Range of sensory gating values and test-retest reliability in normal subjects
This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities of the three components. Sixty‐seven normal subjects had gating data from a standard paired‐click paradigm; 30 had test–retest data. The tes...
Saved in:
Published in | Psychophysiology Vol. 44; no. 4; pp. 620 - 626 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.07.2007
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities of the three components. Sixty‐seven normal subjects had gating data from a standard paired‐click paradigm; 30 had test–retest data. The test–retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test–retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test–retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures. |
---|---|
AbstractList | This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities of the three components. Sixty‐seven normal subjects had gating data from a standard paired‐click paradigm; 30 had test–retest data. The test–retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test–retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test–retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures. This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities of the three components. Sixty-seven normal subjects had gating data from a standard paired-click paradigm; 30 had test-retest data. The test-retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test-retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test-retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures.This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities of the three components. Sixty-seven normal subjects had gating data from a standard paired-click paradigm; 30 had test-retest data. The test-retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test-retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test-retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures. This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities of the three components. Sixty-seven normal subjects had gating data from a standard paired-click paradigm; 30 had test-retest data. The test-retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test-retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test-retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures. [PUBLICATION ABSTRACT] |
Author | Fuerst, Darren R. Boutros, Nash N. Gallinat, Jürgen |
Author_xml | – sequence: 1 givenname: Darren R. surname: Fuerst fullname: Fuerst, Darren R. organization: Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA – sequence: 2 givenname: Jürgen surname: Gallinat fullname: Gallinat, Jürgen organization: Klinik für Psychiatrie and Psychotherapie, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany – sequence: 3 givenname: Nash N. surname: Boutros fullname: Boutros, Nash N. organization: Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17437554$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFr4AsDtwSbCe2kwNIaIGCKFD-qYKLNcmOVw5Zp9gJ7H57HLbsoZfiy1jy773xzDshR37wSAjlLOfpPOlyXqo6q-pK5YIxnTMmRZlv75DF4eGILBgrq0xqLY7JSYwdY6zmQtwjx1yXhZayXJB3n8CvkQ6WRvRxCDu6htH5Nf0F_YSRgl_REeOYBZwLDdg7aFzvxh11nvohbKCncWo6bMd4n9y10Ed8cF1PyddXL78sX2fnH87eLJ-fZ60UdZmBBJDIG7QStWztCrQqaxDMFmBtWWGCGs6lRrCAtULbFmXJVbviVcEtFKfk8d73Kgw_0zdHs3Gxxb4Hj8MUjWaKJbK-FRRMciVqncBHN8BumIJPQxjBC1kUtRIJengNTc0GV-YquA2Enfm3zgQ82wNtGGIMaE3rxrTPwY8BXG84M3N-pjNzTGaOycz5mb_5mW0yqG4YHHrcLn26l_52Pe7-W2cuPn-7SLekz_Z6F0fcHvQQfhil03jm8v2ZueRavf2-fGE-Fn8A73fBlg |
CitedBy_id | crossref_primary_10_1097_NMD_0000000000000572 crossref_primary_10_1016_j_heares_2017_03_003 crossref_primary_10_1016_j_jpsychires_2012_03_001 crossref_primary_10_1016_j_clinph_2012_03_019 crossref_primary_10_1016_j_neuroscience_2011_02_008 crossref_primary_10_1155_2021_8529613 crossref_primary_10_1016_j_neurobiolaging_2019_12_020 crossref_primary_10_1016_j_bandc_2015_10_004 crossref_primary_10_1016_j_brat_2023_104422 crossref_primary_10_1097_WNR_0b013e328314e0dd crossref_primary_10_1177_0269881119836217 crossref_primary_10_1080_20445911_2015_1053486 crossref_primary_10_1027_0269_8803_a000042 crossref_primary_10_1027_0269_8803_a000044 crossref_primary_10_1177_0269881117746903 crossref_primary_10_1016_j_neulet_2021_136336 crossref_primary_10_1016_j_bpsc_2016_10_004 crossref_primary_10_1016_j_euroneuro_2009_09_001 crossref_primary_10_1016_j_neuropharm_2012_10_011 crossref_primary_10_1111_psyp_13006 crossref_primary_10_1371_journal_pone_0177747 crossref_primary_10_3758_CABN_9_4_448 crossref_primary_10_1111_j_1469_8986_2010_01168_x crossref_primary_10_1007_s00221_010_2391_3 crossref_primary_10_1016_j_clinph_2024_10_006 crossref_primary_10_1016_j_schres_2010_01_010 crossref_primary_10_1017_S0033291721004463 crossref_primary_10_1007_s00213_022_06090_z crossref_primary_10_1016_j_schres_2010_04_020 crossref_primary_10_1016_j_schres_2009_05_019 crossref_primary_10_1016_j_schres_2024_07_027 crossref_primary_10_1044_2019_AJA_TTR17_18_0036 crossref_primary_10_1007_s10803_023_06040_4 crossref_primary_10_3109_15622975_2012_680911 crossref_primary_10_3389_fnins_2024_1378619 crossref_primary_10_1111_j_1469_8986_2009_00845_x crossref_primary_10_1016_j_clinph_2011_02_033 crossref_primary_10_1016_j_neulet_2015_05_008 crossref_primary_10_1007_s00213_014_3823_8 crossref_primary_10_3389_fnins_2022_846001 crossref_primary_10_1371_journal_pone_0199614 crossref_primary_10_1371_journal_pone_0039434 crossref_primary_10_1016_j_drugalcdep_2014_06_045 crossref_primary_10_1186_2045_5380_1_5 crossref_primary_10_1016_j_pnpbp_2019_109683 crossref_primary_10_1002_aur_1452 crossref_primary_10_1016_j_schres_2009_09_003 crossref_primary_10_1371_journal_pone_0241136 crossref_primary_10_1016_j_clinph_2013_02_004 crossref_primary_10_3233_JAD_231257 crossref_primary_10_1044_2023_JSLHR_22_00680 crossref_primary_10_1016_j_neures_2020_08_011 crossref_primary_10_1111_j_1469_8986_2011_01262_x crossref_primary_10_1097_TA_0b013e318260604b crossref_primary_10_1055_s_0040_1709517 crossref_primary_10_1016_j_jneumeth_2021_109087 crossref_primary_10_1186_s44147_023_00212_w crossref_primary_10_1027_0269_8803_a000245 crossref_primary_10_1044_2022_JSLHR_22_00077 crossref_primary_10_1016_j_ijpsycho_2012_01_004 crossref_primary_10_1016_j_neuroscience_2011_05_009 crossref_primary_10_1177_02698811241246854 crossref_primary_10_1007_s00213_011_2544_5 crossref_primary_10_1016_j_jpsychires_2013_08_018 crossref_primary_10_1016_j_neuroscience_2010_07_012 crossref_primary_10_1111_j_1600_0447_2007_01141_x crossref_primary_10_1016_j_jad_2013_08_010 crossref_primary_10_3390_biology13060443 crossref_primary_10_1016_j_biopsych_2010_12_011 crossref_primary_10_1027_0269_8803_23_2_52 crossref_primary_10_3389_fpsyt_2021_630406 crossref_primary_10_1093_cercor_bhaa372 crossref_primary_10_1016_j_paid_2015_03_025 crossref_primary_10_1016_j_clinph_2018_07_012 crossref_primary_10_1016_j_schres_2012_10_017 crossref_primary_10_1016_j_neuroscience_2009_11_053 crossref_primary_10_1016_j_neuropharm_2012_06_040 crossref_primary_10_15252_emmm_201505677 crossref_primary_10_1016_j_neuropsychologia_2008_03_016 crossref_primary_10_1097_HRP_0000000000000110 crossref_primary_10_1016_j_biopsych_2008_06_018 crossref_primary_10_1016_j_biopsych_2010_09_021 crossref_primary_10_1016_j_schres_2012_06_021 crossref_primary_10_1016_j_schres_2017_01_023 crossref_primary_10_1044_2020_JSLHR_19_00261 crossref_primary_10_1038_srep33056 crossref_primary_10_1016_j_clinph_2019_07_028 crossref_primary_10_1017_S003329171800123X crossref_primary_10_1016_j_psychres_2011_01_003 crossref_primary_10_1044_2023_AJA_23_00094 crossref_primary_10_1016_j_neuroimage_2008_10_002 crossref_primary_10_1016_j_pnpbp_2008_09_018 crossref_primary_10_1016_j_clinph_2012_10_007 crossref_primary_10_1093_cercor_bhaa306 crossref_primary_10_1007_s00455_010_9308_y crossref_primary_10_1007_s00221_017_5101_6 crossref_primary_10_1016_j_psychres_2021_114162 crossref_primary_10_3389_fnins_2021_651253 crossref_primary_10_1016_j_clinph_2018_11_004 crossref_primary_10_1016_j_neuroscience_2013_03_029 crossref_primary_10_1016_j_clinph_2008_02_007 |
Cites_doi | 10.1016/0006-3223(88)90273-9 10.1176/ajp.149.4.488 10.1111/j.1469-8986.1994.tb01053.x 10.1016/0006-3223(85)90113-1 10.1016/0006-3223(90)90419-3 10.1016/S0002-7138(09)60285-5 10.1016/0013-4694(70)90183-5 10.1016/S0006-3223(98)00128-0 10.1016/0006-3223(92)90088-H 10.1017/S1041610200006621 10.1016/0006-3223(89)90215-1 10.1007/s002210100744 10.1016/0006-3223(93)90085-R 10.1001/archpsyc.1996.01830120052009 10.1016/S0006-3223(96)00208-9 10.1016/S0006-3223(98)00253-4 10.1016/0006-3223(95)00067-4 10.1093/schbul/3.1.93 10.1177/155005949102200109 10.1016/0278-5846(93)90060-6 10.1016/j.schres.2004.01.004 10.1037/0021-843X.107.4.691 10.1016/0165-1781(91)90086-5 10.1016/0006-3223(92)90230-W 10.1016/j.psychres.2004.01.007 10.1016/0006-3223(93)90322-5 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Society for Psychophysiological Research |
Copyright_xml | – notice: Copyright © 2007 Society for Psychophysiological Research |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
DOI | 10.1111/j.1469-8986.2007.00524.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-8986 1540-5958 |
EndPage | 626 |
ExternalDocumentID | 1286163311 17437554 10_1111_j_1469_8986_2007_00524_x PSYP524 ark_67375_WNG_W176KZCD_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH58784-02 |
GroupedDBID | --- --Z -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 186 1OB 1OC 29P 2QV 31~ 33P 36B 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHHS AAONW AAOUF AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABGDZ ABITZ ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACMXC ACNCT ACPOU ACPRK ACQPF ACSCC ACWUS ACXQS ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DXH EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA HAOEW HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NEJ NF~ O66 O9- OHT OIG OVD P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ SV3 TEORI TN5 TUS UAP UB1 V8K VQA W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WQZ WRC WSUWO WXI WXSBR X7M XG1 XJT XOL XSW YNT YYM YYP YZZ ZCA ZGI ZWS ZXP ZZTAW ~IA ~WP AAHQN AAIPD AAMNL AANHP AAYCA ABVKB ACRPL ACUHS ACYXJ ADNMO AFWVQ AFYRF ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN Z5M 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c5294-a5aa5e1bef5e75cfda7649a20f3aff48e294b1157eafae96efc34416cd1831fa3 |
IEDL.DBID | DR2 |
ISSN | 0048-5772 |
IngestDate | Fri Jul 11 08:30:27 EDT 2025 Fri Jul 11 07:42:46 EDT 2025 Sat Aug 23 12:38:18 EDT 2025 Wed Feb 19 01:43:22 EST 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 01:48:13 EDT 2025 Wed Jan 22 16:45:43 EST 2025 Wed Oct 30 09:49:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5294-a5aa5e1bef5e75cfda7649a20f3aff48e294b1157eafae96efc34416cd1831fa3 |
Notes | ArticleID:PSYP524 ark:/67375/WNG-W176KZCD-Q istex:526DB59C9CE5C516242A8FFA71AB80496616B7C1 This work was supported by NIH grant #MH58784‐02 and a NARSAD Independent Investigator Award. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 17437554 |
PQID | 213533962 |
PQPubID | 41359 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_70608319 proquest_miscellaneous_20516297 proquest_journals_213533962 pubmed_primary_17437554 crossref_citationtrail_10_1111_j_1469_8986_2007_00524_x crossref_primary_10_1111_j_1469_8986_2007_00524_x wiley_primary_10_1111_j_1469_8986_2007_00524_x_PSYP524 istex_primary_ark_67375_WNG_W176KZCD_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2007 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: July 2007 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: Oxford |
PublicationTitle | Psychophysiology |
PublicationTitleAlternate | Psychophysiology |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing Ltd |
References | Adler, L. E., Pang, K., Gerhardt, G., & Rose, G. M. (1988). Modulation of the gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using a selective neurotoxin. Biological Psychiatry, 24, 179-190. Freedman, R., Adler, L. E., Myles-Worsley, M., Nagamoto, H. T., Miller, C., Kisley, M., et al. (1996). Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Archives of General Psychiatry, 53, 1114-1121. Boutros, N. N., Reid, M. C., Petrakis, I., Campbell, D., Torello, M., & Krystal, J. (2000). Similarities in the disturbances in cortical information processing in alcoholism and aging: A pilot evoked potential study. International Psychogeriatrics, 12, 513-525. Coon, H., Plaetke, R., Holik, J., Hoff, M., Myles-Worsley, M., Waldo, M., et al. (1993). Use of a neurophysiological trait in linkage analysis of schizophrenia. Biological Psychiatry, 34, 277-289. Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C., & Freedman, R. (1982). Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry, 17, 639-654. Clementz, B. A., Geyer, M. A., & Braff, D. L. (1997). P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis. Biological Psychiatry, 41, 1035-1044. Nagamoto, H. T., Adler, L. E., Waldo, M. C., & Freedman, R. (1989). Sensory gating in schizophrenics and normal controls: Effects of changing stimulation interval. Biological Psychiatry, 25, 549-561. Zouridakis, G., & Boutros, N. N. (1992). Stimulus parameter effects on the P50 evoked response. Biological Psychiatry, 32, 839-841. Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70, 315-329. Erwin, R. J., Edwards, R., Tanguay, P. E., Buchwald, J., & Letai, D. (1986). Abnormal P300 responses in schizophrenic children. Journal of American Academic Child Psychiatry, 25, 615-622. Adler, L. E., Waldo, M. C., & Freedman, R. (1985). Neurophysiologic studies of sensory gating in schizophrenia: Comparison of auditory and visual responses. Biological Psychiatry, 20, 1284-1296. Fruhstorfer, H., Soveri, P., & Jarvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28, 153-161. Kathmann, N., & Engel, R. R. (1990). Sensory gating in normals and schizophrenics: A failure to find strong P50 suppression in normals. Biological Psychiatry, 27, 1216-1226. Oranje, B., Van Berckel, B. N., Kemner, C., Van Ree, J. M., Kahn, R. S., & Verbaten, M. N. (1999). P50 suppression and prepulse inhibition of the startle reflex in humans: A correlational study. Biological Psychiatry, 45, 883-890. Clementz, B. A., & Blumenfeld, L. D. (2001). Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Experimental Brain Research, 139, 377-390. Hetrick, W. P., Sandman, C. A., Bunney, W. E. Jr., Jin, Y., Potkin, S. G., & White, M. H. (1996). Gender differences in gating of the auditory evoked potential in normal subjects. Biological Psychiatry, 39, 51-58. Jerger, K., Biggins, C., & Fein, G. (1992). P50 suppression is not affected by attentional manipulations. Biological Psychiatry, 31, 365-377. Boutros, N. N., Overall, J., & Zouridakis, G. (1991). Test-retest reliability of the P50 mid-latency auditory evoked response. Psychiatry Research, 39, 181-192. Lamberti, J. S., Schwarzkopf, S. B., Boutros, N., Crilly, J. F., & Martin, R. (1993). Within-session changes in sensory gating assessed by P50 evoked potentials in normal subjects. Progress in Neuropsychopharmacology and Biological Psychiatry, 17, 781-791. Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology, 31, 495-502. Naber, G., Kathmann, N., & Engel, R. R. (1992). P50 suppression in normal subjects: Influence of stimulus intensity, test repetition, and presentation mode. Journal of Psychophysiology, 6, 47-53. Yee, C. M., Nuechterlein, K. H., Morris, S. E., & White, P. M. (1998). P50 suppression in recent-onset schizophrenia: Clinical correlates and risperidone effects. Journal of Abnormal Psychology, 107, 691-698. Buchsbaum, M. S. (1977). The middle evoked response components and schizophrenia. Schizophrenia Bulletin, 3, 93-104. Judd, L. L., McAdams, L., Budnick, B., & Braff, D. L. (1992). Sensory gating deficits in schizophrenia: New results. American Journal of Psychiatry, 149, 488-493. Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45, 917-922. Franks, R. D., Adler, L. E., Waldo, M. C., Alpert, J., & Freedman, R. (1983). Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia. Biological Psychiatry, 18, 989-1005. Cardenas, V. A., Gerson, J., & Fein, G. (1993). The reliability of P50 suppression as measured by the conditioning/testing ratio is vastly improved by dipole modeling. Biological Psychiatry, 33, 335-344. Boutros, N. N., Zouridakis, G., & Overall, J. (1991). Replication and extension of P50 findings in schizophrenia. Clinical Electroencephalograhy, 22, 40-45. Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M. (2004). Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126, 203-215. 1982; 17 2004; 126 1991; 39 1996; 39 1997; 41 1992; 149 1999; 45 1992; 31 1983; 18 1992; 32 1985; 20 1989; 25 1996; 53 1992; 6 1993; 34 2004; 70 1993; 17 1990; 27 2000; 12 1991; 22 1993; 33 1986; 25 1977; 3 1998; 107 1988; 24 1970; 28 2001; 139 1994; 31 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Yee C. M. (e_1_2_5_29_1) 1998; 107 e_1_2_5_20_1 e_1_2_5_15_1 Franks R. D. (e_1_2_5_17_1) 1983; 18 e_1_2_5_14_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 Naber G. (e_1_2_5_25_1) 1992; 6 e_1_2_5_19_1 e_1_2_5_18_1 Adler L. E. (e_1_2_5_2_1) 1982; 17 e_1_2_5_30_1 |
References_xml | – reference: Kathmann, N., & Engel, R. R. (1990). Sensory gating in normals and schizophrenics: A failure to find strong P50 suppression in normals. Biological Psychiatry, 27, 1216-1226. – reference: Coon, H., Plaetke, R., Holik, J., Hoff, M., Myles-Worsley, M., Waldo, M., et al. (1993). Use of a neurophysiological trait in linkage analysis of schizophrenia. Biological Psychiatry, 34, 277-289. – reference: Boutros, N. N., Overall, J., & Zouridakis, G. (1991). Test-retest reliability of the P50 mid-latency auditory evoked response. Psychiatry Research, 39, 181-192. – reference: Clementz, B. A., & Blumenfeld, L. D. (2001). Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Experimental Brain Research, 139, 377-390. – reference: Erwin, R. J., Edwards, R., Tanguay, P. E., Buchwald, J., & Letai, D. (1986). Abnormal P300 responses in schizophrenic children. Journal of American Academic Child Psychiatry, 25, 615-622. – reference: Fruhstorfer, H., Soveri, P., & Jarvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28, 153-161. – reference: Freedman, R., Adler, L. E., Myles-Worsley, M., Nagamoto, H. T., Miller, C., Kisley, M., et al. (1996). Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Archives of General Psychiatry, 53, 1114-1121. – reference: Judd, L. L., McAdams, L., Budnick, B., & Braff, D. L. (1992). Sensory gating deficits in schizophrenia: New results. American Journal of Psychiatry, 149, 488-493. – reference: Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M. (2004). Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126, 203-215. – reference: Nagamoto, H. T., Adler, L. E., Waldo, M. C., & Freedman, R. (1989). Sensory gating in schizophrenics and normal controls: Effects of changing stimulation interval. Biological Psychiatry, 25, 549-561. – reference: Yee, C. M., Nuechterlein, K. H., Morris, S. E., & White, P. M. (1998). P50 suppression in recent-onset schizophrenia: Clinical correlates and risperidone effects. Journal of Abnormal Psychology, 107, 691-698. – reference: Oranje, B., Van Berckel, B. N., Kemner, C., Van Ree, J. M., Kahn, R. S., & Verbaten, M. N. (1999). P50 suppression and prepulse inhibition of the startle reflex in humans: A correlational study. Biological Psychiatry, 45, 883-890. – reference: Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C., & Freedman, R. (1982). Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry, 17, 639-654. – reference: Boutros, N. N., Zouridakis, G., & Overall, J. (1991). Replication and extension of P50 findings in schizophrenia. Clinical Electroencephalograhy, 22, 40-45. – reference: Franks, R. D., Adler, L. E., Waldo, M. C., Alpert, J., & Freedman, R. (1983). Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia. Biological Psychiatry, 18, 989-1005. – reference: Hetrick, W. P., Sandman, C. A., Bunney, W. E. Jr., Jin, Y., Potkin, S. G., & White, M. H. (1996). Gender differences in gating of the auditory evoked potential in normal subjects. Biological Psychiatry, 39, 51-58. – reference: Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70, 315-329. – reference: Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology, 31, 495-502. – reference: Cardenas, V. A., Gerson, J., & Fein, G. (1993). The reliability of P50 suppression as measured by the conditioning/testing ratio is vastly improved by dipole modeling. Biological Psychiatry, 33, 335-344. – reference: Lamberti, J. S., Schwarzkopf, S. B., Boutros, N., Crilly, J. F., & Martin, R. (1993). Within-session changes in sensory gating assessed by P50 evoked potentials in normal subjects. Progress in Neuropsychopharmacology and Biological Psychiatry, 17, 781-791. – reference: Naber, G., Kathmann, N., & Engel, R. R. (1992). P50 suppression in normal subjects: Influence of stimulus intensity, test repetition, and presentation mode. Journal of Psychophysiology, 6, 47-53. – reference: Boutros, N. N., Reid, M. C., Petrakis, I., Campbell, D., Torello, M., & Krystal, J. (2000). Similarities in the disturbances in cortical information processing in alcoholism and aging: A pilot evoked potential study. International Psychogeriatrics, 12, 513-525. – reference: Zouridakis, G., & Boutros, N. N. (1992). Stimulus parameter effects on the P50 evoked response. Biological Psychiatry, 32, 839-841. – reference: Adler, L. E., Waldo, M. C., & Freedman, R. (1985). Neurophysiologic studies of sensory gating in schizophrenia: Comparison of auditory and visual responses. Biological Psychiatry, 20, 1284-1296. – reference: Buchsbaum, M. S. (1977). The middle evoked response components and schizophrenia. Schizophrenia Bulletin, 3, 93-104. – reference: Adler, L. E., Pang, K., Gerhardt, G., & Rose, G. M. (1988). Modulation of the gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using a selective neurotoxin. Biological Psychiatry, 24, 179-190. – reference: Jerger, K., Biggins, C., & Fein, G. (1992). P50 suppression is not affected by attentional manipulations. Biological Psychiatry, 31, 365-377. – reference: Clementz, B. A., Geyer, M. A., & Braff, D. L. (1997). P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis. Biological Psychiatry, 41, 1035-1044. – reference: Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45, 917-922. – volume: 70 start-page: 315 year: 2004 end-page: 329 article-title: Meta‐analysis of the P300 and P50 waveforms in schizophrenia publication-title: Schizophrenia Research – volume: 12 start-page: 513 year: 2000 end-page: 525 article-title: Similarities in the disturbances in cortical information processing in alcoholism and aging publication-title: International Psychogeriatrics – volume: 20 start-page: 1284 year: 1985 end-page: 1296 article-title: Neurophysiologic studies of sensory gating in schizophrenia publication-title: Biological Psychiatry – volume: 6 start-page: 47 year: 1992 end-page: 53 article-title: P50 suppression in normal subjects publication-title: Journal of Psychophysiology – volume: 53 start-page: 1114 year: 1996 end-page: 1121 article-title: Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model publication-title: Archives of General Psychiatry – volume: 33 start-page: 335 year: 1993 end-page: 344 article-title: The reliability of P50 suppression as measured by the conditioning/testing ratio is vastly improved by dipole modeling publication-title: Biological Psychiatry – volume: 3 start-page: 93 year: 1977 end-page: 104 article-title: The middle evoked response components and schizophrenia publication-title: Schizophrenia Bulletin – volume: 34 start-page: 277 year: 1993 end-page: 289 article-title: Use of a neurophysiological trait in linkage analysis of schizophrenia publication-title: Biological Psychiatry – volume: 39 start-page: 51 year: 1996 end-page: 58 article-title: Gender differences in gating of the auditory evoked potential in normal subjects publication-title: Biological Psychiatry – volume: 126 start-page: 203 year: 2004 end-page: 215 article-title: Sensory gating deficits during the mid‐latency phase of information processing in medicated schizophrenia patients publication-title: Psychiatry Research – volume: 24 start-page: 179 year: 1988 end-page: 190 article-title: Modulation of the gating of auditory evoked potentials by norepinephrine publication-title: Biological Psychiatry – volume: 28 start-page: 153 year: 1970 end-page: 161 article-title: Short‐term habituation of the auditory evoked response in man publication-title: Electroencephalography and Clinical Neurophysiology – volume: 25 start-page: 615 year: 1986 end-page: 622 article-title: Abnormal P300 responses in schizophrenic children publication-title: Journal of American Academic Child Psychiatry – volume: 17 start-page: 639 year: 1982 end-page: 654 article-title: Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia publication-title: Biological Psychiatry – volume: 45 start-page: 917 year: 1999 end-page: 922 article-title: Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating publication-title: Biological Psychiatry – volume: 18 start-page: 989 year: 1983 end-page: 1005 article-title: Neurophysiological studies of sensory gating in mania publication-title: Biological Psychiatry – volume: 31 start-page: 365 year: 1992 end-page: 377 article-title: P50 suppression is not affected by attentional manipulations publication-title: Biological Psychiatry – volume: 27 start-page: 1216 year: 1990 end-page: 1226 article-title: Sensory gating in normals and schizophrenics publication-title: Biological Psychiatry – volume: 149 start-page: 488 year: 1992 end-page: 493 article-title: Sensory gating deficits in schizophrenia publication-title: American Journal of Psychiatry – volume: 22 start-page: 40 year: 1991 end-page: 45 article-title: Replication and extension of P50 findings in schizophrenia publication-title: Clinical Electroencephalograhy – volume: 31 start-page: 495 year: 1994 end-page: 502 article-title: Reliability of P50 auditory event‐related potential indices of sensory gating publication-title: Psychophysiology – volume: 139 start-page: 377 year: 2001 end-page: 390 article-title: Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia publication-title: Experimental Brain Research – volume: 41 start-page: 1035 year: 1997 end-page: 1044 article-title: P50 suppression among schizophrenia and normal comparison subjects publication-title: Biological Psychiatry – volume: 32 start-page: 839 year: 1992 end-page: 841 article-title: Stimulus parameter effects on the P50 evoked response publication-title: Biological Psychiatry – volume: 45 start-page: 883 year: 1999 end-page: 890 article-title: P50 suppression and prepulse inhibition of the startle reflex in humans publication-title: Biological Psychiatry – volume: 39 start-page: 181 year: 1991 end-page: 192 article-title: Test–retest reliability of the P50 mid‐latency auditory evoked response publication-title: Psychiatry Research – volume: 25 start-page: 549 year: 1989 end-page: 561 article-title: Sensory gating in schizophrenics and normal controls publication-title: Biological Psychiatry – volume: 107 start-page: 691 year: 1998 end-page: 698 article-title: P50 suppression in recent‐onset schizophrenia publication-title: Journal of Abnormal Psychology – volume: 17 start-page: 781 year: 1993 end-page: 791 article-title: Within‐session changes in sensory gating assessed by P50 evoked potentials in normal subjects publication-title: Progress in Neuropsychopharmacology and Biological Psychiatry – ident: e_1_2_5_3_1 doi: 10.1016/0006-3223(88)90273-9 – ident: e_1_2_5_22_1 doi: 10.1176/ajp.149.4.488 – ident: e_1_2_5_28_1 doi: 10.1111/j.1469-8986.1994.tb01053.x – ident: e_1_2_5_4_1 doi: 10.1016/0006-3223(85)90113-1 – volume: 6 start-page: 47 year: 1992 ident: e_1_2_5_25_1 article-title: P50 suppression in normal subjects publication-title: Journal of Psychophysiology – ident: e_1_2_5_23_1 doi: 10.1016/0006-3223(90)90419-3 – ident: e_1_2_5_16_1 doi: 10.1016/S0002-7138(09)60285-5 – ident: e_1_2_5_19_1 doi: 10.1016/0013-4694(70)90183-5 – ident: e_1_2_5_27_1 doi: 10.1016/S0006-3223(98)00128-0 – ident: e_1_2_5_30_1 doi: 10.1016/0006-3223(92)90088-H – volume: 18 start-page: 989 year: 1983 ident: e_1_2_5_17_1 article-title: Neurophysiological studies of sensory gating in mania publication-title: Biological Psychiatry – volume: 17 start-page: 639 year: 1982 ident: e_1_2_5_2_1 article-title: Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia publication-title: Biological Psychiatry – ident: e_1_2_5_8_1 doi: 10.1017/S1041610200006621 – ident: e_1_2_5_26_1 doi: 10.1016/0006-3223(89)90215-1 – ident: e_1_2_5_13_1 doi: 10.1007/s002210100744 – ident: e_1_2_5_15_1 doi: 10.1016/0006-3223(93)90085-R – ident: e_1_2_5_18_1 doi: 10.1001/archpsyc.1996.01830120052009 – ident: e_1_2_5_14_1 doi: 10.1016/S0006-3223(96)00208-9 – ident: e_1_2_5_5_1 doi: 10.1016/S0006-3223(98)00253-4 – ident: e_1_2_5_20_1 doi: 10.1016/0006-3223(95)00067-4 – ident: e_1_2_5_11_1 doi: 10.1093/schbul/3.1.93 – ident: e_1_2_5_9_1 doi: 10.1177/155005949102200109 – ident: e_1_2_5_24_1 doi: 10.1016/0278-5846(93)90060-6 – ident: e_1_2_5_10_1 doi: 10.1016/j.schres.2004.01.004 – volume: 107 start-page: 691 year: 1998 ident: e_1_2_5_29_1 article-title: P50 suppression in recent‐onset schizophrenia publication-title: Journal of Abnormal Psychology doi: 10.1037/0021-843X.107.4.691 – ident: e_1_2_5_7_1 doi: 10.1016/0165-1781(91)90086-5 – ident: e_1_2_5_21_1 doi: 10.1016/0006-3223(92)90230-W – ident: e_1_2_5_6_1 doi: 10.1016/j.psychres.2004.01.007 – ident: e_1_2_5_12_1 doi: 10.1016/0006-3223(93)90322-5 |
SSID | ssj0009122 |
Score | 2.223662 |
Snippet | This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities... This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 620 |
SubjectTerms | Acoustic Stimulation Adolescent Adult Aged Aging - psychology Comparative analysis Electroencephalography Evoked Potentials, Auditory - physiology Female Gating Humans Male Middle Aged N100 Neurology P200 P50 Paired-click EPs Psychological tests Reliability Reproducibility of Results Sensory perception Sex Characteristics Test-retest reliability |
Title | Range of sensory gating values and test-retest reliability in normal subjects |
URI | https://api.istex.fr/ark:/67375/WNG-W176KZCD-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8986.2007.00524.x https://www.ncbi.nlm.nih.gov/pubmed/17437554 https://www.proquest.com/docview/213533962 https://www.proquest.com/docview/20516297 https://www.proquest.com/docview/70608319 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe-EClPIILcUH1FtWTeJHfNw-lgpEKYWqhYtlJ3aFtmSrJCt1e-I_8A_5JZ3JY6utilQhbpE8juLJzPjzePyZkLfKeca8cyFPbYTbjDJUNk9CGdsokVEulMV8x8cDsX_M3p_y067-Cc_CtPwQ84QbekYTr9HBja1uO7kKU5WKnomQx2yAeBJLtxAfHd0wSamoIw5nacgBUS4W9dz5ooWZahmVfnkXDF1Etc20NHpMxv2A2mqU8WBa20F2dYvr8f-M-Al51KFXOmzNbYU8cMVTsjosYOX-c0Y3aVNP2iTqV8mnIzy3QCeeVrBUnpQzimQexRlFfnFXUVPkFHBu_efX7xKzvzUt4fta2vAZ_VHQAuH0Oa2mFnNF1TNyPNr7urMfdtc3hBmPFQsNN4a7yDrPneSZz40UTJl4yyfGe5Y6ELLI9eOMN04J57MEwJnIcggzkTfJc7JUTAr3klCFcl7I2DvLYudNJqBdGcB6KUuTNCCy_1U667jN8YqNc72wxlEadYc3b-KmO-hOXwYkmve8aPk97tFns7GGeQdTjrE-TnJ9cvBOn0RSfPi-s6s_B2StNxfdhYZKx3jTSKJEHJA381bwadyoMYWbTEEEIqWIlfy7BHIegZJUQF60Vnjz8QAJJWDEgIjGlu49Kn345dshPL36145r5GGf-N6K1slSXU7da0Bstd0gy8Pt3e3RRuOT18GkM70 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4ALr_JIC9QH1FtWTeJHfKxaykLbpZRWLVwsO7ER6jaLkqzU5cR_4B_yS5jJY6utilQhbpE8juLJzPjz2P6GkNfKeca8cyFPbYTbjDJUNk9CGdsokVEulMV8x8FIDE_Y-zN-1pUDwrswLT_EPOGGntHEa3RwTEhf93IVpioVPRUhj9kAAOUyFvhGIv2doysuKRV11OEsDTlgysVjPTe-aWGuWka1X94ERBdxbTMx7T4g435I7XmU88G0toPsxzW2x_805ofkfgdg6VZrcY_IHVc8JitbBSzeL2Z0gzZHSptc_Qr5cIRXF-jE0wpWy5NyRpHPo_hKkWLcVdQUOQWoW__--avEBHBNS_jAljl8Rr8VtEBEPabV1GK6qHpCTnbfHG8Pw66CQ5jxWLHQcGO4i6zz3Eme-dxIwZSJN31ivGepAyGLdD_OeOOUcD5LAJ-JLIdIE3mTPCVLxaRwzwlVKOeFjL2zLHbeZALalQG4l7I0SQMi-3-ls47eHKtsjPXCMkdp1B0W38R9d9CdvgxINO_5vaX4uEWfjcYc5h1MeY5H5CTXp6O3-jSSYu_L9o7-GJC13l50Fx0qHWOxkUSJOCDr81Zwa9yrMYWbTEEEgqWIlfy7BNIegZJUQJ61Znj18YAKJcDEgIjGmG49Kn346fMhPK3-a8d1cnd4fLCv99-N9tbIvT4Pvhm9IEt1OXUvAcDV9lXjmH8ASKA2Zw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKyEuvMojLVAfUG9ZbRI_4mPVZSkUlqVQtXCx7MRGaNtstclKXU78B_4hv4SZPLbaqkgV4hbJ4yh2Zsafx-NvCHmpnGfMOxfy1EZ4zChDZfMklLGNEhnlQlmMd7wfif0j9vaEn7T5T3gXpuGHWAbc0DJqf40Gfp77q0auwlSlomMi5DHrAZ5cZ6KvsIzD4PCSSkpFLXM4S0MOkHI1q-faN60sVes46xfX4dBVWFuvS8N7ZNKNqElHmfTmle1lP66QPf6fId8nd1v4SncbfXtAbrniIdnYLWDrfragO7ROKK0j9RvkwyFeXKBTT0vYK09nC4psHsU3igTjrqSmyCkA3er3z18zDP9WdAbf1_CGL-j3ghaIp09pObcYLCofkaPhq897-2FbvyHMeKxYaLgx3EXWee4kz3xupGDKxH2fGO9Z6kDIItmPM944JZzPEkBnIsvBz0TeJI_JWjEt3FNCFcp5IWPvLIudN5mAdmUA7KUsTdKAyO5X6awlN8caG6d6ZZOjNM4dlt7EU3eYO30RkGjZ87wh-LhBn51aG5YdzGyCCXKS6-PRa30cSXHwdW-gPwZkq1MX3fqGUsdYaiRRIg7I9rIVjBpPakzhpnMQAVcpYiX_LoGkRzBJKiBPGi28_HjAhBJAYkBErUs3HpUef_oyhqfNf-24TW6PB0P97s3oYIvc6YLg_egZWatmc_cc0FtlX9Rm-QdpxDUW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Range+of+sensory+gating+values+and+test-retest+reliability+in+normal+subjects&rft.jtitle=Psychophysiology&rft.au=Fuerst%2C+Darren+R&rft.au=Gallinat%2C+J%C3%BCrgen&rft.au=Boutros%2C+Nash+N&rft.date=2007-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0048-5772&rft.eissn=1540-5958&rft.volume=44&rft.issue=4&rft.spage=620&rft_id=info:doi/10.1111%2Fj.1469-8986.2007.00524.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1286163311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon |