Persistent Regulation of Tumor Hypoxia Microenvironment via a Bioinspired Pt‐Based Oxygen Nanogenerator for Multimodal Imaging‐Guided Synergistic Phototherapy
Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodyn...
Saved in:
Published in | Advanced science Vol. 7; no. 17; pp. 1903341 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.09.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.201903341 |
Cover
Loading…
Abstract | Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors.
In this research, a tumor environment (TEM)‐responsive and continuous O2 self‐enriched drug delivery platform based on octahedral gold nanoshells (GNSs) using Pt‐decorated metal–organic frameworks (MOF) as inner template is constructed. The obtained nanostructures are further functionalized with human serum albumin‐gadolinium hybrid (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a multimodal imaging guided enhanced photodynamic therapy/photothermal therapy PDT/PTT effect. |
---|---|
AbstractList | Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O
2
self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H
2
O
2
into O
2
to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O
2
self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O 2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H 2 O 2 into O 2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O 2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. In this research, a tumor environment (TEM)‐responsive and continuous O 2 self‐enriched drug delivery platform based on octahedral gold nanoshells (GNSs) using Pt‐decorated metal–organic frameworks (MOF) as inner template is constructed. The obtained nanostructures are further functionalized with human serum albumin‐gadolinium hybrid (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a multimodal imaging guided enhanced photodynamic therapy/photothermal therapy PDT/PTT effect. Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. In this research, a tumor environment (TEM)‐responsive and continuous O2 self‐enriched drug delivery platform based on octahedral gold nanoshells (GNSs) using Pt‐decorated metal–organic frameworks (MOF) as inner template is constructed. The obtained nanostructures are further functionalized with human serum albumin‐gadolinium hybrid (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a multimodal imaging guided enhanced photodynamic therapy/photothermal therapy PDT/PTT effect. Abstract Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O2 self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors.Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O2 self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors. Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H O into O to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors. |
Author | You, Qing Lv, Letian Liu, Changliang Yang, Yanlian Wang, Mengting Gao, Houqian Wang, Huayi Ye, Siyuan Wang, Chen Liu, Jingyi Zhang, Kaiyue Zhu, Ling |
AuthorAffiliation | 2 University of Chinese Academy of Sciences Beijing 100049 P. R. China 4 Department of Chemistry Tinghua University Beijing 100084 P. R. China 3 Sino‐Danish College University of Chinese Academy of Sciences Beijing 100049 P. R. China 1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China |
AuthorAffiliation_xml | – name: 1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China – name: 4 Department of Chemistry Tinghua University Beijing 100084 P. R. China – name: 2 University of Chinese Academy of Sciences Beijing 100049 P. R. China – name: 3 Sino‐Danish College University of Chinese Academy of Sciences Beijing 100049 P. R. China |
Author_xml | – sequence: 1 givenname: Qing surname: You fullname: You, Qing organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Kaiyue surname: Zhang fullname: Zhang, Kaiyue organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Jingyi surname: Liu fullname: Liu, Jingyi organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Changliang surname: Liu fullname: Liu, Changliang organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Huayi surname: Wang fullname: Wang, Huayi organization: Tinghua University – sequence: 6 givenname: Mengting surname: Wang fullname: Wang, Mengting organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Siyuan surname: Ye fullname: Ye, Siyuan organization: Tinghua University – sequence: 8 givenname: Houqian surname: Gao fullname: Gao, Houqian organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Letian surname: Lv fullname: Lv, Letian organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Chen surname: Wang fullname: Wang, Chen organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Ling orcidid: 0000-0003-3818-6093 surname: Zhu fullname: Zhu, Ling email: zhul@nanoctr.cn organization: National Center for Nanoscience and Technology – sequence: 12 givenname: Yanlian surname: Yang fullname: Yang, Yanlian email: yangyl@nanoctr.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32995114$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1u1DAAhSNUREvpliWKxIbNDP5N7A1SW6AdqaUjWthaTmJnPErsqZ0MzY4jcAaOxklwOtOqrYRYWLac7z2_2O9lsmOdVUnyGoIpBAC9l9U6TBGAHGBM4LNkD0HOJpgRsvNgvZschLAEAECKcwLZi2QXI84phGQv-T1XPpjQKdulX1XdN7IzzqZOp1d963x6OqzcjZHpuSm9U3ZtvLPtCK_jpkyPjDM2rIxXVTrv_vz8dSRDXF7cDLWy6RdpXZyVl1200nGc901nWlfJJp21sja2jpqT3lRRdDlEso5ZTJnOF65z3SIqV8Or5LmWTVAH23k_-fb509Xx6eTs4mR2fHg2KSnidILLCiJVkoJpWREKNCyyLOOZAiwjXCIENC8yhiRAMqtygBSDmNCcRkJJzvF-Mtv4Vk4uxcqbVvpBOGnE7YbztZA-hmuUKBjOgCacAlwSpDkrMS5QlStSaI0ZiF4fNl6rvmhVVcYb87J5ZPr4izULUbu1yCnI4-9Eg3dbA--uexU60ZpQqqaRVrk-CERITkkGyHjW2yfo0vXexqsaKcBykBMWqTcPE91HuatCBMgGiA8dgldalKa7bUMMaBoBgRhLJ8bSifvSRdn0iezO-Z-C7Tk_TKOG_9Di8OP3S8gJxX8BKzruCQ |
CitedBy_id | crossref_primary_10_1016_j_nanoso_2024_101315 crossref_primary_10_1039_D1QM00784J crossref_primary_10_1016_j_ccr_2021_214216 crossref_primary_10_1016_j_molstruc_2024_139603 crossref_primary_10_1016_j_nantod_2022_101708 crossref_primary_10_1007_s12598_022_02116_9 crossref_primary_10_1016_j_nanoms_2024_02_006 crossref_primary_10_1016_j_nantod_2024_102404 crossref_primary_10_3390_ijms23084458 crossref_primary_10_1039_D2TB02751H crossref_primary_10_1016_j_cej_2025_160428 crossref_primary_10_1016_j_biomaterials_2022_121596 crossref_primary_10_1186_s12951_023_01907_1 crossref_primary_10_1039_D4NR00283K crossref_primary_10_1016_j_actbio_2024_11_023 crossref_primary_10_1016_j_ajps_2022_01_002 crossref_primary_10_1016_j_aca_2024_342734 crossref_primary_10_1007_s13346_024_01622_w crossref_primary_10_1016_j_ijbiomac_2024_133963 crossref_primary_10_3389_fbioe_2024_1439883 crossref_primary_10_1021_acsami_2c19029 crossref_primary_10_1002_anie_202319982 crossref_primary_10_1038_s41392_024_01852_x crossref_primary_10_1002_smll_202104302 crossref_primary_10_3390_ph16020249 crossref_primary_10_1016_j_nantod_2022_101376 crossref_primary_10_1016_j_pdpdt_2021_102684 crossref_primary_10_1021_acsami_1c07181 crossref_primary_10_1016_j_ccr_2024_215926 crossref_primary_10_1039_D3TB02875E crossref_primary_10_1515_oncologie_2023_0459 crossref_primary_10_1016_j_snb_2021_130680 crossref_primary_10_1039_D3TB01035J crossref_primary_10_3389_fphar_2023_1140362 crossref_primary_10_1039_D3TB00839H crossref_primary_10_3390_pharmaceutics13081151 crossref_primary_10_1016_j_addr_2022_114648 crossref_primary_10_1016_j_cej_2022_135085 crossref_primary_10_1021_acs_nanolett_4c02137 crossref_primary_10_1016_j_ccr_2023_215482 crossref_primary_10_1039_D2TB01772E crossref_primary_10_1186_s12951_024_02813_w crossref_primary_10_3389_fbioe_2021_647905 crossref_primary_10_1021_cbmi_2c00003 crossref_primary_10_1039_D1TB00209K crossref_primary_10_1002_cbf_3925 crossref_primary_10_1039_D3TB02690F crossref_primary_10_1039_D2BM01833K crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_3390_molecules28166085 crossref_primary_10_1021_acsami_3c18990 crossref_primary_10_3389_fchem_2022_1092747 crossref_primary_10_1016_j_msec_2021_112546 crossref_primary_10_1002_adfm_202312197 crossref_primary_10_1007_s00259_021_05207_4 crossref_primary_10_1039_D2CC01165D crossref_primary_10_1002_adfm_202104378 crossref_primary_10_1016_j_ccr_2022_214780 crossref_primary_10_1021_acs_analchem_4c05292 crossref_primary_10_1002_adhm_202100601 crossref_primary_10_1038_s41467_025_57188_9 crossref_primary_10_1016_j_cclet_2023_109381 crossref_primary_10_1021_acsami_1c10656 crossref_primary_10_1002_advs_202207759 crossref_primary_10_1088_1361_6528_ad568c crossref_primary_10_1021_acsbiomaterials_0c01644 crossref_primary_10_1021_acsami_0c22194 crossref_primary_10_1016_j_inoche_2022_110145 crossref_primary_10_1039_D2RA01102F crossref_primary_10_1016_j_jcis_2024_11_008 crossref_primary_10_1016_j_talanta_2024_127492 crossref_primary_10_1039_D1NR04489C crossref_primary_10_1002_smll_202203400 crossref_primary_10_1021_acsomega_2c05761 crossref_primary_10_1039_D1CC06330H crossref_primary_10_1021_acsnano_2c02528 crossref_primary_10_1002_adma_202204910 crossref_primary_10_1016_j_cej_2024_157299 crossref_primary_10_1007_s11426_021_1055_0 crossref_primary_10_1002_adhm_202301413 crossref_primary_10_1016_j_nantod_2022_101466 crossref_primary_10_1126_sciadv_adk0716 crossref_primary_10_1039_D4NR03878A crossref_primary_10_1186_s12951_023_02111_x crossref_primary_10_1016_j_ejmech_2022_114456 crossref_primary_10_1002_cplu_202200394 crossref_primary_10_1016_j_jconrel_2024_08_014 crossref_primary_10_1016_j_actbio_2023_03_008 crossref_primary_10_1016_j_jcis_2022_06_031 crossref_primary_10_1016_j_biomaterials_2022_121665 crossref_primary_10_1021_acsnano_4c03652 crossref_primary_10_1002_adhm_202302111 crossref_primary_10_1016_j_biomaterials_2021_121326 crossref_primary_10_1016_j_cej_2022_135711 crossref_primary_10_1007_s12032_024_02598_w crossref_primary_10_1002_adhm_202202467 crossref_primary_10_1002_ente_202402354 crossref_primary_10_1016_j_mtcomm_2024_108382 crossref_primary_10_1021_acs_analchem_1c02310 crossref_primary_10_1039_D4RA03259D crossref_primary_10_1021_acsami_1c02260 crossref_primary_10_1007_s12274_023_5919_0 crossref_primary_10_1016_j_actbio_2023_12_012 crossref_primary_10_1021_acsbiomaterials_1c01390 crossref_primary_10_1002_smll_202007090 crossref_primary_10_1021_acsami_2c17691 crossref_primary_10_1039_D1CC00645B crossref_primary_10_1007_s12274_023_6149_1 crossref_primary_10_1021_acsanm_3c02223 crossref_primary_10_1021_acsbiomaterials_1c01430 crossref_primary_10_1039_D2NR03408E crossref_primary_10_1016_j_jconrel_2022_12_009 crossref_primary_10_3390_pharmaceutics15102480 crossref_primary_10_1039_D3NR02010J crossref_primary_10_3390_pharmaceutics15041207 crossref_primary_10_1039_D3RA05020C crossref_primary_10_1002_ange_202319982 crossref_primary_10_1016_j_bioadv_2022_213168 crossref_primary_10_1007_s40843_023_2583_5 crossref_primary_10_1016_j_arabjc_2022_103966 crossref_primary_10_1364_BOE_458182 crossref_primary_10_1016_j_cej_2021_132859 crossref_primary_10_1002_advs_202100712 crossref_primary_10_1016_j_snb_2024_136227 crossref_primary_10_1016_j_colsurfa_2022_129662 crossref_primary_10_1002_smll_202103569 crossref_primary_10_1016_j_actbio_2024_01_010 crossref_primary_10_1021_acssuschemeng_0c08326 crossref_primary_10_1016_j_nxmate_2024_100111 crossref_primary_10_1021_acsanm_4c04184 crossref_primary_10_1016_j_jcis_2024_01_114 crossref_primary_10_1021_acsami_1c17642 crossref_primary_10_2147_IJN_S353330 crossref_primary_10_1016_j_ijbiomac_2023_129070 crossref_primary_10_1016_j_cej_2022_136428 crossref_primary_10_1016_j_molstruc_2024_139797 crossref_primary_10_1093_rb_rbad078 crossref_primary_10_1021_acsanm_3c05959 crossref_primary_10_1039_D3NA01075A crossref_primary_10_3390_pharmaceutics14091763 crossref_primary_10_1186_s12951_025_03132_4 crossref_primary_10_1021_acsanm_2c03271 |
Cites_doi | 10.1002/smll.201801851 10.1016/j.biomaterials.2016.08.041 10.1021/ja5042989 10.1016/j.biomaterials.2016.01.009 10.1016/j.biomaterials.2018.10.003 10.1002/adfm.201901417 10.1039/C5NR04587H 10.1016/j.cell.2007.04.019 10.1016/j.canlet.2011.04.024 10.1038/s41467-018-05906-x 10.1021/ac401879y 10.1073/pnas.1522080113 10.1021/acsami.6b11918 10.1002/adma.201103521 10.1111/vru.12674 10.1016/j.saa.2019.04.063 10.1038/nrc.2016.84 10.1172/JCI22320 10.1002/advs.201700805 10.1002/adfm.201703197 10.1021/ja503115n 10.1016/j.biomaterials.2013.07.007 10.1038/s41467-018-05798-x 10.1021/acsnano.6b08731 10.1016/j.actbio.2016.01.039 10.1002/ange.201804291 10.1002/ijc.11646 10.1038/nrc1071 10.1021/jacs.9b12929 10.1021/acsami.8b17910 10.1021/acsnano.8b07749 10.1038/nrc1367 10.1038/ncomms9785 10.1021/acsami.9b02484 10.1021/acsnano.8b09607 10.1016/j.biomaterials.2014.04.019 10.1038/nchem.1272 10.1039/C9NH00233B 10.1039/C9TB00433E 10.1038/cddiscovery.2015.11 10.1021/acsnano.8b05136 10.1016/j.biomaterials.2009.07.030 10.1021/acsnano.8b00999 10.1002/advs.201800287 10.1016/j.biomaterials.2019.119282 10.1039/C6NR09042G 10.1016/j.biomaterials.2020.119848 10.1002/adfm.201402338 10.1039/C9CC03701B 10.18632/oncotarget.8617 10.1016/j.biomaterials.2016.04.034 10.1002/adma.201500229 10.1016/j.biomaterials.2015.10.069 10.1002/adma.201601902 10.1016/j.addr.2008.08.003 10.1002/anie.201600868 10.1021/acsami.6b13351 10.3390/cancers6010459 10.1039/C6NR02012G 10.1002/anie.201603990 10.1002/adma.201901893 10.1016/j.biomaterials.2018.05.051 10.1039/C8BM01553H 10.1002/adma.201602197 10.1038/nature19081 10.1002/adfm.201806199 10.1002/adma.201400620 10.1021/acsami.6b11802 10.1002/adma.201905825 10.2220/biomedres.35.37 10.1038/nature09284 10.1002/adfm.201706375 10.1021/ja00800a012 10.1021/acsnano.8b05639 10.1021/acsami.7b11926 10.1021/acsnano.9b08320 10.1021/acsnano.6b05760 10.1021/cr400532z 10.1038/s41598-017-09116-1 10.1016/j.biomaterials.2013.12.046 10.1021/acsami.7b18577 10.1016/j.intimp.2019.105764 10.1016/j.biomaterials.2016.01.027 10.1021/acsnano.8b09501 10.1016/j.jconrel.2011.07.031 10.1021/nn400728t 10.1021/acsnano.7b07746 10.7150/thno.22325 10.1016/j.biomaterials.2018.07.049 10.1002/adfm.201704634 10.1038/nmat4707 10.1016/j.biomaterials.2015.11.049 10.1021/am200974t 10.1002/adfm.201605592 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley‐VCH GmbH 2020 The Authors. Published by Wiley‐VCH GmbH. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley‐VCH GmbH – notice: 2020 The Authors. Published by Wiley‐VCH GmbH. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201903341 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_b8360f49503c42f98c33b2d7e4bff380 PMC7507529 32995114 10_1002_advs_201903341 ADVS1945 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of Chinese Academy of Science funderid: XDB36000000 – fundername: National Key Research and Development Program of China funderid: 2017YFA0205000 – fundername: National Natural Science Foundation of China funderid: 31971295; 31600803; 21773042 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2018048 – fundername: ; grantid: 31971295; 31600803; 21773042 – fundername: ; grantid: 2017YFA0205000 – fundername: Strategic Priority Research Program of Chinese Academy of Science grantid: XDB36000000 – fundername: ; grantid: 2018048 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS ITC PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5295-3cd12ec4b8fad450f1b66696e08649a220f9b682a02a6d702e81345756e0ea993 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:19:48 EDT 2025 Thu Aug 21 14:08:24 EDT 2025 Fri Jul 11 02:42:55 EDT 2025 Thu Jul 03 03:43:53 EDT 2025 Mon Jul 21 06:04:10 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Tue Jul 01 03:59:23 EDT 2025 Wed Jan 22 16:32:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | cancer theranostics O2 self‐enriched photodynamic therapy multimodal imaging hypoxia alleviation photothermal therapy |
Language | English |
License | Attribution 2020 The Authors. Published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5295-3cd12ec4b8fad450f1b66696e08649a220f9b682a02a6d702e81345756e0ea993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3818-6093 |
OpenAccessLink | https://doaj.org/article/b8360f49503c42f98c33b2d7e4bff380 |
PMID | 32995114 |
PQID | 2440870748 |
PQPubID | 4365299 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8360f49503c42f98c33b2d7e4bff380 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7507529 proquest_miscellaneous_2447546040 proquest_journals_2440870748 pubmed_primary_32995114 crossref_citationtrail_10_1002_advs_201903341 crossref_primary_10_1002_advs_201903341 wiley_primary_10_1002_advs_201903341_ADVS1945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 7 1973; 95 2017 2017 2008; 11 27 60 2019; 11 2019; 55 2019; 13 2010; 467 2004; 4 2016; 76 2014; 26 2014 2014; 136 114 2018 2018; 28 12 2013; 7 2016 2019 2017; 8 217 9 2017; 9 2014; 136 2017 2019 2018; 9 13 130 2016; 79 2016; 33 2018; 5 2015 2016; 7 84 2016; 113 2019; 29 2016; 84 2011; 23 2018 2016; 9 108 2019 2020; 4 142 2016 2018; 55 9 2019; 7 2018 2016; 5 28 2018; 28 2015; 6 2014 2013; 35 34 2014 2016; 6 16 2019; 31 2018 2012; 8 157 2020 2018; 14 177 2005; 115 2003 2016 2007; 3 537 129 2013; 85 2016; 10 2011; 3 2004; 108 2017 2019; 27 29 2016; 15 2019; 188 2016; 55 2015; 25 2009; 30 2015 2016; 1 7 2015; 27 2017 2019 2020 2018; 13 219 238 181 2019 2019; 31 75 2011; 308 2014; 35 2018; 12 2016; 28 2012; 4 2018; 10 2016; 8 2018; 59 2016 2018 2019; 97 12 13 2018; 14 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_60_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_14_2 e_1_2_7_63_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_1 e_1_2_7_63_3 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Liu C. (e_1_2_7_12_1) 2017; 13 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 e_1_2_7_59_2 |
References_xml | – volume: 136 114 start-page: 8307 year: 2014 2014 publication-title: J. Am. Chem. Soc. Chem. Rev. – volume: 13 start-page: 4379 year: 2019 publication-title: ACS Nano – volume: 6 16 start-page: 459 663 year: 2014 2016 publication-title: Cancers Nat. Rev. Cancer – volume: 4 142 start-page: 1450 5649 year: 2019 2020 publication-title: Nanoscale Horiz. J. Am. Chem. Soc. – volume: 3 537 129 start-page: 380 63 465 year: 2003 2016 2007 publication-title: Nat. Rev. Cancer Nature Cell – volume: 13 219 238 181 start-page: 9 281 81 year: 2017 2019 2020 2018 publication-title: Small Spectrochim. Acta, Part A Biomaterials Biomaterials – volume: 9 start-page: 3354 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2018 publication-title: Small – volume: 31 75 year: 2019 2019 publication-title: Adv. Mater. Int. Immunopharmacol. – volume: 15 start-page: 1128 year: 2016 publication-title: Nat. Mater. – volume: 59 start-page: 721 year: 2018 publication-title: Vet. Radiol. Ultrasound – volume: 95 start-page: 6223 year: 1973 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 4164 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 308 start-page: 172 year: 2011 publication-title: Cancer Lett. – volume: 467 start-page: 86 year: 2010 publication-title: Nature – volume: 136 start-page: 9701 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 14 177 start-page: 1936 149 year: 2020 2018 publication-title: ACS Nano Biomaterials – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 5392 year: 2011 publication-title: Adv. Mater. – volume: 27 start-page: 3874 year: 2015 publication-title: Adv. Mater. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 33 start-page: 34 year: 2016 publication-title: Acta Biomater. – volume: 55 start-page: 9389 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 7129 year: 2016 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 5979 year: 2009 publication-title: Biomaterials – volume: 11 27 60 start-page: 2227 1627 year: 2017 2017 2008 publication-title: ACS Nano Adv. Funct. Mater. Adv. Drug Delivery Rev. – volume: 76 start-page: 399 year: 2016 publication-title: Biomaterials – volume: 7 start-page: 3724 year: 2019 publication-title: J. Mater. Chem. B – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 84 start-page: 13 year: 2016 publication-title: Biomaterials – volume: 5 28 start-page: 8379 year: 2018 2016 publication-title: Adv. Sci. Adv. Mater. – volume: 115 start-page: 44 year: 2005 publication-title: J. Clin. Invest. – volume: 35 34 start-page: 6037 7706 year: 2014 2013 publication-title: Biomaterials Biomaterials – volume: 108 start-page: 825 year: 2004 publication-title: Int. J. Cancer – volume: 55 9 start-page: 6646 3334 year: 2016 2018 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 26 start-page: 4056 year: 2014 publication-title: Adv. Mater. – volume: 188 start-page: 96 year: 2019 publication-title: Biomaterials – volume: 25 start-page: 1451 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 157 start-page: 955 168 year: 2018 2012 publication-title: Theranostics J. Controlled Release – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 3 start-page: 3788 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 19 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 8606 year: 2017 publication-title: Sci. Rep. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 108 start-page: 3390 129 year: 2018 2016 publication-title: Nat. Commun. Biomaterials – volume: 4 start-page: 437 year: 2004 publication-title: Nat. Rev. Cancer – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 2915 year: 2014 publication-title: Biomaterials – volume: 7 84 start-page: 1 year: 2015 2016 publication-title: Nanoscale Biomaterials – volume: 8 217 9 start-page: 3784 year: 2016 2019 2017 publication-title: Nanoscale Biomaterials Nanoscale – volume: 28 12 year: 2018 2018 publication-title: Adv. Funct. Mater. ACS Nano – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 5340 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1875 year: 2019 publication-title: Biomater. Sci. – volume: 7 start-page: 4252 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 310 year: 2012 publication-title: Nat. Chem. – volume: 12 start-page: 651 year: 2018 publication-title: ACS Nano – volume: 97 12 13 start-page: 1 3780 5222 year: 2016 2018 2019 publication-title: Biomaterials ACS Nano ACS Nano – volume: 13 start-page: 176 year: 2019 publication-title: ACS Nano – volume: 35 start-page: 37 year: 2014 publication-title: Biomed. Res. – volume: 6 start-page: 8785 year: 2015 publication-title: Nat. Commun. – volume: 79 start-page: 25 year: 2016 publication-title: Biomaterials – volume: 1 7 year: 2015 2016 publication-title: Cell Death Discovery Oncotarget – volume: 27 29 year: 2017 2019 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. – volume: 85 start-page: 8436 year: 2013 publication-title: Anal. Chem. – volume: 9 13 130 start-page: 274 year: 2017 2019 2018 publication-title: ACS Appl. Mater. Interfaces ACS Nano Angew. Chem. – ident: e_1_2_7_21_1 doi: 10.1002/smll.201801851 – ident: e_1_2_7_42_2 doi: 10.1016/j.biomaterials.2016.08.041 – ident: e_1_2_7_66_1 doi: 10.1021/ja5042989 – ident: e_1_2_7_48_1 doi: 10.1016/j.biomaterials.2016.01.009 – ident: e_1_2_7_55_1 doi: 10.1016/j.biomaterials.2018.10.003 – ident: e_1_2_7_33_1 doi: 10.1002/adfm.201901417 – ident: e_1_2_7_51_1 doi: 10.1039/C5NR04587H – ident: e_1_2_7_6_3 doi: 10.1016/j.cell.2007.04.019 – ident: e_1_2_7_56_1 doi: 10.1016/j.canlet.2011.04.024 – ident: e_1_2_7_42_1 doi: 10.1038/s41467-018-05906-x – ident: e_1_2_7_30_1 doi: 10.1021/ac401879y – ident: e_1_2_7_41_1 doi: 10.1073/pnas.1522080113 – ident: e_1_2_7_44_1 doi: 10.1021/acsami.6b11918 – volume: 13 start-page: 9 year: 2017 ident: e_1_2_7_12_1 publication-title: Small – ident: e_1_2_7_18_1 doi: 10.1002/adma.201103521 – ident: e_1_2_7_45_1 doi: 10.1111/vru.12674 – ident: e_1_2_7_12_2 doi: 10.1016/j.saa.2019.04.063 – ident: e_1_2_7_7_2 doi: 10.1038/nrc.2016.84 – ident: e_1_2_7_64_1 doi: 10.1172/JCI22320 – ident: e_1_2_7_57_1 doi: 10.1002/advs.201700805 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201703197 – ident: e_1_2_7_2_1 doi: 10.1021/ja503115n – ident: e_1_2_7_43_2 doi: 10.1016/j.biomaterials.2013.07.007 – ident: e_1_2_7_11_2 doi: 10.1038/s41467-018-05798-x – ident: e_1_2_7_3_1 doi: 10.1021/acsnano.6b08731 – ident: e_1_2_7_31_1 doi: 10.1016/j.actbio.2016.01.039 – ident: e_1_2_7_1_3 doi: 10.1002/ange.201804291 – ident: e_1_2_7_68_1 doi: 10.1002/ijc.11646 – ident: e_1_2_7_6_1 doi: 10.1038/nrc1071 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.9b12929 – ident: e_1_2_7_15_1 doi: 10.1021/acsami.8b17910 – ident: e_1_2_7_10_2 doi: 10.1021/acsnano.8b07749 – ident: e_1_2_7_5_1 doi: 10.1038/nrc1367 – ident: e_1_2_7_8_1 doi: 10.1038/ncomms9785 – ident: e_1_2_7_13_1 doi: 10.1021/acsami.9b02484 – ident: e_1_2_7_17_1 doi: 10.1021/acsnano.8b09607 – ident: e_1_2_7_43_1 doi: 10.1016/j.biomaterials.2014.04.019 – ident: e_1_2_7_28_1 doi: 10.1038/nchem.1272 – ident: e_1_2_7_14_1 doi: 10.1039/C9NH00233B – ident: e_1_2_7_37_1 doi: 10.1039/C9TB00433E – ident: e_1_2_7_62_1 doi: 10.1038/cddiscovery.2015.11 – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.8b05136 – ident: e_1_2_7_35_1 doi: 10.1016/j.biomaterials.2009.07.030 – ident: e_1_2_7_63_2 doi: 10.1021/acsnano.8b00999 – ident: e_1_2_7_16_1 doi: 10.1002/advs.201800287 – ident: e_1_2_7_4_2 doi: 10.1016/j.biomaterials.2019.119282 – ident: e_1_2_7_4_3 doi: 10.1039/C6NR09042G – ident: e_1_2_7_12_3 doi: 10.1016/j.biomaterials.2020.119848 – ident: e_1_2_7_47_1 doi: 10.1002/adfm.201402338 – ident: e_1_2_7_46_1 doi: 10.1039/C9CC03701B – ident: e_1_2_7_62_2 doi: 10.18632/oncotarget.8617 – ident: e_1_2_7_63_1 doi: 10.1016/j.biomaterials.2016.04.034 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201500229 – ident: e_1_2_7_39_1 doi: 10.1016/j.biomaterials.2015.10.069 – ident: e_1_2_7_50_1 doi: 10.1002/adma.201601902 – ident: e_1_2_7_3_3 doi: 10.1016/j.addr.2008.08.003 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201600868 – ident: e_1_2_7_52_1 doi: 10.1021/acsami.6b13351 – ident: e_1_2_7_7_1 doi: 10.3390/cancers6010459 – ident: e_1_2_7_4_1 doi: 10.1039/C6NR02012G – ident: e_1_2_7_26_1 doi: 10.1002/anie.201603990 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201901893 – ident: e_1_2_7_60_2 doi: 10.1016/j.biomaterials.2018.05.051 – ident: e_1_2_7_61_1 doi: 10.1039/C8BM01553H – ident: e_1_2_7_16_2 doi: 10.1002/adma.201602197 – ident: e_1_2_7_6_2 doi: 10.1038/nature19081 – ident: e_1_2_7_9_2 doi: 10.1002/adfm.201806199 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201400620 – ident: e_1_2_7_23_1 doi: 10.1021/acsami.6b11802 – ident: e_1_2_7_59_1 doi: 10.1002/adma.201905825 – ident: e_1_2_7_58_1 doi: 10.2220/biomedres.35.37 – ident: e_1_2_7_67_1 doi: 10.1038/nature09284 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201706375 – ident: e_1_2_7_34_1 doi: 10.1021/ja00800a012 – ident: e_1_2_7_1_2 doi: 10.1021/acsnano.8b05639 – ident: e_1_2_7_1_1 doi: 10.1021/acsami.7b11926 – ident: e_1_2_7_60_1 doi: 10.1021/acsnano.9b08320 – ident: e_1_2_7_65_1 doi: 10.1021/acsnano.6b05760 – ident: e_1_2_7_2_2 doi: 10.1021/cr400532z – ident: e_1_2_7_38_1 doi: 10.1038/s41598-017-09116-1 – ident: e_1_2_7_32_1 doi: 10.1016/j.biomaterials.2013.12.046 – ident: e_1_2_7_40_1 doi: 10.1021/acsami.7b18577 – ident: e_1_2_7_59_2 doi: 10.1016/j.intimp.2019.105764 – ident: e_1_2_7_51_2 doi: 10.1016/j.biomaterials.2016.01.027 – ident: e_1_2_7_63_3 doi: 10.1021/acsnano.8b09501 – ident: e_1_2_7_24_2 doi: 10.1016/j.jconrel.2011.07.031 – ident: e_1_2_7_20_1 doi: 10.1021/nn400728t – ident: e_1_2_7_49_1 doi: 10.1021/acsnano.7b07746 – ident: e_1_2_7_24_1 doi: 10.7150/thno.22325 – ident: e_1_2_7_12_4 doi: 10.1016/j.biomaterials.2018.07.049 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.201704634 – ident: e_1_2_7_54_1 doi: 10.1038/nmat4707 – ident: e_1_2_7_19_1 doi: 10.1016/j.biomaterials.2015.11.049 – ident: e_1_2_7_27_1 doi: 10.1021/am200974t – ident: e_1_2_7_3_2 doi: 10.1002/adfm.201605592 |
SSID | ssj0001537418 |
Score | 2.5460708 |
Snippet | Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment... Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment... Abstract Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1903341 |
SubjectTerms | cancer theranostics Cancer therapies DNA methylation FDA approval Federal regulation Gold Hypoxia hypoxia alleviation Ligands Light therapy Magnetic resonance imaging Metastasis multimodal imaging Nanoparticles O2 self‐enriched photodynamic therapy Particle size photothermal therapy Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVgumGDKM_QgoyEBCyiOraTOKuKQS0DUsuoD6m7KH6kjcTEw3Sm6uz4BL6BT-NLuHY8oSNe2-RGcXJf5_pxLkIvhSFEQ5qMdaI0FCg8iYVQKoZspCHjcKV9O6CDw2x0yj-epWdhwu0ybKtcxUQfqLVVbo58h7rWyDkkPLE7_RK7rlFudTW00LiNNiAEi3SANoZ7h-OjX7MsKXP0LCu2RkJ3Kn3lWLohDzLGk7Vs5En7_4Q0f98weRPI-ky0fw_dDRASv-10volumfY-2gxOeolfBybpNw_Qd7e_3emxneOjruk8qAHbGp8sJnaGR8upvW4qfOB25d048oav4GKFh41tWrcSbzQez398_TaElKfxp-slWB2GuGzP_augbMeAfbE_zDuxGgb3YeK7H8Ez7xeNhoeOl-6QoWeFxuMLOw8Hv5YP0en-3sm7URyaMsTKrQnGTOmEGsWlqCvNU1InEiqgIjNQG_GiopTUhcwErQitMp0TakTCOIBCkDAVoKFHaNDa1jxBGKCQZDVViqSaS6mkI6vMUsZVVdRgWRGKV8opVWAsd40zPpcd1zItnTLLXpkRetXLTzuujr9KDp2ueynHse0v2Nl5GVy2lO58Sw0FJGGK07oQijFJdW64rGsmSIS2V5ZSBseHV_RmGqEX_W1wWbcOU7XGLrxMnvIMwmeEHneG1Y-EATwADMwjlK-Z3NpQ1--0zYWnBQfsl4OK4K954_zPLygB9hwnBU-f_vszttAd6qYY_La6bTSYzxbmGeCwuXwenO0n2AI3Fg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQuXBBlN9Ai4yEBByiJrbzd-wiyoJUWNFW6i3yX9pIbFxts1X3xiPwDDwaT8KMk003AoS4JpPEysx4vrE93xDyMrdRZCBMhibWBhIUEYd5rnUI0chAxBHa-HZAh5_S6Yn4eJqcblTxd_wQw4Ibeoafr9HBpbrcuyENleYK6bYhoHGOleu3sb4WexgwMbtZZUk40rNghznIrkOeC7FmbozY3vgVo8jkCfz_hDp_Pzy5CWp9VDq4R-72cJLud_rfJrdsc59s9w57SV_3rNJvHpAfeNYdddq09EvXgB5UQl1Fj5dzt6DT1YW7riU9xBN6G-Vv9AouSjqpXd3grrw1dNb-_PZ9AuHP0M_XK7BACnO0O_OfghSeAg6mvrB37gwM7sPcd0KCZ94vawMPHa2w4NAzRNPZuWv7IrDVQ3Jy8O747TTsGzSEGvcHQ65NzKwWKq-kEUlUxQqyoSK1kCeJQjIWVYVKcyYjJlOTRczmMRcAEEHCSkBGj8hW4xr7hFCARYpXTOsoMUIprZC4Mk240LKowMoCEq6VU-qevRybaHwtO95lVqIyy0GZAXk1yF90vB1_lZygrgcp5Nv2F9zirOzdt1RY61JBMhlxLVhV5JpzxUxmhaoqnkcB2VlbStlPAvAJ7OadAUbLA_JiuA3ui3sysrFu6WWyRKQwlQbkcWdYw0g4QAXAwyIg2cjkRkMd32nqc08RDjgwAxXBX_PG-Y9fUAIEOooLkTz9T_ln5A7D9Qd_5m6HbLWLpd0FkNaq594PfwEmiDos priority: 102 providerName: Wiley-Blackwell |
Title | Persistent Regulation of Tumor Hypoxia Microenvironment via a Bioinspired Pt‐Based Oxygen Nanogenerator for Multimodal Imaging‐Guided Synergistic Phototherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903341 https://www.ncbi.nlm.nih.gov/pubmed/32995114 https://www.proquest.com/docview/2440870748 https://www.proquest.com/docview/2447546040 https://pubmed.ncbi.nlm.nih.gov/PMC7507529 https://doaj.org/article/b8360f49503c42f98c33b2d7e4bff380 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BuXBBlF9DiRYJCThYtXfXf8cGWgIiJWpaqTdrf9tIxK6KUzU3HoFn4NF4EmbXjpUIUC-cItljeTUz6_kmO_MNwKvcRJHGMBnqWGlMUHgc5rlSIUYjjRGHK-3HAY0P09EJ_3SanK6N-nI1YS09cKu4Xem6DCzC-IgpTm2RK8Yk1Znh0lqW-2wdY95aMtX2BzNHy7JiaYzortBXjp0b4x9jPN6IQp6s_28I889CyXUA6yPQwX2410FHstcueRtumeoBbHeb8xt50zFIv30IP11du7Nf1ZCjdtg8qp_Ulhwv5vUlGS0v6uuZIGNXjbfW6kau8KIgw1k9q9wJvNFk0vz6_mOIoU6TL9dL9DaC3-P6zL8K03WCmJf4Jt55rXFxH-d-6hE-82Ex0_jQdOmaCz0bNJmc103X8LV8BCcH-8fvRmE3jCFU7iwwZErH1Cgucys0TyIbS8x8itRgTsQLQWlkC5nmVERUpDqLqMljxhEMooQRiIIew1ZVV-YpEIRAklmqVJRoLqWSjqQyTRhXorDoUQGEK-OUqmMqdwMzvpYtxzItnTHL3pgBvO7lL1qOjn9KDp2teynHre0voMeVnceVN3lcADsrTym7DY-vcJO7M8RjeQAv-9u4Vd35i6hMvfAyWcJT_GwG8KR1rH4lDGEBYl8eQLbhchtL3bxTzc49HThivgxNhFrzznmDCkqEO9O44Mmz_6GL53CXuj8gfNHdDmw1lwvzAlFaIwdwm_LJAO7svR9_nuLvcP9wcjTw2_Q3KMFB-A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuiPI0FFgkEHCwau-uXweECLQktAlRm0q9ud6H20jEG1KnNDd-Ar-BH8CP4pcwu37QiNepV3scbzyzM9_uznyD0JNYeZ6EMOlKX0hYoDDfjWMhXIhGEiIOE9K2A-oPwu4Be38YHK6g700tjEmrbHyiddRSC7NHvklMa-QIAl78avrJNV2jzOlq00KjMosdtfgMS7bTl723oN-nhGxvjd503bqrgCvMoZZLhfSJEozHeSZZ4OU-BwifhArAPUsyQrw84WFMMo9koYw8omKfMkA1IKGyxJAvgctfA5iRwCxa62wNhnu_dnUCauhgGnZIj2xm8sywgkPcpZT5S9HPNgn4E7L9PUHzInC2kW_7OrpWQ1b8urKxdbSiihtovXYKp_h5zVz94ib6ZvLpjd0UJd6rmtyD2rHO8Wg-0TPcXUz1-TjDfZMFeKHEDp_BxQx3xnpcmJN_JfGw_PHlawdCrMQfzhdg5RjigD62ryrhpwBrY1s8PNESBteb2G5L8My7-VjCQ_sLU9RoWajx8ESXdaHZ4hY6uBR13UarhS7UXYQBenGaEyG8QDLOBTfkmGFAmciSHCzZQW6jnFTUDOmmUcfHtOJ2JqlRZtoq00HPWvlpxQ3yV8mO0XUrZTi97QU9O05rF5FyU0-Tw4LVo4KRPIkFpZzISDGe5zT2HLTRWEpaOxp4RTstHPS4vQ0uwpz7ZIXScysTBSwEd-2gO5VhtSOhAEcAczMHRUsmtzTU5TvF-MTSkAPWjEBF8NWscf7nE6QAs_b9hAX3_v03HqEr3VF_N93tDXbuo6vEbG_YlL4NtFrO5uoBYMCSP6wnHkZHlz3XfwLgBXI5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF1VqYR4QZSrocAigYAHq_bu-vaAEKENCaUh6kXqm-u9tZGIHVKnNG98At_AZ_A5fAmz6wuNuD311R7HG8_szNndmTMIPYmV50kIk670hYQFCvPdOBbChWgkIeIwIW07oJ1h2D9g7w6DwxX0vamFMWmVjU-0jloWwuyRbxDTGjmCgBdv6DotYrTZezX95JoOUuaktWmnUZnItlp8huXb6cvBJuj6KSG9rf03fbfuMOAKc8DlUiF9ogTjsc4kCzztc4DzSagA6LMkI8TTCQ9jknkkC2XkERX7lAHCAQmVJYaICdz_agRRMe6g1e7WcLT7a4cnoIYapmGK9MhGJs8MQzjEYEqZvxQJbcOAP6Hc35M1L4JoGwV719G1Gr7i15W9raEVld9Aa7WDOMXPaxbrFzfRN5Nbb2woL_Fu1fAeTAAXGu_PJ8UM9xfT4nyc4R2TEXih3A6fwcUMd8fFODdZAEriUfnjy9cuhFuJP5wvwOIxxITi2L6qhJ8C3I1tIfGkkDC4wcR2XoJn3s7HEh7aW5gCR8tIjUcnRVkXnS1uoYNLUddt1MmLXN1FGGAYp5oI4QWScS64IcoMA8pElmiwage5jXJSUbOlm6YdH9OK55mkRplpq0wHPWvlpxVPyF8lu0bXrZTh97YXitlxWruLlJvaGg2LV48KRnQSC0o5kZFiXGsaew5abywlrZ0OvKKdIg563N4Gd2HOgLJcFXMrEwUsBNftoDuVYbUjoQBNAH8zB0VLJrc01OU7-fjEUpID7oxARfDVrHH-5xOkALn2_IQF9_79Nx6hKzDH0_eD4fZ9dJWYnQ6b3beOOuVsrh4AHCz5w3reYXR02VP9J92RdmU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+Regulation+of+Tumor+Hypoxia+Microenvironment+via+a+Bioinspired+Pt-Based+Oxygen+Nanogenerator+for+Multimodal+Imaging-Guided+Synergistic+Phototherapy&rft.jtitle=Advanced+science&rft.au=You%2C+Qing&rft.au=Zhang%2C+Kaiyue&rft.au=Liu%2C+Jingyi&rft.au=Liu%2C+Changliang&rft.date=2020-09-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=17&rft.spage=1903341&rft_id=info:doi/10.1002%2Fadvs.201903341&rft_id=info%3Apmid%2F32995114&rft.externalDocID=32995114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |