Stringing Bimetallic Metal–Organic Framework‐Derived Cobalt Phosphide Composite for High‐Efficiency Overall Water Splitting
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OE...
Saved in:
Published in | Advanced science Vol. 7; no. 5; pp. 1903195 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.03.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.201903195 |
Cover
Loading…
Abstract | Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.
A type of CoP embedded in carbon nanotubes and nitrogen‐doped carbon material calcined from a bimetallic metal–organic frameworks (MOF) precursor is designed and prepared by growing Co‐based MOFs on an indium–organic framework. The CoP incorporation can greatly promote the water splitting kinetics by the optimized catalyst of CoP‐InNC@CNT, thus the high electrocatalytic activity is achieved toward both the hydrogen evolution reaction and oxygen evolution reaction. |
---|---|
AbstractList | Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H
2
) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5
m
H
2
SO
4
and 159 mV in 1.0
m
KOH) and OER performance (overpotential of 270 mV in 1.0
m
KOH) activities to reach the current density of 10 mA cm
−2
. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η
10
= 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H 2 ) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H 2 SO 4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm −2 . In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η 10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. A type of CoP embedded in carbon nanotubes and nitrogen‐doped carbon material calcined from a bimetallic metal–organic frameworks (MOF) precursor is designed and prepared by growing Co‐based MOFs on an indium–organic framework. The CoP incorporation can greatly promote the water splitting kinetics by the optimized catalyst of CoP‐InNC@CNT, thus the high electrocatalytic activity is achieved toward both the hydrogen evolution reaction and oxygen evolution reaction. Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H ) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H SO and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm . In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm-2. In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm-2. In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. A type of CoP embedded in carbon nanotubes and nitrogen‐doped carbon material calcined from a bimetallic metal–organic frameworks (MOF) precursor is designed and prepared by growing Co‐based MOFs on an indium–organic framework. The CoP incorporation can greatly promote the water splitting kinetics by the optimized catalyst of CoP‐InNC@CNT, thus the high electrocatalytic activity is achieved toward both the hydrogen evolution reaction and oxygen evolution reaction. Abstract Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. |
Author | Chai, Lulu Xu, Yuwei Zhang, Linjie Huang, Shaoming Li, Ting‐Ting Hu, Zhuoyi Hu, Yue Qian, Jinjie Wang, Xian |
AuthorAffiliation | 1 Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325000 China 4 School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China 2 State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China 3 Chimie du solide et de l'énergie‐Collège de France 11 Place Marcelin Berthelot Paris 75005 France 5 School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China |
AuthorAffiliation_xml | – name: 5 School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China – name: 1 Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325000 China – name: 3 Chimie du solide et de l'énergie‐Collège de France 11 Place Marcelin Berthelot Paris 75005 France – name: 4 School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China – name: 2 State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China |
Author_xml | – sequence: 1 givenname: Lulu surname: Chai fullname: Chai, Lulu organization: Chinese Academy of Sciences – sequence: 2 givenname: Zhuoyi surname: Hu fullname: Hu, Zhuoyi organization: Wenzhou University – sequence: 3 givenname: Xian surname: Wang fullname: Wang, Xian organization: Wenzhou University – sequence: 4 givenname: Yuwei surname: Xu fullname: Xu, Yuwei organization: Wenzhou University – sequence: 5 givenname: Linjie surname: Zhang fullname: Zhang, Linjie organization: Chimie du solide et de l'énergie‐Collège de France – sequence: 6 givenname: Ting‐Ting surname: Li fullname: Li, Ting‐Ting organization: Ningbo University – sequence: 7 givenname: Yue surname: Hu fullname: Hu, Yue organization: Wenzhou University – sequence: 8 givenname: Jinjie orcidid: 0000-0002-9996-7929 surname: Qian fullname: Qian, Jinjie email: jinjieqian@wzu.edu.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Shaoming surname: Huang fullname: Huang, Shaoming email: smhuang@gdut.edu.cn organization: Guangdong University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32154085$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiJbSLUs0Ehs2Cb7Gng1SSVtaqShI4bK0zng8icPMONhOquzKGyDxhn0SPCSt2koIyZLt4-_859j-n2d7netMlr3EaIgRIm-hWochQbhAFBf8SXZAcCEHVDK2d2-9nx2FsEAIYU4Fw_JZtk8J5gxJfpD9nEZvu1ka-XvbmghNY3X-sV_cXP-e-Bl0aX_moTVXzn-_uf51YrxdmyofuxKamH-au7Cc28qkQLt0wUaT187n53Y2T_RpXVttTac3-WRtfJLPv0E0Pp8uGxtjqvsie1pDE8zRbj7Mvpydfh6fDy4nHy7Gx5cDzUnBB5yCpIAkE4RTjkUBwIiuKywqAwQjgUa4LEtGCKAR1IRQiQgATYxkFWh6mF1sdSsHC7X0tgW_UQ6s-htwfqbAR6sbo7TGjAhWEc5KNhJMUi5EjQssWD3istd6t9VarsrWVNp0MV3tgejDk87O1cytlUCc8xFJAm92At79WJkQVWuDNk0DnXGroAgVXEqCRI--foQu3Mp36al6CjEhpWCJenW_o7tWbn86AWwLaO9C8KZW2kaI1vUN2kZhpHpPqd5T6s5TKW34KO1W-Z8JuzpXtjGb_9Dq-OTrNNmS0z9nKOE- |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2021_115521 crossref_primary_10_1016_j_apenergy_2022_119887 crossref_primary_10_1016_j_gee_2021_04_003 crossref_primary_10_1039_D2TA02470E crossref_primary_10_3390_en16031124 crossref_primary_10_1016_j_jcis_2024_05_168 crossref_primary_10_1002_aenm_202102134 crossref_primary_10_1002_asia_202000969 crossref_primary_10_1002_smtd_202100125 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1039_D1NR01669E crossref_primary_10_1039_D0RA07779H crossref_primary_10_1016_j_jcis_2023_04_089 crossref_primary_10_1039_D3DT00065F crossref_primary_10_1016_j_nanoms_2022_04_003 crossref_primary_10_1002_smtd_202201616 crossref_primary_10_1002_adma_202305532 crossref_primary_10_1016_j_carbon_2022_05_006 crossref_primary_10_1039_D0SE00402B crossref_primary_10_1016_j_surfin_2024_104224 crossref_primary_10_1039_D0DT04188B crossref_primary_10_1039_D0RA06805E crossref_primary_10_1039_D1TC03450B crossref_primary_10_1016_j_cej_2021_130336 crossref_primary_10_1002_slct_202100055 crossref_primary_10_1039_D2GC04107C crossref_primary_10_1016_j_jallcom_2024_176818 crossref_primary_10_1016_j_isci_2020_101264 crossref_primary_10_1039_D3SE01486J crossref_primary_10_1002_aenm_202003291 crossref_primary_10_1016_j_mtchem_2024_101928 crossref_primary_10_1039_D1DT01729B crossref_primary_10_1039_D1NJ00613D crossref_primary_10_1021_acsaem_1c03638 crossref_primary_10_1021_acs_inorgchem_1c03498 crossref_primary_10_1016_j_ijhydene_2021_07_180 crossref_primary_10_1039_D1DT03638F crossref_primary_10_1016_j_ijhydene_2022_09_077 crossref_primary_10_1016_j_apsusc_2021_152405 crossref_primary_10_1016_j_ijhydene_2024_12_132 crossref_primary_10_1039_D4QI01022A crossref_primary_10_1039_D0RA04320F crossref_primary_10_1016_j_esi_2024_02_001 crossref_primary_10_1088_1361_6528_ac4f82 crossref_primary_10_1007_s11581_022_04707_z crossref_primary_10_1039_D0CC04015K crossref_primary_10_1016_j_cej_2021_129128 crossref_primary_10_1039_D2DT01111E crossref_primary_10_1016_j_cej_2023_141674 crossref_primary_10_1021_acssuschemeng_0c09339 crossref_primary_10_1039_D2TA06083C crossref_primary_10_1021_acsami_1c13488 crossref_primary_10_1016_j_apsusc_2023_157070 crossref_primary_10_1039_D1CC00569C crossref_primary_10_1002_adfm_202419989 crossref_primary_10_1016_j_electacta_2022_139846 crossref_primary_10_1002_pssa_202200581 crossref_primary_10_1016_j_apcatb_2022_121667 crossref_primary_10_1021_acsanm_0c00662 crossref_primary_10_1007_s10853_021_05900_7 crossref_primary_10_1016_j_ijhydene_2020_08_120 crossref_primary_10_1016_j_jcis_2021_02_009 crossref_primary_10_1039_D1NJ01096D crossref_primary_10_1016_j_jpowsour_2021_229947 crossref_primary_10_1016_j_cclet_2021_01_047 crossref_primary_10_1039_D1TA01638E crossref_primary_10_1039_D0RA08064K crossref_primary_10_1007_s12274_023_6270_1 crossref_primary_10_1016_j_carbpol_2023_121436 crossref_primary_10_1016_j_matlet_2020_128351 crossref_primary_10_2139_ssrn_4183141 crossref_primary_10_1039_D1TA09932A crossref_primary_10_1016_j_ijhydene_2021_09_123 crossref_primary_10_1016_j_ceramint_2021_05_257 crossref_primary_10_1016_j_cej_2021_133523 crossref_primary_10_1039_D4EE00784K crossref_primary_10_1039_D1DT03931H crossref_primary_10_1039_D1QM00466B crossref_primary_10_1002_adma_202413658 crossref_primary_10_1039_D2TA04042E crossref_primary_10_1039_D3DT01228J crossref_primary_10_3389_fchem_2020_592915 crossref_primary_10_2139_ssrn_3977367 crossref_primary_10_1016_j_electacta_2023_141956 crossref_primary_10_1016_j_ijoes_2023_100076 crossref_primary_10_1016_j_joule_2023_07_009 crossref_primary_10_1115_1_4055462 crossref_primary_10_3390_molecules28052280 crossref_primary_10_1016_j_cclet_2021_11_063 crossref_primary_10_1002_smll_202203147 crossref_primary_10_1016_j_jcis_2022_08_037 crossref_primary_10_1039_D0DT01469A crossref_primary_10_1016_j_jcis_2020_11_053 crossref_primary_10_1016_j_ijhydene_2024_05_370 crossref_primary_10_1016_j_snb_2020_128846 crossref_primary_10_1021_acsami_0c11722 crossref_primary_10_1016_j_cej_2024_152023 crossref_primary_10_1002_advs_202200529 crossref_primary_10_1039_D0TA07616C crossref_primary_10_1021_acsaem_1c00812 crossref_primary_10_1039_D0NR07126A crossref_primary_10_1016_j_cclet_2025_110890 crossref_primary_10_1016_j_cej_2021_129031 crossref_primary_10_1016_j_jcis_2025_01_080 crossref_primary_10_1016_j_jechem_2023_12_033 crossref_primary_10_1039_D4EE00042K crossref_primary_10_1039_D4QI00644E crossref_primary_10_1002_aenm_202303623 crossref_primary_10_1016_j_jcis_2022_05_093 crossref_primary_10_1039_D0RA10019F crossref_primary_10_1039_D0RA07039D crossref_primary_10_1016_j_cej_2021_130279 crossref_primary_10_1016_j_carbon_2021_01_160 crossref_primary_10_1016_j_jallcom_2022_164993 crossref_primary_10_1016_j_rechem_2024_102009 crossref_primary_10_1021_acssuschemeng_2c03250 crossref_primary_10_1016_j_mtnano_2023_100390 crossref_primary_10_1016_j_jallcom_2022_167460 crossref_primary_10_1002_adfm_202415585 crossref_primary_10_1016_j_micromeso_2020_110868 crossref_primary_10_1039_D0NA00648C crossref_primary_10_1016_j_ijhydene_2025_03_167 crossref_primary_10_1016_j_jcis_2023_11_149 crossref_primary_10_1039_D3DT00674C crossref_primary_10_1016_j_cclet_2021_11_041 crossref_primary_10_1002_cctc_202101280 crossref_primary_10_1039_D3TA01993D crossref_primary_10_1016_j_ijhydene_2023_09_294 crossref_primary_10_1007_s12274_022_5228_z crossref_primary_10_1016_j_ccr_2020_213488 crossref_primary_10_1016_j_microc_2021_106432 crossref_primary_10_1007_s11224_023_02165_5 crossref_primary_10_1002_adfm_202302297 crossref_primary_10_1002_asia_202301039 crossref_primary_10_1002_cssc_202000566 crossref_primary_10_1016_j_ijhydene_2022_04_075 crossref_primary_10_1002_advs_202201916 crossref_primary_10_1039_D1RA01444G crossref_primary_10_1039_D1RA01880A crossref_primary_10_1016_j_mtener_2021_100698 crossref_primary_10_1016_j_ijhydene_2023_10_066 crossref_primary_10_1016_j_nanoen_2023_108681 crossref_primary_10_1002_smll_202310012 crossref_primary_10_1002_aoc_7889 crossref_primary_10_1021_acsanm_1c02607 crossref_primary_10_1016_j_ijhydene_2020_02_206 crossref_primary_10_1039_D3TA00239J crossref_primary_10_1002_chem_202402900 crossref_primary_10_1016_j_carbon_2022_07_003 crossref_primary_10_1016_j_ijhydene_2020_12_062 crossref_primary_10_1002_advs_202300797 crossref_primary_10_1039_D3CS01122D crossref_primary_10_1002_smll_202308732 crossref_primary_10_1002_smtd_202200377 crossref_primary_10_1039_D1TA06548C crossref_primary_10_1039_D4CC06285J crossref_primary_10_1039_D0RA07696A crossref_primary_10_1039_D0NJ03403G crossref_primary_10_1166_mex_2022_2059 crossref_primary_10_1016_j_jcis_2023_12_017 crossref_primary_10_1016_j_ijhydene_2020_10_121 crossref_primary_10_1016_j_nanoen_2021_105943 crossref_primary_10_1021_acsami_3c15769 crossref_primary_10_1016_j_jallcom_2023_170950 crossref_primary_10_1039_D1QM00751C crossref_primary_10_1039_D2DT01837C crossref_primary_10_1149_1945_7111_abb4f5 crossref_primary_10_1016_j_fmre_2021_06_021 crossref_primary_10_1039_D2QI00753C crossref_primary_10_1002_smsc_202100032 crossref_primary_10_1021_acsami_2c22218 crossref_primary_10_1016_j_electacta_2022_141514 crossref_primary_10_3390_nano12071098 crossref_primary_10_1039_D1CS00323B crossref_primary_10_3390_catal13091230 crossref_primary_10_1002_jctb_7655 crossref_primary_10_1016_j_mtener_2021_100667 crossref_primary_10_1039_D0CC06049F crossref_primary_10_1016_j_jcis_2022_02_031 crossref_primary_10_1016_j_ijhydene_2022_07_242 crossref_primary_10_1016_j_ccr_2023_215101 crossref_primary_10_1016_j_cej_2024_155832 crossref_primary_10_3740_MRSK_2022_32_2_98 crossref_primary_10_1016_j_ccr_2022_214649 crossref_primary_10_1016_j_ijhydene_2021_08_171 crossref_primary_10_1039_D1RA01775F crossref_primary_10_1016_j_jallcom_2021_163421 crossref_primary_10_1088_1742_6596_2468_1_012154 crossref_primary_10_1021_acsami_1c11521 crossref_primary_10_1002_smll_202100998 crossref_primary_10_1039_D2DT00828A crossref_primary_10_1016_j_cej_2021_130533 crossref_primary_10_1016_j_electacta_2022_140280 crossref_primary_10_1063_5_0185031 crossref_primary_10_1039_D4CC02074J crossref_primary_10_1002_advs_202105063 crossref_primary_10_1002_smll_202107572 crossref_primary_10_1002_adfm_202200733 crossref_primary_10_1021_acs_iecr_4c04262 crossref_primary_10_1016_j_jpowsour_2022_231571 crossref_primary_10_1002_cctc_202101933 crossref_primary_10_1039_D4MA00114A crossref_primary_10_1016_j_jallcom_2021_162208 crossref_primary_10_1039_D0RA10522H crossref_primary_10_1016_j_ijhydene_2020_12_146 crossref_primary_10_1016_j_apsusc_2023_156456 crossref_primary_10_1039_D4CC06281G crossref_primary_10_1016_j_jelechem_2021_115300 crossref_primary_10_1021_acs_cgd_1c00588 crossref_primary_10_1002_celc_202100687 crossref_primary_10_1016_j_matchemphys_2024_129553 crossref_primary_10_1016_j_ccr_2024_216296 crossref_primary_10_1016_j_jechem_2022_12_026 crossref_primary_10_1002_sstr_202200109 crossref_primary_10_1016_j_est_2024_112930 crossref_primary_10_1016_j_cej_2022_135720 crossref_primary_10_1039_D3MH01130E crossref_primary_10_26599_POM_2023_9140030 crossref_primary_10_1021_acs_inorgchem_1c01325 crossref_primary_10_1039_D3RA06824B crossref_primary_10_1016_j_jcis_2024_09_040 crossref_primary_10_1016_j_talanta_2023_125241 crossref_primary_10_1039_D3DT04263D crossref_primary_10_1016_j_nanoen_2023_108415 crossref_primary_10_1016_j_ijhydene_2024_01_201 crossref_primary_10_1016_j_gee_2020_09_002 crossref_primary_10_1016_j_apsusc_2023_159058 crossref_primary_10_1002_celc_202100313 crossref_primary_10_1002_adma_202107072 crossref_primary_10_1002_cctc_202100981 crossref_primary_10_1016_j_jssc_2020_121867 crossref_primary_10_1016_j_cclet_2023_109105 crossref_primary_10_1021_acs_inorgchem_4c02194 crossref_primary_10_1002_smll_202006617 crossref_primary_10_1002_smsc_202000027 crossref_primary_10_1016_j_jallcom_2023_173237 crossref_primary_10_1021_acsanm_1c00850 crossref_primary_10_1016_j_jpowsour_2024_234423 crossref_primary_10_1039_D0CY01232G crossref_primary_10_1039_D1NR02232F crossref_primary_10_1016_j_apcatb_2021_120511 crossref_primary_10_1002_smll_202100607 crossref_primary_10_1016_j_ijhydene_2021_04_084 crossref_primary_10_1002_adfm_202313233 crossref_primary_10_1016_j_apcatb_2022_122313 |
Cites_doi | 10.1016/j.apcatb.2019.01.007 10.1007/s12274-017-1511-9 10.1039/C8SC03877E 10.1021/acsami.8b16126 10.1021/acs.accounts.8b00002 10.1038/s41467-018-04746-z 10.1002/smll.201804546 10.1002/aenm.201502333 10.1002/adma.201806682 10.1002/anie.201409530 10.1016/j.nanoen.2018.03.034 10.1039/C7TA08386F 10.1021/cs3003098 10.1016/j.apcatb.2009.07.017 10.1039/C5TA00455A 10.1039/c3sc51052b 10.1039/C6TA02334G 10.1039/C5TA02551F 10.1002/cctc.201000126 10.1039/C7EE03619A 10.1021/acscatal.7b00587 10.1002/anie.201502659 10.1021/acsami.6b10983 10.1039/c2cc35068h 10.1002/adma.201502696 10.1002/anie.201502438 10.1016/j.electacta.2012.12.105 10.1039/C9TA04583J 10.1002/anie.201402646 10.1039/C7TA11312A 10.1021/ja5127165 10.1002/adfm.201505509 10.1039/C8EE01669K 10.1016/j.carbon.2018.10.023 10.1039/C7TA10558D 10.1016/j.nanoen.2019.06.002 10.1016/j.jcat.2019.09.038 10.1002/anie.201809787 10.1021/jacs.7b12420 10.1038/nmat4481 10.1038/nmat3385 10.1016/j.jpowsour.2019.227158 10.1021/jacs.8b02200 10.1021/acscatal.9b01638 10.1002/ange.201404161 10.1039/C4EE00957F |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201903195 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Proquest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_cc14274d254b467483577f19174f658c PMC7055562 32154085 10_1002_advs_201903195 ADVS1535 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 21601137; 51920105004 – fundername: National Social Science Fund Youth Project funderid: 21601187 – fundername: Graduate Scientific Research Foundation of Wenzhou University funderid: 3162018030; 2019R429048 – fundername: State Key Laboratory from Structural Chemistry – fundername: Chinese Academy of Sciences funderid: 20190008 – fundername: ; grantid: 21601137; 51920105004 – fundername: ; grantid: 20190008 – fundername: Graduate Scientific Research Foundation of Wenzhou University grantid: 3162018030; 2019R429048 – fundername: ; grantid: 21601187 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IAO IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c5295-53a83a08472535179aa42cfd17dea2107061bbb422a06af223802aa32cf84dac3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:19:00 EDT 2025 Thu Aug 21 18:00:02 EDT 2025 Thu Sep 04 18:26:26 EDT 2025 Fri Jul 25 03:04:29 EDT 2025 Wed Feb 19 02:29:05 EST 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 03:59:22 EDT 2025 Wed Jan 22 16:34:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cobalt phosphide metal–organic frameworks overall water splitting nitrogen‐doped carbon nanotubes |
Language | English |
License | Attribution 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5295-53a83a08472535179aa42cfd17dea2107061bbb422a06af223802aa32cf84dac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9996-7929 |
OpenAccessLink | https://doaj.org/article/cc14274d254b467483577f19174f658c |
PMID | 32154085 |
PQID | 2370478874 |
PQPubID | 4365299 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cc14274d254b467483577f19174f658c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7055562 proquest_miscellaneous_2375882072 proquest_journals_2370478874 pubmed_primary_32154085 crossref_citationtrail_10_1002_advs_201903195 crossref_primary_10_1002_advs_201903195 wiley_primary_10_1002_advs_201903195_ADVS1535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 5 2019; 7 2017; 7 2019; 9 2013; 4 2018; 140 2015; 3 2019; 31 2019; 11 2019; 10 2019; 12 2019; 15 2015; 54 2013; 100 2019; 245 2019; 141 2019; 380 2016; 15 2012; 11 2017; 9 2018; 48 2019; 440 2016; 4 2018; 6 2016; 6 2018; 9 2012; 2 2019; 62 2009; 92 2015; 137 2017; 10 2018; 51 2012; 48 2016; 28 2010; 2 2018; 11 2014; 7 2016; 26 2014; 126 2018; 57 2014; 53 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 10 start-page: 464 year: 2019 publication-title: Chem. Sci. – volume: 6 start-page: 4783 year: 2018 publication-title: J. Mater. Chem. A – volume: 48 start-page: 73 year: 2018 publication-title: Nano Energy – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 start-page: 6910 year: 2019 publication-title: ACS Catal. – volume: 11 start-page: 699 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 802 year: 2012 publication-title: Nat. Mater. – volume: 12 start-page: 988 year: 2019 publication-title: Energy Environ. Sci. – volume: 141 start-page: 643 year: 2019 publication-title: Carbon – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 380 start-page: 307 year: 2019 publication-title: J. Catal. – volume: 7 start-page: 2624 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 start-page: 215 year: 2016 publication-title: Adv. Mater. – volume: 92 start-page: 100 year: 2009 publication-title: Appl. Catal., B – volume: 48 start-page: 9696 year: 2012 publication-title: Chem. Commun. – volume: 4 start-page: 2941 year: 2013 publication-title: Chem. Sci. – volume: 140 start-page: 5037 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 2610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 8483 year: 2015 publication-title: J. Mater. Chem. A – volume: 100 start-page: 249 year: 2013 publication-title: Electrochim. Acta – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 245 start-page: 528 year: 2019 publication-title: Appl. Catal., B – volume: 137 start-page: 2688 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 197 year: 2016 publication-title: Nat. Mater. – volume: 440 year: 2019 publication-title: J. Power Sources – volume: 9 start-page: 2551 year: 2018 publication-title: Nat. Commun. – volume: 26 start-page: 4067 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1287 year: 2018 publication-title: Energy Environ. Sci. – volume: 51 start-page: 1571 year: 2018 publication-title: Acc. Chem. Res. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 62 start-page: 745 year: 2019 publication-title: Nano Energy – volume: 54 start-page: 7230 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 5789 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 724 year: 2010 publication-title: ChemCatChem – volume: 53 start-page: 5427 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 1490 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1765 year: 2012 publication-title: ACS Catal. – volume: 126 start-page: 6828 year: 2014 publication-title: Angew. Chem. – volume: 7 start-page: 3824 year: 2017 publication-title: ACS Catal. – volume: 10 start-page: 1819 year: 2017 publication-title: Nano Res. – volume: 9 start-page: 2240 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_29_1 doi: 10.1016/j.apcatb.2019.01.007 – ident: e_1_2_7_40_1 doi: 10.1007/s12274-017-1511-9 – ident: e_1_2_7_15_1 doi: 10.1039/C8SC03877E – ident: e_1_2_7_39_1 doi: 10.1021/acsami.8b16126 – ident: e_1_2_7_3_1 doi: 10.1021/acs.accounts.8b00002 – ident: e_1_2_7_17_1 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_7_38_1 doi: 10.1002/smll.201804546 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201502333 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201806682 – ident: e_1_2_7_35_1 doi: 10.1002/anie.201409530 – ident: e_1_2_7_30_1 doi: 10.1016/j.nanoen.2018.03.034 – ident: e_1_2_7_25_1 doi: 10.1039/C7TA08386F – ident: e_1_2_7_10_1 doi: 10.1021/cs3003098 – ident: e_1_2_7_20_1 doi: 10.1016/j.apcatb.2009.07.017 – ident: e_1_2_7_34_1 doi: 10.1039/C5TA00455A – ident: e_1_2_7_36_1 doi: 10.1039/c3sc51052b – ident: e_1_2_7_6_1 doi: 10.1039/C6TA02334G – ident: e_1_2_7_45_1 doi: 10.1039/C5TA02551F – ident: e_1_2_7_8_1 doi: 10.1002/cctc.201000126 – ident: e_1_2_7_12_1 doi: 10.1039/C7EE03619A – ident: e_1_2_7_32_1 doi: 10.1021/acscatal.7b00587 – ident: e_1_2_7_2_1 doi: 10.1002/anie.201502659 – ident: e_1_2_7_19_1 doi: 10.1021/acsami.6b10983 – ident: e_1_2_7_33_1 doi: 10.1039/c2cc35068h – ident: e_1_2_7_7_1 doi: 10.1002/adma.201502696 – ident: e_1_2_7_18_1 doi: 10.1002/anie.201502438 – ident: e_1_2_7_5_1 doi: 10.1016/j.electacta.2012.12.105 – ident: e_1_2_7_9_1 doi: 10.1039/C9TA04583J – ident: e_1_2_7_21_1 doi: 10.1002/anie.201402646 – ident: e_1_2_7_27_1 doi: 10.1039/C7TA11312A – ident: e_1_2_7_46_1 doi: 10.1021/ja5127165 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201505509 – ident: e_1_2_7_13_1 doi: 10.1039/C8EE01669K – ident: e_1_2_7_24_1 doi: 10.1016/j.carbon.2018.10.023 – ident: e_1_2_7_31_1 doi: 10.1039/C7TA10558D – ident: e_1_2_7_41_1 doi: 10.1016/j.nanoen.2019.06.002 – ident: e_1_2_7_44_1 doi: 10.1016/j.jcat.2019.09.038 – ident: e_1_2_7_14_1 doi: 10.1002/anie.201809787 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.7b12420 – ident: e_1_2_7_1_1 doi: 10.1038/nmat4481 – ident: e_1_2_7_26_1 doi: 10.1038/nmat3385 – ident: e_1_2_7_37_1 doi: 10.1016/j.jpowsour.2019.227158 – ident: e_1_2_7_42_1 doi: 10.1021/jacs.8b02200 – ident: e_1_2_7_43_1 doi: 10.1021/acscatal.9b01638 – ident: e_1_2_7_22_1 doi: 10.1002/ange.201404161 – ident: e_1_2_7_23_1 doi: 10.1039/C4EE00957F |
SSID | ssj0001537418 |
Score | 2.5833313 |
Snippet | Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity... Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H 2 ) production. Based on the high‐activity... Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H ) production. Based on the high-activity... Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity... Abstract Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1903195 |
SubjectTerms | Atoms & subatomic particles Carbon Cobalt cobalt phosphide Fourier transforms Ligands metal–organic frameworks Morphology Nanoparticles nitrogen‐doped carbon nanotubes overall water splitting Spectrum analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeuGCKE_TghYJCThYdfZhOydESqIKqaUiVPRm7cskUrDTJM25_AMk_mF_CTPrtSHiJUVRlB3J692Z3W9mZ78h5LllzKQit7HO-joWOjVxzi18SStcpo2yHC8KH5-kR2fi3bk8DwG3VUirbNdEv1Db2mCM_IDxDIlk8ky8XlzEWDUKT1dDCY2bZAeW4Fz2yM5wdHL64WeURXKkZ2nZGhN2oOwGWbphHwTlk1u7kSft_xPS_D1h8lcg63ei8R1yO0BI-qaZ811yw1V3yW4w0hV9GZikX90jXydrDNvBhw5nXxzg7PnM0GP8cX31vbmGaei4zc-6vvr2FhRy4yw9RJqQNT2d1qvFdGYdxXUD87scBZRLMTsEpEeefwIvb9L3G3zmnH4C7LqkE4C2PqH6Pjkbjz4eHsWh5kJs8MgvllzlXCWwZzHJkb5LKcFMafuZdQrcwwz2f621YEwlqSoBXOQJU4qDTC6sMvwB6VV15R4Rqgbo7TgpzACabDmwwup0kHNw8kqRmojE7dgXJhCSY12MedFQKbMC56ro5ioiLzr5RUPF8VfJIU5lJ4UU2v6Pevm5CBZZGNMX4JJb8JC1L7nCZZaV6L6KEmAZdG-_VYQi2DU8otPCiDzrmsEi8ZhFVa6-9DIS_JYkYxF52OhN1xMOCAs55SKSbWnUVle3W6rZ1LN-I-0RgFUYNa97_xmCAlDNBLRfPv73a-yRWwwjCD6rbp_01stL9wRg1lo_Dbb0A-bpKt8 priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0vvgi1s9olRUE9SE0tx_Z3KOtPYpQLZzFvoX9Su_gzJW76z3X_0DwP-xf4swmlzaoiBBCyA7JsjuT_c1m5jcArz3nLpeFT60e2FTa3KWF8HhSXgZtnfGCEoWPPuWHJ_LjqTq9kcXf8EN0G25kGfF7TQZu7HL3mjTU-DXRbeOChlqkbsMdyq-lGgZcHl_vsihB9CxUYQ6961QUUm6YGzO-239Eb2WKBP5_Qp2_B0_eBLVxVRrdh3stnGTvm_nfhluhfgDbrcEu2duWVfrdQ_g-XtEWHh5sb_otIOaeTR07ooury59NSqZjo02s1tXljw-onOvg2T5RhqzY8WS-PJ9MfWD0DaFYr8AQ8TKKFEHpg8hFQYmc7POa3jljXxHHLtgYYW4Mrn4EJ6ODL_uHaVt_IXX0-y9VwhTCZLh-cSWIyssYyV3lB9oHg66iRixgrZWcmyw3FQKNIuPGCJQppDdOPIatel6Hp8DMkDyfoKQbYpOvhl56mw8LgQ5fJXOXQLoZ-9K15ORUI2NWNrTKvKS5Kru5SuBNJ3_e0HL8VXKPprKTIjrteGO-OCtb6yydG0h0zz16yzaWXxFK64pcWVkhRMPu7WwUoWxtHF8hNFEbFVom8KprRuukXy6mDvOLKKPQh8k0T-BJozddTwSiLeKXS0D3NKrX1X5LPZ1EBnCiQELgiqMWde8fQ1AiwhmjJahn_yn_HO5y2l6IIXc7sLVaXIQXiMFW9mU0s1-e2i3y priority: 102 providerName: Wiley-Blackwell |
Title | Stringing Bimetallic Metal–Organic Framework‐Derived Cobalt Phosphide Composite for High‐Efficiency Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903195 https://www.ncbi.nlm.nih.gov/pubmed/32154085 https://www.proquest.com/docview/2370478874 https://www.proquest.com/docview/2375882072 https://pubmed.ncbi.nlm.nih.gov/PMC7055562 https://doaj.org/article/cc14274d254b467483577f19174f658c |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB3a9NJLafqpNjVbKLQ9iMi7K618jBObUOrU1A3NTeyXsMGRQ-L4nP6DQv9hfklnVrKwaUsuBSML7YCW2beaN9LsW4B3jnObydzFRnVNLE1m41w4PKROemWsdoIWCo9OsuNT-eksPdvY6otqwmp54Npx-9Z2JWZODhMZE3bGEKlSJWUZssToaenpizFvI5mq1wcLkmVZqzQmfF-7FalzY_xD0KVbUSiI9f-NYf5ZKLlJYEMEGj6GRw11ZAd1l3fhnq-ewG4zOa_Yh0ZB-uNT-DFZ0us6_LH-7Nwjv57PLBvRye3Nr3r5pWXDdV3W7c3PIwTiyjt2SPIgSzaeLq4upjPnGT0vqK7LM2S3jKpC0HoQdCdo0Sb7sqJ7ztl35KyXbIKUNhRSP4PT4eDb4XHc7LUQW_rUF6dC50InGKt4Kki2S2vJbem6ynmNaaHCuG-MkZzrJNMlkoo84VoLtMml01Y8h51qUfmXwDSNjfCptD1scmXPSWeyXi4wuStlZiOI174vbCNETvthzItaQpkXNFZFO1YRvG_tL2oJjn9a9mkoWyuSzg4XEFBFA6jiLkBFsLcGQtHMZ7yFUCRjlCsZwdu2GWcifV7RlV9cB5sU85VE8Qhe1LhpeyKQWZGWXARqC1FbXd1uqWbToPZNckdIUtFrAXt3uKBANjNB9Kev_ocvXsNDTu8XQs3dHuwsL6_9GyRhS9OB-1yOO_Dg4Gj0eYL__cHJ-GsnzMLfThk0TQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKe4ALovymFDASCDismtje9eaAEGkTpbQJFWnV3hav7SWR0t2QpEHcyhsg8R48VJ-EGe8PRPydKkVRFI-yjj2e-cYef0PIE8OYDkRovFg2Yk_EgfZCbuDNN8LKWCvD8aJwrx90j8SbE_9khXwv78JgWmVpE52hNpnGPfItxiUSyYRSvJp89LBqFJ6uliU0crXYs58_Qcg2e7m7A_P7lLFO-3C76xVVBTyNh1qez1XIVR2sMvM5ElQpJZhOTEMaqyAAkuDh4jgWjKl6oBJwn2GdKcVBJhRGaQ6_e4WsAcxowipaa7X7B-9-7ur4HOlgSnbIOttSZoGs4OB3Qdn9Je_nigT8Cdn-nqD5K3B2nq9zg1wvICt9nevYOlmx6U2yXhiFGX1eMFe_uEW-DOa4TQgv2hqdWsD145GmPfxwcf4tv_apaafMB7s4_7oDC2BhDd1GWpI5PRhms8lwZCxFO4X5ZJYCqqaYjQLSbcd3gZdF6dsFPnNMjwErT-kAoLRL4L5Nji5lNu6Q1TRL7T1CVROjK-sL3YQmkzSNMHHQDDkElYkIdI145dhHuiBAxzoc4yinbmYRzlVUzVWNPKvkJzn1x18lWziVlRRSdrsvsumHqLAAkdYNwaQwEJHHrsQL96VMMFwWCcBA6N5mqQhRYUfgEZXW18jjqhksAB7rqNRmZ07GhzipLlmN3M31puoJB0SHHHY1Ipc0aqmryy3paOhYxpFmCcAxjJrTvf8MQQQoagDa72_8-288Ile7h739aH-3v3efXGO4e-Ey-jbJ6nx6Zh8AxJvHD4t1Rcn7y17KPwCA4mZW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuiPIbKGAkEHBYJbG9680BIdIkaikNEaFqb4vX9pJIYTckaRC38gZIvA2P0ydhxvsDEX-nSlEUxaOsY49nvrHH3xDy0DCmAxEaL5at2BNxoL2QG3jzjbAy1spwvCh8MAh2D8XLY_94g3wv78JgWmVpE52hNpnGPfIG4xKJZEIpGkmRFjHs9p_PPnpYQQpPWstyGrmK7NvPnyB8Wzzb68JcP2Ks33u7s-sVFQY8jQdcns9VyFUTLDTzOZJVKSWYTkxLGqsgGJLg7eI4FoypZqAScKVhkynFQSYURmkOv3uBbErwimGNbHZ6g-Gbnzs8PkdqmJIpsskayqyQIRx8MCi-v-YJXcGAP6Hc35M1fwXRzgv2r5DLBXylL3J92yIbNr1KtgoDsaBPChbrp9fIl9EStwzhRTuTDxYw_nSi6QF-ODv9ll8B1bRf5oadnX7twmJYWUN3kKJkSYfjbDEbT4ylaLMwt8xSQNgUM1NAuue4L_DiKH29wmdO6RHg5jkdAax2ydzXyeG5zMYNUkuz1N4iVLUx0rK-0G1oMknbCBMH7ZBDgJmIQNeJV459pAsydKzJMY1yGmcW4VxF1VzVyeNKfpbTgPxVsoNTWUkhfbf7Ipu_jwprEGndEkwKA9F57Mq9cF_KBENnkQAkhO5tl4oQFTYFHlGtgDp5UDWDNcAjHpXa7MTJ-BAzNSWrk5u53lQ94YDukM-uTuSaRq11db0lnYwd4zhSLgFQhlFzuvefIYgAUY1A-_3b__4b98lFWMLRq73B_h1yieFGhkvu2ya15fzE3gW0t4zvFcuKknfnvZJ_AALBaoI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stringing+Bimetallic+Metal%E2%80%93Organic+Framework%E2%80%90Derived+Cobalt+Phosphide+Composite+for+High%E2%80%90Efficiency+Overall+Water+Splitting&rft.jtitle=Advanced+science&rft.au=Chai%2C+Lulu&rft.au=Hu%2C+Zhuoyi&rft.au=Wang%2C+Xian&rft.au=Xu%2C+Yuwei&rft.date=2020-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=7&rft.issue=5&rft_id=info:doi/10.1002%2Fadvs.201903195&rft_id=info%3Apmid%2F32154085&rft.externalDocID=PMC7055562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |