Range of sensory gating values and test-retest reliability in normal subjects

This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities of the three components. Sixty‐seven normal subjects had gating data from a standard paired‐click paradigm; 30 had test–retest data. The tes...

Full description

Saved in:
Bibliographic Details
Published inPsychophysiology Vol. 44; no. 4; pp. 620 - 626
Main Authors Fuerst, Darren R., Gallinat, Jürgen, Boutros, Nash N.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2007
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities of the three components. Sixty‐seven normal subjects had gating data from a standard paired‐click paradigm; 30 had test–retest data. The test–retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test–retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test–retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures.
AbstractList This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities of the three components. Sixty‐seven normal subjects had gating data from a standard paired‐click paradigm; 30 had test–retest data. The test–retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test–retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test–retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures.
This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities of the three components. Sixty-seven normal subjects had gating data from a standard paired-click paradigm; 30 had test-retest data. The test-retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test-retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test-retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures.This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities of the three components. Sixty-seven normal subjects had gating data from a standard paired-click paradigm; 30 had test-retest data. The test-retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test-retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test-retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures.
This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities of the three components. Sixty-seven normal subjects had gating data from a standard paired-click paradigm; 30 had test-retest data. The test-retest reliability of the amplitudes, latencies, and sensory gating indices derived from the P50, N100, and P200 responses were compared. Measured gating ratios showed either normal or positively skewed distributions. Test-retest reliability of the P50 gating ratio did not reach significance, but N100 and P200 ratios showed better reliability (.50 and .64). The P50 difference score was more reliable (.61), and the N100 and P200 test-retest reliabilities of difference scores were high (.83 and .81, respectively). N100 and P200 attenuation is reliable; further work is needed to develop more reliable P50 gating measures. [PUBLICATION ABSTRACT]
Author Fuerst, Darren R.
Boutros, Nash N.
Gallinat, Jürgen
Author_xml – sequence: 1
  givenname: Darren R.
  surname: Fuerst
  fullname: Fuerst, Darren R.
  organization: Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
– sequence: 2
  givenname: Jürgen
  surname: Gallinat
  fullname: Gallinat, Jürgen
  organization: Klinik für Psychiatrie and Psychotherapie, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
– sequence: 3
  givenname: Nash N.
  surname: Boutros
  fullname: Boutros, Nash N.
  organization: Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17437554$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4AsDtwSbCe2kwNIaIGCKFD-qYKLNcmOVw5Zp9gJ7H57HLbsoZfiy1jy773xzDshR37wSAjlLOfpPOlyXqo6q-pK5YIxnTMmRZlv75DF4eGILBgrq0xqLY7JSYwdY6zmQtwjx1yXhZayXJB3n8CvkQ6WRvRxCDu6htH5Nf0F_YSRgl_REeOYBZwLDdg7aFzvxh11nvohbKCncWo6bMd4n9y10Ed8cF1PyddXL78sX2fnH87eLJ-fZ60UdZmBBJDIG7QStWztCrQqaxDMFmBtWWGCGs6lRrCAtULbFmXJVbviVcEtFKfk8d73Kgw_0zdHs3Gxxb4Hj8MUjWaKJbK-FRRMciVqncBHN8BumIJPQxjBC1kUtRIJengNTc0GV-YquA2Enfm3zgQ82wNtGGIMaE3rxrTPwY8BXG84M3N-pjNzTGaOycz5mb_5mW0yqG4YHHrcLn26l_52Pe7-W2cuPn-7SLekz_Z6F0fcHvQQfhil03jm8v2ZueRavf2-fGE-Fn8A73fBlg
CitedBy_id crossref_primary_10_1097_NMD_0000000000000572
crossref_primary_10_1016_j_heares_2017_03_003
crossref_primary_10_1016_j_jpsychires_2012_03_001
crossref_primary_10_1016_j_clinph_2012_03_019
crossref_primary_10_1016_j_neuroscience_2011_02_008
crossref_primary_10_1155_2021_8529613
crossref_primary_10_1016_j_neurobiolaging_2019_12_020
crossref_primary_10_1016_j_bandc_2015_10_004
crossref_primary_10_1016_j_brat_2023_104422
crossref_primary_10_1097_WNR_0b013e328314e0dd
crossref_primary_10_1177_0269881119836217
crossref_primary_10_1080_20445911_2015_1053486
crossref_primary_10_1027_0269_8803_a000042
crossref_primary_10_1027_0269_8803_a000044
crossref_primary_10_1177_0269881117746903
crossref_primary_10_1016_j_neulet_2021_136336
crossref_primary_10_1016_j_bpsc_2016_10_004
crossref_primary_10_1016_j_euroneuro_2009_09_001
crossref_primary_10_1016_j_neuropharm_2012_10_011
crossref_primary_10_1111_psyp_13006
crossref_primary_10_1371_journal_pone_0177747
crossref_primary_10_3758_CABN_9_4_448
crossref_primary_10_1111_j_1469_8986_2010_01168_x
crossref_primary_10_1007_s00221_010_2391_3
crossref_primary_10_1016_j_clinph_2024_10_006
crossref_primary_10_1016_j_schres_2010_01_010
crossref_primary_10_1017_S0033291721004463
crossref_primary_10_1007_s00213_022_06090_z
crossref_primary_10_1016_j_schres_2010_04_020
crossref_primary_10_1016_j_schres_2009_05_019
crossref_primary_10_1016_j_schres_2024_07_027
crossref_primary_10_1044_2019_AJA_TTR17_18_0036
crossref_primary_10_1007_s10803_023_06040_4
crossref_primary_10_3109_15622975_2012_680911
crossref_primary_10_3389_fnins_2024_1378619
crossref_primary_10_1111_j_1469_8986_2009_00845_x
crossref_primary_10_1016_j_clinph_2011_02_033
crossref_primary_10_1016_j_neulet_2015_05_008
crossref_primary_10_1007_s00213_014_3823_8
crossref_primary_10_3389_fnins_2022_846001
crossref_primary_10_1371_journal_pone_0199614
crossref_primary_10_1371_journal_pone_0039434
crossref_primary_10_1016_j_drugalcdep_2014_06_045
crossref_primary_10_1186_2045_5380_1_5
crossref_primary_10_1016_j_pnpbp_2019_109683
crossref_primary_10_1002_aur_1452
crossref_primary_10_1016_j_schres_2009_09_003
crossref_primary_10_1371_journal_pone_0241136
crossref_primary_10_1016_j_clinph_2013_02_004
crossref_primary_10_3233_JAD_231257
crossref_primary_10_1044_2023_JSLHR_22_00680
crossref_primary_10_1016_j_neures_2020_08_011
crossref_primary_10_1111_j_1469_8986_2011_01262_x
crossref_primary_10_1097_TA_0b013e318260604b
crossref_primary_10_1055_s_0040_1709517
crossref_primary_10_1016_j_jneumeth_2021_109087
crossref_primary_10_1186_s44147_023_00212_w
crossref_primary_10_1027_0269_8803_a000245
crossref_primary_10_1044_2022_JSLHR_22_00077
crossref_primary_10_1016_j_ijpsycho_2012_01_004
crossref_primary_10_1016_j_neuroscience_2011_05_009
crossref_primary_10_1177_02698811241246854
crossref_primary_10_1007_s00213_011_2544_5
crossref_primary_10_1016_j_jpsychires_2013_08_018
crossref_primary_10_1016_j_neuroscience_2010_07_012
crossref_primary_10_1111_j_1600_0447_2007_01141_x
crossref_primary_10_1016_j_jad_2013_08_010
crossref_primary_10_3390_biology13060443
crossref_primary_10_1016_j_biopsych_2010_12_011
crossref_primary_10_1027_0269_8803_23_2_52
crossref_primary_10_3389_fpsyt_2021_630406
crossref_primary_10_1093_cercor_bhaa372
crossref_primary_10_1016_j_paid_2015_03_025
crossref_primary_10_1016_j_clinph_2018_07_012
crossref_primary_10_1016_j_schres_2012_10_017
crossref_primary_10_1016_j_neuroscience_2009_11_053
crossref_primary_10_1016_j_neuropharm_2012_06_040
crossref_primary_10_15252_emmm_201505677
crossref_primary_10_1016_j_neuropsychologia_2008_03_016
crossref_primary_10_1097_HRP_0000000000000110
crossref_primary_10_1016_j_biopsych_2008_06_018
crossref_primary_10_1016_j_biopsych_2010_09_021
crossref_primary_10_1016_j_schres_2012_06_021
crossref_primary_10_1016_j_schres_2017_01_023
crossref_primary_10_1044_2020_JSLHR_19_00261
crossref_primary_10_1038_srep33056
crossref_primary_10_1016_j_clinph_2019_07_028
crossref_primary_10_1017_S003329171800123X
crossref_primary_10_1016_j_psychres_2011_01_003
crossref_primary_10_1044_2023_AJA_23_00094
crossref_primary_10_1016_j_neuroimage_2008_10_002
crossref_primary_10_1016_j_pnpbp_2008_09_018
crossref_primary_10_1016_j_clinph_2012_10_007
crossref_primary_10_1093_cercor_bhaa306
crossref_primary_10_1007_s00455_010_9308_y
crossref_primary_10_1007_s00221_017_5101_6
crossref_primary_10_1016_j_psychres_2021_114162
crossref_primary_10_3389_fnins_2021_651253
crossref_primary_10_1016_j_clinph_2018_11_004
crossref_primary_10_1016_j_neuroscience_2013_03_029
crossref_primary_10_1016_j_clinph_2008_02_007
Cites_doi 10.1016/0006-3223(88)90273-9
10.1176/ajp.149.4.488
10.1111/j.1469-8986.1994.tb01053.x
10.1016/0006-3223(85)90113-1
10.1016/0006-3223(90)90419-3
10.1016/S0002-7138(09)60285-5
10.1016/0013-4694(70)90183-5
10.1016/S0006-3223(98)00128-0
10.1016/0006-3223(92)90088-H
10.1017/S1041610200006621
10.1016/0006-3223(89)90215-1
10.1007/s002210100744
10.1016/0006-3223(93)90085-R
10.1001/archpsyc.1996.01830120052009
10.1016/S0006-3223(96)00208-9
10.1016/S0006-3223(98)00253-4
10.1016/0006-3223(95)00067-4
10.1093/schbul/3.1.93
10.1177/155005949102200109
10.1016/0278-5846(93)90060-6
10.1016/j.schres.2004.01.004
10.1037/0021-843X.107.4.691
10.1016/0165-1781(91)90086-5
10.1016/0006-3223(92)90230-W
10.1016/j.psychres.2004.01.007
10.1016/0006-3223(93)90322-5
ContentType Journal Article
Copyright Copyright © 2007 Society for Psychophysiological Research
Copyright_xml – notice: Copyright © 2007 Society for Psychophysiological Research
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1111/j.1469-8986.2007.00524.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Neurosciences Abstracts
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-8986
1540-5958
EndPage 626
ExternalDocumentID 1286163311
17437554
10_1111_j_1469_8986_2007_00524_x
PSYP524
ark_67375_WNG_W176KZCD_Q
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH58784-02
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAONW
AAOUF
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACSCC
ACWUS
ACXQS
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ABVKB
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AFYRF
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
Z5M
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c5294-a5aa5e1bef5e75cfda7649a20f3aff48e294b1157eafae96efc34416cd1831fa3
IEDL.DBID DR2
ISSN 0048-5772
IngestDate Fri Jul 11 08:30:27 EDT 2025
Fri Jul 11 07:42:46 EDT 2025
Sat Aug 23 12:38:18 EDT 2025
Wed Feb 19 01:43:22 EST 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 01:48:13 EDT 2025
Wed Jan 22 16:45:43 EST 2025
Wed Oct 30 09:49:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-a5aa5e1bef5e75cfda7649a20f3aff48e294b1157eafae96efc34416cd1831fa3
Notes ArticleID:PSYP524
ark:/67375/WNG-W176KZCD-Q
istex:526DB59C9CE5C516242A8FFA71AB80496616B7C1
This work was supported by NIH grant #MH58784‐02 and a NARSAD Independent Investigator Award.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 17437554
PQID 213533962
PQPubID 41359
PageCount 7
ParticipantIDs proquest_miscellaneous_70608319
proquest_miscellaneous_20516297
proquest_journals_213533962
pubmed_primary_17437554
crossref_citationtrail_10_1111_j_1469_8986_2007_00524_x
crossref_primary_10_1111_j_1469_8986_2007_00524_x
wiley_primary_10_1111_j_1469_8986_2007_00524_x_PSYP524
istex_primary_ark_67375_WNG_W176KZCD_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2007
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: July 2007
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Oxford
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiology
PublicationYear 2007
Publisher Blackwell Publishing Inc
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing Ltd
References Adler, L. E., Pang, K., Gerhardt, G., & Rose, G. M. (1988). Modulation of the gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using a selective neurotoxin. Biological Psychiatry, 24, 179-190.
Freedman, R., Adler, L. E., Myles-Worsley, M., Nagamoto, H. T., Miller, C., Kisley, M., et al. (1996). Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Archives of General Psychiatry, 53, 1114-1121.
Boutros, N. N., Reid, M. C., Petrakis, I., Campbell, D., Torello, M., & Krystal, J. (2000). Similarities in the disturbances in cortical information processing in alcoholism and aging: A pilot evoked potential study. International Psychogeriatrics, 12, 513-525.
Coon, H., Plaetke, R., Holik, J., Hoff, M., Myles-Worsley, M., Waldo, M., et al. (1993). Use of a neurophysiological trait in linkage analysis of schizophrenia. Biological Psychiatry, 34, 277-289.
Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C., & Freedman, R. (1982). Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry, 17, 639-654.
Clementz, B. A., Geyer, M. A., & Braff, D. L. (1997). P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis. Biological Psychiatry, 41, 1035-1044.
Nagamoto, H. T., Adler, L. E., Waldo, M. C., & Freedman, R. (1989). Sensory gating in schizophrenics and normal controls: Effects of changing stimulation interval. Biological Psychiatry, 25, 549-561.
Zouridakis, G., & Boutros, N. N. (1992). Stimulus parameter effects on the P50 evoked response. Biological Psychiatry, 32, 839-841.
Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70, 315-329.
Erwin, R. J., Edwards, R., Tanguay, P. E., Buchwald, J., & Letai, D. (1986). Abnormal P300 responses in schizophrenic children. Journal of American Academic Child Psychiatry, 25, 615-622.
Adler, L. E., Waldo, M. C., & Freedman, R. (1985). Neurophysiologic studies of sensory gating in schizophrenia: Comparison of auditory and visual responses. Biological Psychiatry, 20, 1284-1296.
Fruhstorfer, H., Soveri, P., & Jarvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28, 153-161.
Kathmann, N., & Engel, R. R. (1990). Sensory gating in normals and schizophrenics: A failure to find strong P50 suppression in normals. Biological Psychiatry, 27, 1216-1226.
Oranje, B., Van Berckel, B. N., Kemner, C., Van Ree, J. M., Kahn, R. S., & Verbaten, M. N. (1999). P50 suppression and prepulse inhibition of the startle reflex in humans: A correlational study. Biological Psychiatry, 45, 883-890.
Clementz, B. A., & Blumenfeld, L. D. (2001). Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Experimental Brain Research, 139, 377-390.
Hetrick, W. P., Sandman, C. A., Bunney, W. E. Jr., Jin, Y., Potkin, S. G., & White, M. H. (1996). Gender differences in gating of the auditory evoked potential in normal subjects. Biological Psychiatry, 39, 51-58.
Jerger, K., Biggins, C., & Fein, G. (1992). P50 suppression is not affected by attentional manipulations. Biological Psychiatry, 31, 365-377.
Boutros, N. N., Overall, J., & Zouridakis, G. (1991). Test-retest reliability of the P50 mid-latency auditory evoked response. Psychiatry Research, 39, 181-192.
Lamberti, J. S., Schwarzkopf, S. B., Boutros, N., Crilly, J. F., & Martin, R. (1993). Within-session changes in sensory gating assessed by P50 evoked potentials in normal subjects. Progress in Neuropsychopharmacology and Biological Psychiatry, 17, 781-791.
Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology, 31, 495-502.
Naber, G., Kathmann, N., & Engel, R. R. (1992). P50 suppression in normal subjects: Influence of stimulus intensity, test repetition, and presentation mode. Journal of Psychophysiology, 6, 47-53.
Yee, C. M., Nuechterlein, K. H., Morris, S. E., & White, P. M. (1998). P50 suppression in recent-onset schizophrenia: Clinical correlates and risperidone effects. Journal of Abnormal Psychology, 107, 691-698.
Buchsbaum, M. S. (1977). The middle evoked response components and schizophrenia. Schizophrenia Bulletin, 3, 93-104.
Judd, L. L., McAdams, L., Budnick, B., & Braff, D. L. (1992). Sensory gating deficits in schizophrenia: New results. American Journal of Psychiatry, 149, 488-493.
Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45, 917-922.
Franks, R. D., Adler, L. E., Waldo, M. C., Alpert, J., & Freedman, R. (1983). Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia. Biological Psychiatry, 18, 989-1005.
Cardenas, V. A., Gerson, J., & Fein, G. (1993). The reliability of P50 suppression as measured by the conditioning/testing ratio is vastly improved by dipole modeling. Biological Psychiatry, 33, 335-344.
Boutros, N. N., Zouridakis, G., & Overall, J. (1991). Replication and extension of P50 findings in schizophrenia. Clinical Electroencephalograhy, 22, 40-45.
Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M. (2004). Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126, 203-215.
1982; 17
2004; 126
1991; 39
1996; 39
1997; 41
1992; 149
1999; 45
1992; 31
1983; 18
1992; 32
1985; 20
1989; 25
1996; 53
1992; 6
1993; 34
2004; 70
1993; 17
1990; 27
2000; 12
1991; 22
1993; 33
1986; 25
1977; 3
1998; 107
1988; 24
1970; 28
2001; 139
1994; 31
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Yee C. M. (e_1_2_5_29_1) 1998; 107
e_1_2_5_20_1
e_1_2_5_15_1
Franks R. D. (e_1_2_5_17_1) 1983; 18
e_1_2_5_14_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
Naber G. (e_1_2_5_25_1) 1992; 6
e_1_2_5_19_1
e_1_2_5_18_1
Adler L. E. (e_1_2_5_2_1) 1982; 17
e_1_2_5_30_1
References_xml – reference: Kathmann, N., & Engel, R. R. (1990). Sensory gating in normals and schizophrenics: A failure to find strong P50 suppression in normals. Biological Psychiatry, 27, 1216-1226.
– reference: Coon, H., Plaetke, R., Holik, J., Hoff, M., Myles-Worsley, M., Waldo, M., et al. (1993). Use of a neurophysiological trait in linkage analysis of schizophrenia. Biological Psychiatry, 34, 277-289.
– reference: Boutros, N. N., Overall, J., & Zouridakis, G. (1991). Test-retest reliability of the P50 mid-latency auditory evoked response. Psychiatry Research, 39, 181-192.
– reference: Clementz, B. A., & Blumenfeld, L. D. (2001). Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Experimental Brain Research, 139, 377-390.
– reference: Erwin, R. J., Edwards, R., Tanguay, P. E., Buchwald, J., & Letai, D. (1986). Abnormal P300 responses in schizophrenic children. Journal of American Academic Child Psychiatry, 25, 615-622.
– reference: Fruhstorfer, H., Soveri, P., & Jarvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28, 153-161.
– reference: Freedman, R., Adler, L. E., Myles-Worsley, M., Nagamoto, H. T., Miller, C., Kisley, M., et al. (1996). Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Archives of General Psychiatry, 53, 1114-1121.
– reference: Judd, L. L., McAdams, L., Budnick, B., & Braff, D. L. (1992). Sensory gating deficits in schizophrenia: New results. American Journal of Psychiatry, 149, 488-493.
– reference: Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M. (2004). Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126, 203-215.
– reference: Nagamoto, H. T., Adler, L. E., Waldo, M. C., & Freedman, R. (1989). Sensory gating in schizophrenics and normal controls: Effects of changing stimulation interval. Biological Psychiatry, 25, 549-561.
– reference: Yee, C. M., Nuechterlein, K. H., Morris, S. E., & White, P. M. (1998). P50 suppression in recent-onset schizophrenia: Clinical correlates and risperidone effects. Journal of Abnormal Psychology, 107, 691-698.
– reference: Oranje, B., Van Berckel, B. N., Kemner, C., Van Ree, J. M., Kahn, R. S., & Verbaten, M. N. (1999). P50 suppression and prepulse inhibition of the startle reflex in humans: A correlational study. Biological Psychiatry, 45, 883-890.
– reference: Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C., & Freedman, R. (1982). Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry, 17, 639-654.
– reference: Boutros, N. N., Zouridakis, G., & Overall, J. (1991). Replication and extension of P50 findings in schizophrenia. Clinical Electroencephalograhy, 22, 40-45.
– reference: Franks, R. D., Adler, L. E., Waldo, M. C., Alpert, J., & Freedman, R. (1983). Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia. Biological Psychiatry, 18, 989-1005.
– reference: Hetrick, W. P., Sandman, C. A., Bunney, W. E. Jr., Jin, Y., Potkin, S. G., & White, M. H. (1996). Gender differences in gating of the auditory evoked potential in normal subjects. Biological Psychiatry, 39, 51-58.
– reference: Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70, 315-329.
– reference: Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology, 31, 495-502.
– reference: Cardenas, V. A., Gerson, J., & Fein, G. (1993). The reliability of P50 suppression as measured by the conditioning/testing ratio is vastly improved by dipole modeling. Biological Psychiatry, 33, 335-344.
– reference: Lamberti, J. S., Schwarzkopf, S. B., Boutros, N., Crilly, J. F., & Martin, R. (1993). Within-session changes in sensory gating assessed by P50 evoked potentials in normal subjects. Progress in Neuropsychopharmacology and Biological Psychiatry, 17, 781-791.
– reference: Naber, G., Kathmann, N., & Engel, R. R. (1992). P50 suppression in normal subjects: Influence of stimulus intensity, test repetition, and presentation mode. Journal of Psychophysiology, 6, 47-53.
– reference: Boutros, N. N., Reid, M. C., Petrakis, I., Campbell, D., Torello, M., & Krystal, J. (2000). Similarities in the disturbances in cortical information processing in alcoholism and aging: A pilot evoked potential study. International Psychogeriatrics, 12, 513-525.
– reference: Zouridakis, G., & Boutros, N. N. (1992). Stimulus parameter effects on the P50 evoked response. Biological Psychiatry, 32, 839-841.
– reference: Adler, L. E., Waldo, M. C., & Freedman, R. (1985). Neurophysiologic studies of sensory gating in schizophrenia: Comparison of auditory and visual responses. Biological Psychiatry, 20, 1284-1296.
– reference: Buchsbaum, M. S. (1977). The middle evoked response components and schizophrenia. Schizophrenia Bulletin, 3, 93-104.
– reference: Adler, L. E., Pang, K., Gerhardt, G., & Rose, G. M. (1988). Modulation of the gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using a selective neurotoxin. Biological Psychiatry, 24, 179-190.
– reference: Jerger, K., Biggins, C., & Fein, G. (1992). P50 suppression is not affected by attentional manipulations. Biological Psychiatry, 31, 365-377.
– reference: Clementz, B. A., Geyer, M. A., & Braff, D. L. (1997). P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis. Biological Psychiatry, 41, 1035-1044.
– reference: Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45, 917-922.
– volume: 70
  start-page: 315
  year: 2004
  end-page: 329
  article-title: Meta‐analysis of the P300 and P50 waveforms in schizophrenia
  publication-title: Schizophrenia Research
– volume: 12
  start-page: 513
  year: 2000
  end-page: 525
  article-title: Similarities in the disturbances in cortical information processing in alcoholism and aging
  publication-title: International Psychogeriatrics
– volume: 20
  start-page: 1284
  year: 1985
  end-page: 1296
  article-title: Neurophysiologic studies of sensory gating in schizophrenia
  publication-title: Biological Psychiatry
– volume: 6
  start-page: 47
  year: 1992
  end-page: 53
  article-title: P50 suppression in normal subjects
  publication-title: Journal of Psychophysiology
– volume: 53
  start-page: 1114
  year: 1996
  end-page: 1121
  article-title: Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model
  publication-title: Archives of General Psychiatry
– volume: 33
  start-page: 335
  year: 1993
  end-page: 344
  article-title: The reliability of P50 suppression as measured by the conditioning/testing ratio is vastly improved by dipole modeling
  publication-title: Biological Psychiatry
– volume: 3
  start-page: 93
  year: 1977
  end-page: 104
  article-title: The middle evoked response components and schizophrenia
  publication-title: Schizophrenia Bulletin
– volume: 34
  start-page: 277
  year: 1993
  end-page: 289
  article-title: Use of a neurophysiological trait in linkage analysis of schizophrenia
  publication-title: Biological Psychiatry
– volume: 39
  start-page: 51
  year: 1996
  end-page: 58
  article-title: Gender differences in gating of the auditory evoked potential in normal subjects
  publication-title: Biological Psychiatry
– volume: 126
  start-page: 203
  year: 2004
  end-page: 215
  article-title: Sensory gating deficits during the mid‐latency phase of information processing in medicated schizophrenia patients
  publication-title: Psychiatry Research
– volume: 24
  start-page: 179
  year: 1988
  end-page: 190
  article-title: Modulation of the gating of auditory evoked potentials by norepinephrine
  publication-title: Biological Psychiatry
– volume: 28
  start-page: 153
  year: 1970
  end-page: 161
  article-title: Short‐term habituation of the auditory evoked response in man
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 25
  start-page: 615
  year: 1986
  end-page: 622
  article-title: Abnormal P300 responses in schizophrenic children
  publication-title: Journal of American Academic Child Psychiatry
– volume: 17
  start-page: 639
  year: 1982
  end-page: 654
  article-title: Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia
  publication-title: Biological Psychiatry
– volume: 45
  start-page: 917
  year: 1999
  end-page: 922
  article-title: Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating
  publication-title: Biological Psychiatry
– volume: 18
  start-page: 989
  year: 1983
  end-page: 1005
  article-title: Neurophysiological studies of sensory gating in mania
  publication-title: Biological Psychiatry
– volume: 31
  start-page: 365
  year: 1992
  end-page: 377
  article-title: P50 suppression is not affected by attentional manipulations
  publication-title: Biological Psychiatry
– volume: 27
  start-page: 1216
  year: 1990
  end-page: 1226
  article-title: Sensory gating in normals and schizophrenics
  publication-title: Biological Psychiatry
– volume: 149
  start-page: 488
  year: 1992
  end-page: 493
  article-title: Sensory gating deficits in schizophrenia
  publication-title: American Journal of Psychiatry
– volume: 22
  start-page: 40
  year: 1991
  end-page: 45
  article-title: Replication and extension of P50 findings in schizophrenia
  publication-title: Clinical Electroencephalograhy
– volume: 31
  start-page: 495
  year: 1994
  end-page: 502
  article-title: Reliability of P50 auditory event‐related potential indices of sensory gating
  publication-title: Psychophysiology
– volume: 139
  start-page: 377
  year: 2001
  end-page: 390
  article-title: Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia
  publication-title: Experimental Brain Research
– volume: 41
  start-page: 1035
  year: 1997
  end-page: 1044
  article-title: P50 suppression among schizophrenia and normal comparison subjects
  publication-title: Biological Psychiatry
– volume: 32
  start-page: 839
  year: 1992
  end-page: 841
  article-title: Stimulus parameter effects on the P50 evoked response
  publication-title: Biological Psychiatry
– volume: 45
  start-page: 883
  year: 1999
  end-page: 890
  article-title: P50 suppression and prepulse inhibition of the startle reflex in humans
  publication-title: Biological Psychiatry
– volume: 39
  start-page: 181
  year: 1991
  end-page: 192
  article-title: Test–retest reliability of the P50 mid‐latency auditory evoked response
  publication-title: Psychiatry Research
– volume: 25
  start-page: 549
  year: 1989
  end-page: 561
  article-title: Sensory gating in schizophrenics and normal controls
  publication-title: Biological Psychiatry
– volume: 107
  start-page: 691
  year: 1998
  end-page: 698
  article-title: P50 suppression in recent‐onset schizophrenia
  publication-title: Journal of Abnormal Psychology
– volume: 17
  start-page: 781
  year: 1993
  end-page: 791
  article-title: Within‐session changes in sensory gating assessed by P50 evoked potentials in normal subjects
  publication-title: Progress in Neuropsychopharmacology and Biological Psychiatry
– ident: e_1_2_5_3_1
  doi: 10.1016/0006-3223(88)90273-9
– ident: e_1_2_5_22_1
  doi: 10.1176/ajp.149.4.488
– ident: e_1_2_5_28_1
  doi: 10.1111/j.1469-8986.1994.tb01053.x
– ident: e_1_2_5_4_1
  doi: 10.1016/0006-3223(85)90113-1
– volume: 6
  start-page: 47
  year: 1992
  ident: e_1_2_5_25_1
  article-title: P50 suppression in normal subjects
  publication-title: Journal of Psychophysiology
– ident: e_1_2_5_23_1
  doi: 10.1016/0006-3223(90)90419-3
– ident: e_1_2_5_16_1
  doi: 10.1016/S0002-7138(09)60285-5
– ident: e_1_2_5_19_1
  doi: 10.1016/0013-4694(70)90183-5
– ident: e_1_2_5_27_1
  doi: 10.1016/S0006-3223(98)00128-0
– ident: e_1_2_5_30_1
  doi: 10.1016/0006-3223(92)90088-H
– volume: 18
  start-page: 989
  year: 1983
  ident: e_1_2_5_17_1
  article-title: Neurophysiological studies of sensory gating in mania
  publication-title: Biological Psychiatry
– volume: 17
  start-page: 639
  year: 1982
  ident: e_1_2_5_2_1
  article-title: Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia
  publication-title: Biological Psychiatry
– ident: e_1_2_5_8_1
  doi: 10.1017/S1041610200006621
– ident: e_1_2_5_26_1
  doi: 10.1016/0006-3223(89)90215-1
– ident: e_1_2_5_13_1
  doi: 10.1007/s002210100744
– ident: e_1_2_5_15_1
  doi: 10.1016/0006-3223(93)90085-R
– ident: e_1_2_5_18_1
  doi: 10.1001/archpsyc.1996.01830120052009
– ident: e_1_2_5_14_1
  doi: 10.1016/S0006-3223(96)00208-9
– ident: e_1_2_5_5_1
  doi: 10.1016/S0006-3223(98)00253-4
– ident: e_1_2_5_20_1
  doi: 10.1016/0006-3223(95)00067-4
– ident: e_1_2_5_11_1
  doi: 10.1093/schbul/3.1.93
– ident: e_1_2_5_9_1
  doi: 10.1177/155005949102200109
– ident: e_1_2_5_24_1
  doi: 10.1016/0278-5846(93)90060-6
– ident: e_1_2_5_10_1
  doi: 10.1016/j.schres.2004.01.004
– volume: 107
  start-page: 691
  year: 1998
  ident: e_1_2_5_29_1
  article-title: P50 suppression in recent‐onset schizophrenia
  publication-title: Journal of Abnormal Psychology
  doi: 10.1037/0021-843X.107.4.691
– ident: e_1_2_5_7_1
  doi: 10.1016/0165-1781(91)90086-5
– ident: e_1_2_5_21_1
  doi: 10.1016/0006-3223(92)90230-W
– ident: e_1_2_5_6_1
  doi: 10.1016/j.psychres.2004.01.007
– ident: e_1_2_5_12_1
  doi: 10.1016/0006-3223(93)90322-5
SSID ssj0009122
Score 2.223662
Snippet This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired‐click paradigm and compares the test–retest reliabilities...
This article characterizes gating in normal subjects using P50, N100, and P200 components in a paired-click paradigm and compares the test-retest reliabilities...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 620
SubjectTerms Acoustic Stimulation
Adolescent
Adult
Aged
Aging - psychology
Comparative analysis
Electroencephalography
Evoked Potentials, Auditory - physiology
Female
Gating
Humans
Male
Middle Aged
N100
Neurology
P200
P50
Paired-click EPs
Psychological tests
Reliability
Reproducibility of Results
Sensory perception
Sex Characteristics
Test-retest reliability
Title Range of sensory gating values and test-retest reliability in normal subjects
URI https://api.istex.fr/ark:/67375/WNG-W176KZCD-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8986.2007.00524.x
https://www.ncbi.nlm.nih.gov/pubmed/17437554
https://www.proquest.com/docview/213533962
https://www.proquest.com/docview/20516297
https://www.proquest.com/docview/70608319
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe-EClPIILcUH1FtWTeJHfNw-lgpEKYWqhYtlJ3aFtmSrJCt1e-I_8A_5JZ3JY6utilQhbpE8juLJzPjzePyZkLfKeca8cyFPbYTbjDJUNk9CGdsokVEulMV8x8cDsX_M3p_y067-Cc_CtPwQ84QbekYTr9HBja1uO7kKU5WKnomQx2yAeBJLtxAfHd0wSamoIw5nacgBUS4W9dz5ooWZahmVfnkXDF1Etc20NHpMxv2A2mqU8WBa20F2dYvr8f-M-Al51KFXOmzNbYU8cMVTsjosYOX-c0Y3aVNP2iTqV8mnIzy3QCeeVrBUnpQzimQexRlFfnFXUVPkFHBu_efX7xKzvzUt4fta2vAZ_VHQAuH0Oa2mFnNF1TNyPNr7urMfdtc3hBmPFQsNN4a7yDrPneSZz40UTJl4yyfGe5Y6ELLI9eOMN04J57MEwJnIcggzkTfJc7JUTAr3klCFcl7I2DvLYudNJqBdGcB6KUuTNCCy_1U667jN8YqNc72wxlEadYc3b-KmO-hOXwYkmve8aPk97tFns7GGeQdTjrE-TnJ9cvBOn0RSfPi-s6s_B2StNxfdhYZKx3jTSKJEHJA381bwadyoMYWbTEEEIqWIlfy7BHIegZJUQF60Vnjz8QAJJWDEgIjGlu49Kn345dshPL36145r5GGf-N6K1slSXU7da0Bstd0gy8Pt3e3RRuOT18GkM70
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4ALr_JIC9QH1FtWTeJHfKxaykLbpZRWLVwsO7ER6jaLkqzU5cR_4B_yS5jJY6utilQhbpE8juLJzPjz2P6GkNfKeca8cyFPbYTbjDJUNk9CGdsokVEulMV8x8FIDE_Y-zN-1pUDwrswLT_EPOGGntHEa3RwTEhf93IVpioVPRUhj9kAAOUyFvhGIv2doysuKRV11OEsDTlgysVjPTe-aWGuWka1X94ERBdxbTMx7T4g435I7XmU88G0toPsxzW2x_805ofkfgdg6VZrcY_IHVc8JitbBSzeL2Z0gzZHSptc_Qr5cIRXF-jE0wpWy5NyRpHPo_hKkWLcVdQUOQWoW__--avEBHBNS_jAljl8Rr8VtEBEPabV1GK6qHpCTnbfHG8Pw66CQ5jxWLHQcGO4i6zz3Eme-dxIwZSJN31ivGepAyGLdD_OeOOUcD5LAJ-JLIdIE3mTPCVLxaRwzwlVKOeFjL2zLHbeZALalQG4l7I0SQMi-3-ls47eHKtsjPXCMkdp1B0W38R9d9CdvgxINO_5vaX4uEWfjcYc5h1MeY5H5CTXp6O3-jSSYu_L9o7-GJC13l50Fx0qHWOxkUSJOCDr81Zwa9yrMYWbTEEEgqWIlfy7BNIegZJUQJ61Znj18YAKJcDEgIjGmG49Kn346fMhPK3-a8d1cnd4fLCv99-N9tbIvT4Pvhm9IEt1OXUvAcDV9lXjmH8ASKA2Zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKyEuvMojLVAfUG9ZbRI_4mPVZSkUlqVQtXCx7MRGaNtstclKXU78B_4hv4SZPLbaqkgV4hbJ4yh2Zsafx-NvCHmpnGfMOxfy1EZ4zChDZfMklLGNEhnlQlmMd7wfif0j9vaEn7T5T3gXpuGHWAbc0DJqf40Gfp77q0auwlSlomMi5DHrAZ5cZ6KvsIzD4PCSSkpFLXM4S0MOkHI1q-faN60sVes46xfX4dBVWFuvS8N7ZNKNqElHmfTmle1lP66QPf6fId8nd1v4SncbfXtAbrniIdnYLWDrfragO7ROKK0j9RvkwyFeXKBTT0vYK09nC4psHsU3igTjrqSmyCkA3er3z18zDP9WdAbf1_CGL-j3ghaIp09pObcYLCofkaPhq897-2FbvyHMeKxYaLgx3EXWee4kz3xupGDKxH2fGO9Z6kDIItmPM944JZzPEkBnIsvBz0TeJI_JWjEt3FNCFcp5IWPvLIudN5mAdmUA7KUsTdKAyO5X6awlN8caG6d6ZZOjNM4dlt7EU3eYO30RkGjZ87wh-LhBn51aG5YdzGyCCXKS6-PRa30cSXHwdW-gPwZkq1MX3fqGUsdYaiRRIg7I9rIVjBpPakzhpnMQAVcpYiX_LoGkRzBJKiBPGi28_HjAhBJAYkBErUs3HpUef_oyhqfNf-24TW6PB0P97s3oYIvc6YLg_egZWatmc_cc0FtlX9Rm-QdpxDUW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Range+of+sensory+gating+values+and+test-retest+reliability+in+normal+subjects&rft.jtitle=Psychophysiology&rft.au=Fuerst%2C+Darren+R&rft.au=Gallinat%2C+J%C3%BCrgen&rft.au=Boutros%2C+Nash+N&rft.date=2007-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0048-5772&rft.eissn=1540-5958&rft.volume=44&rft.issue=4&rft.spage=620&rft_id=info:doi/10.1111%2Fj.1469-8986.2007.00524.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1286163311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon