10.1002/adfm.201809129
10.1021/acs.nanolett.6b04453
10.1126/sciadv.1701217
10.1039/D0CS00573H
10.1039/c1nr10867k
10.1038/s41560-018-0190-4
10.1002/anie.201500014
10.1039/C8SE00250A
10.1126/science.aaa5760
10.1126/science.aap9282
10.1002/advs.201801704
10.1021/ja809598r
10.1039/C6TC03592B
10.1038/s41566-021-00761-7
10.1038/s41565-021-00848-w
10.1021/acsenergylett.8b01562
10.1039/D0TC01441A
10.1038/ncomms8497
10.1002/aenm.201501310
10.1021/jacs.7b00516
10.1039/C4SC03141E
10.1021/acs.jpclett.8b02522
10.1021/acs.accounts.5b00229
10.1126/sciadv.abb1336
10.1016/j.apsusc.2016.02.207
10.1021/jacs.9b04568
10.1016/0022-3697(77)90106-8
10.1021/acs.chemrev.8b00336
10.1021/acsenergylett.8b02002
10.1002/aenm.202002934
10.1021/nl501838y
10.1038/nature14133
10.1002/advs.202101418
10.1038/s41586-021-03285-w
10.1016/j.trechm.2020.01.010
10.1039/C4CS00458B
10.1038/nenergy.2016.142
10.1021/acs.nanolett.5b04060
10.1021/jacs.0c00434
10.1021/acs.nanolett.8b00505
10.1007/s12200-021-1227-z
10.1002/advs.202002296
10.1038/nature24032
10.1021/jacs.0c04377
10.1039/C5EE03874J
10.1021/acs.jpclett.8b01512
10.1021/acs.jpclett.8b00212
10.1126/science.aat3583
10.1364/PRJ.402411
10.1002/anie.201701724
10.1002/advs.202001433
10.1021/nl400349b
10.1016/j.joule.2019.08.006
10.1038/nnano.2015.90
10.1038/ncomms11683
10.1016/j.scib.2021.01.031
10.1021/acs.jpclett.6b00433
10.1126/science.aay7044
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202103948
DatabaseName Wiley Online Library
Wiley Online Library Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_08e378ff0bf34a8ebc221941b852bd91
10_1002_advs_202103948
34923773
ADVS3385
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of China
  funderid: 2019YFE0120300
– fundername: Shanghai Sailing Program
  funderid: 21YF1421600
– fundername: Foundation of State Key Laboratory of Coal Conversion
  funderid: J18‐19‐913
– fundername: Open Project Program of Wuhan National Laboratory for Optoelectronics
  funderid: 2020WNLOKF014
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042021kf0202
– fundername: Frontier Project of the Application Foundation of Wuhan Science and Technology Plan Project
  funderid: 2020010601012202
– fundername: Chinese National 1000‐Talent‐Plan program
– fundername: National Natural Science Foundation of China
  funderid: 52172200; 11904266; 21875081
– fundername: Foundation of State Key Laboratory of Coal Conversion
  grantid: J18-19-913
– fundername: Frontier Project of the Application Foundation of Wuhan Science and Technology Plan Project
  grantid: 2020010601012202
– fundername: Shanghai Sailing Program
  grantid: 21YF1421600
– fundername: National Natural Science Foundation of China
  grantid: 11904266
– fundername: Chinese National 1000-Talent-Plan program
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042021kf0202
– fundername: Open Project Program of Wuhan National Laboratory for Optoelectronics
  grantid: 2020WNLOKF014
– fundername: Ministry of Science and Technology of China
  grantid: 2019YFE0120300
– fundername: National Natural Science Foundation of China
  grantid: 52172200
– fundername: National Natural Science Foundation of China
  grantid: 21875081
– fundername: ;
  grantid: 52172200; 11904266; 21875081
– fundername: ;
  grantid: 2042021kf0202
– fundername: Foundation of State Key Laboratory of Coal Conversion
  grantid: J18‐19‐913
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
EJD
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5295-e80879249bf3fa3429fc5e7d4c7b12c8ffc5966ba2c5bf8c777adb1054e819fb3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Oct 22 15:13:42 EDT 2024
Tue Sep 17 21:03:17 EDT 2024
Sat Oct 26 04:26:16 EDT 2024
Thu Oct 10 16:25:12 EDT 2024
Thu Sep 26 17:55:45 EDT 2024
Sat Nov 02 12:30:27 EDT 2024
Sat Aug 24 00:57:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mixed-halide perovskite
phase reconstruction
photoluminescence imaging
stability
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5295-e80879249bf3fa3429fc5e7d4c7b12c8ffc5966ba2c5bf8c777adb1054e819fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4794-8213
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844510/
PMID 34923773
PQID 2628412799
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_08e378ff0bf34a8ebc221941b852bd91
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844510
proquest_miscellaneous_2612036173
proquest_journals_2628412799
crossref_primary_10_1002_advs_202103948
pubmed_primary_34923773
wiley_primary_10_1002_advs_202103948_ADVS3385
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 362
2017; 2
2018; 360
2017; 3
2021; 66
2015; 347
2019; 366
2017; 550
2020; 8
2020; 7
2015; 48
2020; 6
2018; 9
2018; 3
2018; 2
2020; 2
2013; 13
1977; 38
2020; 49
2014; 14
2021; 590
2019; 29
2019; 119
2016; 45
2021; 8
2015; 6
2019; 4
2015; 5
2019; 3
2019; 6
2020; 142
2015; 10
2015; 54
2009; 131
2011; 3
2019; 141
2016; 16
2017; 139
2021; 14
2016; 4
2018; 18
2021; 16
2021; 15
2016; 7
2016; 1
2021; 11
2017; 17
2017; 56
2015; 517
2016; 9
2016; 371
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
Wang Z. P. (e_1_2_8_50_1) 2017; 2
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 282
  year: 2020
  publication-title: Trends Chem.
– volume: 3
  start-page: 2716
  year: 2019
  publication-title: Joule
– volume: 16
  start-page: 1009
  year: 2016
  publication-title: Nano Lett.
– volume: 10
  start-page: 391
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 584
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 7497
  year: 2015
  publication-title: Nat. Commun.
– volume: 142
  start-page: 5362
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 346
  year: 2021
  publication-title: Nat. Photonics
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 56
  start-page: 7755
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 75
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2062
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 1028
  year: 2017
  publication-title: Nano Lett.
– volume: 18
  start-page: 2172
  year: 2018
  publication-title: Nano Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 4158
  year: 2014
  publication-title: Nano Lett.
– volume: 3
  start-page: 4088
  year: 2011
  publication-title: Nanoscale
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7509
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano Lett.
– volume: 66
  start-page: 962
  year: 2021
  publication-title: Sci. Bull.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 49
  start-page: 8235
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 362
  start-page: 449
  year: 2018
  publication-title: Science
– volume: 9
  start-page: 5474
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 366
  start-page: 749
  year: 2019
  publication-title: Science
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– volume: 139
  start-page: 4866
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 9172
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 48
  start-page: 2791
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 2398
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 8
  start-page: A56
  year: 2020
  publication-title: Photonics Res.
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 3998
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 54
  start-page: 7905
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 38
  start-page: 297
  year: 1977
  publication-title: J. Phys. Chem. Solids
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 550
  start-page: 87
  year: 2017
  publication-title: Nature
– volume: 3
  start-page: 2694
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 371
  start-page: 112
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 14
  start-page: 252
  year: 2021
  publication-title: Front. Optoelectron.
– volume: 3
  start-page: 828
  year: 2018
  publication-title: Nat. Energy
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 10
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 7
  start-page: 1368
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature
– volume: 119
  start-page: 3418
  year: 2019
  publication-title: Chem. Rev.
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201809129
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.nanolett.6b04453
– ident: e_1_2_8_40_1
  doi: 10.1126/sciadv.1701217
– ident: e_1_2_8_29_1
  doi: 10.1039/D0CS00573H
– ident: e_1_2_8_2_1
  doi: 10.1039/c1nr10867k
– ident: e_1_2_8_26_1
  doi: 10.1038/s41560-018-0190-4
– ident: e_1_2_8_59_1
  doi: 10.1002/anie.201500014
– ident: e_1_2_8_32_1
  doi: 10.1039/C8SE00250A
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_8_27_1
  doi: 10.1002/advs.201801704
– ident: e_1_2_8_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_8_17_1
  doi: 10.1039/C6TC03592B
– ident: e_1_2_8_28_1
  doi: 10.1038/s41566-021-00761-7
– ident: e_1_2_8_47_1
  doi: 10.1038/s41565-021-00848-w
– ident: e_1_2_8_37_1
  doi: 10.1021/acsenergylett.8b01562
– ident: e_1_2_8_56_1
  doi: 10.1039/D0TC01441A
– ident: e_1_2_8_60_1
  doi: 10.1038/ncomms8497
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201501310
– ident: e_1_2_8_55_1
  doi: 10.1021/jacs.7b00516
– ident: e_1_2_8_33_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.jpclett.8b02522
– volume: 2
  start-page: 10
  year: 2017
  ident: e_1_2_8_50_1
  publication-title: Nat. Energy
  contributor:
    fullname: Wang Z. P.
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.accounts.5b00229
– ident: e_1_2_8_21_1
  doi: 10.1126/sciadv.abb1336
– ident: e_1_2_8_46_1
  doi: 10.1016/j.apsusc.2016.02.207
– ident: e_1_2_8_45_1
  doi: 10.1021/jacs.9b04568
– ident: e_1_2_8_53_1
  doi: 10.1016/0022-3697(77)90106-8
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.chemrev.8b00336
– ident: e_1_2_8_11_1
– ident: e_1_2_8_36_1
  doi: 10.1021/acsenergylett.8b02002
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.202002934
– ident: e_1_2_8_49_1
  doi: 10.1021/nl501838y
– ident: e_1_2_8_19_1
  doi: 10.1038/nature14133
– ident: e_1_2_8_8_1
  doi: 10.1002/advs.202101418
– ident: e_1_2_8_10_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_8_34_1
  doi: 10.1016/j.trechm.2020.01.010
– ident: e_1_2_8_16_1
  doi: 10.1039/C4CS00458B
– ident: e_1_2_8_20_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.nanolett.5b04060
– ident: e_1_2_8_44_1
  doi: 10.1021/jacs.0c00434
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.nanolett.8b00505
– ident: e_1_2_8_7_1
  doi: 10.1007/s12200-021-1227-z
– ident: e_1_2_8_13_1
  doi: 10.1002/advs.202002296
– ident: e_1_2_8_15_1
  doi: 10.1038/nature24032
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.0c04377
– ident: e_1_2_8_18_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.jpclett.8b01512
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.jpclett.8b00212
– ident: e_1_2_8_22_1
  doi: 10.1126/science.aat3583
– ident: e_1_2_8_41_1
  doi: 10.1364/PRJ.402411
– ident: e_1_2_8_58_1
  doi: 10.1002/anie.201701724
– ident: e_1_2_8_12_1
  doi: 10.1002/advs.202001433
– ident: e_1_2_8_25_1
  doi: 10.1021/nl400349b
– ident: e_1_2_8_57_1
  doi: 10.1016/j.joule.2019.08.006
– ident: e_1_2_8_14_1
  doi: 10.1038/nnano.2015.90
– ident: e_1_2_8_51_1
  doi: 10.1038/ncomms11683
– ident: e_1_2_8_54_1
  doi: 10.1016/j.scib.2021.01.031
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.jpclett.6b00433
– ident: e_1_2_8_9_1
  doi: 10.1126/science.aay7044
SSID ssj0001537418
Score 2.3767314
Snippet Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is...
Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is...
Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is...
Abstract Mixed‐halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2103948
SubjectTerms Glass substrates
Grain boundaries
Light
Microscopy
mixed‐halide perovskite
phase reconstruction
Phase transitions
photoluminescence imaging
stability
Thin films
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEB5KTr2UJv3bNgkqFNoeFu9KK0ubWxIa3EJKIDX4tkhayTGEdbHbkGMfoc-YJ8mMtHZtWsilV8_AivlhvvFoPgG887UVYdg6zO9Q55WUNkdUVOZyiOBa8VA5RdvI51-Ho3H1ZSInG0990Z2wRA-cDDcotBdKh1DYICqjvXUck6wqrZbctnVqfIp6o5lK-8GCaFlWLI0FH5j2hti5OY0-6bGfjSoUyfr_hTD_vii5CWBjBTp7Ck966MiO05F34ZHv9mC3T84l-9AzSH98BrO0l8IQ3LGLK6xT7NJjXz2NXjhiF8S91E2j-POCOJwWmBjXK13qSP_wyrJ5YOezW9_e_fo9QtDeoppfzG-W9Lfv8jmMzz59Ox3l_ZsKuaORXu51oRX1XGjOYARWo-CkVy35pOQODe0kdkDWcCdt0E4pZVqLIKzyiB2CFS9gp5t3_hUwzi1iRWW1caZyQlhhhNPYLnInWm9VBu9XNm6-J-qMJpEk84a80ay9kcEJuWCtRZTX8QcMhKYPhOahQMhgf-XAps9D_MQQy2_JVV1n8HYtxgyisYjp_Pwn6ZQ0jS2VyOBl8vf6JMTdKBRJ1FYkbB11W9LNriJLt9bE_VZkkMeYecAEDaKQSyG0fP0_bPEGHnNa04i3y_dhB0PGHyB4-mEPY57cA5tlGKA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB7B9sIFUX4DBQUJCThETex47XBBFLVakFqtKJV6i2zH3q5UJWUXKo48As_IkzDjOGlXIDgmthTH45n5Zsb-DPDCVYb7aWNRv32VlUKYDFFRkYkpgmvJfGklnUY-PJrOTsqPp-I0JtzWcVvlYBODoW46SznyXTZFQ1owWVVvL75kdGsUVVfjFRo3YYthpJBPYGtv_2j-6SrLIjjRswxsjTnb1c0lsXQzKoHSpT_XvFEg7f8b0vxzw-R1IBs80cEduB0hZPqul_k23HDtXdiOSrpOX0Um6df3YNmfT0kR5KXzM_RX6bHD-HoRpPEmnRMHU7sIzR9WxOW0QgU5H_pSZHrFL5t2Pj1cfnfNrx8_ZwjeG-zmVt3lmtK_6_twcrD_-f0si3crZJZKe5lTuZIUexnPvebolbwVTjYkm4JZ5fERIyGjmRXGKyul1I1BMFY6xBDe8AcwabvWPYKUMYOYURqlrS4t54ZrbhWGjczyxhmZwMthjuuLnkKj7smSWU3SqEdpJLBHIhh7EfV1eNGtFnXUpDpXjkscX44jL7VyxjK0umVhlGCmqYoEdgYB1lEf8RPj6kng-diMmkTlEd267hv1KagqW0iewMNe3uNIiMORS2qRGythY6ibLe3yLLB1K0UccHkCWVgz_5mCGtHIMedKPP73bzyBW4wOYoT94zswwcXgniI8-mqeRR34DTdpEXI
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9QwFL3o-uKLuH5WV4kgqA9l23xMUt9UXEZhZWBd2LeSpMnswNLKjC4--hP8jf4S7007nS0K4mObSxt6cnrPTZpTgOehciLOGo_8jlUulXI5qqIyVzMU15pH6TXtRj7-NJufyo9n6uzKLv7eH2KccCNmpPc1Edy6zeHONNQ2l2S3zWktU5rrcINsY8g9n8vFbpZFCbJnoT_MYXWdCyPl1rmx4IfTS0wyUzLw_5vq_PPjyauiNmWlo9twa5CT7E2P_z5cC-0d2B8Iu2EvB1fpV3dh1e9VYSj42OIccxc7CVhrLxMyr9mC_JjaZWr-sCZfpzWS5WIbS1XqzmuWdZEdr76H5tePn3MU8g2GhXV3uaGp4M09OD16__ndPB_-s5B7WubLgymMpjrMRRGtwAwVvQq6IZxK7k3EQ6yKnOVeuWi81to2DoWZDKgnohP3Ya_t2vAQGOcO9aN2xnorvRBOWOENlpDciyY4ncGL7TOuv_R2GnVvnMxrQqMe0cjgLUEwRpENdjrRrZf1wKq6MEFo7F-BPZfWBOc54ixLZxR3TVVmcLAFsB64ibeYYUouua6qDJ6NzcgqWiqxbei-UUxJK7SlFhk86PEee0J-jkJTi56MhElXpy3t6jw5dxtDfnBFBnkaM_94BDUqkxMhjHr0n_GP4SanXRrp4_ID2MPREZ6gdvrqniZ6_Aa3GxSX
  priority: 102
  providerName: Wiley-Blackwell
Title Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixed‐Halide Perovskites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202103948
https://www.ncbi.nlm.nih.gov/pubmed/34923773
https://www.proquest.com/docview/2628412799
https://www.proquest.com/docview/2612036173
https://pubmed.ncbi.nlm.nih.gov/PMC8844510
https://doaj.org/article/08e378ff0bf34a8ebc221941b852bd91
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB6y6aWX0qR_btPFhULbg7O2ZK_k3pKQsC1sME0DuRlJljYLiR12m5BjH6HP2CfpjGxvsqRQ6NGWQINnxvONNPMJ4L3NNXfjyqB_uzxKs0xHiIqSKBsjuBbMpUZQN_L0eDw5Tb-eZWcbkPW9ML5o3-j5bn1xuVvPz31t5dWlGfV1YqNieiAl0WrFowEM0EDvpehtazAnRpaeoDFmI1XdEDE3o1PPlC7oI0Y-LgRfi0Wesv9vOPNhueR9GOvj0NFTeNIByHCvFXQLNmy9DVudiy7Djx2P9KdnMG-7U0KEeGFxjtEqPLGYXc-8Lj6HBTEw1TM__GVBTE4LdI-Lfi7lpXfssmHjwun81la_f_6aIHSvcJpdNDdL2vxdPofTo8PvB5Oou1khMnSwF1kZS0GZl3bcKY4xyZnMioo0kzAjHT5iHqQVM5l20gghVKURiqUWEYTT_AVs1k1tX0HImEbEKLRURqWGc80VNxKTRmZ4ZbUI4EP_jcurlkCjbKmSWUmKKVeKCWCfVLCaRcTX_kWzmJWd-stYWi5QvhglT5W02jD856aJlhnTVZ4EsNMrsOy8EZcYYxBOmMjzAN6thtGP6HBE1ba5pjkJnckmggfwstX3SpLeXgIQa5awJur6CJqu5-ruTDWAyNvMPz5BiVjkhHOZvf7vld7AY0YdGr6wfAc20U7sW8RNP_QQBiwthvBo__C4-Db0uw9D7zt_AC7jHGM
link.rule.ids 230,315,730,783,787,867,888,2109,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,53804,53806,74636
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5Be4ALovwGCgQJCThETexk7XBBFLXaQne1oq3UW-Tf7UooKbtQceQReEaehJnESbsCwTGxpTgez8w3M_ZngBeu1NyPrEH99mWSF4VOEBVlSTFCcC2Yz42g08iT6Wh8kn84LU5Dwm0VtlX2NrE11LYxlCPfYSM0pBkTZfn2_EtCt0ZRdTVcoXEdNomqCoOvzd296ezTZZal4ETP0rM1pmxH2Qti6WZUAqVLf654o5a0_29I888Nk1eBbOuJ9m_DrQAh43edzLfgmqvvwFZQ0lX8KjBJv74Li-58SowgL56dob-KjxzG1_NWGm_iGXEw1fO2-WBJXE5LVJDPfV-KTC_5ZePGx5PFd2d__fg5RvBusZtbNhcrSv-u7sHJ_t7x-3ES7lZIDJX2EidTKSj20p57xdEreVM4YUk2GTPS4yNGQloxU2gvjRBCWY1gLHeIIbzm92Gjbmr3EGLGNGJGoaUyKjeca664kRg2MsOt0yKCl_0cV-cdhUbVkSWziqRRDdKIYJdEMPQi6uv2RbOcV0GTqlQ6LnB8KY48V9Jpw9Dq5pmWBdO2zCLY7gVYBX3ETwyrJ4LnQzNqEpVHVO2ab9Qno6psJngEDzp5DyMhDkcuqEWsrYS1oa631Iuzlq1bSuKASyNI2jXznymoEI0ccS6LR__-jWdwY3w8OawOD6YfH8NNRocy2r3k27CBC8M9Qaj0VT8N-vAbWhUUbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB7BVkJcEOWvgRaChAQcok3sZO1wqejPagt0taJU6i2yHXu7EkrKLlQceQSekSdhJnHSrkBwTGwpjscz841n_Bnghc01d6PSoH67PEqzTEeIipIoGyG4FsylRtBp5OPpaHKavjvLznz908qXVXY2sTHUZW1oj3zIRmhIEybyfOh8WcTsYLx78SWiG6Qo0-qv07gJG4JYsAawsXc4nX282nHJOFG1dMyNMRuq8pIYuxmlQ-kCoGueqSHw_xvq_LN48jqobbzS-C7c8XAyfNvKfxNu2OoebHqFXYWvPKv06_uwaM-qhAj4wtk5-q7wxGKsPW8k8yacER9TNW-aj5bE67REZfnc9aUo9YprNqxdeLz4bstfP35OEMiX2M0u68sVbQWvHsDp-PDT_iTy9yxEhtJ8kZWxFBSHaced4uihnMmsKElOCTPS4SNGRVoxk2knjRBClRqBWWoRTzjNH8Kgqiu7BSFjGvGj0FIZlRrONVfcSAwhmeGl1SKAl90cFxctnUbREiezgqRR9NIIYI9E0PciGuzmRb2cF16rilhaLnB8MY48VdJqw9ACp4mWGdNlngSw3Qmw8LqJn-hXUgDP-2bUKkqVqMrW36hPQhnaRPAAHrXy7kdCfI5cUItYWwlrQ11vqRbnDXO3lMQHFwcQNWvmP1NQIDI54Vxmj__9G8_gFqpC8eFo-v4J3GZ0PqMpK9-GAa4Lu4Oo6at-6tXhNzzbGKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Phase+Segregation%3A+Probing+the+Irreversible+Phase+Reconstruction+of+Mixed%E2%80%90Halide+Perovskites&rft.jtitle=Advanced+science&rft.au=Li%2C+Zhe&rft.au=Zheng%2C+Xin&rft.au=Xiao%2C+Xuan&rft.au=An%2C+Yongkang&rft.date=2022-02-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202103948&rft.externalDBID=10.1002%252Fadvs.202103948&rft.externalDocID=ADVS3385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon