Persistent Regulation of Tumor Hypoxia Microenvironment via a Bioinspired Pt‐Based Oxygen Nanogenerator for Multimodal Imaging‐Guided Synergistic Phototherapy

Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodyn...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 17; pp. 1903341 - n/a
Main Authors You, Qing, Zhang, Kaiyue, Liu, Jingyi, Liu, Changliang, Wang, Huayi, Wang, Mengting, Ye, Siyuan, Gao, Houqian, Lv, Letian, Wang, Chen, Zhu, Ling, Yang, Yanlian
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.09.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.201903341

Cover

Loading…
Abstract Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. In this research, a tumor environment (TEM)‐responsive and continuous O2 self‐enriched drug delivery platform based on octahedral gold nanoshells (GNSs) using Pt‐decorated metal–organic frameworks (MOF) as inner template is constructed. The obtained nanostructures are further functionalized with human serum albumin‐gadolinium hybrid (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a multimodal imaging guided enhanced photodynamic therapy/photothermal therapy PDT/PTT effect.
AbstractList Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O 2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H 2 O 2 into O 2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O 2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors.
Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O 2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H 2 O 2 into O 2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O 2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. In this research, a tumor environment (TEM)‐responsive and continuous O 2 self‐enriched drug delivery platform based on octahedral gold nanoshells (GNSs) using Pt‐decorated metal–organic frameworks (MOF) as inner template is constructed. The obtained nanostructures are further functionalized with human serum albumin‐gadolinium hybrid (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a multimodal imaging guided enhanced photodynamic therapy/photothermal therapy PDT/PTT effect.
Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors.
Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors. In this research, a tumor environment (TEM)‐responsive and continuous O2 self‐enriched drug delivery platform based on octahedral gold nanoshells (GNSs) using Pt‐decorated metal–organic frameworks (MOF) as inner template is constructed. The obtained nanostructures are further functionalized with human serum albumin‐gadolinium hybrid (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a multimodal imaging guided enhanced photodynamic therapy/photothermal therapy PDT/PTT effect.
Abstract Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre‐existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self‐enriched nanoplatform is constructed for multimodal imaging‐guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one‐step method using platinum (Pt) nanozyme‐decorated metal–organic frameworks (MOF) as the inner template. The Pt‐decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin‐chelated gadolinium (HSA‐Gd, HGd) and loaded with indocyanine green (ICG) (ICG‐PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X‐ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt‐decorated nanoplatform endows remarkable catalase‐like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor‐targeting ability of the nanocomposites. This TME‐responsive and O2 self‐supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging‐guided synergistic phototherapy of solid tumors.
Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O2 self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors.Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O2 self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors.
Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H O into O to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors.
Author You, Qing
Lv, Letian
Liu, Changliang
Yang, Yanlian
Wang, Mengting
Gao, Houqian
Wang, Huayi
Ye, Siyuan
Wang, Chen
Liu, Jingyi
Zhang, Kaiyue
Zhu, Ling
AuthorAffiliation 2 University of Chinese Academy of Sciences Beijing 100049 P. R. China
4 Department of Chemistry Tinghua University Beijing 100084 P. R. China
3 Sino‐Danish College University of Chinese Academy of Sciences Beijing 100049 P. R. China
1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
AuthorAffiliation_xml – name: 1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
– name: 4 Department of Chemistry Tinghua University Beijing 100084 P. R. China
– name: 2 University of Chinese Academy of Sciences Beijing 100049 P. R. China
– name: 3 Sino‐Danish College University of Chinese Academy of Sciences Beijing 100049 P. R. China
Author_xml – sequence: 1
  givenname: Qing
  surname: You
  fullname: You, Qing
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Kaiyue
  surname: Zhang
  fullname: Zhang, Kaiyue
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Jingyi
  surname: Liu
  fullname: Liu, Jingyi
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Changliang
  surname: Liu
  fullname: Liu, Changliang
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Huayi
  surname: Wang
  fullname: Wang, Huayi
  organization: Tinghua University
– sequence: 6
  givenname: Mengting
  surname: Wang
  fullname: Wang, Mengting
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Siyuan
  surname: Ye
  fullname: Ye, Siyuan
  organization: Tinghua University
– sequence: 8
  givenname: Houqian
  surname: Gao
  fullname: Gao, Houqian
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Letian
  surname: Lv
  fullname: Lv, Letian
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  organization: University of Chinese Academy of Sciences
– sequence: 11
  givenname: Ling
  orcidid: 0000-0003-3818-6093
  surname: Zhu
  fullname: Zhu, Ling
  email: zhul@nanoctr.cn
  organization: National Center for Nanoscience and Technology
– sequence: 12
  givenname: Yanlian
  surname: Yang
  fullname: Yang, Yanlian
  email: yangyl@nanoctr.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32995114$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1u1DAAhSNUREvpliWKxIbNDP5N7A1SW6AdqaUjWthaTmJnPErsqZ0MzY4jcAaOxklwOtOqrYRYWLac7z2_2O9lsmOdVUnyGoIpBAC9l9U6TBGAHGBM4LNkD0HOJpgRsvNgvZschLAEAECKcwLZi2QXI84phGQv-T1XPpjQKdulX1XdN7IzzqZOp1d963x6OqzcjZHpuSm9U3ZtvLPtCK_jpkyPjDM2rIxXVTrv_vz8dSRDXF7cDLWy6RdpXZyVl1200nGc901nWlfJJp21sja2jpqT3lRRdDlEso5ZTJnOF65z3SIqV8Or5LmWTVAH23k_-fb509Xx6eTs4mR2fHg2KSnidILLCiJVkoJpWREKNCyyLOOZAiwjXCIENC8yhiRAMqtygBSDmNCcRkJJzvF-Mtv4Vk4uxcqbVvpBOGnE7YbztZA-hmuUKBjOgCacAlwSpDkrMS5QlStSaI0ZiF4fNl6rvmhVVcYb87J5ZPr4izULUbu1yCnI4-9Eg3dbA--uexU60ZpQqqaRVrk-CERITkkGyHjW2yfo0vXexqsaKcBykBMWqTcPE91HuatCBMgGiA8dgldalKa7bUMMaBoBgRhLJ8bSifvSRdn0iezO-Z-C7Tk_TKOG_9Di8OP3S8gJxX8BKzruCQ
CitedBy_id crossref_primary_10_1016_j_nanoso_2024_101315
crossref_primary_10_1039_D1QM00784J
crossref_primary_10_1016_j_ccr_2021_214216
crossref_primary_10_1016_j_molstruc_2024_139603
crossref_primary_10_1016_j_nantod_2022_101708
crossref_primary_10_1007_s12598_022_02116_9
crossref_primary_10_1016_j_nanoms_2024_02_006
crossref_primary_10_1016_j_nantod_2024_102404
crossref_primary_10_3390_ijms23084458
crossref_primary_10_1039_D2TB02751H
crossref_primary_10_1016_j_cej_2025_160428
crossref_primary_10_1016_j_biomaterials_2022_121596
crossref_primary_10_1186_s12951_023_01907_1
crossref_primary_10_1039_D4NR00283K
crossref_primary_10_1016_j_actbio_2024_11_023
crossref_primary_10_1016_j_ajps_2022_01_002
crossref_primary_10_1016_j_aca_2024_342734
crossref_primary_10_1007_s13346_024_01622_w
crossref_primary_10_1016_j_ijbiomac_2024_133963
crossref_primary_10_3389_fbioe_2024_1439883
crossref_primary_10_1021_acsami_2c19029
crossref_primary_10_1002_anie_202319982
crossref_primary_10_1038_s41392_024_01852_x
crossref_primary_10_1002_smll_202104302
crossref_primary_10_3390_ph16020249
crossref_primary_10_1016_j_nantod_2022_101376
crossref_primary_10_1016_j_pdpdt_2021_102684
crossref_primary_10_1021_acsami_1c07181
crossref_primary_10_1016_j_ccr_2024_215926
crossref_primary_10_1039_D3TB02875E
crossref_primary_10_1515_oncologie_2023_0459
crossref_primary_10_1016_j_snb_2021_130680
crossref_primary_10_1039_D3TB01035J
crossref_primary_10_3389_fphar_2023_1140362
crossref_primary_10_1039_D3TB00839H
crossref_primary_10_3390_pharmaceutics13081151
crossref_primary_10_1016_j_addr_2022_114648
crossref_primary_10_1016_j_cej_2022_135085
crossref_primary_10_1021_acs_nanolett_4c02137
crossref_primary_10_1016_j_ccr_2023_215482
crossref_primary_10_1039_D2TB01772E
crossref_primary_10_1186_s12951_024_02813_w
crossref_primary_10_3389_fbioe_2021_647905
crossref_primary_10_1021_cbmi_2c00003
crossref_primary_10_1039_D1TB00209K
crossref_primary_10_1002_cbf_3925
crossref_primary_10_1039_D3TB02690F
crossref_primary_10_1039_D2BM01833K
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_3390_molecules28166085
crossref_primary_10_1021_acsami_3c18990
crossref_primary_10_3389_fchem_2022_1092747
crossref_primary_10_1016_j_msec_2021_112546
crossref_primary_10_1002_adfm_202312197
crossref_primary_10_1007_s00259_021_05207_4
crossref_primary_10_1039_D2CC01165D
crossref_primary_10_1002_adfm_202104378
crossref_primary_10_1016_j_ccr_2022_214780
crossref_primary_10_1021_acs_analchem_4c05292
crossref_primary_10_1002_adhm_202100601
crossref_primary_10_1038_s41467_025_57188_9
crossref_primary_10_1016_j_cclet_2023_109381
crossref_primary_10_1021_acsami_1c10656
crossref_primary_10_1002_advs_202207759
crossref_primary_10_1088_1361_6528_ad568c
crossref_primary_10_1021_acsbiomaterials_0c01644
crossref_primary_10_1021_acsami_0c22194
crossref_primary_10_1016_j_inoche_2022_110145
crossref_primary_10_1039_D2RA01102F
crossref_primary_10_1016_j_jcis_2024_11_008
crossref_primary_10_1016_j_talanta_2024_127492
crossref_primary_10_1039_D1NR04489C
crossref_primary_10_1002_smll_202203400
crossref_primary_10_1021_acsomega_2c05761
crossref_primary_10_1039_D1CC06330H
crossref_primary_10_1021_acsnano_2c02528
crossref_primary_10_1002_adma_202204910
crossref_primary_10_1016_j_cej_2024_157299
crossref_primary_10_1007_s11426_021_1055_0
crossref_primary_10_1002_adhm_202301413
crossref_primary_10_1016_j_nantod_2022_101466
crossref_primary_10_1126_sciadv_adk0716
crossref_primary_10_1039_D4NR03878A
crossref_primary_10_1186_s12951_023_02111_x
crossref_primary_10_1016_j_ejmech_2022_114456
crossref_primary_10_1002_cplu_202200394
crossref_primary_10_1016_j_jconrel_2024_08_014
crossref_primary_10_1016_j_actbio_2023_03_008
crossref_primary_10_1016_j_jcis_2022_06_031
crossref_primary_10_1016_j_biomaterials_2022_121665
crossref_primary_10_1021_acsnano_4c03652
crossref_primary_10_1002_adhm_202302111
crossref_primary_10_1016_j_biomaterials_2021_121326
crossref_primary_10_1016_j_cej_2022_135711
crossref_primary_10_1007_s12032_024_02598_w
crossref_primary_10_1002_adhm_202202467
crossref_primary_10_1002_ente_202402354
crossref_primary_10_1016_j_mtcomm_2024_108382
crossref_primary_10_1021_acs_analchem_1c02310
crossref_primary_10_1039_D4RA03259D
crossref_primary_10_1021_acsami_1c02260
crossref_primary_10_1007_s12274_023_5919_0
crossref_primary_10_1016_j_actbio_2023_12_012
crossref_primary_10_1021_acsbiomaterials_1c01390
crossref_primary_10_1002_smll_202007090
crossref_primary_10_1021_acsami_2c17691
crossref_primary_10_1039_D1CC00645B
crossref_primary_10_1007_s12274_023_6149_1
crossref_primary_10_1021_acsanm_3c02223
crossref_primary_10_1021_acsbiomaterials_1c01430
crossref_primary_10_1039_D2NR03408E
crossref_primary_10_1016_j_jconrel_2022_12_009
crossref_primary_10_3390_pharmaceutics15102480
crossref_primary_10_1039_D3NR02010J
crossref_primary_10_3390_pharmaceutics15041207
crossref_primary_10_1039_D3RA05020C
crossref_primary_10_1002_ange_202319982
crossref_primary_10_1016_j_bioadv_2022_213168
crossref_primary_10_1007_s40843_023_2583_5
crossref_primary_10_1016_j_arabjc_2022_103966
crossref_primary_10_1364_BOE_458182
crossref_primary_10_1016_j_cej_2021_132859
crossref_primary_10_1002_advs_202100712
crossref_primary_10_1016_j_snb_2024_136227
crossref_primary_10_1016_j_colsurfa_2022_129662
crossref_primary_10_1002_smll_202103569
crossref_primary_10_1016_j_actbio_2024_01_010
crossref_primary_10_1021_acssuschemeng_0c08326
crossref_primary_10_1016_j_nxmate_2024_100111
crossref_primary_10_1021_acsanm_4c04184
crossref_primary_10_1016_j_jcis_2024_01_114
crossref_primary_10_1021_acsami_1c17642
crossref_primary_10_2147_IJN_S353330
crossref_primary_10_1016_j_ijbiomac_2023_129070
crossref_primary_10_1016_j_cej_2022_136428
crossref_primary_10_1016_j_molstruc_2024_139797
crossref_primary_10_1093_rb_rbad078
crossref_primary_10_1021_acsanm_3c05959
crossref_primary_10_1039_D3NA01075A
crossref_primary_10_3390_pharmaceutics14091763
crossref_primary_10_1186_s12951_025_03132_4
crossref_primary_10_1021_acsanm_2c03271
Cites_doi 10.1002/smll.201801851
10.1016/j.biomaterials.2016.08.041
10.1021/ja5042989
10.1016/j.biomaterials.2016.01.009
10.1016/j.biomaterials.2018.10.003
10.1002/adfm.201901417
10.1039/C5NR04587H
10.1016/j.cell.2007.04.019
10.1016/j.canlet.2011.04.024
10.1038/s41467-018-05906-x
10.1021/ac401879y
10.1073/pnas.1522080113
10.1021/acsami.6b11918
10.1002/adma.201103521
10.1111/vru.12674
10.1016/j.saa.2019.04.063
10.1038/nrc.2016.84
10.1172/JCI22320
10.1002/advs.201700805
10.1002/adfm.201703197
10.1021/ja503115n
10.1016/j.biomaterials.2013.07.007
10.1038/s41467-018-05798-x
10.1021/acsnano.6b08731
10.1016/j.actbio.2016.01.039
10.1002/ange.201804291
10.1002/ijc.11646
10.1038/nrc1071
10.1021/jacs.9b12929
10.1021/acsami.8b17910
10.1021/acsnano.8b07749
10.1038/nrc1367
10.1038/ncomms9785
10.1021/acsami.9b02484
10.1021/acsnano.8b09607
10.1016/j.biomaterials.2014.04.019
10.1038/nchem.1272
10.1039/C9NH00233B
10.1039/C9TB00433E
10.1038/cddiscovery.2015.11
10.1021/acsnano.8b05136
10.1016/j.biomaterials.2009.07.030
10.1021/acsnano.8b00999
10.1002/advs.201800287
10.1016/j.biomaterials.2019.119282
10.1039/C6NR09042G
10.1016/j.biomaterials.2020.119848
10.1002/adfm.201402338
10.1039/C9CC03701B
10.18632/oncotarget.8617
10.1016/j.biomaterials.2016.04.034
10.1002/adma.201500229
10.1016/j.biomaterials.2015.10.069
10.1002/adma.201601902
10.1016/j.addr.2008.08.003
10.1002/anie.201600868
10.1021/acsami.6b13351
10.3390/cancers6010459
10.1039/C6NR02012G
10.1002/anie.201603990
10.1002/adma.201901893
10.1016/j.biomaterials.2018.05.051
10.1039/C8BM01553H
10.1002/adma.201602197
10.1038/nature19081
10.1002/adfm.201806199
10.1002/adma.201400620
10.1021/acsami.6b11802
10.1002/adma.201905825
10.2220/biomedres.35.37
10.1038/nature09284
10.1002/adfm.201706375
10.1021/ja00800a012
10.1021/acsnano.8b05639
10.1021/acsami.7b11926
10.1021/acsnano.9b08320
10.1021/acsnano.6b05760
10.1021/cr400532z
10.1038/s41598-017-09116-1
10.1016/j.biomaterials.2013.12.046
10.1021/acsami.7b18577
10.1016/j.intimp.2019.105764
10.1016/j.biomaterials.2016.01.027
10.1021/acsnano.8b09501
10.1016/j.jconrel.2011.07.031
10.1021/nn400728t
10.1021/acsnano.7b07746
10.7150/thno.22325
10.1016/j.biomaterials.2018.07.049
10.1002/adfm.201704634
10.1038/nmat4707
10.1016/j.biomaterials.2015.11.049
10.1021/am200974t
10.1002/adfm.201605592
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley‐VCH GmbH
2020 The Authors. Published by Wiley‐VCH GmbH.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley‐VCH GmbH
– notice: 2020 The Authors. Published by Wiley‐VCH GmbH.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201903341
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b8360f49503c42f98c33b2d7e4bff380
PMC7507529
32995114
10_1002_advs_201903341
ADVS1945
Genre article
Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of Chinese Academy of Science
  funderid: XDB36000000
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0205000
– fundername: National Natural Science Foundation of China
  funderid: 31971295; 31600803; 21773042
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2018048
– fundername: ;
  grantid: 31971295; 31600803; 21773042
– fundername: ;
  grantid: 2017YFA0205000
– fundername: Strategic Priority Research Program of Chinese Academy of Science
  grantid: XDB36000000
– fundername: ;
  grantid: 2018048
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
ITC
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5295-3cd12ec4b8fad450f1b66696e08649a220f9b682a02a6d702e81345756e0ea993
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:19:48 EDT 2025
Thu Aug 21 14:08:24 EDT 2025
Fri Jul 11 02:42:55 EDT 2025
Thu Jul 03 03:43:53 EDT 2025
Mon Jul 21 06:04:10 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Tue Jul 01 03:59:23 EDT 2025
Wed Jan 22 16:32:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords cancer theranostics
O2 self‐enriched photodynamic therapy
multimodal imaging
hypoxia alleviation
photothermal therapy
Language English
License Attribution
2020 The Authors. Published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5295-3cd12ec4b8fad450f1b66696e08649a220f9b682a02a6d702e81345756e0ea993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3818-6093
OpenAccessLink https://doaj.org/article/b8360f49503c42f98c33b2d7e4bff380
PMID 32995114
PQID 2440870748
PQPubID 4365299
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_b8360f49503c42f98c33b2d7e4bff380
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7507529
proquest_miscellaneous_2447546040
proquest_journals_2440870748
pubmed_primary_32995114
crossref_citationtrail_10_1002_advs_201903341
crossref_primary_10_1002_advs_201903341
wiley_primary_10_1002_advs_201903341_ADVS1945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 7
1973; 95
2017 2017 2008; 11 27 60
2019; 11
2019; 55
2019; 13
2010; 467
2004; 4
2016; 76
2014; 26
2014 2014; 136 114
2018 2018; 28 12
2013; 7
2016 2019 2017; 8 217 9
2017; 9
2014; 136
2017 2019 2018; 9 13 130
2016; 79
2016; 33
2018; 5
2015 2016; 7 84
2016; 113
2019; 29
2016; 84
2011; 23
2018 2016; 9 108
2019 2020; 4 142
2016 2018; 55 9
2019; 7
2018 2016; 5 28
2018; 28
2015; 6
2014 2013; 35 34
2014 2016; 6 16
2019; 31
2018 2012; 8 157
2020 2018; 14 177
2005; 115
2003 2016 2007; 3 537 129
2013; 85
2016; 10
2011; 3
2004; 108
2017 2019; 27 29
2016; 15
2019; 188
2016; 55
2015; 25
2009; 30
2015 2016; 1 7
2015; 27
2017 2019 2020 2018; 13 219 238 181
2019 2019; 31 75
2011; 308
2014; 35
2018; 12
2016; 28
2012; 4
2018; 10
2016; 8
2018; 59
2016 2018 2019; 97 12 13
2018; 14
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_60_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_62_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_14_2
e_1_2_7_63_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_44_1
e_1_2_7_63_3
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Liu C. (e_1_2_7_12_1) 2017; 13
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
e_1_2_7_59_2
References_xml – volume: 136 114
  start-page: 8307
  year: 2014 2014
  publication-title: J. Am. Chem. Soc. Chem. Rev.
– volume: 13
  start-page: 4379
  year: 2019
  publication-title: ACS Nano
– volume: 6 16
  start-page: 459 663
  year: 2014 2016
  publication-title: Cancers Nat. Rev. Cancer
– volume: 4 142
  start-page: 1450 5649
  year: 2019 2020
  publication-title: Nanoscale Horiz. J. Am. Chem. Soc.
– volume: 3 537 129
  start-page: 380 63 465
  year: 2003 2016 2007
  publication-title: Nat. Rev. Cancer Nature Cell
– volume: 13 219 238 181
  start-page: 9 281 81
  year: 2017 2019 2020 2018
  publication-title: Small Spectrochim. Acta, Part A Biomaterials Biomaterials
– volume: 9
  start-page: 3354
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  year: 2018
  publication-title: Small
– volume: 31 75
  year: 2019 2019
  publication-title: Adv. Mater. Int. Immunopharmacol.
– volume: 15
  start-page: 1128
  year: 2016
  publication-title: Nat. Mater.
– volume: 59
  start-page: 721
  year: 2018
  publication-title: Vet. Radiol. Ultrasound
– volume: 95
  start-page: 6223
  year: 1973
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 4164
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 308
  start-page: 172
  year: 2011
  publication-title: Cancer Lett.
– volume: 467
  start-page: 86
  year: 2010
  publication-title: Nature
– volume: 136
  start-page: 9701
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 14 177
  start-page: 1936 149
  year: 2020 2018
  publication-title: ACS Nano Biomaterials
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 5392
  year: 2011
  publication-title: Adv. Mater.
– volume: 27
  start-page: 3874
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 33
  start-page: 34
  year: 2016
  publication-title: Acta Biomater.
– volume: 55
  start-page: 9389
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 7129
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 5979
  year: 2009
  publication-title: Biomaterials
– volume: 11 27 60
  start-page: 2227 1627
  year: 2017 2017 2008
  publication-title: ACS Nano Adv. Funct. Mater. Adv. Drug Delivery Rev.
– volume: 76
  start-page: 399
  year: 2016
  publication-title: Biomaterials
– volume: 7
  start-page: 3724
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 84
  start-page: 13
  year: 2016
  publication-title: Biomaterials
– volume: 5 28
  start-page: 8379
  year: 2018 2016
  publication-title: Adv. Sci. Adv. Mater.
– volume: 115
  start-page: 44
  year: 2005
  publication-title: J. Clin. Invest.
– volume: 35 34
  start-page: 6037 7706
  year: 2014 2013
  publication-title: Biomaterials Biomaterials
– volume: 108
  start-page: 825
  year: 2004
  publication-title: Int. J. Cancer
– volume: 55 9
  start-page: 6646 3334
  year: 2016 2018
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 26
  start-page: 4056
  year: 2014
  publication-title: Adv. Mater.
– volume: 188
  start-page: 96
  year: 2019
  publication-title: Biomaterials
– volume: 25
  start-page: 1451
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8 157
  start-page: 955 168
  year: 2018 2012
  publication-title: Theranostics J. Controlled Release
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 3
  start-page: 3788
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 19
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 8606
  year: 2017
  publication-title: Sci. Rep.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9 108
  start-page: 3390 129
  year: 2018 2016
  publication-title: Nat. Commun. Biomaterials
– volume: 4
  start-page: 437
  year: 2004
  publication-title: Nat. Rev. Cancer
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 2915
  year: 2014
  publication-title: Biomaterials
– volume: 7 84
  start-page: 1
  year: 2015 2016
  publication-title: Nanoscale Biomaterials
– volume: 8 217 9
  start-page: 3784
  year: 2016 2019 2017
  publication-title: Nanoscale Biomaterials Nanoscale
– volume: 28 12
  year: 2018 2018
  publication-title: Adv. Funct. Mater. ACS Nano
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 5340
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1875
  year: 2019
  publication-title: Biomater. Sci.
– volume: 7
  start-page: 4252
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 310
  year: 2012
  publication-title: Nat. Chem.
– volume: 12
  start-page: 651
  year: 2018
  publication-title: ACS Nano
– volume: 97 12 13
  start-page: 1 3780 5222
  year: 2016 2018 2019
  publication-title: Biomaterials ACS Nano ACS Nano
– volume: 13
  start-page: 176
  year: 2019
  publication-title: ACS Nano
– volume: 35
  start-page: 37
  year: 2014
  publication-title: Biomed. Res.
– volume: 6
  start-page: 8785
  year: 2015
  publication-title: Nat. Commun.
– volume: 79
  start-page: 25
  year: 2016
  publication-title: Biomaterials
– volume: 1 7
  year: 2015 2016
  publication-title: Cell Death Discovery Oncotarget
– volume: 27 29
  year: 2017 2019
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 85
  start-page: 8436
  year: 2013
  publication-title: Anal. Chem.
– volume: 9 13 130
  start-page: 274
  year: 2017 2019 2018
  publication-title: ACS Appl. Mater. Interfaces ACS Nano Angew. Chem.
– ident: e_1_2_7_21_1
  doi: 10.1002/smll.201801851
– ident: e_1_2_7_42_2
  doi: 10.1016/j.biomaterials.2016.08.041
– ident: e_1_2_7_66_1
  doi: 10.1021/ja5042989
– ident: e_1_2_7_48_1
  doi: 10.1016/j.biomaterials.2016.01.009
– ident: e_1_2_7_55_1
  doi: 10.1016/j.biomaterials.2018.10.003
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.201901417
– ident: e_1_2_7_51_1
  doi: 10.1039/C5NR04587H
– ident: e_1_2_7_6_3
  doi: 10.1016/j.cell.2007.04.019
– ident: e_1_2_7_56_1
  doi: 10.1016/j.canlet.2011.04.024
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-018-05906-x
– ident: e_1_2_7_30_1
  doi: 10.1021/ac401879y
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.1522080113
– ident: e_1_2_7_44_1
  doi: 10.1021/acsami.6b11918
– volume: 13
  start-page: 9
  year: 2017
  ident: e_1_2_7_12_1
  publication-title: Small
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201103521
– ident: e_1_2_7_45_1
  doi: 10.1111/vru.12674
– ident: e_1_2_7_12_2
  doi: 10.1016/j.saa.2019.04.063
– ident: e_1_2_7_7_2
  doi: 10.1038/nrc.2016.84
– ident: e_1_2_7_64_1
  doi: 10.1172/JCI22320
– ident: e_1_2_7_57_1
  doi: 10.1002/advs.201700805
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201703197
– ident: e_1_2_7_2_1
  doi: 10.1021/ja503115n
– ident: e_1_2_7_43_2
  doi: 10.1016/j.biomaterials.2013.07.007
– ident: e_1_2_7_11_2
  doi: 10.1038/s41467-018-05798-x
– ident: e_1_2_7_3_1
  doi: 10.1021/acsnano.6b08731
– ident: e_1_2_7_31_1
  doi: 10.1016/j.actbio.2016.01.039
– ident: e_1_2_7_1_3
  doi: 10.1002/ange.201804291
– ident: e_1_2_7_68_1
  doi: 10.1002/ijc.11646
– ident: e_1_2_7_6_1
  doi: 10.1038/nrc1071
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.9b12929
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.8b17910
– ident: e_1_2_7_10_2
  doi: 10.1021/acsnano.8b07749
– ident: e_1_2_7_5_1
  doi: 10.1038/nrc1367
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms9785
– ident: e_1_2_7_13_1
  doi: 10.1021/acsami.9b02484
– ident: e_1_2_7_17_1
  doi: 10.1021/acsnano.8b09607
– ident: e_1_2_7_43_1
  doi: 10.1016/j.biomaterials.2014.04.019
– ident: e_1_2_7_28_1
  doi: 10.1038/nchem.1272
– ident: e_1_2_7_14_1
  doi: 10.1039/C9NH00233B
– ident: e_1_2_7_37_1
  doi: 10.1039/C9TB00433E
– ident: e_1_2_7_62_1
  doi: 10.1038/cddiscovery.2015.11
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.8b05136
– ident: e_1_2_7_35_1
  doi: 10.1016/j.biomaterials.2009.07.030
– ident: e_1_2_7_63_2
  doi: 10.1021/acsnano.8b00999
– ident: e_1_2_7_16_1
  doi: 10.1002/advs.201800287
– ident: e_1_2_7_4_2
  doi: 10.1016/j.biomaterials.2019.119282
– ident: e_1_2_7_4_3
  doi: 10.1039/C6NR09042G
– ident: e_1_2_7_12_3
  doi: 10.1016/j.biomaterials.2020.119848
– ident: e_1_2_7_47_1
  doi: 10.1002/adfm.201402338
– ident: e_1_2_7_46_1
  doi: 10.1039/C9CC03701B
– ident: e_1_2_7_62_2
  doi: 10.18632/oncotarget.8617
– ident: e_1_2_7_63_1
  doi: 10.1016/j.biomaterials.2016.04.034
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201500229
– ident: e_1_2_7_39_1
  doi: 10.1016/j.biomaterials.2015.10.069
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.201601902
– ident: e_1_2_7_3_3
  doi: 10.1016/j.addr.2008.08.003
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201600868
– ident: e_1_2_7_52_1
  doi: 10.1021/acsami.6b13351
– ident: e_1_2_7_7_1
  doi: 10.3390/cancers6010459
– ident: e_1_2_7_4_1
  doi: 10.1039/C6NR02012G
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201603990
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201901893
– ident: e_1_2_7_60_2
  doi: 10.1016/j.biomaterials.2018.05.051
– ident: e_1_2_7_61_1
  doi: 10.1039/C8BM01553H
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201602197
– ident: e_1_2_7_6_2
  doi: 10.1038/nature19081
– ident: e_1_2_7_9_2
  doi: 10.1002/adfm.201806199
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201400620
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.6b11802
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.201905825
– ident: e_1_2_7_58_1
  doi: 10.2220/biomedres.35.37
– ident: e_1_2_7_67_1
  doi: 10.1038/nature09284
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201706375
– ident: e_1_2_7_34_1
  doi: 10.1021/ja00800a012
– ident: e_1_2_7_1_2
  doi: 10.1021/acsnano.8b05639
– ident: e_1_2_7_1_1
  doi: 10.1021/acsami.7b11926
– ident: e_1_2_7_60_1
  doi: 10.1021/acsnano.9b08320
– ident: e_1_2_7_65_1
  doi: 10.1021/acsnano.6b05760
– ident: e_1_2_7_2_2
  doi: 10.1021/cr400532z
– ident: e_1_2_7_38_1
  doi: 10.1038/s41598-017-09116-1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.biomaterials.2013.12.046
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.7b18577
– ident: e_1_2_7_59_2
  doi: 10.1016/j.intimp.2019.105764
– ident: e_1_2_7_51_2
  doi: 10.1016/j.biomaterials.2016.01.027
– ident: e_1_2_7_63_3
  doi: 10.1021/acsnano.8b09501
– ident: e_1_2_7_24_2
  doi: 10.1016/j.jconrel.2011.07.031
– ident: e_1_2_7_20_1
  doi: 10.1021/nn400728t
– ident: e_1_2_7_49_1
  doi: 10.1021/acsnano.7b07746
– ident: e_1_2_7_24_1
  doi: 10.7150/thno.22325
– ident: e_1_2_7_12_4
  doi: 10.1016/j.biomaterials.2018.07.049
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.201704634
– ident: e_1_2_7_54_1
  doi: 10.1038/nmat4707
– ident: e_1_2_7_19_1
  doi: 10.1016/j.biomaterials.2015.11.049
– ident: e_1_2_7_27_1
  doi: 10.1021/am200974t
– ident: e_1_2_7_3_2
  doi: 10.1002/adfm.201605592
SSID ssj0001537418
Score 2.5460708
Snippet Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment...
Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment...
Abstract Multifunctional nanoplatforms for imaging‐guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1903341
SubjectTerms cancer theranostics
Cancer therapies
DNA methylation
FDA approval
Federal regulation
Gold
Hypoxia
hypoxia alleviation
Ligands
Light therapy
Magnetic resonance imaging
Metastasis
multimodal imaging
Nanoparticles
O2 self‐enriched photodynamic therapy
Particle size
photothermal therapy
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVgumGDKM_QgoyEBCyiOraTOKuKQS0DUsuoD6m7KH6kjcTEw3Sm6uz4BL6BT-NLuHY8oSNe2-RGcXJf5_pxLkIvhSFEQ5qMdaI0FCg8iYVQKoZspCHjcKV9O6CDw2x0yj-epWdhwu0ybKtcxUQfqLVVbo58h7rWyDkkPLE7_RK7rlFudTW00LiNNiAEi3SANoZ7h-OjX7MsKXP0LCu2RkJ3Kn3lWLohDzLGk7Vs5En7_4Q0f98weRPI-ky0fw_dDRASv-10volumfY-2gxOeolfBybpNw_Qd7e_3emxneOjruk8qAHbGp8sJnaGR8upvW4qfOB25d048oav4GKFh41tWrcSbzQez398_TaElKfxp-slWB2GuGzP_augbMeAfbE_zDuxGgb3YeK7H8Ez7xeNhoeOl-6QoWeFxuMLOw8Hv5YP0en-3sm7URyaMsTKrQnGTOmEGsWlqCvNU1InEiqgIjNQG_GiopTUhcwErQitMp0TakTCOIBCkDAVoKFHaNDa1jxBGKCQZDVViqSaS6mkI6vMUsZVVdRgWRGKV8opVWAsd40zPpcd1zItnTLLXpkRetXLTzuujr9KDp2ueynHse0v2Nl5GVy2lO58Sw0FJGGK07oQijFJdW64rGsmSIS2V5ZSBseHV_RmGqEX_W1wWbcOU7XGLrxMnvIMwmeEHneG1Y-EATwADMwjlK-Z3NpQ1--0zYWnBQfsl4OK4K954_zPLygB9hwnBU-f_vszttAd6qYY_La6bTSYzxbmGeCwuXwenO0n2AI3Fg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQuXBBlN9Ai4yEBByiJrbzd-wiyoJUWNFW6i3yX9pIbFxts1X3xiPwDDwaT8KMk003AoS4JpPEysx4vrE93xDyMrdRZCBMhibWBhIUEYd5rnUI0chAxBHa-HZAh5_S6Yn4eJqcblTxd_wQw4Ibeoafr9HBpbrcuyENleYK6bYhoHGOleu3sb4WexgwMbtZZUk40rNghznIrkOeC7FmbozY3vgVo8jkCfz_hDp_Pzy5CWp9VDq4R-72cJLud_rfJrdsc59s9w57SV_3rNJvHpAfeNYdddq09EvXgB5UQl1Fj5dzt6DT1YW7riU9xBN6G-Vv9AouSjqpXd3grrw1dNb-_PZ9AuHP0M_XK7BACnO0O_OfghSeAg6mvrB37gwM7sPcd0KCZ94vawMPHa2w4NAzRNPZuWv7IrDVQ3Jy8O747TTsGzSEGvcHQ65NzKwWKq-kEUlUxQqyoSK1kCeJQjIWVYVKcyYjJlOTRczmMRcAEEHCSkBGj8hW4xr7hFCARYpXTOsoMUIprZC4Mk240LKowMoCEq6VU-qevRybaHwtO95lVqIyy0GZAXk1yF90vB1_lZygrgcp5Nv2F9zirOzdt1RY61JBMhlxLVhV5JpzxUxmhaoqnkcB2VlbStlPAvAJ7OadAUbLA_JiuA3ui3sysrFu6WWyRKQwlQbkcWdYw0g4QAXAwyIg2cjkRkMd32nqc08RDjgwAxXBX_PG-Y9fUAIEOooLkTz9T_ln5A7D9Qd_5m6HbLWLpd0FkNaq594PfwEmiDos
  priority: 102
  providerName: Wiley-Blackwell
Title Persistent Regulation of Tumor Hypoxia Microenvironment via a Bioinspired Pt‐Based Oxygen Nanogenerator for Multimodal Imaging‐Guided Synergistic Phototherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201903341
https://www.ncbi.nlm.nih.gov/pubmed/32995114
https://www.proquest.com/docview/2440870748
https://www.proquest.com/docview/2447546040
https://pubmed.ncbi.nlm.nih.gov/PMC7507529
https://doaj.org/article/b8360f49503c42f98c33b2d7e4bff380
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BuXBBlF9DiRYJCThYtXfXf8cGWgIiJWpaqTdrf9tIxK6KUzU3HoFn4NF4EmbXjpUIUC-cItljeTUz6_kmO_MNwKvcRJHGMBnqWGlMUHgc5rlSIUYjjRGHK-3HAY0P09EJ_3SanK6N-nI1YS09cKu4Xem6DCzC-IgpTm2RK8Yk1Znh0lqW-2wdY95aMtX2BzNHy7JiaYzortBXjp0b4x9jPN6IQp6s_28I889CyXUA6yPQwX2410FHstcueRtumeoBbHeb8xt50zFIv30IP11du7Nf1ZCjdtg8qp_Ulhwv5vUlGS0v6uuZIGNXjbfW6kau8KIgw1k9q9wJvNFk0vz6_mOIoU6TL9dL9DaC3-P6zL8K03WCmJf4Jt55rXFxH-d-6hE-82Ex0_jQdOmaCz0bNJmc103X8LV8BCcH-8fvRmE3jCFU7iwwZErH1Cgucys0TyIbS8x8itRgTsQLQWlkC5nmVERUpDqLqMljxhEMooQRiIIew1ZVV-YpEIRAklmqVJRoLqWSjqQyTRhXorDoUQGEK-OUqmMqdwMzvpYtxzItnTHL3pgBvO7lL1qOjn9KDp2teynHre0voMeVnceVN3lcADsrTym7DY-vcJO7M8RjeQAv-9u4Vd35i6hMvfAyWcJT_GwG8KR1rH4lDGEBYl8eQLbhchtL3bxTzc49HThivgxNhFrzznmDCkqEO9O44Mmz_6GL53CXuj8gfNHdDmw1lwvzAlFaIwdwm_LJAO7svR9_nuLvcP9wcjTw2_Q3KMFB-A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuiPI0FFgkEHCwau-uXweECLQktAlRm0q9ud6H20jEG1KnNDd-Ar-BH8CP4pcwu37QiNepV3scbzyzM9_uznyD0JNYeZ6EMOlKX0hYoDDfjWMhXIhGEiIOE9K2A-oPwu4Be38YHK6g700tjEmrbHyiddRSC7NHvklMa-QIAl78avrJNV2jzOlq00KjMosdtfgMS7bTl723oN-nhGxvjd503bqrgCvMoZZLhfSJEozHeSZZ4OU-BwifhArAPUsyQrw84WFMMo9koYw8omKfMkA1IKGyxJAvgctfA5iRwCxa62wNhnu_dnUCauhgGnZIj2xm8sywgkPcpZT5S9HPNgn4E7L9PUHzInC2kW_7OrpWQ1b8urKxdbSiihtovXYKp_h5zVz94ib6ZvLpjd0UJd6rmtyD2rHO8Wg-0TPcXUz1-TjDfZMFeKHEDp_BxQx3xnpcmJN_JfGw_PHlawdCrMQfzhdg5RjigD62ryrhpwBrY1s8PNESBteb2G5L8My7-VjCQ_sLU9RoWajx8ESXdaHZ4hY6uBR13UarhS7UXYQBenGaEyG8QDLOBTfkmGFAmciSHCzZQW6jnFTUDOmmUcfHtOJ2JqlRZtoq00HPWvlpxQ3yV8mO0XUrZTi97QU9O05rF5FyU0-Tw4LVo4KRPIkFpZzISDGe5zT2HLTRWEpaOxp4RTstHPS4vQ0uwpz7ZIXScysTBSwEd-2gO5VhtSOhAEcAczMHRUsmtzTU5TvF-MTSkAPWjEBF8NWscf7nE6QAs_b9hAX3_v03HqEr3VF_N93tDXbuo6vEbG_YlL4NtFrO5uoBYMCSP6wnHkZHlz3XfwLgBXI5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF1VqYR4QZSrocAigYAHq_bu-vaAEKENCaUh6kXqm-u9tZGIHVKnNG98At_AZ_A5fAmz6wuNuD311R7HG8_szNndmTMIPYmV50kIk670hYQFCvPdOBbChWgkIeIwIW07oJ1h2D9g7w6DwxX0vamFMWmVjU-0jloWwuyRbxDTGjmCgBdv6DotYrTZezX95JoOUuaktWmnUZnItlp8huXb6cvBJuj6KSG9rf03fbfuMOAKc8DlUiF9ogTjsc4kCzztc4DzSagA6LMkI8TTCQ9jknkkC2XkERX7lAHCAQmVJYaICdz_agRRMe6g1e7WcLT7a4cnoIYapmGK9MhGJs8MQzjEYEqZvxQJbcOAP6Hc35M1L4JoGwV719G1Gr7i15W9raEVld9Aa7WDOMXPaxbrFzfRN5Nbb2woL_Fu1fAeTAAXGu_PJ8UM9xfT4nyc4R2TEXih3A6fwcUMd8fFODdZAEriUfnjy9cuhFuJP5wvwOIxxITi2L6qhJ8C3I1tIfGkkDC4wcR2XoJn3s7HEh7aW5gCR8tIjUcnRVkXnS1uoYNLUddt1MmLXN1FGGAYp5oI4QWScS64IcoMA8pElmiwage5jXJSUbOlm6YdH9OK55mkRplpq0wHPWvlpxVPyF8lu0bXrZTh97YXitlxWruLlJvaGg2LV48KRnQSC0o5kZFiXGsaew5abywlrZ0OvKKdIg563N4Gd2HOgLJcFXMrEwUsBNftoDuVYbUjoQBNAH8zB0VLJrc01OU7-fjEUpID7oxARfDVrHH-5xOkALn2_IQF9_79Nx6hKzDH0_eD4fZ9dJWYnQ6b3beOOuVsrh4AHCz5w3reYXR02VP9J92RdmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+Regulation+of+Tumor+Hypoxia+Microenvironment+via+a+Bioinspired+Pt-Based+Oxygen+Nanogenerator+for+Multimodal+Imaging-Guided+Synergistic+Phototherapy&rft.jtitle=Advanced+science&rft.au=You%2C+Qing&rft.au=Zhang%2C+Kaiyue&rft.au=Liu%2C+Jingyi&rft.au=Liu%2C+Changliang&rft.date=2020-09-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=17&rft.spage=1903341&rft_id=info:doi/10.1002%2Fadvs.201903341&rft_id=info%3Apmid%2F32995114&rft.externalDocID=32995114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon