Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications

Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 10; no. 7; pp. e2206605 - n/a
Main Authors Li, Zesheng, Li, Bolin, Yu, Changlin, Wang, Hongqiang, Li, Qingyu
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.03.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. In this review, a clear and comprehensive definition of hollow carbon nanocages (HCNCs) is provided. The latest research progress (including preparation, regulation, and modification) of HCNCs in the field of electrochemical energy storages and conversions is detailly reviewed and discussed. The challenges and some insights into new trends and directions for HCNCs are also provided.
AbstractList Hollow carbon nanocages (HCNCs) consisting of sp 2  carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. In this review, a clear and comprehensive definition of hollow carbon nanocages (HCNCs) is provided. The latest research progress (including preparation, regulation, and modification) of HCNCs in the field of electrochemical energy storages and conversions is detailly reviewed and discussed. The challenges and some insights into new trends and directions for HCNCs are also provided.
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices. In this review, a clear and comprehensive definition of hollow carbon nanocages (HCNCs) is provided. The latest research progress (including preparation, regulation, and modification) of HCNCs in the field of electrochemical energy storages and conversions is detailly reviewed and discussed. The challenges and some insights into new trends and directions for HCNCs are also provided.
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Abstract Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Hollow carbon nanocages (HCNCs) consisting of sp 2  carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms‐functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon‐based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Hollow carbon nanocages (HCNCs) consisting of sp  carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Author Li, Zesheng
Wang, Hongqiang
Li, Qingyu
Li, Bolin
Yu, Changlin
AuthorAffiliation 1 College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 China
2 Guangxi Key Laboratory of Low Carbon Energy Materials Guangxi Normal University Guilin 541004 China
AuthorAffiliation_xml – name: 1 College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 China
– name: 2 Guangxi Key Laboratory of Low Carbon Energy Materials Guangxi Normal University Guilin 541004 China
Author_xml – sequence: 1
  givenname: Zesheng
  orcidid: 0000-0002-4238-6218
  surname: Li
  fullname: Li, Zesheng
  email: lzs212@gdupt.edu.cn
  organization: Guangdong University of Petrochemical Technology
– sequence: 2
  givenname: Bolin
  surname: Li
  fullname: Li, Bolin
  organization: Guangdong University of Petrochemical Technology
– sequence: 3
  givenname: Changlin
  surname: Yu
  fullname: Yu, Changlin
  email: yuchanglin@gdupt.edu.cn
  organization: Guangdong University of Petrochemical Technology
– sequence: 4
  givenname: Hongqiang
  surname: Wang
  fullname: Wang, Hongqiang
  organization: Guangxi Normal University
– sequence: 5
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
  email: liqingyu@gxnu.edu.cn
  organization: Guangxi Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36587986$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvGyEUhUdVqiZNs-2yQuqmG6e8ZmC6qGTZeUlRW_W1RQzccbAwODB2lH9fbKdWkk1WXMF3Dvf1tjoIMUBVvSf4lGBMP2u7zqcUU4qbBtevqiNKWjlikvODR_FhdZLzHGNMaiY4kW-qQ9bUUrSyOaqGn2AgDOhHirMEOaPYo8vofbxDE526GNA3HaLRM8hf0AUESNqjKWQ3C-h8FaxeFLX2Gelg0dStIWXXO7DozIMZUjQ3sHCmaMbLpS_B4GLI76rXfdHAycN5XP05P_s9uRxdf7-4moyvR6amLR_pTmjNtWgw0dQaaKQwgneY9Z2hre0ssLruNLNtJwn0zIqmM1YyzJuaWIzZcXW187VRz9UyuYVO9ypqp7YXMc2UToMzHhTQnhGh-xpExw2r21ZbQqWUures2Xp93XktV90C7KZppRVPTJ--BHejZnGt2lbSWohi8OnBIMXbFeRBLVw24L0OEFdZ0U2dgpKGFvTjM3QeVymUVhVKEt6U-W2oD48z2qfyf7gFON0BJsWcE_R7hGC1WSC1WSC1X6Ai4M8Exg3bkZWKnH9Rduc83L_wiRpP__7ireTsH8Ej24o
CitedBy_id crossref_primary_10_1039_D4CS00923A
crossref_primary_10_1002_adfm_202421222
crossref_primary_10_1016_j_apsusc_2024_159786
crossref_primary_10_1021_acsnano_4c04691
crossref_primary_10_1016_j_jcis_2024_08_011
crossref_primary_10_1021_acsami_4c18229
crossref_primary_10_1016_j_cej_2024_158265
crossref_primary_10_1016_j_jssc_2024_124745
crossref_primary_10_1002_smll_202306806
crossref_primary_10_1016_j_jcis_2023_04_122
crossref_primary_10_1016_j_jallcom_2024_175705
crossref_primary_10_1016_j_est_2023_109343
crossref_primary_10_1002_adfm_202408257
crossref_primary_10_1016_j_fuel_2025_135121
crossref_primary_10_1007_s12039_024_02295_1
crossref_primary_10_1021_acsanm_4c05918
crossref_primary_10_1016_j_cej_2023_148213
crossref_primary_10_1002_cssc_202401713
crossref_primary_10_1021_acs_iecr_4c00499
crossref_primary_10_1021_acsnano_4c13092
crossref_primary_10_1021_acs_iecr_4c03089
crossref_primary_10_1016_j_ensm_2024_103681
crossref_primary_10_1016_j_cej_2024_156754
crossref_primary_10_1016_j_jcis_2023_10_098
crossref_primary_10_1016_j_jallcom_2024_177438
crossref_primary_10_1016_j_jpowsour_2023_233970
crossref_primary_10_1016_j_fuel_2024_133072
crossref_primary_10_1002_advs_202309364
crossref_primary_10_1039_D4TB00769G
crossref_primary_10_1007_s10971_024_06338_4
crossref_primary_10_1021_acs_energyfuels_4c01913
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1021_acs_iecr_4c01878
crossref_primary_10_1002_smll_202307278
crossref_primary_10_1002_adma_202306844
crossref_primary_10_1016_j_seppur_2024_129382
crossref_primary_10_1021_acs_iecr_4c04344
crossref_primary_10_20517_microstructures_2023_82
crossref_primary_10_1007_s10854_024_13619_9
crossref_primary_10_1039_D3TA04634F
crossref_primary_10_1002_cnma_202200537
crossref_primary_10_3390_molecules29102331
crossref_primary_10_1038_s41467_024_45243_w
crossref_primary_10_3390_su151410891
crossref_primary_10_26599_NR_2025_94907209
crossref_primary_10_1002_cplu_202400198
crossref_primary_10_1002_smll_202308603
crossref_primary_10_1002_aenm_202404140
crossref_primary_10_1016_j_surfin_2024_104844
crossref_primary_10_1016_j_coelec_2023_101416
crossref_primary_10_1016_j_cej_2024_155122
crossref_primary_10_1002_adfm_202308210
crossref_primary_10_1039_D4TA06503D
crossref_primary_10_1016_j_jcrysgro_2024_127721
crossref_primary_10_1016_j_est_2024_113197
crossref_primary_10_1016_j_susmat_2023_e00787
crossref_primary_10_1016_j_apsusc_2023_158915
crossref_primary_10_1002_smll_202302611
crossref_primary_10_1039_D3EE03059H
Cites_doi 10.1039/C6CS00328A
10.1002/asia.201801121
10.1016/j.fuel.2022.124043
10.1002/adma.201205332
10.1016/j.cej.2018.02.085
10.1021/acs.nanolett.2c00481
10.1039/D1TA04534B
10.1002/ange.202201491
10.1002/adma.201806312
10.1021/acs.nanolett.1c03499
10.1016/j.electacta.2017.09.070
10.1039/C8TA09751H
10.1007/s12274-020-2928-0
10.1039/c2ee21801a
10.1021/acs.jpcc.0c01539
10.1016/j.est.2021.103437
10.1039/c2jm16942h
10.20964/2019.10.37
10.1016/j.cej.2021.129576
10.1002/batt.201900001
10.1007/s10854-018-9346-z
10.1002/adfm.201904457
10.1038/srep04437
10.1002/adsu.201700081
10.1021/acsnano.9b08528
10.1039/C7TA01896G
10.1002/ange.201913719
10.1016/j.ijhydene.2019.01.073
10.1002/aenm.201401752
10.1002/adma.201700874
10.1039/C9TA03128F
10.1016/j.cej.2020.124407
10.1002/adma.201706895
10.1016/j.cej.2021.129827
10.1007/s12274-012-0279-1
10.1021/acsami.6b03482
10.1016/j.carbon.2021.07.007
10.1016/j.ccr.2021.213946
10.1039/c1jm11364j
10.1002/aenm.202101242
10.1002/adma.201800939
10.1038/354056a0
10.1126/science.1102896
10.1016/j.electacta.2018.06.096
10.1016/j.apcatb.2017.06.008
10.1021/acsami.1c09107
10.1002/adma.201805121
10.1002/smll.201101594
10.1002/adma.201807876
10.1002/ange.201908736
10.1021/jacs.7b10194
10.1039/c3nr01723k
10.1007/s11426-020-9748-0
10.1016/j.electacta.2018.11.002
10.1021/nn404439r
10.1002/smll.201702407
10.1021/am400001g
10.1016/j.jpowsour.2016.12.013
10.1016/j.ensm.2017.12.023
10.1021/acsnano.7b04078
10.1039/c2cc32552g
10.1002/adma.202003649
10.1002/adma.202007523
10.1002/adma.202004632
10.1002/aenm.202002271
10.1002/anie.202012798
10.1016/j.cej.2018.06.108
10.1021/acs.nanolett.0c02766
10.1002/adma.201504225
10.1007/BF00813725
10.1002/anie.202107790
10.1016/j.carbon.2020.05.072
10.1039/C6TA09030C
10.1016/j.cej.2019.06.012
10.1038/s41467-018-06144-x
10.1002/adma.201800426
10.1002/adfm.202102060
10.1016/j.electacta.2019.134878
10.1039/C9CC09812G
10.1016/j.jpowsour.2021.229688
10.1002/adma.201103872
10.1021/acsaem.1c00643
10.1016/j.jpowsour.2018.09.022
10.1016/j.electacta.2022.140931
10.1039/D0NA00297F
10.1016/j.electacta.2017.09.003
10.1016/j.jpowsour.2021.230224
10.1016/j.jcis.2022.07.034
10.1002/adfm.202003871
10.1016/j.est.2022.104515
10.1002/adfm.202208666
10.1002/adma.202070206
10.1002/sus2.8
10.1039/C1JM13872C
10.1016/j.carbon.2017.01.055
10.1016/j.cej.2016.11.018
10.1016/j.nanoen.2021.106111
10.1002/adfm.201503077
10.1038/s41467-020-18820-y
10.1002/ange.202108343
10.1016/j.jechem.2021.06.012
10.1039/D0EE00723D
10.1002/anie.201003213
10.1002/adma.202003134
10.1021/acs.chemmater.8b01792
10.1016/j.jallcom.2019.152890
10.1073/pnas.2000128117
10.1021/acsnano.1c00924
10.1016/j.nanoen.2021.106540
10.1002/eom2.12105
10.1039/C5CC07610B
10.1039/C6TA03802F
10.1016/j.jpowsour.2017.07.037
10.1038/s41929-021-00650-w
10.1002/aenm.201900036
10.1016/j.carbon.2020.06.046
10.1002/adfm.202005834
10.1002/adfm.202006188
10.1002/batt.202200154
10.1007/s40820-014-0019-z
10.1002/adma.201901349
10.1007/s40820-020-00535-w
10.1016/j.cej.2020.127677
10.1002/aenm.202002741
10.1016/j.apcatb.2022.121190
10.1002/anie.202007297
10.1002/adfm.202200315
10.1021/acs.accounts.0c00613
10.1007/s12274-016-1198-3
10.1021/acsnano.6b00723
10.1002/smll.202203589
10.1039/C7TA08483H
10.1039/D0QM00839G
10.1021/acs.nanolett.2c03696
10.1021/acscatal.1c05401
10.1039/C7TA03445H
10.1002/adma.201900429
10.1039/C7CS00690J
10.1002/cey2.134
10.1002/aenm.201803900
10.1002/anie.201606102
10.1016/j.ensm.2018.03.014
10.1002/anie.202107314
10.1016/j.carbon.2016.09.081
10.1021/acssuschemeng.5b00359
10.1007/s11051-016-3457-3
10.1002/smll.202003943
10.1016/j.carbon.2016.04.063
10.1002/adfm.202201166
10.1002/adma.201500945
10.1002/aenm.202002896
10.1002/sstr.202000017
10.1016/j.apsusc.2019.06.183
10.1002/adma.201905622
10.1016/j.cej.2020.127583
10.1021/acscatal.1c03447
10.1021/acsami.8b08534
10.1016/j.ijhydene.2019.10.066
10.1016/j.nanoen.2018.12.019
10.1002/adfm.201904781
10.1021/acscatal.9b00282
10.1002/smll.202005534
10.1016/j.apcatb.2017.11.077
10.1002/adma.202101698
10.1016/j.apcatb.2019.118417
10.1002/adfm.202000208
10.1002/adma.201602913
10.1016/j.nanoen.2011.11.006
10.1039/C7TA06272A
10.1021/acsami.8b11888
10.1016/j.jcis.2020.07.031
10.1016/j.matt.2021.10.017
10.1016/j.nanoen.2015.01.033
10.1039/C3CC48240E
10.1016/j.joule.2018.01.004
10.1016/j.ensm.2016.07.001
10.1002/aenm.201801149
10.1016/j.nanoen.2020.104594
10.1002/adma.202008599
10.1039/C6SC04903F
10.1007/s12274-020-3181-2
10.1039/b922733d
10.1002/adma.202003484
10.1002/adfm.202007158
10.1007/s40820-017-0157-1
10.1038/318162a0
10.1021/acs.accounts.6b00541
10.1016/j.electacta.2016.10.028
10.1039/D0RA02935A
10.1016/j.electacta.2016.05.217
10.1016/j.jpowsour.2020.229358
10.1016/j.ensm.2018.05.008
10.1016/j.jpowsour.2020.227975
10.1002/eem2.12126
10.1007/s40820-020-00521-2
10.1002/anie.201709176
10.1002/adma.201904548
10.1088/0957-4484/23/48/485404
10.1002/adfm.202001097
10.1002/advs.202101438
10.1016/0021-9797(68)90272-5
10.1016/j.nanoen.2017.11.004
10.1021/nn301546z
10.1016/j.enchem.2020.100043
10.1039/C8TA05041D
10.1002/adfm.201200941
10.1002/adfm.201602246
10.1016/j.carbon.2016.01.043
10.1038/s41565-021-01022-y
10.1002/aenm.202001161
10.1021/acscatal.1c01649
10.1016/j.est.2021.102380
10.1039/D0CC07123D
10.1002/adma.201705324
10.1038/s41467-019-09596-x
10.1021/jp034161b
10.1021/acs.nanolett.5b00364
10.1038/s41929-020-00563-0
10.1007/s41918-018-0025-9
10.1002/adfm.202011289
10.1002/adma.201700470
10.1021/acsnano.8b01502
10.1039/b609971h
10.1016/j.chempr.2019.09.005
10.1039/C4NR06366J
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202206605
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Proquest Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e2f317af5e7b4c3599ad12888afd3600
PMC9982577
36587986
10_1002_advs_202206605
ADVS4984
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22078071; 22272034
– fundername: Colleges Pearl River Scholar Funded Scheme
  funderid: 2019
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2021A1515010125; 2020A1515010344; 2021A1515010305
– fundername: Environment and Energy Green Catalysis Innovation Team of Colleges
– fundername: Key Research Project of Natural Science of Guangdong Provincial Department of Education
  funderid: 2019KZDXM010
– fundername: Guangdong Province Universities
– fundername: Projects of Talents Recruitment of GDUPT
  funderid: XJ2022000101
– fundername: Guangxi Key Laboratory of Low Carbon Energy Material
  funderid: 2020GKLLCEM03
– fundername: Universities of Guangdong Province
  funderid: 2022KCXTD019
– fundername: Innovative Research Team of Guangdong University of Petrochemical Technology
– fundername: National Natural Science Foundation of China
  grantid: 22078071
– fundername: Key Research Project of Natural Science of Guangdong Provincial Department of Education
  grantid: 2019KZDXM010
– fundername: Guangxi Key Laboratory of Low Carbon Energy Material
  grantid: 2020GKLLCEM03
– fundername: National Natural Science Foundation of China
  grantid: 22272034
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2021A1515010125
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2020A1515010344
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2021A1515010305
– fundername: Colleges Pearl River Scholar Funded Scheme
  grantid: 2019
– fundername: ;
  grantid: 22078071; 22272034
– fundername: ;
  grantid: 2021A1515010125; 2020A1515010344; 2021A1515010305
– fundername: Universities of Guangdong Province
  grantid: 2022KCXTD019
– fundername: Projects of Talents Recruitment of GDUPT
  grantid: XJ2022000101
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5294-ab7aa4a7601a2dce687c74b03fbc29dbde355ba3d9b81ef3d76bcd8304651d003
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:18:47 EDT 2025
Thu Aug 21 18:38:26 EDT 2025
Fri Jul 11 07:12:40 EDT 2025
Fri Jul 25 02:07:33 EDT 2025
Wed Feb 19 02:24:46 EST 2025
Tue Jul 01 03:59:48 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Jan 22 16:14:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords hollow carbon nanocages
electrocatalytic conversion
electrochemical energy storage
composite nanocages
hollow carbon spheres
single atom catalysts
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-ab7aa4a7601a2dce687c74b03fbc29dbde355ba3d9b81ef3d76bcd8304651d003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4238-6218
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206605
PMID 36587986
PQID 2781463652
PQPubID 4365299
PageCount 53
ParticipantIDs doaj_primary_oai_doaj_org_article_e2f317af5e7b4c3599ad12888afd3600
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9982577
proquest_miscellaneous_2760172162
proquest_journals_2781463652
pubmed_primary_36587986
crossref_primary_10_1002_advs_202206605
crossref_citationtrail_10_1002_advs_202206605
wiley_primary_10_1002_advs_202206605_ADVS4984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 1991; 354
2018; 282
2020; 20
2019; 10
2019; 14
2019; 324
2020; 16
2020; 14
2020; 13
2020; 167
2020; 12
2020; 11
2020; 10
2022; 22
2013; 7
2013; 5
2013; 6
2017; 313
2018; 47
2018; 6
2021; 439
2022; 321
2018; 9
2018; 8
2018; 2
2019; 29
2018; 30
2020; 455
2022; 32
2012; 24
2012; 23
2012; 22
2019; 7
2018; 29
2018; 342
2019; 9
2021; 44
2021; 421
2019; 31
2021; 420
2019; 2
2018; 225
2016; 10
2017; 252
2020; 389
2020; 268
2020; 32
2017; 253
2016; 18
2004; 306
2017; 139
2018; 351
2016; 4
2017; 50
2016; 5
2021; 419
2010; 49
2003; 107
2010; 46
1985; 318
2016; 219
2020; 30
2019; 44
2022; 5
2021; 416
2017; 56
2022; 12
2016; 211
2021; 493
2021; 133
2012; 48
2018; 12
2016; 28
2021; 60
2022; 626
2018; 10
2016; 26
2016; 8
2018; 15
2016; 9
2022; 17
2019; 296
2022; 18
2018; 14
2018; 13
2017; 5
1968; 26
2022; 134
2017; 42
2017; 8
2017; 1
2021; 21
2013; 25
1996; 39
2020; 63
2018; 402
2021; 486
2020; 60
2019; 57
2017; 46
2016; 101
2020; 59
2016; 105
2020; 56
2020; 124
2022; 65
2020; 54
2017; 111
2017; 115
2021; 36
2020; 6
2014; 4
2021; 31
2020; 2
2021; 33
2020; 132
2022; 22–23
2011; 21
2017; 363
2014; 50
2020; 818
2021; 506
2021; 9
2015; 12
2021; 8
2015; 15
2021; 5
2021; 4
2015; 5
2021; 86
2021; 3
2015; 3
2021; 2
2020; 580
2022; 51
2006; 16
2016; 52
2021; 183
2017; 29
2021; 1
2015; 7
2021; 90
2017; 217
2016; 55
2021; 14
2021; 13
2015; 25
2021; 15
2015; 27
2012; 1
2021; 11
2022
2017; 11
2020; 71
2020; 117
2017; 341
2012; 6
2022; 428
2022; 307
2019; 491
2012; 5
2012; 8
2019; 131
2019; 374
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
Li Y. (e_1_2_10_133_1) 2022; 134
e_1_2_10_211_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_200_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_212_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_215_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_216_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_157_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 626
  start-page: 1062
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 324
  year: 2019
  publication-title: Electrochim. Acta
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2016
  publication-title: J Nanopart Res
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 3538
  year: 2017
  publication-title: Chem. Sci.
– volume: 46
  start-page: 3256
  year: 2010
  publication-title: Chem. Commun.
– volume: 12
  start-page: 2569
  year: 2022
  publication-title: ACS Catal.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 13
  start-page: 57
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 63
  start-page: 665
  year: 2020
  publication-title: Sci. China: Chem.
– volume: 11
  start-page: 9729
  year: 2021
  publication-title: ACS Catal.
– volume: 17
  start-page: 174
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 2839
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 435
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4579
  year: 2016
  publication-title: ACS Nano
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 131
  year: 2019
  publication-title: Angew. Chem.
– volume: 22–23
  start-page: 9551
  year: 2022
  publication-title: Nano Lett.
– volume: 818
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 3
  year: 2021
  publication-title: EcoMat
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 342
  start-page: 474
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 313
  start-page: 1242
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 1130
  year: 2012
  publication-title: Small
– volume: 111
  start-page: 207
  year: 2017
  publication-title: Carbon
– volume: 4
  start-page: 4006
  year: 2021
  publication-title: Matter
– volume: 28
  start-page: 4306
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5840
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 6803
  year: 2012
  publication-title: ACS Nano
– volume: 5
  start-page: 2241
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 506
  year: 2021
  publication-title: J. Power Sources
– volume: 4
  year: 2014
  publication-title: Sci. Rep.
– volume: 10
  year: 2019
  publication-title: Nat. Commun.
– volume: 318
  start-page: 162
  year: 1985
  publication-title: Nature
– volume: 56
  start-page: 2467
  year: 2020
  publication-title: Chem. Commun.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 7628
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 402
  start-page: 43
  year: 2018
  publication-title: J. Power Sources
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 9539
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  year: 2018
  publication-title: Nano‐Micro Lett.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 167
  start-page: 843
  year: 2020
  publication-title: Carbon
– volume: 26
  start-page: 7626
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 105
  year: 2019
  publication-title: Electrochem. Energy Rev.
– volume: 5
  start-page: 843
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 307
  year: 2022
  publication-title: Appl. Catal., B
– volume: 124
  start-page: 9225
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 3222
  year: 2020
  publication-title: Nanoscale Adv
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 7045
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2020
  publication-title: EnergyChem
– volume: 22
  start-page: 3691
  year: 2022
  publication-title: Nano Lett.
– volume: 13
  start-page: 3274
  year: 2018
  publication-title: Chem Asian J
– volume: 42
  start-page: 334
  year: 2017
  publication-title: Nano Energy
– volume: 48
  start-page: 6124
  year: 2012
  publication-title: Chem. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 15
  start-page: 3195
  year: 2015
  publication-title: Nano Lett.
– volume: 2
  start-page: 509
  year: 2019
  publication-title: Batteries Supercaps
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 7342
  year: 2020
  publication-title: Nano Lett.
– volume: 52
  start-page: 505
  year: 2016
  publication-title: Chem. Commun.
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 105
  start-page: 586
  year: 2016
  publication-title: Carbon
– volume: 22
  start-page: 9069
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 133
  year: 2021
  publication-title: Angew. Chem.
– volume: 65
  start-page: 448
  year: 2022
  publication-title: J. Energy Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 493
  year: 2021
  publication-title: J. Power Sources
– volume: 4
  start-page: 615
  year: 2021
  publication-title: Nat. Catal.
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 12
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 132
  start-page: 2082
  year: 2020
  publication-title: Angew. Chem.
– volume: 268
  year: 2020
  publication-title: Appl. Catal., B
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 6913
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 27
  year: 1996
  publication-title: Catal. Lett.
– volume: 253
  start-page: 344
  year: 2017
  publication-title: Electrochim. Acta
– volume: 51
  year: 2022
  publication-title: J. Energy Storage
– volume: 134
  year: 2022
  publication-title: Angew. Chem.
– volume: 1
  start-page: 211
  year: 2021
  publication-title: SusMat
– volume: 14
  start-page: 1355
  year: 2021
  publication-title: Nano Res.
– volume: 15
  start-page: 75
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 22
  start-page: 4526
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 59
  year: 2015
  publication-title: Nano‐Micro Lett.
– volume: 44
  start-page: 6172
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 451
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 115
  start-page: 617
  year: 2017
  publication-title: Carbon
– volume: 60
  start-page: 3212
  year: 2020
  publication-title: Angew. Chem.
– volume: 282
  start-page: 799
  year: 2018
  publication-title: Electrochim. Acta
– volume: 167
  start-page: 685
  year: 2020
  publication-title: Carbon
– volume: 428
  year: 2022
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 2014
  year: 2020
  publication-title: ACS Nano
– volume: 15
  start-page: 5679
  year: 2021
  publication-title: ACS Nano
– volume: 14
  start-page: 314
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 1786
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 44
  year: 2021
  publication-title: J. Energy Storage
– volume: 107
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 2777
  year: 2020
  publication-title: Nano Res.
– volume: 22
  start-page: 153
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 6908
  year: 2013
  publication-title: Nanoscale
– volume: 252
  start-page: 180
  year: 2017
  publication-title: Electrochim. Acta
– volume: 416
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 725
  year: 2018
  publication-title: Joule
– volume: 13
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 36
  year: 2021
  publication-title: J. Energy Storage
– volume: 439
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 10
  year: 2020
  publication-title: RSC Adv.
– volume: 14
  start-page: 9562
  year: 2019
  publication-title: Int J Electrochem Sci
– volume: 5
  start-page: 8390
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 180
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 134
  year: 2021
  publication-title: Nat. Catal.
– volume: 6
  start-page: 19
  year: 2020
  publication-title: Chem
– volume: 363
  start-page: 356
  year: 2017
  publication-title: J. Power Sources
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 486
  year: 2021
  publication-title: J. Power Sources
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 183
  start-page: 158
  year: 2021
  publication-title: Carbon
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 25
  start-page: 2474
  year: 2013
  publication-title: Adv. Mater.
– volume: 11
  year: 2020
  publication-title: Nat. Commun.
– volume: 217
  start-page: 477
  year: 2017
  publication-title: Appl. Catal., B
– volume: 11
  start-page: 8429
  year: 2017
  publication-title: ACS Nano
– volume: 5
  start-page: 266
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 34
  year: 2019
  publication-title: Nano Energy
– volume: 1
  start-page: 195
  year: 2012
  publication-title: Nano Energy
– volume: 419
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 29
  year: 2018
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 21
  start-page: 9691
  year: 2021
  publication-title: Nano Lett.
– volume: 6
  start-page: 38
  year: 2013
  publication-title: Nano Res.
– volume: 219
  start-page: 339
  year: 2016
  publication-title: Electrochim. Acta
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 4413
  year: 2006
  publication-title: J. Mater. Chem.
– volume: 580
  start-page: 794
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 455
  year: 2020
  publication-title: J. Power Sources
– year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 30
  start-page: 4401
  year: 2018
  publication-title: Chem. Mater.
– volume: 50
  start-page: 566
  year: 2014
  publication-title: Chem. Commun.
– volume: 5
  year: 2022
  publication-title: Batteries Supercaps
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 12
  start-page: 657
  year: 2015
  publication-title: Nano Energy
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 101
  start-page: 57
  year: 2016
  publication-title: Carbon
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 225
  start-page: 496
  year: 2018
  publication-title: Appl. Catal., B
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 296
  start-page: 8
  year: 2019
  publication-title: Electrochim. Acta
– volume: 374
  start-page: 1214
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 221
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 211
  start-page: 183
  year: 2016
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 1501
  year: 2015
  publication-title: Nanoscale
– volume: 23
  year: 2012
  publication-title: Nanotechnology
– volume: 351
  start-page: 135
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 491
  start-page: 723
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  start-page: 795
  year: 2021
  publication-title: Carbon Energy
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 62
  year: 1968
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 2969
  year: 2019
  publication-title: ACS Catal.
– volume: 1
  year: 2017
  publication-title: Adv. Sustainable Syst.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 347
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  year: 2018
  publication-title: Nat. Commun.
– volume: 27
  start-page: 3541
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3162
  year: 2016
  publication-title: Nano Res.
– volume: 12
  start-page: 5674
  year: 2018
  publication-title: ACS Nano
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 321
  year: 2022
  publication-title: Fuel
– volume: 341
  start-page: 294
  year: 2017
  publication-title: J. Power Sources
– ident: e_1_2_10_201_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_10_203_1
  doi: 10.1002/asia.201801121
– ident: e_1_2_10_216_1
  doi: 10.1016/j.fuel.2022.124043
– ident: e_1_2_10_7_1
  doi: 10.1002/adma.201205332
– ident: e_1_2_10_125_1
  doi: 10.1016/j.cej.2018.02.085
– ident: e_1_2_10_131_1
  doi: 10.1021/acs.nanolett.2c00481
– ident: e_1_2_10_136_1
  doi: 10.1039/D1TA04534B
– volume: 134
  year: 2022
  ident: e_1_2_10_133_1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202201491
– ident: e_1_2_10_145_1
  doi: 10.1002/adma.201806312
– ident: e_1_2_10_188_1
  doi: 10.1021/acs.nanolett.1c03499
– ident: e_1_2_10_46_1
  doi: 10.1016/j.electacta.2017.09.070
– ident: e_1_2_10_103_1
  doi: 10.1039/C8TA09751H
– ident: e_1_2_10_213_1
  doi: 10.1007/s12274-020-2928-0
– ident: e_1_2_10_166_1
  doi: 10.1039/c2ee21801a
– ident: e_1_2_10_81_1
  doi: 10.1021/acs.jpcc.0c01539
– ident: e_1_2_10_12_1
  doi: 10.1016/j.est.2021.103437
– ident: e_1_2_10_94_1
  doi: 10.1039/c2jm16942h
– ident: e_1_2_10_44_1
  doi: 10.20964/2019.10.37
– ident: e_1_2_10_71_1
  doi: 10.1016/j.cej.2021.129576
– ident: e_1_2_10_117_1
  doi: 10.1002/batt.201900001
– ident: e_1_2_10_122_1
  doi: 10.1007/s10854-018-9346-z
– ident: e_1_2_10_6_1
  doi: 10.1002/adfm.201904457
– ident: e_1_2_10_62_1
  doi: 10.1038/srep04437
– ident: e_1_2_10_108_1
  doi: 10.1002/adsu.201700081
– ident: e_1_2_10_214_1
  doi: 10.1021/acsnano.9b08528
– ident: e_1_2_10_61_1
  doi: 10.1039/C7TA01896G
– ident: e_1_2_10_225_1
  doi: 10.1002/ange.201913719
– ident: e_1_2_10_21_1
  doi: 10.1016/j.ijhydene.2019.01.073
– ident: e_1_2_10_91_1
  doi: 10.1002/aenm.201401752
– ident: e_1_2_10_75_1
  doi: 10.1002/adma.201700874
– ident: e_1_2_10_223_1
  doi: 10.1039/C9TA03128F
– ident: e_1_2_10_73_1
  doi: 10.1016/j.cej.2020.124407
– ident: e_1_2_10_39_1
  doi: 10.1002/adma.201706895
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cej.2021.129827
– ident: e_1_2_10_55_1
  doi: 10.1007/s12274-012-0279-1
– ident: e_1_2_10_24_1
  doi: 10.1021/acsami.6b03482
– ident: e_1_2_10_113_1
  doi: 10.1016/j.carbon.2021.07.007
– ident: e_1_2_10_134_1
  doi: 10.1016/j.ccr.2021.213946
– ident: e_1_2_10_89_1
  doi: 10.1039/c1jm11364j
– ident: e_1_2_10_207_1
  doi: 10.1002/aenm.202101242
– ident: e_1_2_10_48_1
  doi: 10.1002/adma.201800939
– ident: e_1_2_10_2_1
  doi: 10.1038/354056a0
– ident: e_1_2_10_3_1
  doi: 10.1126/science.1102896
– ident: e_1_2_10_82_1
  doi: 10.1016/j.electacta.2018.06.096
– ident: e_1_2_10_33_1
  doi: 10.1016/j.apcatb.2017.06.008
– ident: e_1_2_10_217_1
  doi: 10.1021/acsami.1c09107
– ident: e_1_2_10_140_1
  doi: 10.1002/adma.201805121
– ident: e_1_2_10_10_1
  doi: 10.1002/smll.201101594
– ident: e_1_2_10_130_1
  doi: 10.1002/adma.201807876
– ident: e_1_2_10_153_1
  doi: 10.1002/ange.201908736
– ident: e_1_2_10_146_1
  doi: 10.1021/jacs.7b10194
– ident: e_1_2_10_99_1
  doi: 10.1039/c3nr01723k
– ident: e_1_2_10_19_1
  doi: 10.1007/s11426-020-9748-0
– ident: e_1_2_10_106_1
  doi: 10.1016/j.electacta.2018.11.002
– ident: e_1_2_10_98_1
  doi: 10.1021/nn404439r
– ident: e_1_2_10_174_1
  doi: 10.1002/smll.201702407
– ident: e_1_2_10_100_1
  doi: 10.1021/am400001g
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jpowsour.2016.12.013
– ident: e_1_2_10_11_1
  doi: 10.1016/j.ensm.2017.12.023
– ident: e_1_2_10_158_1
  doi: 10.1021/acsnano.7b04078
– ident: e_1_2_10_97_1
  doi: 10.1039/c2cc32552g
– ident: e_1_2_10_212_1
  doi: 10.1002/adma.202003649
– ident: e_1_2_10_205_1
  doi: 10.1002/adma.202007523
– ident: e_1_2_10_88_1
  doi: 10.1002/adma.202004632
– ident: e_1_2_10_184_1
  doi: 10.1002/aenm.202002271
– ident: e_1_2_10_135_1
  doi: 10.1002/anie.202012798
– ident: e_1_2_10_13_1
  doi: 10.1016/j.cej.2018.06.108
– ident: e_1_2_10_34_1
  doi: 10.1021/acs.nanolett.0c02766
– ident: e_1_2_10_9_1
  doi: 10.1002/adma.201504225
– ident: e_1_2_10_155_1
  doi: 10.1007/BF00813725
– ident: e_1_2_10_199_1
  doi: 10.1002/anie.202107790
– ident: e_1_2_10_107_1
  doi: 10.1016/j.carbon.2020.05.072
– ident: e_1_2_10_30_1
  doi: 10.1039/C6TA09030C
– ident: e_1_2_10_226_1
  doi: 10.1016/j.cej.2019.06.012
– ident: e_1_2_10_190_1
  doi: 10.1038/s41467-018-06144-x
– ident: e_1_2_10_115_1
  doi: 10.1002/adma.201800426
– ident: e_1_2_10_132_1
  doi: 10.1002/adfm.202102060
– ident: e_1_2_10_53_1
  doi: 10.1016/j.electacta.2019.134878
– ident: e_1_2_10_109_1
  doi: 10.1039/C9CC09812G
– ident: e_1_2_10_165_1
  doi: 10.1016/j.jpowsour.2021.229688
– ident: e_1_2_10_23_1
  doi: 10.1002/adma.201103872
– ident: e_1_2_10_60_1
  doi: 10.1021/acsaem.1c00643
– ident: e_1_2_10_175_1
  doi: 10.1016/j.jpowsour.2018.09.022
– ident: e_1_2_10_93_1
  doi: 10.1016/j.electacta.2022.140931
– ident: e_1_2_10_45_1
  doi: 10.1039/D0NA00297F
– ident: e_1_2_10_35_1
  doi: 10.1016/j.electacta.2017.09.003
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jpowsour.2021.230224
– ident: e_1_2_10_159_1
  doi: 10.1016/j.jcis.2022.07.034
– ident: e_1_2_10_194_1
  doi: 10.1002/adfm.202003871
– ident: e_1_2_10_96_1
  doi: 10.1016/j.est.2022.104515
– ident: e_1_2_10_192_1
  doi: 10.1002/adfm.202208666
– ident: e_1_2_10_20_1
  doi: 10.1002/adma.202070206
– ident: e_1_2_10_74_1
  doi: 10.1002/sus2.8
– ident: e_1_2_10_59_1
  doi: 10.1039/C1JM13872C
– ident: e_1_2_10_124_1
  doi: 10.1016/j.carbon.2017.01.055
– ident: e_1_2_10_38_1
  doi: 10.1016/j.cej.2016.11.018
– ident: e_1_2_10_185_1
  doi: 10.1016/j.nanoen.2021.106111
– ident: e_1_2_10_36_1
  doi: 10.1002/adfm.201503077
– ident: e_1_2_10_147_1
  doi: 10.1038/s41467-020-18820-y
– ident: e_1_2_10_50_1
  doi: 10.1002/ange.202108343
– ident: e_1_2_10_150_1
  doi: 10.1016/j.jechem.2021.06.012
– ident: e_1_2_10_118_1
  doi: 10.1039/D0EE00723D
– ident: e_1_2_10_123_1
  doi: 10.1002/anie.201003213
– ident: e_1_2_10_170_1
  doi: 10.1002/adma.202003134
– ident: e_1_2_10_222_1
  doi: 10.1021/acs.chemmater.8b01792
– ident: e_1_2_10_101_1
  doi: 10.1016/j.jallcom.2019.152890
– ident: e_1_2_10_189_1
  doi: 10.1073/pnas.2000128117
– ident: e_1_2_10_182_1
  doi: 10.1021/acsnano.1c00924
– ident: e_1_2_10_172_1
  doi: 10.1016/j.nanoen.2021.106540
– ident: e_1_2_10_78_1
  doi: 10.1002/eom2.12105
– ident: e_1_2_10_110_1
  doi: 10.1039/C5CC07610B
– ident: e_1_2_10_15_1
  doi: 10.1039/C6TA03802F
– ident: e_1_2_10_104_1
  doi: 10.1016/j.jpowsour.2017.07.037
– ident: e_1_2_10_219_1
  doi: 10.1038/s41929-021-00650-w
– ident: e_1_2_10_181_1
  doi: 10.1002/aenm.201900036
– ident: e_1_2_10_84_1
  doi: 10.1016/j.carbon.2020.06.046
– ident: e_1_2_10_157_1
  doi: 10.1002/adfm.202005834
– ident: e_1_2_10_142_1
  doi: 10.1002/adfm.202006188
– ident: e_1_2_10_129_1
  doi: 10.1002/batt.202200154
– ident: e_1_2_10_173_1
  doi: 10.1007/s40820-014-0019-z
– ident: e_1_2_10_112_1
  doi: 10.1002/adma.201901349
– ident: e_1_2_10_137_1
  doi: 10.1007/s40820-020-00535-w
– ident: e_1_2_10_154_1
  doi: 10.1016/j.cej.2020.127677
– ident: e_1_2_10_177_1
  doi: 10.1002/aenm.202002741
– ident: e_1_2_10_197_1
  doi: 10.1016/j.apcatb.2022.121190
– ident: e_1_2_10_95_1
  doi: 10.1002/anie.202007297
– ident: e_1_2_10_164_1
  doi: 10.1002/adfm.202200315
– ident: e_1_2_10_51_1
  doi: 10.1021/acs.accounts.0c00613
– ident: e_1_2_10_69_1
  doi: 10.1007/s12274-016-1198-3
– ident: e_1_2_10_111_1
  doi: 10.1021/acsnano.6b00723
– ident: e_1_2_10_144_1
  doi: 10.1002/smll.202203589
– ident: e_1_2_10_29_1
  doi: 10.1039/C7TA08483H
– ident: e_1_2_10_171_1
  doi: 10.1039/D0QM00839G
– ident: e_1_2_10_218_1
  doi: 10.1021/acs.nanolett.2c03696
– ident: e_1_2_10_169_1
  doi: 10.1021/acscatal.1c05401
– ident: e_1_2_10_86_1
  doi: 10.1039/C7TA03445H
– ident: e_1_2_10_54_1
  doi: 10.1002/adma.201900429
– ident: e_1_2_10_119_1
  doi: 10.1039/C7CS00690J
– ident: e_1_2_10_120_1
  doi: 10.1002/cey2.134
– ident: e_1_2_10_114_1
  doi: 10.1002/aenm.201803900
– ident: e_1_2_10_168_1
  doi: 10.1002/anie.201606102
– ident: e_1_2_10_47_1
  doi: 10.1016/j.ensm.2018.03.014
– ident: e_1_2_10_76_1
  doi: 10.1002/anie.202107314
– ident: e_1_2_10_41_1
  doi: 10.1016/j.carbon.2016.09.081
– ident: e_1_2_10_43_1
  doi: 10.1021/acssuschemeng.5b00359
– ident: e_1_2_10_58_1
  doi: 10.1007/s11051-016-3457-3
– ident: e_1_2_10_215_1
  doi: 10.1002/smll.202003943
– ident: e_1_2_10_28_1
  doi: 10.1016/j.carbon.2016.04.063
– ident: e_1_2_10_102_1
  doi: 10.1002/adfm.202201166
– ident: e_1_2_10_8_1
  doi: 10.1002/adma.201500945
– ident: e_1_2_10_143_1
  doi: 10.1002/aenm.202002896
– ident: e_1_2_10_208_1
  doi: 10.1002/sstr.202000017
– ident: e_1_2_10_52_1
  doi: 10.1016/j.apsusc.2019.06.183
– ident: e_1_2_10_200_1
  doi: 10.1002/adma.201905622
– ident: e_1_2_10_148_1
  doi: 10.1016/j.cej.2020.127583
– ident: e_1_2_10_160_1
  doi: 10.1021/acscatal.1c03447
– ident: e_1_2_10_151_1
  doi: 10.1021/acsami.8b08534
– ident: e_1_2_10_49_1
  doi: 10.1016/j.ijhydene.2019.10.066
– ident: e_1_2_10_187_1
  doi: 10.1016/j.nanoen.2018.12.019
– ident: e_1_2_10_85_1
  doi: 10.1002/adfm.201904781
– ident: e_1_2_10_77_1
  doi: 10.1021/acscatal.9b00282
– ident: e_1_2_10_126_1
  doi: 10.1002/smll.202005534
– ident: e_1_2_10_31_1
  doi: 10.1016/j.apcatb.2017.11.077
– ident: e_1_2_10_179_1
  doi: 10.1002/adma.202101698
– ident: e_1_2_10_195_1
  doi: 10.1002/smll.202005534
– ident: e_1_2_10_204_1
  doi: 10.1016/j.apcatb.2019.118417
– ident: e_1_2_10_196_1
  doi: 10.1002/adfm.202000208
– ident: e_1_2_10_186_1
  doi: 10.1002/adma.201602913
– ident: e_1_2_10_5_1
  doi: 10.1016/j.nanoen.2011.11.006
– ident: e_1_2_10_32_1
  doi: 10.1039/C7TA06272A
– ident: e_1_2_10_167_1
  doi: 10.1021/acsami.8b11888
– ident: e_1_2_10_83_1
  doi: 10.1016/j.jcis.2020.07.031
– ident: e_1_2_10_183_1
  doi: 10.1016/j.matt.2021.10.017
– ident: e_1_2_10_25_1
  doi: 10.1016/j.nanoen.2015.01.033
– ident: e_1_2_10_70_1
  doi: 10.1039/C3CC48240E
– ident: e_1_2_10_161_1
  doi: 10.1016/j.joule.2018.01.004
– ident: e_1_2_10_27_1
  doi: 10.1016/j.ensm.2016.07.001
– ident: e_1_2_10_22_1
  doi: 10.1002/aenm.201801149
– ident: e_1_2_10_178_1
  doi: 10.1016/j.nanoen.2020.104594
– ident: e_1_2_10_210_1
  doi: 10.1002/adma.202008599
– ident: e_1_2_10_221_1
  doi: 10.1039/C6SC04903F
– ident: e_1_2_10_92_1
  doi: 10.1007/s12274-020-3181-2
– ident: e_1_2_10_4_1
  doi: 10.1039/b922733d
– ident: e_1_2_10_211_1
  doi: 10.1002/adma.202003484
– ident: e_1_2_10_139_1
  doi: 10.1002/adfm.202007158
– ident: e_1_2_10_198_1
  doi: 10.1007/s40820-017-0157-1
– ident: e_1_2_10_1_1
  doi: 10.1038/318162a0
– ident: e_1_2_10_18_1
  doi: 10.1021/acs.accounts.6b00541
– ident: e_1_2_10_105_1
  doi: 10.1016/j.electacta.2016.10.028
– ident: e_1_2_10_87_1
  doi: 10.1039/D0RA02935A
– ident: e_1_2_10_16_1
  doi: 10.1016/j.electacta.2016.05.217
– ident: e_1_2_10_191_1
  doi: 10.1016/j.jpowsour.2020.229358
– ident: e_1_2_10_193_1
  doi: 10.1016/j.ensm.2018.05.008
– ident: e_1_2_10_64_1
  doi: 10.1016/j.jpowsour.2020.227975
– ident: e_1_2_10_72_1
  doi: 10.1002/eem2.12126
– ident: e_1_2_10_180_1
  doi: 10.1007/s40820-020-00521-2
– ident: e_1_2_10_152_1
  doi: 10.1002/anie.201709176
– ident: e_1_2_10_206_1
  doi: 10.1002/adma.201904548
– ident: e_1_2_10_90_1
  doi: 10.1088/0957-4484/23/48/485404
– ident: e_1_2_10_116_1
  doi: 10.1002/adfm.202001097
– ident: e_1_2_10_202_1
  doi: 10.1002/advs.202101438
– ident: e_1_2_10_80_1
  doi: 10.1016/0021-9797(68)90272-5
– ident: e_1_2_10_66_1
  doi: 10.1016/j.nanoen.2017.11.004
– ident: e_1_2_10_121_1
  doi: 10.1021/nn301546z
– ident: e_1_2_10_141_1
  doi: 10.1016/j.enchem.2020.100043
– ident: e_1_2_10_128_1
  doi: 10.1039/C8TA05041D
– ident: e_1_2_10_156_1
  doi: 10.1002/adfm.201200941
– ident: e_1_2_10_42_1
  doi: 10.1002/adfm.201602246
– ident: e_1_2_10_57_1
  doi: 10.1016/j.carbon.2016.01.043
– ident: e_1_2_10_220_1
  doi: 10.1038/s41565-021-01022-y
– ident: e_1_2_10_138_1
  doi: 10.1002/aenm.202001161
– ident: e_1_2_10_163_1
  doi: 10.1021/acscatal.1c01649
– ident: e_1_2_10_176_1
  doi: 10.1016/j.est.2021.102380
– ident: e_1_2_10_67_1
  doi: 10.1039/D0CC07123D
– ident: e_1_2_10_65_1
  doi: 10.1002/adma.201705324
– ident: e_1_2_10_209_1
  doi: 10.1038/s41467-019-09596-x
– ident: e_1_2_10_79_1
  doi: 10.1021/jp034161b
– ident: e_1_2_10_40_1
  doi: 10.1021/acs.nanolett.5b00364
– ident: e_1_2_10_162_1
  doi: 10.1038/s41929-020-00563-0
– ident: e_1_2_10_63_1
  doi: 10.1007/s41918-018-0025-9
– ident: e_1_2_10_149_1
  doi: 10.1002/adfm.202011289
– ident: e_1_2_10_26_1
  doi: 10.1002/adma.201700470
– ident: e_1_2_10_127_1
  doi: 10.1021/acsnano.8b01502
– ident: e_1_2_10_56_1
  doi: 10.1039/b609971h
– ident: e_1_2_10_224_1
  doi: 10.1016/j.chempr.2019.09.005
– ident: e_1_2_10_37_1
  doi: 10.1039/C4NR06366J
SSID ssj0001537418
Score 2.5538824
SecondaryResourceType review_article
Snippet Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)...
Hollow carbon nanocages (HCNCs) consisting of sp 2  carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)...
Hollow carbon nanocages (HCNCs) consisting of sp  carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)...
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores)...
Abstract Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206605
SubjectTerms Carbon monoxide
Chemical vapor deposition
composite nanocages
Design
Electrocatalysis
electrocatalytic conversion
electrochemical energy storage
Energy storage
Graphene
hollow carbon nanocages
hollow carbon spheres
Hydrocarbons
Lithium
Methods
Morphology
Nanomaterials
Nanoparticles
Review
Reviews
single atom catalysts
Sulfur
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJy9i_YxWWUFQD6F52Y_seqttHw9BEbTQW5j9UqEk0vdq__3OZPNCHiq9eE1mN5uZ2ZlZZvY3jL3WTrgKFJQ2RSilt6k0UagygEmVj2ERhkT7p896dSY_nqvzWasvqgnL8MCZcYexTujiIKnYOOmFshYC2lRjIAWB3pqsL_q82WEq3w8WBMuyRWms6kMIvwmduyb4cupVN_NCA1j_3yLMPwsl5wHs4IGW99m9MXTkR3nJ--xO7B6w_XFzrvnbEUH63UO2wWAQ5-JfqPgKTRnvE1-hwPtrfgyXru84GlV0Yt_j-j0fh_GToZaDL-lqSEb8X3PoAj_JlRsJY1V-mpvm-BFlgB_N0t-P2Nny9NvxqhzbK5Re1VaW4BoACVQUAzX-ojaNb6SrRHK-tsEFlJlyIIJ1ZhGTCI12PhhKpapFQGvwmO11fRefMu4CtU6PgLEjzmC0NZWKMnhPWR0BVcHKLbtbP2KPUwuMizajJtctiaedxFOwNxP9r4y68U_KDyS9iYrQsocHqEPtqEPtbTpUsIOt7NtxC-MnCAxMC63qgr2aXuPmo4wKdLG_Iho9nKE10jzJqjKtBEeaxhpdsGZHiXaWuvum-_ljAPjGIzBa0ga5NqjbLSxoMYD5Kq2Rz_4HL56zuzizyGV2B2xvc3kVX2DctXEvhy12A9IYLC0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeo2Th2bC6oj12tkKgqoFJv0fhVkFBSdrfw95lJvGFXvK6bcTbxPPzZM_mGsRfKCluAhNzEAHnlTMx1EDL3oGPhgp_4PtH-_lTNz6t3F_IiHbgtU1nlOib2gdp3js7ID0riZlJCyfLt1becukZRdjW10LjJdjEEa9x87R5NT88-_DplkYLoWdZsjUV5AP47sXSXRGNOPes2VqOetP9PSPP3gslNINuvRLM77HaCkPxw0PkeuxHau2wvOemSv0pM0q_vsRWCQrwXP6MiLAxpvIt8jorvfvBjWNiu5RhccTG7DMs3PA3jJ31NB5_RJyID8_-SQ-v5yVDBERGz8unQPMcltgF-uJEGv8_OZ9NPx_M8tVnInSxNlYOtASqg4hgo8RWVrl1d2UJE60rjrUfdSQvCG6snIQpfK-u8ppSqnHiMCg_YTtu14RHj1lML9QCIIfEOWhldyFB55yi7I6DIWL6e7sYlDnJqhfG1GdiTy4bU04zqydjLUf5qYN_4q-QRaW-UItbs_oducdkkJ2xCGREuQZShtpUT0hjwaDZaQ_QCkV_G9te6b5Ir41-Mhpex5-NldELKrEAbumuSUf1eWqHMw8FUxifBkbo2WmWs3jKirUfdvtJ--dwTfeNWGCNqjbPWm9t_pqBBIPOxMrp6_O_XeMJu4RgxFNLts53V4jo8RWS1ss-S-_wE5gEk9A
  priority: 102
  providerName: ProQuest
Title Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202206605
https://www.ncbi.nlm.nih.gov/pubmed/36587986
https://www.proquest.com/docview/2781463652
https://www.proquest.com/docview/2760172162
https://pubmed.ncbi.nlm.nih.gov/PMC9982577
https://doaj.org/article/e2f317af5e7b4c3599ad12888afd3600
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQ9sILYnyGjcpISMBDtDT-iM1bt7aqEJsqxqS9Rf7KhoQS1Hbj3-fOSbNGgBBPlZKLm_h85599598R8lZaZjMjTKqrYFLudJWqwETqjaoyF_zYx0D72blcXPJPV-Jq5xR_yw_Rb7ihZUR_jQZu7Pr4njTU-Duk286RjxxJTPfxfC2y5-d8eb_LIhjSs2CFOVhdp0xxvmVuzPLjYRODmSkS-P8Jdf6ePLkLauOsNH9MHnVwkk5a_R-QB6F-Qg46g13T9x2r9IenZAMAEdqiS0zIAvdGm4ouYBA0P-mpWdmmpuBoYWK7DuuPtHuMTmN-B53jcZG2CsCamtrTaZvNUQF-pbO2kI7rmAfoZCck_oxczmdfTxdpV3IhdSLXPDW2MIYbTJQxOXyiVIUruM1YZV2uvfWgR2EN89qqcaiYL6R1XmF4VYw9eIjnZK9u6vCSUOuxnHowgCehBSW1ykTg3jmM9DCTJSTddnfpOj5yLIvxvWyZlPMS1VP26knIu17-R8vE8VfJE9ReL4UM2vFCs7ouO4MsQ14BdDKVCIXljgmtjYe5WilTeQYoMCFHW92XnVnDXyBBmGRS5Al5098Gg8Qoi6lDc4syMq6rJci8aIdK_ybwpCq0kgkpBoNo8KrDO_W3m0j6Dcti8K4F9Focbv_oghJAzQXXir_6T_lD8hAusjbL7ojsbVa34TXAro0dRcsakf3J9OzzBfyezM6XX0ZxE-MX6hMsMw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbK9AAXRFkHChgJBByiZrwkNhJCbWdGU7qoglbqLfWWgoSSMjOl4k_xG3kvGzNiO_Wa2I7jt_hz3sv3CHmeWG5jI02k82Ai4XQeqcBl5I3KYxf8wFeB9v2DZHIs3p_IkxXyo_0XBtMqW59YOWpfOvxGvsGQmynhiWTvzr9GWDUKo6ttCY1aLXbD90s4ss3e7gxBvi8YG4-OtidRU1UgcpJpERmbGiMM5oIY5l1IVOpSYWOeW8e0tx6mKq3hXls1CDn3aWKdVxhBlAMPRgDjXiOrgsMAPbK6NTo4_PDrq47kSAfTskPGbMP4b8gKzpA2HWvkLex-VZGAPyHb3xM0F4FztfONb5GbDWSlm7WOrZGVUNwma41TmNFXDXP16ztkDiAUxqKHmPQFLpSWOZ2AopWXdNtMbVlQcOaweZ6F2RvadKPDKoeEjvGXlLrSwIyawtNhnTGSA0amo7pYj2vYDejmQtj9Ljm-EgHcI72iLMIDQq3Hku3BAGaFEVSiVSyD8M5hNImbuE-idrkz13CeY-mNL1nN1swyFE_WiadPXnbtz2u2j7-23ELpda2Qpbu6UE7Pssbos8BygGcmlyG1wnGptfGAB5QyuQf1gemtt7LPGtcBj-gUvU-edbfB6DGSY4pQXmCbpDq7J9Dmfq0q3Uygp0q1SvokXVKipaku3yk-f6qIxeHoDR48hVWr1O0_S5ABcPootBIP__0aT8n1ydH-Xra3c7D7iNyA_rxO4lsnvfn0IjwGVDe3TxpTouT0qq33J2XKYs8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEOOzMMBIIOAhamrHiYOE0La22hhUFTBpb8GfAwklo-2Y-Nf467hLnNCKr6e9JmfH8Z3PP-cuvyPkcaq5jpVQUe6dihKT-0g6LiKrpI-Ns0NbB9rfTtP9o-T1sTjeID_af2EwrbL1ibWjtpXBb-QDhtxMKU8FG_iQFjEbTV6dfo2wghRGWttyGo2JHLrv53B8W7w8GIGunzA2GX_Y249ChYHICJYnkdKZUonCvBDFrHGpzEyW6Jh7bVhutYVhC624zbUcOs9tlmpjJUYTxdDCgoB-L5HNDE5FcY9s7o6ns3e_vvAIjtQwLVNkzAbKfkOGcIYU6lgvb2UnrAsG_Anl_p6suQqi611wco1cDfCV7jT2tkU2XHmdbAUHsaDPAov18xtkCYAU-qIzTAADd0orT_fB6KpzuqfmuiopOHbYSE_c4gUNzeioziehE_w9pak6sKCqtHTUZI94wMt03BTuMYHpgO6shOBvkqMLUcAt0iur0t0hVFss3-4U4FfoQaa5jIVLrDEYWeIq7pOone7CBP5zLMPxpWiYm1mB6ik69fTJ007-tGH--KvkLmqvk0LG7vpCNT8pggMoHPMA1ZQXLtOJ4SLPlQVsIKXylgPq7JPtVvdFcCPwiM7o--RRdxscAEZ1VOmqM5RJ63N8CjK3G1PpRgItZZbLtE-yNSNaG-r6nfLzp5pkHI7h4M0zmLXa3P4zBQWAqPdJLpO7_36Nh-QyrNrizcH08B65As15k8-3TXrL-Zm7DwBvqR-ElUTJx4tevD8B1Q1nBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+of+Hollow+Carbon+Nanocages%3A+General+Design+Fundamentals+and+Diversified+Electrochemical+Applications&rft.jtitle=Advanced+science&rft.au=Li%2C+Zesheng&rft.au=Li%2C+Bolin&rft.au=Yu%2C+Changlin&rft.au=Wang%2C+Hongqiang&rft.date=2023-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1002%2Fadvs.202206605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202206605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon