Stringing Bimetallic Metal–Organic Framework‐Derived Cobalt Phosphide Composite for High‐Efficiency Overall Water Splitting

Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OE...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 5; pp. 1903195 - n/a
Main Authors Chai, Lulu, Hu, Zhuoyi, Wang, Xian, Xu, Yuwei, Zhang, Linjie, Li, Ting‐Ting, Hu, Yue, Qian, Jinjie, Huang, Shaoming
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.03.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.201903195

Cover

Loading…
Abstract Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. A type of CoP embedded in carbon nanotubes and nitrogen‐doped carbon material calcined from a bimetallic metal–organic frameworks (MOF) precursor is designed and prepared by growing Co‐based MOFs on an indium–organic framework. The CoP incorporation can greatly promote the water splitting kinetics by the optimized catalyst of CoP‐InNC@CNT, thus the high electrocatalytic activity is achieved toward both the hydrogen evolution reaction and oxygen evolution reaction.
AbstractList Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H 2 ) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H 2 SO 4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm −2 . In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η 10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H 2 ) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H 2 SO 4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm −2 . In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η 10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. A type of CoP embedded in carbon nanotubes and nitrogen‐doped carbon material calcined from a bimetallic metal–organic frameworks (MOF) precursor is designed and prepared by growing Co‐based MOFs on an indium–organic framework. The CoP incorporation can greatly promote the water splitting kinetics by the optimized catalyst of CoP‐InNC@CNT, thus the high electrocatalytic activity is achieved toward both the hydrogen evolution reaction and oxygen evolution reaction.
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H ) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H SO and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm . In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm-2. In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP-InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm-2. In addition, these CoP-InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions. A type of CoP embedded in carbon nanotubes and nitrogen‐doped carbon material calcined from a bimetallic metal–organic frameworks (MOF) precursor is designed and prepared by growing Co‐based MOFs on an indium–organic framework. The CoP incorporation can greatly promote the water splitting kinetics by the optimized catalyst of CoP‐InNC@CNT, thus the high electrocatalytic activity is achieved toward both the hydrogen evolution reaction and oxygen evolution reaction.
Abstract Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co‐based coordination polymer (ZIF‐67) anchoring on an indium–organic framework (InOF‐1) composite (InOF‐1@ZIF‐67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles–embedded carbon nanotubes and nitrogen‐doped carbon materials (CoP‐InNC@CNT). As HER and OER electrocatalysts, it is demonstrated that CoP‐InNC@CNT simultaneously exhibit high HER performance (overpotential of 153 mV in 0.5 m H2SO4 and 159 mV in 1.0 m KOH) and OER performance (overpotential of 270 mV in 1.0 m KOH) activities to reach the current density of 10 mA cm−2. In addition, these CoP‐InNC@CNT rods, as a cathode and an anode, can display an excellent OWS performance with η10 = 1.58 V and better stability, which shows the satisfying electrocatalyst for the OWS compared to control materials. This method ensures the tight and uniform growth of the fast nucleating and stable materials on substrate and can be further applied for practical electrochemical reactions.
Author Chai, Lulu
Xu, Yuwei
Zhang, Linjie
Huang, Shaoming
Li, Ting‐Ting
Hu, Zhuoyi
Hu, Yue
Qian, Jinjie
Wang, Xian
AuthorAffiliation 1 Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325000 China
4 School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
2 State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
3 Chimie du solide et de l'énergie‐Collège de France 11 Place Marcelin Berthelot Paris 75005 France
5 School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
AuthorAffiliation_xml – name: 5 School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
– name: 1 Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325000 China
– name: 3 Chimie du solide et de l'énergie‐Collège de France 11 Place Marcelin Berthelot Paris 75005 France
– name: 4 School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
– name: 2 State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
Author_xml – sequence: 1
  givenname: Lulu
  surname: Chai
  fullname: Chai, Lulu
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Zhuoyi
  surname: Hu
  fullname: Hu, Zhuoyi
  organization: Wenzhou University
– sequence: 3
  givenname: Xian
  surname: Wang
  fullname: Wang, Xian
  organization: Wenzhou University
– sequence: 4
  givenname: Yuwei
  surname: Xu
  fullname: Xu, Yuwei
  organization: Wenzhou University
– sequence: 5
  givenname: Linjie
  surname: Zhang
  fullname: Zhang, Linjie
  organization: Chimie du solide et de l'énergie‐Collège de France
– sequence: 6
  givenname: Ting‐Ting
  surname: Li
  fullname: Li, Ting‐Ting
  organization: Ningbo University
– sequence: 7
  givenname: Yue
  surname: Hu
  fullname: Hu, Yue
  organization: Wenzhou University
– sequence: 8
  givenname: Jinjie
  orcidid: 0000-0002-9996-7929
  surname: Qian
  fullname: Qian, Jinjie
  email: jinjieqian@wzu.edu.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Shaoming
  surname: Huang
  fullname: Huang, Shaoming
  email: smhuang@gdut.edu.cn
  organization: Guangdong University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32154085$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiJbSLUs0Ehs2Cb7Gng1SSVtaqShI4bK0zng8icPMONhOquzKGyDxhn0SPCSt2koIyZLt4-_859j-n2d7netMlr3EaIgRIm-hWochQbhAFBf8SXZAcCEHVDK2d2-9nx2FsEAIYU4Fw_JZtk8J5gxJfpD9nEZvu1ka-XvbmghNY3X-sV_cXP-e-Bl0aX_moTVXzn-_uf51YrxdmyofuxKamH-au7Cc28qkQLt0wUaT187n53Y2T_RpXVttTac3-WRtfJLPv0E0Pp8uGxtjqvsie1pDE8zRbj7Mvpydfh6fDy4nHy7Gx5cDzUnBB5yCpIAkE4RTjkUBwIiuKywqAwQjgUa4LEtGCKAR1IRQiQgATYxkFWh6mF1sdSsHC7X0tgW_UQ6s-htwfqbAR6sbo7TGjAhWEc5KNhJMUi5EjQssWD3istd6t9VarsrWVNp0MV3tgejDk87O1cytlUCc8xFJAm92At79WJkQVWuDNk0DnXGroAgVXEqCRI--foQu3Mp36al6CjEhpWCJenW_o7tWbn86AWwLaO9C8KZW2kaI1vUN2kZhpHpPqd5T6s5TKW34KO1W-Z8JuzpXtjGb_9Dq-OTrNNmS0z9nKOE-
CitedBy_id crossref_primary_10_1016_j_jelechem_2021_115521
crossref_primary_10_1016_j_apenergy_2022_119887
crossref_primary_10_1016_j_gee_2021_04_003
crossref_primary_10_1039_D2TA02470E
crossref_primary_10_3390_en16031124
crossref_primary_10_1016_j_jcis_2024_05_168
crossref_primary_10_1002_aenm_202102134
crossref_primary_10_1002_asia_202000969
crossref_primary_10_1002_smtd_202100125
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1039_D1NR01669E
crossref_primary_10_1039_D0RA07779H
crossref_primary_10_1016_j_jcis_2023_04_089
crossref_primary_10_1039_D3DT00065F
crossref_primary_10_1016_j_nanoms_2022_04_003
crossref_primary_10_1002_smtd_202201616
crossref_primary_10_1002_adma_202305532
crossref_primary_10_1016_j_carbon_2022_05_006
crossref_primary_10_1039_D0SE00402B
crossref_primary_10_1016_j_surfin_2024_104224
crossref_primary_10_1039_D0DT04188B
crossref_primary_10_1039_D0RA06805E
crossref_primary_10_1039_D1TC03450B
crossref_primary_10_1016_j_cej_2021_130336
crossref_primary_10_1002_slct_202100055
crossref_primary_10_1039_D2GC04107C
crossref_primary_10_1016_j_jallcom_2024_176818
crossref_primary_10_1016_j_isci_2020_101264
crossref_primary_10_1039_D3SE01486J
crossref_primary_10_1002_aenm_202003291
crossref_primary_10_1016_j_mtchem_2024_101928
crossref_primary_10_1039_D1DT01729B
crossref_primary_10_1039_D1NJ00613D
crossref_primary_10_1021_acsaem_1c03638
crossref_primary_10_1021_acs_inorgchem_1c03498
crossref_primary_10_1016_j_ijhydene_2021_07_180
crossref_primary_10_1039_D1DT03638F
crossref_primary_10_1016_j_ijhydene_2022_09_077
crossref_primary_10_1016_j_apsusc_2021_152405
crossref_primary_10_1016_j_ijhydene_2024_12_132
crossref_primary_10_1039_D4QI01022A
crossref_primary_10_1039_D0RA04320F
crossref_primary_10_1016_j_esi_2024_02_001
crossref_primary_10_1088_1361_6528_ac4f82
crossref_primary_10_1007_s11581_022_04707_z
crossref_primary_10_1039_D0CC04015K
crossref_primary_10_1016_j_cej_2021_129128
crossref_primary_10_1039_D2DT01111E
crossref_primary_10_1016_j_cej_2023_141674
crossref_primary_10_1021_acssuschemeng_0c09339
crossref_primary_10_1039_D2TA06083C
crossref_primary_10_1021_acsami_1c13488
crossref_primary_10_1016_j_apsusc_2023_157070
crossref_primary_10_1039_D1CC00569C
crossref_primary_10_1002_adfm_202419989
crossref_primary_10_1016_j_electacta_2022_139846
crossref_primary_10_1002_pssa_202200581
crossref_primary_10_1016_j_apcatb_2022_121667
crossref_primary_10_1021_acsanm_0c00662
crossref_primary_10_1007_s10853_021_05900_7
crossref_primary_10_1016_j_ijhydene_2020_08_120
crossref_primary_10_1016_j_jcis_2021_02_009
crossref_primary_10_1039_D1NJ01096D
crossref_primary_10_1016_j_jpowsour_2021_229947
crossref_primary_10_1016_j_cclet_2021_01_047
crossref_primary_10_1039_D1TA01638E
crossref_primary_10_1039_D0RA08064K
crossref_primary_10_1007_s12274_023_6270_1
crossref_primary_10_1016_j_carbpol_2023_121436
crossref_primary_10_1016_j_matlet_2020_128351
crossref_primary_10_2139_ssrn_4183141
crossref_primary_10_1039_D1TA09932A
crossref_primary_10_1016_j_ijhydene_2021_09_123
crossref_primary_10_1016_j_ceramint_2021_05_257
crossref_primary_10_1016_j_cej_2021_133523
crossref_primary_10_1039_D4EE00784K
crossref_primary_10_1039_D1DT03931H
crossref_primary_10_1039_D1QM00466B
crossref_primary_10_1002_adma_202413658
crossref_primary_10_1039_D2TA04042E
crossref_primary_10_1039_D3DT01228J
crossref_primary_10_3389_fchem_2020_592915
crossref_primary_10_2139_ssrn_3977367
crossref_primary_10_1016_j_electacta_2023_141956
crossref_primary_10_1016_j_ijoes_2023_100076
crossref_primary_10_1016_j_joule_2023_07_009
crossref_primary_10_1115_1_4055462
crossref_primary_10_3390_molecules28052280
crossref_primary_10_1016_j_cclet_2021_11_063
crossref_primary_10_1002_smll_202203147
crossref_primary_10_1016_j_jcis_2022_08_037
crossref_primary_10_1039_D0DT01469A
crossref_primary_10_1016_j_jcis_2020_11_053
crossref_primary_10_1016_j_ijhydene_2024_05_370
crossref_primary_10_1016_j_snb_2020_128846
crossref_primary_10_1021_acsami_0c11722
crossref_primary_10_1016_j_cej_2024_152023
crossref_primary_10_1002_advs_202200529
crossref_primary_10_1039_D0TA07616C
crossref_primary_10_1021_acsaem_1c00812
crossref_primary_10_1039_D0NR07126A
crossref_primary_10_1016_j_cclet_2025_110890
crossref_primary_10_1016_j_cej_2021_129031
crossref_primary_10_1016_j_jcis_2025_01_080
crossref_primary_10_1016_j_jechem_2023_12_033
crossref_primary_10_1039_D4EE00042K
crossref_primary_10_1039_D4QI00644E
crossref_primary_10_1002_aenm_202303623
crossref_primary_10_1016_j_jcis_2022_05_093
crossref_primary_10_1039_D0RA10019F
crossref_primary_10_1039_D0RA07039D
crossref_primary_10_1016_j_cej_2021_130279
crossref_primary_10_1016_j_carbon_2021_01_160
crossref_primary_10_1016_j_jallcom_2022_164993
crossref_primary_10_1016_j_rechem_2024_102009
crossref_primary_10_1021_acssuschemeng_2c03250
crossref_primary_10_1016_j_mtnano_2023_100390
crossref_primary_10_1016_j_jallcom_2022_167460
crossref_primary_10_1002_adfm_202415585
crossref_primary_10_1016_j_micromeso_2020_110868
crossref_primary_10_1039_D0NA00648C
crossref_primary_10_1016_j_ijhydene_2025_03_167
crossref_primary_10_1016_j_jcis_2023_11_149
crossref_primary_10_1039_D3DT00674C
crossref_primary_10_1016_j_cclet_2021_11_041
crossref_primary_10_1002_cctc_202101280
crossref_primary_10_1039_D3TA01993D
crossref_primary_10_1016_j_ijhydene_2023_09_294
crossref_primary_10_1007_s12274_022_5228_z
crossref_primary_10_1016_j_ccr_2020_213488
crossref_primary_10_1016_j_microc_2021_106432
crossref_primary_10_1007_s11224_023_02165_5
crossref_primary_10_1002_adfm_202302297
crossref_primary_10_1002_asia_202301039
crossref_primary_10_1002_cssc_202000566
crossref_primary_10_1016_j_ijhydene_2022_04_075
crossref_primary_10_1002_advs_202201916
crossref_primary_10_1039_D1RA01444G
crossref_primary_10_1039_D1RA01880A
crossref_primary_10_1016_j_mtener_2021_100698
crossref_primary_10_1016_j_ijhydene_2023_10_066
crossref_primary_10_1016_j_nanoen_2023_108681
crossref_primary_10_1002_smll_202310012
crossref_primary_10_1002_aoc_7889
crossref_primary_10_1021_acsanm_1c02607
crossref_primary_10_1016_j_ijhydene_2020_02_206
crossref_primary_10_1039_D3TA00239J
crossref_primary_10_1002_chem_202402900
crossref_primary_10_1016_j_carbon_2022_07_003
crossref_primary_10_1016_j_ijhydene_2020_12_062
crossref_primary_10_1002_advs_202300797
crossref_primary_10_1039_D3CS01122D
crossref_primary_10_1002_smll_202308732
crossref_primary_10_1002_smtd_202200377
crossref_primary_10_1039_D1TA06548C
crossref_primary_10_1039_D4CC06285J
crossref_primary_10_1039_D0RA07696A
crossref_primary_10_1039_D0NJ03403G
crossref_primary_10_1166_mex_2022_2059
crossref_primary_10_1016_j_jcis_2023_12_017
crossref_primary_10_1016_j_ijhydene_2020_10_121
crossref_primary_10_1016_j_nanoen_2021_105943
crossref_primary_10_1021_acsami_3c15769
crossref_primary_10_1016_j_jallcom_2023_170950
crossref_primary_10_1039_D1QM00751C
crossref_primary_10_1039_D2DT01837C
crossref_primary_10_1149_1945_7111_abb4f5
crossref_primary_10_1016_j_fmre_2021_06_021
crossref_primary_10_1039_D2QI00753C
crossref_primary_10_1002_smsc_202100032
crossref_primary_10_1021_acsami_2c22218
crossref_primary_10_1016_j_electacta_2022_141514
crossref_primary_10_3390_nano12071098
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_3390_catal13091230
crossref_primary_10_1002_jctb_7655
crossref_primary_10_1016_j_mtener_2021_100667
crossref_primary_10_1039_D0CC06049F
crossref_primary_10_1016_j_jcis_2022_02_031
crossref_primary_10_1016_j_ijhydene_2022_07_242
crossref_primary_10_1016_j_ccr_2023_215101
crossref_primary_10_1016_j_cej_2024_155832
crossref_primary_10_3740_MRSK_2022_32_2_98
crossref_primary_10_1016_j_ccr_2022_214649
crossref_primary_10_1016_j_ijhydene_2021_08_171
crossref_primary_10_1039_D1RA01775F
crossref_primary_10_1016_j_jallcom_2021_163421
crossref_primary_10_1088_1742_6596_2468_1_012154
crossref_primary_10_1021_acsami_1c11521
crossref_primary_10_1002_smll_202100998
crossref_primary_10_1039_D2DT00828A
crossref_primary_10_1016_j_cej_2021_130533
crossref_primary_10_1016_j_electacta_2022_140280
crossref_primary_10_1063_5_0185031
crossref_primary_10_1039_D4CC02074J
crossref_primary_10_1002_advs_202105063
crossref_primary_10_1002_smll_202107572
crossref_primary_10_1002_adfm_202200733
crossref_primary_10_1021_acs_iecr_4c04262
crossref_primary_10_1016_j_jpowsour_2022_231571
crossref_primary_10_1002_cctc_202101933
crossref_primary_10_1039_D4MA00114A
crossref_primary_10_1016_j_jallcom_2021_162208
crossref_primary_10_1039_D0RA10522H
crossref_primary_10_1016_j_ijhydene_2020_12_146
crossref_primary_10_1016_j_apsusc_2023_156456
crossref_primary_10_1039_D4CC06281G
crossref_primary_10_1016_j_jelechem_2021_115300
crossref_primary_10_1021_acs_cgd_1c00588
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1016_j_matchemphys_2024_129553
crossref_primary_10_1016_j_ccr_2024_216296
crossref_primary_10_1016_j_jechem_2022_12_026
crossref_primary_10_1002_sstr_202200109
crossref_primary_10_1016_j_est_2024_112930
crossref_primary_10_1016_j_cej_2022_135720
crossref_primary_10_1039_D3MH01130E
crossref_primary_10_26599_POM_2023_9140030
crossref_primary_10_1021_acs_inorgchem_1c01325
crossref_primary_10_1039_D3RA06824B
crossref_primary_10_1016_j_jcis_2024_09_040
crossref_primary_10_1016_j_talanta_2023_125241
crossref_primary_10_1039_D3DT04263D
crossref_primary_10_1016_j_nanoen_2023_108415
crossref_primary_10_1016_j_ijhydene_2024_01_201
crossref_primary_10_1016_j_gee_2020_09_002
crossref_primary_10_1016_j_apsusc_2023_159058
crossref_primary_10_1002_celc_202100313
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1002_cctc_202100981
crossref_primary_10_1016_j_jssc_2020_121867
crossref_primary_10_1016_j_cclet_2023_109105
crossref_primary_10_1021_acs_inorgchem_4c02194
crossref_primary_10_1002_smll_202006617
crossref_primary_10_1002_smsc_202000027
crossref_primary_10_1016_j_jallcom_2023_173237
crossref_primary_10_1021_acsanm_1c00850
crossref_primary_10_1016_j_jpowsour_2024_234423
crossref_primary_10_1039_D0CY01232G
crossref_primary_10_1039_D1NR02232F
crossref_primary_10_1016_j_apcatb_2021_120511
crossref_primary_10_1002_smll_202100607
crossref_primary_10_1016_j_ijhydene_2021_04_084
crossref_primary_10_1002_adfm_202313233
crossref_primary_10_1016_j_apcatb_2022_122313
Cites_doi 10.1016/j.apcatb.2019.01.007
10.1007/s12274-017-1511-9
10.1039/C8SC03877E
10.1021/acsami.8b16126
10.1021/acs.accounts.8b00002
10.1038/s41467-018-04746-z
10.1002/smll.201804546
10.1002/aenm.201502333
10.1002/adma.201806682
10.1002/anie.201409530
10.1016/j.nanoen.2018.03.034
10.1039/C7TA08386F
10.1021/cs3003098
10.1016/j.apcatb.2009.07.017
10.1039/C5TA00455A
10.1039/c3sc51052b
10.1039/C6TA02334G
10.1039/C5TA02551F
10.1002/cctc.201000126
10.1039/C7EE03619A
10.1021/acscatal.7b00587
10.1002/anie.201502659
10.1021/acsami.6b10983
10.1039/c2cc35068h
10.1002/adma.201502696
10.1002/anie.201502438
10.1016/j.electacta.2012.12.105
10.1039/C9TA04583J
10.1002/anie.201402646
10.1039/C7TA11312A
10.1021/ja5127165
10.1002/adfm.201505509
10.1039/C8EE01669K
10.1016/j.carbon.2018.10.023
10.1039/C7TA10558D
10.1016/j.nanoen.2019.06.002
10.1016/j.jcat.2019.09.038
10.1002/anie.201809787
10.1021/jacs.7b12420
10.1038/nmat4481
10.1038/nmat3385
10.1016/j.jpowsour.2019.227158
10.1021/jacs.8b02200
10.1021/acscatal.9b01638
10.1002/ange.201404161
10.1039/C4EE00957F
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201903195
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Proquest Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_cc14274d254b467483577f19174f658c
PMC7055562
32154085
10_1002_advs_201903195
ADVS1535
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 21601137; 51920105004
– fundername: National Social Science Fund Youth Project
  funderid: 21601187
– fundername: Graduate Scientific Research Foundation of Wenzhou University
  funderid: 3162018030; 2019R429048
– fundername: State Key Laboratory from Structural Chemistry
– fundername: Chinese Academy of Sciences
  funderid: 20190008
– fundername: ;
  grantid: 21601137; 51920105004
– fundername: ;
  grantid: 20190008
– fundername: Graduate Scientific Research Foundation of Wenzhou University
  grantid: 3162018030; 2019R429048
– fundername: ;
  grantid: 21601187
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5295-53a83a08472535179aa42cfd17dea2107061bbb422a06af223802aa32cf84dac3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:19:00 EDT 2025
Thu Aug 21 18:00:02 EDT 2025
Thu Sep 04 18:26:26 EDT 2025
Fri Jul 25 03:04:29 EDT 2025
Wed Feb 19 02:29:05 EST 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 03:59:22 EDT 2025
Wed Jan 22 16:34:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cobalt phosphide
metal–organic frameworks
overall water splitting
nitrogen‐doped carbon nanotubes
Language English
License Attribution
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5295-53a83a08472535179aa42cfd17dea2107061bbb422a06af223802aa32cf84dac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9996-7929
OpenAccessLink https://doaj.org/article/cc14274d254b467483577f19174f658c
PMID 32154085
PQID 2370478874
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cc14274d254b467483577f19174f658c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7055562
proquest_miscellaneous_2375882072
proquest_journals_2370478874
pubmed_primary_32154085
crossref_citationtrail_10_1002_advs_201903195
crossref_primary_10_1002_advs_201903195
wiley_primary_10_1002_advs_201903195_ADVS1535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 5
2019; 7
2017; 7
2019; 9
2013; 4
2018; 140
2015; 3
2019; 31
2019; 11
2019; 10
2019; 12
2019; 15
2015; 54
2013; 100
2019; 245
2019; 141
2019; 380
2016; 15
2012; 11
2017; 9
2018; 48
2019; 440
2016; 4
2018; 6
2016; 6
2018; 9
2012; 2
2019; 62
2009; 92
2015; 137
2017; 10
2018; 51
2012; 48
2016; 28
2010; 2
2018; 11
2014; 7
2016; 26
2014; 126
2018; 57
2014; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 10
  start-page: 464
  year: 2019
  publication-title: Chem. Sci.
– volume: 6
  start-page: 4783
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 73
  year: 2018
  publication-title: Nano Energy
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 6910
  year: 2019
  publication-title: ACS Catal.
– volume: 11
  start-page: 699
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 802
  year: 2012
  publication-title: Nat. Mater.
– volume: 12
  start-page: 988
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 643
  year: 2019
  publication-title: Carbon
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 380
  start-page: 307
  year: 2019
  publication-title: J. Catal.
– volume: 7
  start-page: 2624
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 215
  year: 2016
  publication-title: Adv. Mater.
– volume: 92
  start-page: 100
  year: 2009
  publication-title: Appl. Catal., B
– volume: 48
  start-page: 9696
  year: 2012
  publication-title: Chem. Commun.
– volume: 4
  start-page: 2941
  year: 2013
  publication-title: Chem. Sci.
– volume: 140
  start-page: 5037
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 8483
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 100
  start-page: 249
  year: 2013
  publication-title: Electrochim. Acta
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 245
  start-page: 528
  year: 2019
  publication-title: Appl. Catal., B
– volume: 137
  start-page: 2688
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 197
  year: 2016
  publication-title: Nat. Mater.
– volume: 440
  year: 2019
  publication-title: J. Power Sources
– volume: 9
  start-page: 2551
  year: 2018
  publication-title: Nat. Commun.
– volume: 26
  start-page: 4067
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1287
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 1571
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 745
  year: 2019
  publication-title: Nano Energy
– volume: 54
  start-page: 7230
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 5789
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 724
  year: 2010
  publication-title: ChemCatChem
– volume: 53
  start-page: 5427
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 1490
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1765
  year: 2012
  publication-title: ACS Catal.
– volume: 126
  start-page: 6828
  year: 2014
  publication-title: Angew. Chem.
– volume: 7
  start-page: 3824
  year: 2017
  publication-title: ACS Catal.
– volume: 10
  start-page: 1819
  year: 2017
  publication-title: Nano Res.
– volume: 9
  start-page: 2240
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_29_1
  doi: 10.1016/j.apcatb.2019.01.007
– ident: e_1_2_7_40_1
  doi: 10.1007/s12274-017-1511-9
– ident: e_1_2_7_15_1
  doi: 10.1039/C8SC03877E
– ident: e_1_2_7_39_1
  doi: 10.1021/acsami.8b16126
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.accounts.8b00002
– ident: e_1_2_7_17_1
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_7_38_1
  doi: 10.1002/smll.201804546
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201502333
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201806682
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.201409530
– ident: e_1_2_7_30_1
  doi: 10.1016/j.nanoen.2018.03.034
– ident: e_1_2_7_25_1
  doi: 10.1039/C7TA08386F
– ident: e_1_2_7_10_1
  doi: 10.1021/cs3003098
– ident: e_1_2_7_20_1
  doi: 10.1016/j.apcatb.2009.07.017
– ident: e_1_2_7_34_1
  doi: 10.1039/C5TA00455A
– ident: e_1_2_7_36_1
  doi: 10.1039/c3sc51052b
– ident: e_1_2_7_6_1
  doi: 10.1039/C6TA02334G
– ident: e_1_2_7_45_1
  doi: 10.1039/C5TA02551F
– ident: e_1_2_7_8_1
  doi: 10.1002/cctc.201000126
– ident: e_1_2_7_12_1
  doi: 10.1039/C7EE03619A
– ident: e_1_2_7_32_1
  doi: 10.1021/acscatal.7b00587
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.201502659
– ident: e_1_2_7_19_1
  doi: 10.1021/acsami.6b10983
– ident: e_1_2_7_33_1
  doi: 10.1039/c2cc35068h
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201502696
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201502438
– ident: e_1_2_7_5_1
  doi: 10.1016/j.electacta.2012.12.105
– ident: e_1_2_7_9_1
  doi: 10.1039/C9TA04583J
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201402646
– ident: e_1_2_7_27_1
  doi: 10.1039/C7TA11312A
– ident: e_1_2_7_46_1
  doi: 10.1021/ja5127165
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201505509
– ident: e_1_2_7_13_1
  doi: 10.1039/C8EE01669K
– ident: e_1_2_7_24_1
  doi: 10.1016/j.carbon.2018.10.023
– ident: e_1_2_7_31_1
  doi: 10.1039/C7TA10558D
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nanoen.2019.06.002
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jcat.2019.09.038
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.201809787
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4481
– ident: e_1_2_7_26_1
  doi: 10.1038/nmat3385
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jpowsour.2019.227158
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.8b02200
– ident: e_1_2_7_43_1
  doi: 10.1021/acscatal.9b01638
– ident: e_1_2_7_22_1
  doi: 10.1002/ange.201404161
– ident: e_1_2_7_23_1
  doi: 10.1039/C4EE00957F
SSID ssj0001537418
Score 2.5833313
Snippet Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high‐activity...
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H 2 ) production. Based on the high‐activity...
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H ) production. Based on the high-activity...
Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the high-activity...
Abstract Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H2) production. Based on the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1903195
SubjectTerms Atoms & subatomic particles
Carbon
Cobalt
cobalt phosphide
Fourier transforms
Ligands
metal–organic frameworks
Morphology
Nanoparticles
nitrogen‐doped carbon nanotubes
overall water splitting
Spectrum analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeuGCKE_TghYJCThYdfZhOydESqIKqaUiVPRm7cskUrDTJM25_AMk_mF_CTPrtSHiJUVRlB3J692Z3W9mZ78h5LllzKQit7HO-joWOjVxzi18SStcpo2yHC8KH5-kR2fi3bk8DwG3VUirbNdEv1Db2mCM_IDxDIlk8ky8XlzEWDUKT1dDCY2bZAeW4Fz2yM5wdHL64WeURXKkZ2nZGhN2oOwGWbphHwTlk1u7kSft_xPS_D1h8lcg63ei8R1yO0BI-qaZ811yw1V3yW4w0hV9GZikX90jXydrDNvBhw5nXxzg7PnM0GP8cX31vbmGaei4zc-6vvr2FhRy4yw9RJqQNT2d1qvFdGYdxXUD87scBZRLMTsEpEeefwIvb9L3G3zmnH4C7LqkE4C2PqH6Pjkbjz4eHsWh5kJs8MgvllzlXCWwZzHJkb5LKcFMafuZdQrcwwz2f621YEwlqSoBXOQJU4qDTC6sMvwB6VV15R4Rqgbo7TgpzACabDmwwup0kHNw8kqRmojE7dgXJhCSY12MedFQKbMC56ro5ioiLzr5RUPF8VfJIU5lJ4UU2v6Pevm5CBZZGNMX4JJb8JC1L7nCZZaV6L6KEmAZdG-_VYQi2DU8otPCiDzrmsEi8ZhFVa6-9DIS_JYkYxF52OhN1xMOCAs55SKSbWnUVle3W6rZ1LN-I-0RgFUYNa97_xmCAlDNBLRfPv73a-yRWwwjCD6rbp_01stL9wRg1lo_Dbb0A-bpKt8
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0vvgi1s9olRUE9SE0tx_Z3KOtPYpQLZzFvoX9Su_gzJW76z3X_0DwP-xf4swmlzaoiBBCyA7JsjuT_c1m5jcArz3nLpeFT60e2FTa3KWF8HhSXgZtnfGCEoWPPuWHJ_LjqTq9kcXf8EN0G25kGfF7TQZu7HL3mjTU-DXRbeOChlqkbsMdyq-lGgZcHl_vsihB9CxUYQ6961QUUm6YGzO-239Eb2WKBP5_Qp2_B0_eBLVxVRrdh3stnGTvm_nfhluhfgDbrcEu2duWVfrdQ_g-XtEWHh5sb_otIOaeTR07ooury59NSqZjo02s1tXljw-onOvg2T5RhqzY8WS-PJ9MfWD0DaFYr8AQ8TKKFEHpg8hFQYmc7POa3jljXxHHLtgYYW4Mrn4EJ6ODL_uHaVt_IXX0-y9VwhTCZLh-cSWIyssYyV3lB9oHg66iRixgrZWcmyw3FQKNIuPGCJQppDdOPIatel6Hp8DMkDyfoKQbYpOvhl56mw8LgQ5fJXOXQLoZ-9K15ORUI2NWNrTKvKS5Kru5SuBNJ3_e0HL8VXKPprKTIjrteGO-OCtb6yydG0h0zz16yzaWXxFK64pcWVkhRMPu7WwUoWxtHF8hNFEbFVom8KprRuukXy6mDvOLKKPQh8k0T-BJozddTwSiLeKXS0D3NKrX1X5LPZ1EBnCiQELgiqMWde8fQ1AiwhmjJahn_yn_HO5y2l6IIXc7sLVaXIQXiMFW9mU0s1-e2i3y
  priority: 102
  providerName: Wiley-Blackwell
Title Stringing Bimetallic Metal–Organic Framework‐Derived Cobalt Phosphide Composite for High‐Efficiency Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903195
https://www.ncbi.nlm.nih.gov/pubmed/32154085
https://www.proquest.com/docview/2370478874
https://www.proquest.com/docview/2375882072
https://pubmed.ncbi.nlm.nih.gov/PMC7055562
https://doaj.org/article/cc14274d254b467483577f19174f658c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB3a9NJLafqpNjVbKLQ9iMi7K618jBObUOrU1A3NTeyXsMGRQ-L4nP6DQv9hfklnVrKwaUsuBSML7YCW2beaN9LsW4B3jnObydzFRnVNLE1m41w4PKROemWsdoIWCo9OsuNT-eksPdvY6otqwmp54Npx-9Z2JWZODhMZE3bGEKlSJWUZssToaenpizFvI5mq1wcLkmVZqzQmfF-7FalzY_xD0KVbUSiI9f-NYf5ZKLlJYEMEGj6GRw11ZAd1l3fhnq-ewG4zOa_Yh0ZB-uNT-DFZ0us6_LH-7Nwjv57PLBvRye3Nr3r5pWXDdV3W7c3PIwTiyjt2SPIgSzaeLq4upjPnGT0vqK7LM2S3jKpC0HoQdCdo0Sb7sqJ7ztl35KyXbIKUNhRSP4PT4eDb4XHc7LUQW_rUF6dC50InGKt4Kki2S2vJbem6ynmNaaHCuG-MkZzrJNMlkoo84VoLtMml01Y8h51qUfmXwDSNjfCptD1scmXPSWeyXi4wuStlZiOI174vbCNETvthzItaQpkXNFZFO1YRvG_tL2oJjn9a9mkoWyuSzg4XEFBFA6jiLkBFsLcGQtHMZ7yFUCRjlCsZwdu2GWcifV7RlV9cB5sU85VE8Qhe1LhpeyKQWZGWXARqC1FbXd1uqWbToPZNckdIUtFrAXt3uKBANjNB9Kev_ocvXsNDTu8XQs3dHuwsL6_9GyRhS9OB-1yOO_Dg4Gj0eYL__cHJ-GsnzMLfThk0TQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKe4ALovymFDASCDismtje9eaAEGkTpbQJFWnV3hav7SWR0t2QpEHcyhsg8R48VJ-EGe8PRPydKkVRFI-yjj2e-cYef0PIE8OYDkRovFg2Yk_EgfZCbuDNN8LKWCvD8aJwrx90j8SbE_9khXwv78JgWmVpE52hNpnGPfItxiUSyYRSvJp89LBqFJ6uliU0crXYs58_Qcg2e7m7A_P7lLFO-3C76xVVBTyNh1qez1XIVR2sMvM5ElQpJZhOTEMaqyAAkuDh4jgWjKl6oBJwn2GdKcVBJhRGaQ6_e4WsAcxowipaa7X7B-9-7ur4HOlgSnbIOttSZoGs4OB3Qdn9Je_nigT8Cdn-nqD5K3B2nq9zg1wvICt9nevYOlmx6U2yXhiFGX1eMFe_uEW-DOa4TQgv2hqdWsD145GmPfxwcf4tv_apaafMB7s4_7oDC2BhDd1GWpI5PRhms8lwZCxFO4X5ZJYCqqaYjQLSbcd3gZdF6dsFPnNMjwErT-kAoLRL4L5Nji5lNu6Q1TRL7T1CVROjK-sL3YQmkzSNMHHQDDkElYkIdI145dhHuiBAxzoc4yinbmYRzlVUzVWNPKvkJzn1x18lWziVlRRSdrsvsumHqLAAkdYNwaQwEJHHrsQL96VMMFwWCcBA6N5mqQhRYUfgEZXW18jjqhksAB7rqNRmZ07GhzipLlmN3M31puoJB0SHHHY1Ipc0aqmryy3paOhYxpFmCcAxjJrTvf8MQQQoagDa72_8-288Ile7h739aH-3v3efXGO4e-Ey-jbJ6nx6Zh8AxJvHD4t1Rcn7y17KPwCA4mZW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuiPIbKGAkEHBYJbG9680BIdIkaikNEaFqb4vX9pJIYTckaRC38gZIvA2P0ydhxvsDEX-nSlEUxaOsY49nvrHH3xDy0DCmAxEaL5at2BNxoL2QG3jzjbAy1spwvCh8MAh2D8XLY_94g3wv78JgWmVpE52hNpnGPfIG4xKJZEIpGkmRFjHs9p_PPnpYQQpPWstyGrmK7NvPnyB8Wzzb68JcP2Ks33u7s-sVFQY8jQdcns9VyFUTLDTzOZJVKSWYTkxLGqsgGJLg7eI4FoypZqAScKVhkynFQSYURmkOv3uBbErwimGNbHZ6g-Gbnzs8PkdqmJIpsskayqyQIRx8MCi-v-YJXcGAP6Hc35M1fwXRzgv2r5DLBXylL3J92yIbNr1KtgoDsaBPChbrp9fIl9EStwzhRTuTDxYw_nSi6QF-ODv9ll8B1bRf5oadnX7twmJYWUN3kKJkSYfjbDEbT4ylaLMwt8xSQNgUM1NAuue4L_DiKH29wmdO6RHg5jkdAax2ydzXyeG5zMYNUkuz1N4iVLUx0rK-0G1oMknbCBMH7ZBDgJmIQNeJV459pAsydKzJMY1yGmcW4VxF1VzVyeNKfpbTgPxVsoNTWUkhfbf7Ipu_jwprEGndEkwKA9F57Mq9cF_KBENnkQAkhO5tl4oQFTYFHlGtgDp5UDWDNcAjHpXa7MTJ-BAzNSWrk5u53lQ94YDukM-uTuSaRq11db0lnYwd4zhSLgFQhlFzuvefIYgAUY1A-_3b__4b98lFWMLRq73B_h1yieFGhkvu2ya15fzE3gW0t4zvFcuKknfnvZJ_AALBaoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stringing+Bimetallic+Metal%E2%80%93Organic+Framework%E2%80%90Derived+Cobalt+Phosphide+Composite+for+High%E2%80%90Efficiency+Overall+Water+Splitting&rft.jtitle=Advanced+science&rft.au=Chai%2C+Lulu&rft.au=Hu%2C+Zhuoyi&rft.au=Wang%2C+Xian&rft.au=Xu%2C+Yuwei&rft.date=2020-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=7&rft.issue=5&rft_id=info:doi/10.1002%2Fadvs.201903195&rft_id=info%3Apmid%2F32154085&rft.externalDocID=PMC7055562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon