Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as c...
Saved in:
Published in | Advanced science Vol. 10; no. 7; pp. e2206605 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.03.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
In this review, a clear and comprehensive definition of hollow carbon nanocages (HCNCs) is provided. The latest research progress (including preparation, regulation, and modification) of HCNCs in the field of electrochemical energy storages and conversions is detailly reviewed and discussed. The challenges and some insights into new trends and directions for HCNCs are also provided. |
---|---|
AbstractList | Hollow carbon nanocages (HCNCs) consisting of sp
2
carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
In this review, a clear and comprehensive definition of hollow carbon nanocages (HCNCs) is provided. The latest research progress (including preparation, regulation, and modification) of HCNCs in the field of electrochemical energy storages and conversions is detailly reviewed and discussed. The challenges and some insights into new trends and directions for HCNCs are also provided. Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. In this review, a clear and comprehensive definition of hollow carbon nanocages (HCNCs) is provided. The latest research progress (including preparation, regulation, and modification) of HCNCs in the field of electrochemical energy storages and conversions is detailly reviewed and discussed. The challenges and some insights into new trends and directions for HCNCs are also provided. Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. Abstract Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. Hollow carbon nanocages (HCNCs) consisting of sp 2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. Hollow carbon nanocages (HCNCs) consisting of sp carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. |
Author | Li, Zesheng Wang, Hongqiang Li, Qingyu Li, Bolin Yu, Changlin |
AuthorAffiliation | 1 College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 China 2 Guangxi Key Laboratory of Low Carbon Energy Materials Guangxi Normal University Guilin 541004 China |
AuthorAffiliation_xml | – name: 1 College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 China – name: 2 Guangxi Key Laboratory of Low Carbon Energy Materials Guangxi Normal University Guilin 541004 China |
Author_xml | – sequence: 1 givenname: Zesheng orcidid: 0000-0002-4238-6218 surname: Li fullname: Li, Zesheng email: lzs212@gdupt.edu.cn organization: Guangdong University of Petrochemical Technology – sequence: 2 givenname: Bolin surname: Li fullname: Li, Bolin organization: Guangdong University of Petrochemical Technology – sequence: 3 givenname: Changlin surname: Yu fullname: Yu, Changlin email: yuchanglin@gdupt.edu.cn organization: Guangdong University of Petrochemical Technology – sequence: 4 givenname: Hongqiang surname: Wang fullname: Wang, Hongqiang organization: Guangxi Normal University – sequence: 5 givenname: Qingyu surname: Li fullname: Li, Qingyu email: liqingyu@gxnu.edu.cn organization: Guangxi Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36587986$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvGyEUhUdVqiZNs-2yQuqmG6e8ZmC6qGTZeUlRW_W1RQzccbAwODB2lH9fbKdWkk1WXMF3Dvf1tjoIMUBVvSf4lGBMP2u7zqcUU4qbBtevqiNKWjlikvODR_FhdZLzHGNMaiY4kW-qQ9bUUrSyOaqGn2AgDOhHirMEOaPYo8vofbxDE526GNA3HaLRM8hf0AUESNqjKWQ3C-h8FaxeFLX2Gelg0dStIWXXO7DozIMZUjQ3sHCmaMbLpS_B4GLI76rXfdHAycN5XP05P_s9uRxdf7-4moyvR6amLR_pTmjNtWgw0dQaaKQwgneY9Z2hre0ssLruNLNtJwn0zIqmM1YyzJuaWIzZcXW187VRz9UyuYVO9ypqp7YXMc2UToMzHhTQnhGh-xpExw2r21ZbQqWUures2Xp93XktV90C7KZppRVPTJ--BHejZnGt2lbSWohi8OnBIMXbFeRBLVw24L0OEFdZ0U2dgpKGFvTjM3QeVymUVhVKEt6U-W2oD48z2qfyf7gFON0BJsWcE_R7hGC1WSC1WSC1X6Ai4M8Exg3bkZWKnH9Rduc83L_wiRpP__7ireTsH8Ej24o |
CitedBy_id | crossref_primary_10_1039_D4CS00923A crossref_primary_10_1002_adfm_202421222 crossref_primary_10_1016_j_apsusc_2024_159786 crossref_primary_10_1021_acsnano_4c04691 crossref_primary_10_1016_j_jcis_2024_08_011 crossref_primary_10_1021_acsami_4c18229 crossref_primary_10_1016_j_cej_2024_158265 crossref_primary_10_1016_j_jssc_2024_124745 crossref_primary_10_1002_smll_202306806 crossref_primary_10_1016_j_jcis_2023_04_122 crossref_primary_10_1016_j_jallcom_2024_175705 crossref_primary_10_1016_j_est_2023_109343 crossref_primary_10_1002_adfm_202408257 crossref_primary_10_1016_j_fuel_2025_135121 crossref_primary_10_1007_s12039_024_02295_1 crossref_primary_10_1021_acsanm_4c05918 crossref_primary_10_1016_j_cej_2023_148213 crossref_primary_10_1002_cssc_202401713 crossref_primary_10_1021_acs_iecr_4c00499 crossref_primary_10_1021_acsnano_4c13092 crossref_primary_10_1021_acs_iecr_4c03089 crossref_primary_10_1016_j_ensm_2024_103681 crossref_primary_10_1016_j_cej_2024_156754 crossref_primary_10_1016_j_jcis_2023_10_098 crossref_primary_10_1016_j_jallcom_2024_177438 crossref_primary_10_1016_j_jpowsour_2023_233970 crossref_primary_10_1016_j_fuel_2024_133072 crossref_primary_10_1002_advs_202309364 crossref_primary_10_1039_D4TB00769G crossref_primary_10_1007_s10971_024_06338_4 crossref_primary_10_1021_acs_energyfuels_4c01913 crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1021_acs_iecr_4c01878 crossref_primary_10_1002_smll_202307278 crossref_primary_10_1002_adma_202306844 crossref_primary_10_1016_j_seppur_2024_129382 crossref_primary_10_1021_acs_iecr_4c04344 crossref_primary_10_20517_microstructures_2023_82 crossref_primary_10_1007_s10854_024_13619_9 crossref_primary_10_1039_D3TA04634F crossref_primary_10_1002_cnma_202200537 crossref_primary_10_3390_molecules29102331 crossref_primary_10_1038_s41467_024_45243_w crossref_primary_10_3390_su151410891 crossref_primary_10_26599_NR_2025_94907209 crossref_primary_10_1002_cplu_202400198 crossref_primary_10_1002_smll_202308603 crossref_primary_10_1002_aenm_202404140 crossref_primary_10_1016_j_surfin_2024_104844 crossref_primary_10_1016_j_coelec_2023_101416 crossref_primary_10_1016_j_cej_2024_155122 crossref_primary_10_1002_adfm_202308210 crossref_primary_10_1039_D4TA06503D crossref_primary_10_1016_j_jcrysgro_2024_127721 crossref_primary_10_1016_j_est_2024_113197 crossref_primary_10_1016_j_susmat_2023_e00787 crossref_primary_10_1016_j_apsusc_2023_158915 crossref_primary_10_1002_smll_202302611 crossref_primary_10_1039_D3EE03059H |
Cites_doi | 10.1039/C6CS00328A 10.1002/asia.201801121 10.1016/j.fuel.2022.124043 10.1002/adma.201205332 10.1016/j.cej.2018.02.085 10.1021/acs.nanolett.2c00481 10.1039/D1TA04534B 10.1002/ange.202201491 10.1002/adma.201806312 10.1021/acs.nanolett.1c03499 10.1016/j.electacta.2017.09.070 10.1039/C8TA09751H 10.1007/s12274-020-2928-0 10.1039/c2ee21801a 10.1021/acs.jpcc.0c01539 10.1016/j.est.2021.103437 10.1039/c2jm16942h 10.20964/2019.10.37 10.1016/j.cej.2021.129576 10.1002/batt.201900001 10.1007/s10854-018-9346-z 10.1002/adfm.201904457 10.1038/srep04437 10.1002/adsu.201700081 10.1021/acsnano.9b08528 10.1039/C7TA01896G 10.1002/ange.201913719 10.1016/j.ijhydene.2019.01.073 10.1002/aenm.201401752 10.1002/adma.201700874 10.1039/C9TA03128F 10.1016/j.cej.2020.124407 10.1002/adma.201706895 10.1016/j.cej.2021.129827 10.1007/s12274-012-0279-1 10.1021/acsami.6b03482 10.1016/j.carbon.2021.07.007 10.1016/j.ccr.2021.213946 10.1039/c1jm11364j 10.1002/aenm.202101242 10.1002/adma.201800939 10.1038/354056a0 10.1126/science.1102896 10.1016/j.electacta.2018.06.096 10.1016/j.apcatb.2017.06.008 10.1021/acsami.1c09107 10.1002/adma.201805121 10.1002/smll.201101594 10.1002/adma.201807876 10.1002/ange.201908736 10.1021/jacs.7b10194 10.1039/c3nr01723k 10.1007/s11426-020-9748-0 10.1016/j.electacta.2018.11.002 10.1021/nn404439r 10.1002/smll.201702407 10.1021/am400001g 10.1016/j.jpowsour.2016.12.013 10.1016/j.ensm.2017.12.023 10.1021/acsnano.7b04078 10.1039/c2cc32552g 10.1002/adma.202003649 10.1002/adma.202007523 10.1002/adma.202004632 10.1002/aenm.202002271 10.1002/anie.202012798 10.1016/j.cej.2018.06.108 10.1021/acs.nanolett.0c02766 10.1002/adma.201504225 10.1007/BF00813725 10.1002/anie.202107790 10.1016/j.carbon.2020.05.072 10.1039/C6TA09030C 10.1016/j.cej.2019.06.012 10.1038/s41467-018-06144-x 10.1002/adma.201800426 10.1002/adfm.202102060 10.1016/j.electacta.2019.134878 10.1039/C9CC09812G 10.1016/j.jpowsour.2021.229688 10.1002/adma.201103872 10.1021/acsaem.1c00643 10.1016/j.jpowsour.2018.09.022 10.1016/j.electacta.2022.140931 10.1039/D0NA00297F 10.1016/j.electacta.2017.09.003 10.1016/j.jpowsour.2021.230224 10.1016/j.jcis.2022.07.034 10.1002/adfm.202003871 10.1016/j.est.2022.104515 10.1002/adfm.202208666 10.1002/adma.202070206 10.1002/sus2.8 10.1039/C1JM13872C 10.1016/j.carbon.2017.01.055 10.1016/j.cej.2016.11.018 10.1016/j.nanoen.2021.106111 10.1002/adfm.201503077 10.1038/s41467-020-18820-y 10.1002/ange.202108343 10.1016/j.jechem.2021.06.012 10.1039/D0EE00723D 10.1002/anie.201003213 10.1002/adma.202003134 10.1021/acs.chemmater.8b01792 10.1016/j.jallcom.2019.152890 10.1073/pnas.2000128117 10.1021/acsnano.1c00924 10.1016/j.nanoen.2021.106540 10.1002/eom2.12105 10.1039/C5CC07610B 10.1039/C6TA03802F 10.1016/j.jpowsour.2017.07.037 10.1038/s41929-021-00650-w 10.1002/aenm.201900036 10.1016/j.carbon.2020.06.046 10.1002/adfm.202005834 10.1002/adfm.202006188 10.1002/batt.202200154 10.1007/s40820-014-0019-z 10.1002/adma.201901349 10.1007/s40820-020-00535-w 10.1016/j.cej.2020.127677 10.1002/aenm.202002741 10.1016/j.apcatb.2022.121190 10.1002/anie.202007297 10.1002/adfm.202200315 10.1021/acs.accounts.0c00613 10.1007/s12274-016-1198-3 10.1021/acsnano.6b00723 10.1002/smll.202203589 10.1039/C7TA08483H 10.1039/D0QM00839G 10.1021/acs.nanolett.2c03696 10.1021/acscatal.1c05401 10.1039/C7TA03445H 10.1002/adma.201900429 10.1039/C7CS00690J 10.1002/cey2.134 10.1002/aenm.201803900 10.1002/anie.201606102 10.1016/j.ensm.2018.03.014 10.1002/anie.202107314 10.1016/j.carbon.2016.09.081 10.1021/acssuschemeng.5b00359 10.1007/s11051-016-3457-3 10.1002/smll.202003943 10.1016/j.carbon.2016.04.063 10.1002/adfm.202201166 10.1002/adma.201500945 10.1002/aenm.202002896 10.1002/sstr.202000017 10.1016/j.apsusc.2019.06.183 10.1002/adma.201905622 10.1016/j.cej.2020.127583 10.1021/acscatal.1c03447 10.1021/acsami.8b08534 10.1016/j.ijhydene.2019.10.066 10.1016/j.nanoen.2018.12.019 10.1002/adfm.201904781 10.1021/acscatal.9b00282 10.1002/smll.202005534 10.1016/j.apcatb.2017.11.077 10.1002/adma.202101698 10.1016/j.apcatb.2019.118417 10.1002/adfm.202000208 10.1002/adma.201602913 10.1016/j.nanoen.2011.11.006 10.1039/C7TA06272A 10.1021/acsami.8b11888 10.1016/j.jcis.2020.07.031 10.1016/j.matt.2021.10.017 10.1016/j.nanoen.2015.01.033 10.1039/C3CC48240E 10.1016/j.joule.2018.01.004 10.1016/j.ensm.2016.07.001 10.1002/aenm.201801149 10.1016/j.nanoen.2020.104594 10.1002/adma.202008599 10.1039/C6SC04903F 10.1007/s12274-020-3181-2 10.1039/b922733d 10.1002/adma.202003484 10.1002/adfm.202007158 10.1007/s40820-017-0157-1 10.1038/318162a0 10.1021/acs.accounts.6b00541 10.1016/j.electacta.2016.10.028 10.1039/D0RA02935A 10.1016/j.electacta.2016.05.217 10.1016/j.jpowsour.2020.229358 10.1016/j.ensm.2018.05.008 10.1016/j.jpowsour.2020.227975 10.1002/eem2.12126 10.1007/s40820-020-00521-2 10.1002/anie.201709176 10.1002/adma.201904548 10.1088/0957-4484/23/48/485404 10.1002/adfm.202001097 10.1002/advs.202101438 10.1016/0021-9797(68)90272-5 10.1016/j.nanoen.2017.11.004 10.1021/nn301546z 10.1016/j.enchem.2020.100043 10.1039/C8TA05041D 10.1002/adfm.201200941 10.1002/adfm.201602246 10.1016/j.carbon.2016.01.043 10.1038/s41565-021-01022-y 10.1002/aenm.202001161 10.1021/acscatal.1c01649 10.1016/j.est.2021.102380 10.1039/D0CC07123D 10.1002/adma.201705324 10.1038/s41467-019-09596-x 10.1021/jp034161b 10.1021/acs.nanolett.5b00364 10.1038/s41929-020-00563-0 10.1007/s41918-018-0025-9 10.1002/adfm.202011289 10.1002/adma.201700470 10.1021/acsnano.8b01502 10.1039/b609971h 10.1016/j.chempr.2019.09.005 10.1039/C4NR06366J |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202206605 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Proquest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e2f317af5e7b4c3599ad12888afd3600 PMC9982577 36587986 10_1002_advs_202206605 ADVS4984 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22078071; 22272034 – fundername: Colleges Pearl River Scholar Funded Scheme funderid: 2019 – fundername: Natural Science Foundation of Guangdong Province funderid: 2021A1515010125; 2020A1515010344; 2021A1515010305 – fundername: Environment and Energy Green Catalysis Innovation Team of Colleges – fundername: Key Research Project of Natural Science of Guangdong Provincial Department of Education funderid: 2019KZDXM010 – fundername: Guangdong Province Universities – fundername: Projects of Talents Recruitment of GDUPT funderid: XJ2022000101 – fundername: Guangxi Key Laboratory of Low Carbon Energy Material funderid: 2020GKLLCEM03 – fundername: Universities of Guangdong Province funderid: 2022KCXTD019 – fundername: Innovative Research Team of Guangdong University of Petrochemical Technology – fundername: National Natural Science Foundation of China grantid: 22078071 – fundername: Key Research Project of Natural Science of Guangdong Provincial Department of Education grantid: 2019KZDXM010 – fundername: Guangxi Key Laboratory of Low Carbon Energy Material grantid: 2020GKLLCEM03 – fundername: National Natural Science Foundation of China grantid: 22272034 – fundername: Natural Science Foundation of Guangdong Province grantid: 2021A1515010125 – fundername: Natural Science Foundation of Guangdong Province grantid: 2020A1515010344 – fundername: Natural Science Foundation of Guangdong Province grantid: 2021A1515010305 – fundername: Colleges Pearl River Scholar Funded Scheme grantid: 2019 – fundername: ; grantid: 22078071; 22272034 – fundername: ; grantid: 2021A1515010125; 2020A1515010344; 2021A1515010305 – fundername: Universities of Guangdong Province grantid: 2022KCXTD019 – fundername: Projects of Talents Recruitment of GDUPT grantid: XJ2022000101 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5294-ab7aa4a7601a2dce687c74b03fbc29dbde355ba3d9b81ef3d76bcd8304651d003 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:18:47 EDT 2025 Thu Aug 21 18:38:26 EDT 2025 Fri Jul 11 07:12:40 EDT 2025 Fri Jul 25 02:07:33 EDT 2025 Wed Feb 19 02:24:46 EST 2025 Tue Jul 01 03:59:48 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Jan 22 16:14:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | hollow carbon nanocages electrocatalytic conversion electrochemical energy storage composite nanocages hollow carbon spheres single atom catalysts |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5294-ab7aa4a7601a2dce687c74b03fbc29dbde355ba3d9b81ef3d76bcd8304651d003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4238-6218 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206605 |
PMID | 36587986 |
PQID | 2781463652 |
PQPubID | 4365299 |
PageCount | 53 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2f317af5e7b4c3599ad12888afd3600 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9982577 proquest_miscellaneous_2760172162 proquest_journals_2781463652 pubmed_primary_36587986 crossref_primary_10_1002_advs_202206605 crossref_citationtrail_10_1002_advs_202206605 wiley_primary_10_1002_advs_202206605_ADVS4984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 1991; 354 2018; 282 2020; 20 2019; 10 2019; 14 2019; 324 2020; 16 2020; 14 2020; 13 2020; 167 2020; 12 2020; 11 2020; 10 2022; 22 2013; 7 2013; 5 2013; 6 2017; 313 2018; 47 2018; 6 2021; 439 2022; 321 2018; 9 2018; 8 2018; 2 2019; 29 2018; 30 2020; 455 2022; 32 2012; 24 2012; 23 2012; 22 2019; 7 2018; 29 2018; 342 2019; 9 2021; 44 2021; 421 2019; 31 2021; 420 2019; 2 2018; 225 2016; 10 2017; 252 2020; 389 2020; 268 2020; 32 2017; 253 2016; 18 2004; 306 2017; 139 2018; 351 2016; 4 2017; 50 2016; 5 2021; 419 2010; 49 2003; 107 2010; 46 1985; 318 2016; 219 2020; 30 2019; 44 2022; 5 2021; 416 2017; 56 2022; 12 2016; 211 2021; 493 2021; 133 2012; 48 2018; 12 2016; 28 2021; 60 2022; 626 2018; 10 2016; 26 2016; 8 2018; 15 2016; 9 2022; 17 2019; 296 2022; 18 2018; 14 2018; 13 2017; 5 1968; 26 2022; 134 2017; 42 2017; 8 2017; 1 2021; 21 2013; 25 1996; 39 2020; 63 2018; 402 2021; 486 2020; 60 2019; 57 2017; 46 2016; 101 2020; 59 2016; 105 2020; 56 2020; 124 2022; 65 2020; 54 2017; 111 2017; 115 2021; 36 2020; 6 2014; 4 2021; 31 2020; 2 2021; 33 2020; 132 2022; 22–23 2011; 21 2017; 363 2014; 50 2020; 818 2021; 506 2021; 9 2015; 12 2021; 8 2015; 15 2021; 5 2021; 4 2015; 5 2021; 86 2021; 3 2015; 3 2021; 2 2020; 580 2022; 51 2006; 16 2016; 52 2021; 183 2017; 29 2021; 1 2015; 7 2021; 90 2017; 217 2016; 55 2021; 14 2021; 13 2015; 25 2021; 15 2015; 27 2012; 1 2021; 11 2022 2017; 11 2020; 71 2020; 117 2017; 341 2012; 6 2022; 428 2022; 307 2019; 491 2012; 5 2012; 8 2019; 131 2019; 374 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 Li Y. (e_1_2_10_133_1) 2022; 134 e_1_2_10_211_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_200_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_212_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_215_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_216_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_157_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 626 start-page: 1062 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 324 year: 2019 publication-title: Electrochim. Acta – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2016 publication-title: J Nanopart Res – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 3538 year: 2017 publication-title: Chem. Sci. – volume: 46 start-page: 3256 year: 2010 publication-title: Chem. Commun. – volume: 12 start-page: 2569 year: 2022 publication-title: ACS Catal. – volume: 14 year: 2018 publication-title: Small – volume: 13 start-page: 57 year: 2018 publication-title: Energy Storage Mater. – volume: 63 start-page: 665 year: 2020 publication-title: Sci. China: Chem. – volume: 11 start-page: 9729 year: 2021 publication-title: ACS Catal. – volume: 17 start-page: 174 year: 2022 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 2839 year: 2020 publication-title: Energy Environ. Sci. – volume: 50 start-page: 435 year: 2017 publication-title: Acc. Chem. Res. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4579 year: 2016 publication-title: ACS Nano – volume: 71 year: 2020 publication-title: Nano Energy – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 131 year: 2019 publication-title: Angew. Chem. – volume: 22–23 start-page: 9551 year: 2022 publication-title: Nano Lett. – volume: 818 year: 2020 publication-title: J. Alloys Compd. – volume: 3 year: 2021 publication-title: EcoMat – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 342 start-page: 474 year: 2018 publication-title: Chem. Eng. J. – volume: 313 start-page: 1242 year: 2017 publication-title: Chem. Eng. J. – volume: 8 start-page: 1130 year: 2012 publication-title: Small – volume: 111 start-page: 207 year: 2017 publication-title: Carbon – volume: 4 start-page: 4006 year: 2021 publication-title: Matter – volume: 28 start-page: 4306 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 5840 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 6803 year: 2012 publication-title: ACS Nano – volume: 5 start-page: 2241 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 506 year: 2021 publication-title: J. Power Sources – volume: 4 year: 2014 publication-title: Sci. Rep. – volume: 10 year: 2019 publication-title: Nat. Commun. – volume: 318 start-page: 162 year: 1985 publication-title: Nature – volume: 56 start-page: 2467 year: 2020 publication-title: Chem. Commun. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 47 start-page: 7628 year: 2018 publication-title: Chem. Soc. Rev. – volume: 402 start-page: 43 year: 2018 publication-title: J. Power Sources – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 28 start-page: 9539 year: 2016 publication-title: Adv. Mater. – volume: 10 year: 2018 publication-title: Nano‐Micro Lett. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 167 start-page: 843 year: 2020 publication-title: Carbon – volume: 26 start-page: 7626 year: 2016 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 105 year: 2019 publication-title: Electrochem. Energy Rev. – volume: 5 start-page: 843 year: 2021 publication-title: Mater. Chem. Front. – volume: 307 year: 2022 publication-title: Appl. Catal., B – volume: 124 start-page: 9225 year: 2020 publication-title: J. Phys. Chem. C – volume: 2 start-page: 3222 year: 2020 publication-title: Nanoscale Adv – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 7045 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2020 publication-title: EnergyChem – volume: 22 start-page: 3691 year: 2022 publication-title: Nano Lett. – volume: 13 start-page: 3274 year: 2018 publication-title: Chem Asian J – volume: 42 start-page: 334 year: 2017 publication-title: Nano Energy – volume: 48 start-page: 6124 year: 2012 publication-title: Chem. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 15 start-page: 3195 year: 2015 publication-title: Nano Lett. – volume: 2 start-page: 509 year: 2019 publication-title: Batteries Supercaps – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 7342 year: 2020 publication-title: Nano Lett. – volume: 52 start-page: 505 year: 2016 publication-title: Chem. Commun. – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 105 start-page: 586 year: 2016 publication-title: Carbon – volume: 22 start-page: 9069 year: 2012 publication-title: J. Mater. Chem. – volume: 133 year: 2021 publication-title: Angew. Chem. – volume: 65 start-page: 448 year: 2022 publication-title: J. Energy Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 493 year: 2021 publication-title: J. Power Sources – volume: 4 start-page: 615 year: 2021 publication-title: Nat. Catal. – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 12 year: 2020 publication-title: Nano‐Micro Lett. – volume: 132 start-page: 2082 year: 2020 publication-title: Angew. Chem. – volume: 268 year: 2020 publication-title: Appl. Catal., B – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 25 start-page: 6913 year: 2015 publication-title: Adv. Funct. Mater. – volume: 39 start-page: 27 year: 1996 publication-title: Catal. Lett. – volume: 253 start-page: 344 year: 2017 publication-title: Electrochim. Acta – volume: 51 year: 2022 publication-title: J. Energy Storage – volume: 134 year: 2022 publication-title: Angew. Chem. – volume: 1 start-page: 211 year: 2021 publication-title: SusMat – volume: 14 start-page: 1355 year: 2021 publication-title: Nano Res. – volume: 15 start-page: 75 year: 2018 publication-title: Energy Storage Mater. – volume: 22 start-page: 4526 year: 2012 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 59 year: 2015 publication-title: Nano‐Micro Lett. – volume: 44 start-page: 6172 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 44 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 451 year: 2021 publication-title: Energy Environ. Mater. – volume: 115 start-page: 617 year: 2017 publication-title: Carbon – volume: 60 start-page: 3212 year: 2020 publication-title: Angew. Chem. – volume: 282 start-page: 799 year: 2018 publication-title: Electrochim. Acta – volume: 167 start-page: 685 year: 2020 publication-title: Carbon – volume: 428 year: 2022 publication-title: Electrochim. Acta – volume: 14 start-page: 2014 year: 2020 publication-title: ACS Nano – volume: 15 start-page: 5679 year: 2021 publication-title: ACS Nano – volume: 14 start-page: 314 year: 2018 publication-title: Energy Storage Mater. – volume: 3 start-page: 1786 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 44 year: 2021 publication-title: J. Energy Storage – volume: 107 year: 2003 publication-title: J. Phys. Chem. B – volume: 13 start-page: 2777 year: 2020 publication-title: Nano Res. – volume: 22 start-page: 153 year: 2012 publication-title: J. Mater. Chem. – volume: 5 start-page: 6908 year: 2013 publication-title: Nanoscale – volume: 252 start-page: 180 year: 2017 publication-title: Electrochim. Acta – volume: 416 year: 2021 publication-title: Chem. Eng. J. – volume: 2 start-page: 725 year: 2018 publication-title: Joule – volume: 13 year: 2021 publication-title: Nano‐Micro Lett. – volume: 36 year: 2021 publication-title: J. Energy Storage – volume: 439 year: 2021 publication-title: Coord. Chem. Rev. – volume: 10 year: 2020 publication-title: RSC Adv. – volume: 14 start-page: 9562 year: 2019 publication-title: Int J Electrochem Sci – volume: 5 start-page: 8390 year: 2012 publication-title: Energy Environ. Sci. – volume: 5 start-page: 180 year: 2016 publication-title: Energy Storage Mater. – volume: 4 start-page: 134 year: 2021 publication-title: Nat. Catal. – volume: 6 start-page: 19 year: 2020 publication-title: Chem – volume: 363 start-page: 356 year: 2017 publication-title: J. Power Sources – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 486 year: 2021 publication-title: J. Power Sources – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 183 start-page: 158 year: 2021 publication-title: Carbon – volume: 86 year: 2021 publication-title: Nano Energy – volume: 25 start-page: 2474 year: 2013 publication-title: Adv. Mater. – volume: 11 year: 2020 publication-title: Nat. Commun. – volume: 217 start-page: 477 year: 2017 publication-title: Appl. Catal., B – volume: 11 start-page: 8429 year: 2017 publication-title: ACS Nano – volume: 5 start-page: 266 year: 2017 publication-title: J. Mater. Chem. A – volume: 57 start-page: 34 year: 2019 publication-title: Nano Energy – volume: 1 start-page: 195 year: 2012 publication-title: Nano Energy – volume: 419 year: 2021 publication-title: Chem. Eng. J. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 29 year: 2018 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 21 start-page: 9691 year: 2021 publication-title: Nano Lett. – volume: 6 start-page: 38 year: 2013 publication-title: Nano Res. – volume: 219 start-page: 339 year: 2016 publication-title: Electrochim. Acta – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 year: 2013 publication-title: ACS Nano – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 16 start-page: 4413 year: 2006 publication-title: J. Mater. Chem. – volume: 580 start-page: 794 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 455 year: 2020 publication-title: J. Power Sources – year: 2022 publication-title: Adv. Funct. Mater. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 30 start-page: 4401 year: 2018 publication-title: Chem. Mater. – volume: 50 start-page: 566 year: 2014 publication-title: Chem. Commun. – volume: 5 year: 2022 publication-title: Batteries Supercaps – volume: 2 year: 2021 publication-title: Small Struct. – volume: 12 start-page: 657 year: 2015 publication-title: Nano Energy – volume: 90 year: 2021 publication-title: Nano Energy – volume: 101 start-page: 57 year: 2016 publication-title: Carbon – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 225 start-page: 496 year: 2018 publication-title: Appl. Catal., B – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 296 start-page: 8 year: 2019 publication-title: Electrochim. Acta – volume: 374 start-page: 1214 year: 2019 publication-title: Chem. Eng. J. – volume: 54 start-page: 221 year: 2020 publication-title: Acc. Chem. Res. – volume: 211 start-page: 183 year: 2016 publication-title: Electrochim. Acta – volume: 7 start-page: 1501 year: 2015 publication-title: Nanoscale – volume: 23 year: 2012 publication-title: Nanotechnology – volume: 351 start-page: 135 year: 2018 publication-title: Chem. Eng. J. – volume: 491 start-page: 723 year: 2019 publication-title: Appl. Surf. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 795 year: 2021 publication-title: Carbon Energy – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 26 start-page: 62 year: 1968 publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 2969 year: 2019 publication-title: ACS Catal. – volume: 1 year: 2017 publication-title: Adv. Sustainable Syst. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 24 start-page: 347 year: 2012 publication-title: Adv. Mater. – volume: 9 year: 2018 publication-title: Nat. Commun. – volume: 27 start-page: 3541 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 3162 year: 2016 publication-title: Nano Res. – volume: 12 start-page: 5674 year: 2018 publication-title: ACS Nano – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 321 year: 2022 publication-title: Fuel – volume: 341 start-page: 294 year: 2017 publication-title: J. Power Sources – ident: e_1_2_10_201_1 doi: 10.1039/C6CS00328A – ident: e_1_2_10_203_1 doi: 10.1002/asia.201801121 – ident: e_1_2_10_216_1 doi: 10.1016/j.fuel.2022.124043 – ident: e_1_2_10_7_1 doi: 10.1002/adma.201205332 – ident: e_1_2_10_125_1 doi: 10.1016/j.cej.2018.02.085 – ident: e_1_2_10_131_1 doi: 10.1021/acs.nanolett.2c00481 – ident: e_1_2_10_136_1 doi: 10.1039/D1TA04534B – volume: 134 year: 2022 ident: e_1_2_10_133_1 publication-title: Angew. Chem. doi: 10.1002/ange.202201491 – ident: e_1_2_10_145_1 doi: 10.1002/adma.201806312 – ident: e_1_2_10_188_1 doi: 10.1021/acs.nanolett.1c03499 – ident: e_1_2_10_46_1 doi: 10.1016/j.electacta.2017.09.070 – ident: e_1_2_10_103_1 doi: 10.1039/C8TA09751H – ident: e_1_2_10_213_1 doi: 10.1007/s12274-020-2928-0 – ident: e_1_2_10_166_1 doi: 10.1039/c2ee21801a – ident: e_1_2_10_81_1 doi: 10.1021/acs.jpcc.0c01539 – ident: e_1_2_10_12_1 doi: 10.1016/j.est.2021.103437 – ident: e_1_2_10_94_1 doi: 10.1039/c2jm16942h – ident: e_1_2_10_44_1 doi: 10.20964/2019.10.37 – ident: e_1_2_10_71_1 doi: 10.1016/j.cej.2021.129576 – ident: e_1_2_10_117_1 doi: 10.1002/batt.201900001 – ident: e_1_2_10_122_1 doi: 10.1007/s10854-018-9346-z – ident: e_1_2_10_6_1 doi: 10.1002/adfm.201904457 – ident: e_1_2_10_62_1 doi: 10.1038/srep04437 – ident: e_1_2_10_108_1 doi: 10.1002/adsu.201700081 – ident: e_1_2_10_214_1 doi: 10.1021/acsnano.9b08528 – ident: e_1_2_10_61_1 doi: 10.1039/C7TA01896G – ident: e_1_2_10_225_1 doi: 10.1002/ange.201913719 – ident: e_1_2_10_21_1 doi: 10.1016/j.ijhydene.2019.01.073 – ident: e_1_2_10_91_1 doi: 10.1002/aenm.201401752 – ident: e_1_2_10_75_1 doi: 10.1002/adma.201700874 – ident: e_1_2_10_223_1 doi: 10.1039/C9TA03128F – ident: e_1_2_10_73_1 doi: 10.1016/j.cej.2020.124407 – ident: e_1_2_10_39_1 doi: 10.1002/adma.201706895 – ident: e_1_2_10_14_1 doi: 10.1016/j.cej.2021.129827 – ident: e_1_2_10_55_1 doi: 10.1007/s12274-012-0279-1 – ident: e_1_2_10_24_1 doi: 10.1021/acsami.6b03482 – ident: e_1_2_10_113_1 doi: 10.1016/j.carbon.2021.07.007 – ident: e_1_2_10_134_1 doi: 10.1016/j.ccr.2021.213946 – ident: e_1_2_10_89_1 doi: 10.1039/c1jm11364j – ident: e_1_2_10_207_1 doi: 10.1002/aenm.202101242 – ident: e_1_2_10_48_1 doi: 10.1002/adma.201800939 – ident: e_1_2_10_2_1 doi: 10.1038/354056a0 – ident: e_1_2_10_3_1 doi: 10.1126/science.1102896 – ident: e_1_2_10_82_1 doi: 10.1016/j.electacta.2018.06.096 – ident: e_1_2_10_33_1 doi: 10.1016/j.apcatb.2017.06.008 – ident: e_1_2_10_217_1 doi: 10.1021/acsami.1c09107 – ident: e_1_2_10_140_1 doi: 10.1002/adma.201805121 – ident: e_1_2_10_10_1 doi: 10.1002/smll.201101594 – ident: e_1_2_10_130_1 doi: 10.1002/adma.201807876 – ident: e_1_2_10_153_1 doi: 10.1002/ange.201908736 – ident: e_1_2_10_146_1 doi: 10.1021/jacs.7b10194 – ident: e_1_2_10_99_1 doi: 10.1039/c3nr01723k – ident: e_1_2_10_19_1 doi: 10.1007/s11426-020-9748-0 – ident: e_1_2_10_106_1 doi: 10.1016/j.electacta.2018.11.002 – ident: e_1_2_10_98_1 doi: 10.1021/nn404439r – ident: e_1_2_10_174_1 doi: 10.1002/smll.201702407 – ident: e_1_2_10_100_1 doi: 10.1021/am400001g – ident: e_1_2_10_68_1 doi: 10.1016/j.jpowsour.2016.12.013 – ident: e_1_2_10_11_1 doi: 10.1016/j.ensm.2017.12.023 – ident: e_1_2_10_158_1 doi: 10.1021/acsnano.7b04078 – ident: e_1_2_10_97_1 doi: 10.1039/c2cc32552g – ident: e_1_2_10_212_1 doi: 10.1002/adma.202003649 – ident: e_1_2_10_205_1 doi: 10.1002/adma.202007523 – ident: e_1_2_10_88_1 doi: 10.1002/adma.202004632 – ident: e_1_2_10_184_1 doi: 10.1002/aenm.202002271 – ident: e_1_2_10_135_1 doi: 10.1002/anie.202012798 – ident: e_1_2_10_13_1 doi: 10.1016/j.cej.2018.06.108 – ident: e_1_2_10_34_1 doi: 10.1021/acs.nanolett.0c02766 – ident: e_1_2_10_9_1 doi: 10.1002/adma.201504225 – ident: e_1_2_10_155_1 doi: 10.1007/BF00813725 – ident: e_1_2_10_199_1 doi: 10.1002/anie.202107790 – ident: e_1_2_10_107_1 doi: 10.1016/j.carbon.2020.05.072 – ident: e_1_2_10_30_1 doi: 10.1039/C6TA09030C – ident: e_1_2_10_226_1 doi: 10.1016/j.cej.2019.06.012 – ident: e_1_2_10_190_1 doi: 10.1038/s41467-018-06144-x – ident: e_1_2_10_115_1 doi: 10.1002/adma.201800426 – ident: e_1_2_10_132_1 doi: 10.1002/adfm.202102060 – ident: e_1_2_10_53_1 doi: 10.1016/j.electacta.2019.134878 – ident: e_1_2_10_109_1 doi: 10.1039/C9CC09812G – ident: e_1_2_10_165_1 doi: 10.1016/j.jpowsour.2021.229688 – ident: e_1_2_10_23_1 doi: 10.1002/adma.201103872 – ident: e_1_2_10_60_1 doi: 10.1021/acsaem.1c00643 – ident: e_1_2_10_175_1 doi: 10.1016/j.jpowsour.2018.09.022 – ident: e_1_2_10_93_1 doi: 10.1016/j.electacta.2022.140931 – ident: e_1_2_10_45_1 doi: 10.1039/D0NA00297F – ident: e_1_2_10_35_1 doi: 10.1016/j.electacta.2017.09.003 – ident: e_1_2_10_17_1 doi: 10.1016/j.jpowsour.2021.230224 – ident: e_1_2_10_159_1 doi: 10.1016/j.jcis.2022.07.034 – ident: e_1_2_10_194_1 doi: 10.1002/adfm.202003871 – ident: e_1_2_10_96_1 doi: 10.1016/j.est.2022.104515 – ident: e_1_2_10_192_1 doi: 10.1002/adfm.202208666 – ident: e_1_2_10_20_1 doi: 10.1002/adma.202070206 – ident: e_1_2_10_74_1 doi: 10.1002/sus2.8 – ident: e_1_2_10_59_1 doi: 10.1039/C1JM13872C – ident: e_1_2_10_124_1 doi: 10.1016/j.carbon.2017.01.055 – ident: e_1_2_10_38_1 doi: 10.1016/j.cej.2016.11.018 – ident: e_1_2_10_185_1 doi: 10.1016/j.nanoen.2021.106111 – ident: e_1_2_10_36_1 doi: 10.1002/adfm.201503077 – ident: e_1_2_10_147_1 doi: 10.1038/s41467-020-18820-y – ident: e_1_2_10_50_1 doi: 10.1002/ange.202108343 – ident: e_1_2_10_150_1 doi: 10.1016/j.jechem.2021.06.012 – ident: e_1_2_10_118_1 doi: 10.1039/D0EE00723D – ident: e_1_2_10_123_1 doi: 10.1002/anie.201003213 – ident: e_1_2_10_170_1 doi: 10.1002/adma.202003134 – ident: e_1_2_10_222_1 doi: 10.1021/acs.chemmater.8b01792 – ident: e_1_2_10_101_1 doi: 10.1016/j.jallcom.2019.152890 – ident: e_1_2_10_189_1 doi: 10.1073/pnas.2000128117 – ident: e_1_2_10_182_1 doi: 10.1021/acsnano.1c00924 – ident: e_1_2_10_172_1 doi: 10.1016/j.nanoen.2021.106540 – ident: e_1_2_10_78_1 doi: 10.1002/eom2.12105 – ident: e_1_2_10_110_1 doi: 10.1039/C5CC07610B – ident: e_1_2_10_15_1 doi: 10.1039/C6TA03802F – ident: e_1_2_10_104_1 doi: 10.1016/j.jpowsour.2017.07.037 – ident: e_1_2_10_219_1 doi: 10.1038/s41929-021-00650-w – ident: e_1_2_10_181_1 doi: 10.1002/aenm.201900036 – ident: e_1_2_10_84_1 doi: 10.1016/j.carbon.2020.06.046 – ident: e_1_2_10_157_1 doi: 10.1002/adfm.202005834 – ident: e_1_2_10_142_1 doi: 10.1002/adfm.202006188 – ident: e_1_2_10_129_1 doi: 10.1002/batt.202200154 – ident: e_1_2_10_173_1 doi: 10.1007/s40820-014-0019-z – ident: e_1_2_10_112_1 doi: 10.1002/adma.201901349 – ident: e_1_2_10_137_1 doi: 10.1007/s40820-020-00535-w – ident: e_1_2_10_154_1 doi: 10.1016/j.cej.2020.127677 – ident: e_1_2_10_177_1 doi: 10.1002/aenm.202002741 – ident: e_1_2_10_197_1 doi: 10.1016/j.apcatb.2022.121190 – ident: e_1_2_10_95_1 doi: 10.1002/anie.202007297 – ident: e_1_2_10_164_1 doi: 10.1002/adfm.202200315 – ident: e_1_2_10_51_1 doi: 10.1021/acs.accounts.0c00613 – ident: e_1_2_10_69_1 doi: 10.1007/s12274-016-1198-3 – ident: e_1_2_10_111_1 doi: 10.1021/acsnano.6b00723 – ident: e_1_2_10_144_1 doi: 10.1002/smll.202203589 – ident: e_1_2_10_29_1 doi: 10.1039/C7TA08483H – ident: e_1_2_10_171_1 doi: 10.1039/D0QM00839G – ident: e_1_2_10_218_1 doi: 10.1021/acs.nanolett.2c03696 – ident: e_1_2_10_169_1 doi: 10.1021/acscatal.1c05401 – ident: e_1_2_10_86_1 doi: 10.1039/C7TA03445H – ident: e_1_2_10_54_1 doi: 10.1002/adma.201900429 – ident: e_1_2_10_119_1 doi: 10.1039/C7CS00690J – ident: e_1_2_10_120_1 doi: 10.1002/cey2.134 – ident: e_1_2_10_114_1 doi: 10.1002/aenm.201803900 – ident: e_1_2_10_168_1 doi: 10.1002/anie.201606102 – ident: e_1_2_10_47_1 doi: 10.1016/j.ensm.2018.03.014 – ident: e_1_2_10_76_1 doi: 10.1002/anie.202107314 – ident: e_1_2_10_41_1 doi: 10.1016/j.carbon.2016.09.081 – ident: e_1_2_10_43_1 doi: 10.1021/acssuschemeng.5b00359 – ident: e_1_2_10_58_1 doi: 10.1007/s11051-016-3457-3 – ident: e_1_2_10_215_1 doi: 10.1002/smll.202003943 – ident: e_1_2_10_28_1 doi: 10.1016/j.carbon.2016.04.063 – ident: e_1_2_10_102_1 doi: 10.1002/adfm.202201166 – ident: e_1_2_10_8_1 doi: 10.1002/adma.201500945 – ident: e_1_2_10_143_1 doi: 10.1002/aenm.202002896 – ident: e_1_2_10_208_1 doi: 10.1002/sstr.202000017 – ident: e_1_2_10_52_1 doi: 10.1016/j.apsusc.2019.06.183 – ident: e_1_2_10_200_1 doi: 10.1002/adma.201905622 – ident: e_1_2_10_148_1 doi: 10.1016/j.cej.2020.127583 – ident: e_1_2_10_160_1 doi: 10.1021/acscatal.1c03447 – ident: e_1_2_10_151_1 doi: 10.1021/acsami.8b08534 – ident: e_1_2_10_49_1 doi: 10.1016/j.ijhydene.2019.10.066 – ident: e_1_2_10_187_1 doi: 10.1016/j.nanoen.2018.12.019 – ident: e_1_2_10_85_1 doi: 10.1002/adfm.201904781 – ident: e_1_2_10_77_1 doi: 10.1021/acscatal.9b00282 – ident: e_1_2_10_126_1 doi: 10.1002/smll.202005534 – ident: e_1_2_10_31_1 doi: 10.1016/j.apcatb.2017.11.077 – ident: e_1_2_10_179_1 doi: 10.1002/adma.202101698 – ident: e_1_2_10_195_1 doi: 10.1002/smll.202005534 – ident: e_1_2_10_204_1 doi: 10.1016/j.apcatb.2019.118417 – ident: e_1_2_10_196_1 doi: 10.1002/adfm.202000208 – ident: e_1_2_10_186_1 doi: 10.1002/adma.201602913 – ident: e_1_2_10_5_1 doi: 10.1016/j.nanoen.2011.11.006 – ident: e_1_2_10_32_1 doi: 10.1039/C7TA06272A – ident: e_1_2_10_167_1 doi: 10.1021/acsami.8b11888 – ident: e_1_2_10_83_1 doi: 10.1016/j.jcis.2020.07.031 – ident: e_1_2_10_183_1 doi: 10.1016/j.matt.2021.10.017 – ident: e_1_2_10_25_1 doi: 10.1016/j.nanoen.2015.01.033 – ident: e_1_2_10_70_1 doi: 10.1039/C3CC48240E – ident: e_1_2_10_161_1 doi: 10.1016/j.joule.2018.01.004 – ident: e_1_2_10_27_1 doi: 10.1016/j.ensm.2016.07.001 – ident: e_1_2_10_22_1 doi: 10.1002/aenm.201801149 – ident: e_1_2_10_178_1 doi: 10.1016/j.nanoen.2020.104594 – ident: e_1_2_10_210_1 doi: 10.1002/adma.202008599 – ident: e_1_2_10_221_1 doi: 10.1039/C6SC04903F – ident: e_1_2_10_92_1 doi: 10.1007/s12274-020-3181-2 – ident: e_1_2_10_4_1 doi: 10.1039/b922733d – ident: e_1_2_10_211_1 doi: 10.1002/adma.202003484 – ident: e_1_2_10_139_1 doi: 10.1002/adfm.202007158 – ident: e_1_2_10_198_1 doi: 10.1007/s40820-017-0157-1 – ident: e_1_2_10_1_1 doi: 10.1038/318162a0 – ident: e_1_2_10_18_1 doi: 10.1021/acs.accounts.6b00541 – ident: e_1_2_10_105_1 doi: 10.1016/j.electacta.2016.10.028 – ident: e_1_2_10_87_1 doi: 10.1039/D0RA02935A – ident: e_1_2_10_16_1 doi: 10.1016/j.electacta.2016.05.217 – ident: e_1_2_10_191_1 doi: 10.1016/j.jpowsour.2020.229358 – ident: e_1_2_10_193_1 doi: 10.1016/j.ensm.2018.05.008 – ident: e_1_2_10_64_1 doi: 10.1016/j.jpowsour.2020.227975 – ident: e_1_2_10_72_1 doi: 10.1002/eem2.12126 – ident: e_1_2_10_180_1 doi: 10.1007/s40820-020-00521-2 – ident: e_1_2_10_152_1 doi: 10.1002/anie.201709176 – ident: e_1_2_10_206_1 doi: 10.1002/adma.201904548 – ident: e_1_2_10_90_1 doi: 10.1088/0957-4484/23/48/485404 – ident: e_1_2_10_116_1 doi: 10.1002/adfm.202001097 – ident: e_1_2_10_202_1 doi: 10.1002/advs.202101438 – ident: e_1_2_10_80_1 doi: 10.1016/0021-9797(68)90272-5 – ident: e_1_2_10_66_1 doi: 10.1016/j.nanoen.2017.11.004 – ident: e_1_2_10_121_1 doi: 10.1021/nn301546z – ident: e_1_2_10_141_1 doi: 10.1016/j.enchem.2020.100043 – ident: e_1_2_10_128_1 doi: 10.1039/C8TA05041D – ident: e_1_2_10_156_1 doi: 10.1002/adfm.201200941 – ident: e_1_2_10_42_1 doi: 10.1002/adfm.201602246 – ident: e_1_2_10_57_1 doi: 10.1016/j.carbon.2016.01.043 – ident: e_1_2_10_220_1 doi: 10.1038/s41565-021-01022-y – ident: e_1_2_10_138_1 doi: 10.1002/aenm.202001161 – ident: e_1_2_10_163_1 doi: 10.1021/acscatal.1c01649 – ident: e_1_2_10_176_1 doi: 10.1016/j.est.2021.102380 – ident: e_1_2_10_67_1 doi: 10.1039/D0CC07123D – ident: e_1_2_10_65_1 doi: 10.1002/adma.201705324 – ident: e_1_2_10_209_1 doi: 10.1038/s41467-019-09596-x – ident: e_1_2_10_79_1 doi: 10.1021/jp034161b – ident: e_1_2_10_40_1 doi: 10.1021/acs.nanolett.5b00364 – ident: e_1_2_10_162_1 doi: 10.1038/s41929-020-00563-0 – ident: e_1_2_10_63_1 doi: 10.1007/s41918-018-0025-9 – ident: e_1_2_10_149_1 doi: 10.1002/adfm.202011289 – ident: e_1_2_10_26_1 doi: 10.1002/adma.201700470 – ident: e_1_2_10_127_1 doi: 10.1021/acsnano.8b01502 – ident: e_1_2_10_56_1 doi: 10.1039/b609971h – ident: e_1_2_10_224_1 doi: 10.1016/j.chempr.2019.09.005 – ident: e_1_2_10_37_1 doi: 10.1039/C4NR06366J |
SSID | ssj0001537418 |
Score | 2.5538824 |
SecondaryResourceType | review_article |
Snippet | Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)... Hollow carbon nanocages (HCNCs) consisting of sp 2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)... Hollow carbon nanocages (HCNCs) consisting of sp carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)... Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)... Abstract Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206605 |
SubjectTerms | Carbon monoxide Chemical vapor deposition composite nanocages Design Electrocatalysis electrocatalytic conversion electrochemical energy storage Energy storage Graphene hollow carbon nanocages hollow carbon spheres Hydrocarbons Lithium Methods Morphology Nanomaterials Nanoparticles Review Reviews single atom catalysts Sulfur |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJy9i_YxWWUFQD6F52Y_seqttHw9BEbTQW5j9UqEk0vdq__3OZPNCHiq9eE1mN5uZ2ZlZZvY3jL3WTrgKFJQ2RSilt6k0UagygEmVj2ERhkT7p896dSY_nqvzWasvqgnL8MCZcYexTujiIKnYOOmFshYC2lRjIAWB3pqsL_q82WEq3w8WBMuyRWms6kMIvwmduyb4cupVN_NCA1j_3yLMPwsl5wHs4IGW99m9MXTkR3nJ--xO7B6w_XFzrvnbEUH63UO2wWAQ5-JfqPgKTRnvE1-hwPtrfgyXru84GlV0Yt_j-j0fh_GToZaDL-lqSEb8X3PoAj_JlRsJY1V-mpvm-BFlgB_N0t-P2Nny9NvxqhzbK5Re1VaW4BoACVQUAzX-ojaNb6SrRHK-tsEFlJlyIIJ1ZhGTCI12PhhKpapFQGvwmO11fRefMu4CtU6PgLEjzmC0NZWKMnhPWR0BVcHKLbtbP2KPUwuMizajJtctiaedxFOwNxP9r4y68U_KDyS9iYrQsocHqEPtqEPtbTpUsIOt7NtxC-MnCAxMC63qgr2aXuPmo4wKdLG_Iho9nKE10jzJqjKtBEeaxhpdsGZHiXaWuvum-_ljAPjGIzBa0ga5NqjbLSxoMYD5Kq2Rz_4HL56zuzizyGV2B2xvc3kVX2DctXEvhy12A9IYLC0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeo2Th2bC6oj12tkKgqoFJv0fhVkFBSdrfw95lJvGFXvK6bcTbxPPzZM_mGsRfKCluAhNzEAHnlTMx1EDL3oGPhgp_4PtH-_lTNz6t3F_IiHbgtU1nlOib2gdp3js7ID0riZlJCyfLt1becukZRdjW10LjJdjEEa9x87R5NT88-_DplkYLoWdZsjUV5AP47sXSXRGNOPes2VqOetP9PSPP3gslNINuvRLM77HaCkPxw0PkeuxHau2wvOemSv0pM0q_vsRWCQrwXP6MiLAxpvIt8jorvfvBjWNiu5RhccTG7DMs3PA3jJ31NB5_RJyID8_-SQ-v5yVDBERGz8unQPMcltgF-uJEGv8_OZ9NPx_M8tVnInSxNlYOtASqg4hgo8RWVrl1d2UJE60rjrUfdSQvCG6snIQpfK-u8ppSqnHiMCg_YTtu14RHj1lML9QCIIfEOWhldyFB55yi7I6DIWL6e7sYlDnJqhfG1GdiTy4bU04zqydjLUf5qYN_4q-QRaW-UItbs_oducdkkJ2xCGREuQZShtpUT0hjwaDZaQ_QCkV_G9te6b5Ir41-Mhpex5-NldELKrEAbumuSUf1eWqHMw8FUxifBkbo2WmWs3jKirUfdvtJ--dwTfeNWGCNqjbPWm9t_pqBBIPOxMrp6_O_XeMJu4RgxFNLts53V4jo8RWS1ss-S-_wE5gEk9A priority: 102 providerName: ProQuest |
Title | Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206605 https://www.ncbi.nlm.nih.gov/pubmed/36587986 https://www.proquest.com/docview/2781463652 https://www.proquest.com/docview/2760172162 https://pubmed.ncbi.nlm.nih.gov/PMC9982577 https://doaj.org/article/e2f317af5e7b4c3599ad12888afd3600 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQ9sILYnyGjcpISMBDtDT-iM1bt7aqEJsqxqS9Rf7KhoQS1Hbj3-fOSbNGgBBPlZKLm_h85599598R8lZaZjMjTKqrYFLudJWqwETqjaoyF_zYx0D72blcXPJPV-Jq5xR_yw_Rb7ihZUR_jQZu7Pr4njTU-Duk286RjxxJTPfxfC2y5-d8eb_LIhjSs2CFOVhdp0xxvmVuzPLjYRODmSkS-P8Jdf6ePLkLauOsNH9MHnVwkk5a_R-QB6F-Qg46g13T9x2r9IenZAMAEdqiS0zIAvdGm4ouYBA0P-mpWdmmpuBoYWK7DuuPtHuMTmN-B53jcZG2CsCamtrTaZvNUQF-pbO2kI7rmAfoZCck_oxczmdfTxdpV3IhdSLXPDW2MIYbTJQxOXyiVIUruM1YZV2uvfWgR2EN89qqcaiYL6R1XmF4VYw9eIjnZK9u6vCSUOuxnHowgCehBSW1ykTg3jmM9DCTJSTddnfpOj5yLIvxvWyZlPMS1VP26knIu17-R8vE8VfJE9ReL4UM2vFCs7ouO4MsQ14BdDKVCIXljgmtjYe5WilTeQYoMCFHW92XnVnDXyBBmGRS5Al5098Gg8Qoi6lDc4syMq6rJci8aIdK_ybwpCq0kgkpBoNo8KrDO_W3m0j6Dcti8K4F9Focbv_oghJAzQXXir_6T_lD8hAusjbL7ojsbVa34TXAro0dRcsakf3J9OzzBfyezM6XX0ZxE-MX6hMsMw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbK9AAXRFkHChgJBByiZrwkNhJCbWdGU7qoglbqLfWWgoSSMjOl4k_xG3kvGzNiO_Wa2I7jt_hz3sv3CHmeWG5jI02k82Ai4XQeqcBl5I3KYxf8wFeB9v2DZHIs3p_IkxXyo_0XBtMqW59YOWpfOvxGvsGQmynhiWTvzr9GWDUKo6ttCY1aLXbD90s4ss3e7gxBvi8YG4-OtidRU1UgcpJpERmbGiMM5oIY5l1IVOpSYWOeW8e0tx6mKq3hXls1CDn3aWKdVxhBlAMPRgDjXiOrgsMAPbK6NTo4_PDrq47kSAfTskPGbMP4b8gKzpA2HWvkLex-VZGAPyHb3xM0F4FztfONb5GbDWSlm7WOrZGVUNwma41TmNFXDXP16ztkDiAUxqKHmPQFLpSWOZ2AopWXdNtMbVlQcOaweZ6F2RvadKPDKoeEjvGXlLrSwIyawtNhnTGSA0amo7pYj2vYDejmQtj9Ljm-EgHcI72iLMIDQq3Hku3BAGaFEVSiVSyD8M5hNImbuE-idrkz13CeY-mNL1nN1swyFE_WiadPXnbtz2u2j7-23ELpda2Qpbu6UE7Pssbos8BygGcmlyG1wnGptfGAB5QyuQf1gemtt7LPGtcBj-gUvU-edbfB6DGSY4pQXmCbpDq7J9Dmfq0q3Uygp0q1SvokXVKipaku3yk-f6qIxeHoDR48hVWr1O0_S5ABcPootBIP__0aT8n1ydH-Xra3c7D7iNyA_rxO4lsnvfn0IjwGVDe3TxpTouT0qq33J2XKYs8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEOOzMMBIIOAhamrHiYOE0La22hhUFTBpb8GfAwklo-2Y-Nf467hLnNCKr6e9JmfH8Z3PP-cuvyPkcaq5jpVQUe6dihKT-0g6LiKrpI-Ns0NbB9rfTtP9o-T1sTjeID_af2EwrbL1ibWjtpXBb-QDhtxMKU8FG_iQFjEbTV6dfo2wghRGWttyGo2JHLrv53B8W7w8GIGunzA2GX_Y249ChYHICJYnkdKZUonCvBDFrHGpzEyW6Jh7bVhutYVhC624zbUcOs9tlmpjJUYTxdDCgoB-L5HNDE5FcY9s7o6ns3e_vvAIjtQwLVNkzAbKfkOGcIYU6lgvb2UnrAsG_Anl_p6suQqi611wco1cDfCV7jT2tkU2XHmdbAUHsaDPAov18xtkCYAU-qIzTAADd0orT_fB6KpzuqfmuiopOHbYSE_c4gUNzeioziehE_w9pak6sKCqtHTUZI94wMt03BTuMYHpgO6shOBvkqMLUcAt0iur0t0hVFss3-4U4FfoQaa5jIVLrDEYWeIq7pOone7CBP5zLMPxpWiYm1mB6ik69fTJ007-tGH--KvkLmqvk0LG7vpCNT8pggMoHPMA1ZQXLtOJ4SLPlQVsIKXylgPq7JPtVvdFcCPwiM7o--RRdxscAEZ1VOmqM5RJ63N8CjK3G1PpRgItZZbLtE-yNSNaG-r6nfLzp5pkHI7h4M0zmLXa3P4zBQWAqPdJLpO7_36Nh-QyrNrizcH08B65As15k8-3TXrL-Zm7DwBvqR-ElUTJx4tevD8B1Q1nBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+of+Hollow+Carbon+Nanocages%3A+General+Design+Fundamentals+and+Diversified+Electrochemical+Applications&rft.jtitle=Advanced+science&rft.au=Li%2C+Zesheng&rft.au=Li%2C+Bolin&rft.au=Yu%2C+Changlin&rft.au=Wang%2C+Hongqiang&rft.date=2023-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1002%2Fadvs.202206605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202206605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |