Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons

Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic conde...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 30; pp. e2203622 - n/a
Main Authors Lou, Qing, Ni, Qingchao, Niu, Chunyao, Wei, Jianyong, Zhang, Zhuangfei, Shen, Weixia, Shen, Chenglong, Qin, Chaochao, Zheng, Guangsong, Liu, Kaikai, Zang, Jinhao, Dong, Lin, Shan, Chong‐Xin
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.10.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
AbstractList Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π –electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W −1 and a flat‐panel illumination system with lighting sizes of more than 100 cm 2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long-lasting pursuit for CDs. Herein, CDs with near-unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π-electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect-insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light-converting films with a high solid-state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD-polymer films as light conversion layers, CD-based white light-emitting diodes (WLEDs) with a luminous efficiency of 140 lm W-1 and a flat-panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state-of-the-art nanocrystal-based LEDs. These results pave the way toward carbon-based luminescent materials for solid-state lighting technology.Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long-lasting pursuit for CDs. Herein, CDs with near-unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π-electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect-insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light-converting films with a high solid-state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD-polymer films as light conversion layers, CD-based white light-emitting diodes (WLEDs) with a luminous efficiency of 140 lm W-1 and a flat-panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state-of-the-art nanocrystal-based LEDs. These results pave the way toward carbon-based luminescent materials for solid-state lighting technology.
Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long-lasting pursuit for CDs. Herein, CDs with near-unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π-electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect-insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light-converting films with a high solid-state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD-polymer films as light conversion layers, CD-based white light-emitting diodes (WLEDs) with a luminous efficiency of 140 lm W and a flat-panel illumination system with lighting sizes of more than 100 cm are achieved, matching state-of-the-art nanocrystal-based LEDs. These results pave the way toward carbon-based luminescent materials for solid-state lighting technology.
Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
Abstract Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π –electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W −1 and a flat‐panel illumination system with lighting sizes of more than 100 cm 2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π –electron conjugation. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
Author Wei, Jianyong
Ni, Qingchao
Dong, Lin
Liu, Kaikai
Zhang, Zhuangfei
Zang, Jinhao
Shen, Chenglong
Shen, Weixia
Shan, Chong‐Xin
Qin, Chaochao
Zheng, Guangsong
Lou, Qing
Niu, Chunyao
AuthorAffiliation 2 State Key Laboratory of Advanced Optical Communication Systems and Networks University of Michigan–Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai 200240 China
3 Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications College of Physics and Materials Science Henan Normal University Xinxiang 453007 China
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics Ministry of Education, and School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 China
AuthorAffiliation_xml – name: 3 Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications College of Physics and Materials Science Henan Normal University Xinxiang 453007 China
– name: 2 State Key Laboratory of Advanced Optical Communication Systems and Networks University of Michigan–Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai 200240 China
– name: 1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics Ministry of Education, and School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 China
Author_xml – sequence: 1
  givenname: Qing
  surname: Lou
  fullname: Lou, Qing
  organization: Zhengzhou University
– sequence: 2
  givenname: Qingchao
  surname: Ni
  fullname: Ni, Qingchao
  organization: Zhengzhou University
– sequence: 3
  givenname: Chunyao
  surname: Niu
  fullname: Niu, Chunyao
  organization: Zhengzhou University
– sequence: 4
  givenname: Jianyong
  surname: Wei
  fullname: Wei, Jianyong
  email: jianyong.wei@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Zhuangfei
  surname: Zhang
  fullname: Zhang, Zhuangfei
  organization: Zhengzhou University
– sequence: 6
  givenname: Weixia
  surname: Shen
  fullname: Shen, Weixia
  organization: Zhengzhou University
– sequence: 7
  givenname: Chenglong
  surname: Shen
  fullname: Shen, Chenglong
  organization: Zhengzhou University
– sequence: 8
  givenname: Chaochao
  surname: Qin
  fullname: Qin, Chaochao
  organization: Henan Normal University
– sequence: 9
  givenname: Guangsong
  surname: Zheng
  fullname: Zheng, Guangsong
  organization: Zhengzhou University
– sequence: 10
  givenname: Kaikai
  surname: Liu
  fullname: Liu, Kaikai
  organization: Zhengzhou University
– sequence: 11
  givenname: Jinhao
  surname: Zang
  fullname: Zang, Jinhao
  organization: Zhengzhou University
– sequence: 12
  givenname: Lin
  orcidid: 0000-0002-4126-6812
  surname: Dong
  fullname: Dong, Lin
  email: ldong@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 13
  givenname: Chong‐Xin
  surname: Shan
  fullname: Shan, Chong‐Xin
  email: cxshan@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36002336$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSK0e0EhcuCf5ae31BqkJaKkVFAoq4WV57tnW0sVt7N2X763FIWrWVEBd_Pu_rmfG8LvZ88FAUbzGaYoTIR23XaUoQIYhyQl4UBwTLekJrxvYerfeLo5SWCCFcUcFw_arYpzzLKeUHxa-Zjk3w5bn2wYY-lbeuvyrPQcduLC-868fypBtChGTA9-W8bZ1x4M1YfgPduTuw5drpchHMbjf_bVwffHpTvGx1l-BoNx8WFyfzH7Mvk8XX07PZ8WJiKiLZhNPaVtKypjHC6oqbhrfGEEsBCGCbE2tRXTUSMTAcowqLGpGqFbTWwljT0MPibOtrg16q6-hWOo4qaKf-HoR4qXTsnelASWZbaDAlAJYBNtJisEgQwSUIIW32-rT1uh6aFdhNxlF3T0yf3nh3pS7DWslK8rqS2eDDziCGmwFSr1YuF67rtIcwJEUE4gLzPGT0_TN0GYboc6kyRWqKWcVIpt49jughlPsPzADbAiaGlCK0Kpdf9y5sAnSdwkhtWkVtWkU9tEqWTZ_J7p3_Kdi9c-s6GP9Dq-PPP78zhhn9A9Zq0Qo
CitedBy_id crossref_primary_10_1016_j_carbon_2023_03_047
crossref_primary_10_1039_D3TC03211F
crossref_primary_10_1002_sstr_202400447
crossref_primary_10_1039_D4NH00093E
crossref_primary_10_1186_s12645_022_00144_9
crossref_primary_10_1002_advs_202207229
crossref_primary_10_1002_advs_202404485
crossref_primary_10_1016_j_trechm_2022_10_005
crossref_primary_10_1021_acssuschemeng_2c06892
crossref_primary_10_1021_acs_nanolett_4c03687
crossref_primary_10_1088_1361_6528_acc6d6
crossref_primary_10_1016_j_cej_2024_150196
crossref_primary_10_1016_j_cej_2024_156389
crossref_primary_10_1021_acs_analchem_4c06609
crossref_primary_10_3390_catal13030547
crossref_primary_10_1021_acsanm_3c04915
crossref_primary_10_1002_adma_202210385
crossref_primary_10_1007_s12274_024_6456_1
crossref_primary_10_1016_j_carbon_2023_01_006
crossref_primary_10_1016_j_trac_2024_118050
crossref_primary_10_3390_polym15244693
crossref_primary_10_1016_j_surfin_2023_102760
crossref_primary_10_1515_nanoph_2023_0578
crossref_primary_10_1016_j_jcis_2025_02_043
crossref_primary_10_1038_s41467_024_46668_z
crossref_primary_10_1002_adfm_202420587
crossref_primary_10_1016_j_carbon_2024_118906
crossref_primary_10_1039_D4SE00806E
crossref_primary_10_1002_smll_202300906
crossref_primary_10_1016_j_cej_2023_146903
crossref_primary_10_1016_j_ijbiomac_2024_138221
crossref_primary_10_1186_s40538_024_00703_9
crossref_primary_10_1021_acs_jpclett_4c00788
crossref_primary_10_1016_j_cej_2025_160815
crossref_primary_10_1002_adma_202210699
crossref_primary_10_1021_acsami_3c17877
crossref_primary_10_1039_D3MH01292A
crossref_primary_10_1002_adfm_202303756
crossref_primary_10_1016_j_ijbiomac_2023_126580
crossref_primary_10_1016_j_jhazmat_2024_134637
crossref_primary_10_1002_adma_202302275
crossref_primary_10_1039_D4TA07743A
Cites_doi 10.1021/acsnano.1c09999
10.1002/adfm.202110393
10.1021/acsami.8b02379
10.1038/s41467-020-16675-x
10.1038/s41586-018-0691-0
10.1021/acsnano.5b05406
10.1002/adma.201602581
10.1038/s41467-018-04635-5
10.1002/adma.201504891
10.1103/PhysRevB.54.R17312
10.1002/adom.201901938
10.1038/nmat1726
10.1039/C4NR04034A
10.1002/adma.201403635
10.1021/acsami.6b12113
10.1021/acsnano.1c04001
10.1364/OPTICA.5.000793
10.1002/advs.201900766
10.1016/j.jlumin.2018.10.056
10.1038/s41377-018-0090-1
10.1002/adma.201603443
10.1021/acsami.5b00925
10.2139/ssrn.3915001
10.1002/adom.201700416
10.1039/C8TC04468F
10.1021/acsnano.0c02803
10.1021/am508994w
10.1021/acs.nanolett.9b02093
10.1007/s12274-019-2420-x
10.1021/acsami.7b17619
10.1039/C8TC03497D
10.1039/C8NH00247A
10.1002/anie.201300519
10.1039/C8NR01209A
10.1002/adma.201602651
10.1002/adma.201604436
10.1021/ja809073f
10.1021/acsphotonics.7b01010
10.1038/s41566-019-0557-5
10.1063/1.3126703
10.1002/advs.201902230
10.1021/ja062677d
10.1039/C7NR03913A
10.1002/adma.201503380
10.1021/acsnano.0c09053
10.1039/C5NR03014E
10.1039/C7TC04155A
10.1021/acsphotonics.7b00675
10.1002/advs.201802331
10.1021/acs.jpclett.9b01848
10.1016/j.carbon.2018.05.015
10.1002/adma.201104962
10.1002/adma.201702910
10.1021/jacs.8b06051
10.1038/nnano.2015.60
10.1364/OPTICA.2.000347
10.1002/adma.201704740
10.1002/anie.201602445
10.1021/acsnano.1c03886
10.1002/anie.201501193
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202203622
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_94dfeb132eed4e1c9d1ed072769e779d
PMC9596859
36002336
10_1002_advs_202203622
ADVS4414
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Henan Province
  funderid: 212300410078
– fundername: National Natural Science Foundation of China
  funderid: U2004168; 12074348; 11974317
– fundername: Scientific and Technological Project in Henan Province
  funderid: 202102210049; 202102210220
– fundername: National Natural Science Foundation of China
  grantid: U2004168
– fundername: Scientific and Technological Project in Henan Province
  grantid: 202102210049
– fundername: National Natural Science Foundation of China
  grantid: 12074348
– fundername: Natural Science Foundation of Henan Province
  grantid: 212300410078
– fundername: National Natural Science Foundation of China
  grantid: 11974317
– fundername: Scientific and Technological Project in Henan Province
  grantid: 202102210220
– fundername: ;
  grantid: U2004168; 12074348; 11974317
– fundername: ;
  grantid: 212300410078
– fundername: Scientific and Technological Project in Henan Province
  grantid: 202102210049; 202102210220
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5294-638d59d4bbc7da56cb6fcc2d3ee2e1d036f085b904ec6105178025f738a7cdcb3
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:30:29 EDT 2025
Thu Aug 21 18:38:53 EDT 2025
Fri Jul 11 12:02:19 EDT 2025
Sat Jul 26 02:37:57 EDT 2025
Mon Jul 21 06:07:55 EDT 2025
Tue Jul 01 03:59:44 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Wed Jan 22 16:22:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords localized exciton
symmetry breaking
light-emitting diode
carbon nanodot
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-638d59d4bbc7da56cb6fcc2d3ee2e1d036f085b904ec6105178025f738a7cdcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4126-6812
OpenAccessLink https://www.proquest.com/docview/2728314542?pq-origsite=%requestingapplication%
PMID 36002336
PQID 2728314542
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_94dfeb132eed4e1c9d1ed072769e779d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596859
proquest_miscellaneous_2706716067
proquest_journals_2728314542
pubmed_primary_36002336
crossref_citationtrail_10_1002_advs_202203622
crossref_primary_10_1002_advs_202203622
wiley_primary_10_1002_advs_202203622_ADVS4414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 2
2017; 5
2019; 4
2018; 140
2019; 6
2017; 4
2019; 10
2019; 12
2018; 563
2015; 54
2015; 10
2016; 10
2006; 5
2019; 19
2020; 14
2017; 29
2020; 11
2009; 131
2019; 206
2015; 7
1996; 54
2017; 9
2016; 55
2018; 7
2020; 8
2018; 6
2018; 9
2021; 15
2015; 27
2018; 5
2021
2013; 52
2018; 136
2018; 30
2022; 32
2016; 28
2012; 24
2018; 10
2006; 128
2014; 6
2022; 16
2016; 8
2009; 105
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
37492937 - Adv Sci (Weinh). 2023 Jul;10(20):e2302440. doi: 10.1002/advs.202302440
References_xml – volume: 206
  start-page: 97
  year: 2019
  publication-title: J. Lumin.
– volume: 52
  start-page: 3953
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 491
  year: 2015
  publication-title: Nat. Nanotechnol.
– year: 2021
– volume: 6
  start-page: 9631
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 388
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 14
  start-page: 171
  year: 2020
  publication-title: Nat. Photonics
– volume: 28
  start-page: 312
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 4913
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 502
  year: 2018
  publication-title: ACS Photonics
– volume: 14
  start-page: 8528
  year: 2020
  publication-title: ACS Nano
– volume: 54
  start-page: 5360
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 28
  start-page: 9454
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1579
  year: 2021
  publication-title: ACS Nano
– volume: 10
  start-page: 7737
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1389
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2249
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1669
  year: 2019
  publication-title: Nano Res.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 5553
  year: 2019
  publication-title: Nano Lett.
– volume: 11
  start-page: 2871
  year: 2020
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2352
  year: 2017
  publication-title: ACS Photonics
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 5
  start-page: 793
  year: 2018
  publication-title: Optica
– volume: 16
  start-page: 2910
  year: 2022
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 563
  start-page: 541
  year: 2018
  publication-title: Nature
– volume: 28
  start-page: 3516
  year: 2016
  publication-title: Adv. Mater.
– volume: 105
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 484
  year: 2016
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8659
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 347
  year: 2015
  publication-title: Optica
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 10
  start-page: 7155
  year: 2018
  publication-title: Nanoscale
– volume: 5
  start-page: 810
  year: 2006
  publication-title: Nat. Mater.
– volume: 10
  start-page: 4596
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 55
  start-page: 7231
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 128
  start-page: 7756
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 91
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 136
  start-page: 359
  year: 2018
  publication-title: Carbon
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 131
  start-page: 4564
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 24
  start-page: 1716
  year: 2012
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9163
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_9_12_1
  doi: 10.1021/acsnano.1c09999
– ident: e_1_2_9_43_1
  doi: 10.1002/adfm.202110393
– ident: e_1_2_9_58_1
  doi: 10.1021/acsami.8b02379
– ident: e_1_2_9_47_1
  doi: 10.1038/s41467-020-16675-x
– ident: e_1_2_9_40_1
  doi: 10.1038/s41586-018-0691-0
– ident: e_1_2_9_4_1
  doi: 10.1021/acsnano.5b05406
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.201602581
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-018-04635-5
– ident: e_1_2_9_33_1
  doi: 10.1002/adma.201504891
– ident: e_1_2_9_37_1
  doi: 10.1103/PhysRevB.54.R17312
– ident: e_1_2_9_21_1
  doi: 10.1002/adom.201901938
– ident: e_1_2_9_35_1
  doi: 10.1038/nmat1726
– ident: e_1_2_9_49_1
  doi: 10.1039/C4NR04034A
– ident: e_1_2_9_41_1
  doi: 10.1002/adma.201403635
– ident: e_1_2_9_52_1
  doi: 10.1021/acsami.6b12113
– ident: e_1_2_9_13_1
  doi: 10.1021/acsnano.1c04001
– ident: e_1_2_9_23_1
  doi: 10.1364/OPTICA.5.000793
– ident: e_1_2_9_9_1
  doi: 10.1002/advs.201900766
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jlumin.2018.10.056
– ident: e_1_2_9_10_1
  doi: 10.1038/s41377-018-0090-1
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201603443
– ident: e_1_2_9_26_1
  doi: 10.1021/acsami.5b00925
– ident: e_1_2_9_60_1
  doi: 10.2139/ssrn.3915001
– ident: e_1_2_9_54_1
  doi: 10.1002/adom.201700416
– ident: e_1_2_9_56_1
  doi: 10.1039/C8TC04468F
– ident: e_1_2_9_46_1
  doi: 10.1021/acsnano.0c02803
– ident: e_1_2_9_22_1
  doi: 10.1021/am508994w
– ident: e_1_2_9_42_1
  doi: 10.1021/acs.nanolett.9b02093
– ident: e_1_2_9_30_1
  doi: 10.1007/s12274-019-2420-x
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.7b17619
– ident: e_1_2_9_57_1
  doi: 10.1039/C8TC03497D
– ident: e_1_2_9_29_1
  doi: 10.1039/C8NH00247A
– ident: e_1_2_9_7_1
  doi: 10.1002/anie.201300519
– ident: e_1_2_9_25_1
  doi: 10.1039/C8NR01209A
– ident: e_1_2_9_27_1
  doi: 10.1002/adma.201602651
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.201604436
– ident: e_1_2_9_18_1
  doi: 10.1021/ja809073f
– ident: e_1_2_9_32_1
  doi: 10.1021/acsphotonics.7b01010
– ident: e_1_2_9_16_1
  doi: 10.1038/s41566-019-0557-5
– ident: e_1_2_9_36_1
  doi: 10.1063/1.3126703
– ident: e_1_2_9_28_1
  doi: 10.1002/advs.201902230
– ident: e_1_2_9_17_1
  doi: 10.1021/ja062677d
– ident: e_1_2_9_45_1
  doi: 10.1039/C7NR03913A
– ident: e_1_2_9_50_1
  doi: 10.1002/adma.201503380
– ident: e_1_2_9_6_1
  doi: 10.1021/acsnano.0c09053
– ident: e_1_2_9_24_1
  doi: 10.1039/C5NR03014E
– ident: e_1_2_9_55_1
  doi: 10.1039/C7TC04155A
– ident: e_1_2_9_53_1
  doi: 10.1021/acsphotonics.7b00675
– ident: e_1_2_9_5_1
  doi: 10.1002/advs.201802331
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.jpclett.9b01848
– ident: e_1_2_9_51_1
  doi: 10.1016/j.carbon.2018.05.015
– ident: e_1_2_9_48_1
  doi: 10.1002/adma.201104962
– ident: e_1_2_9_31_1
  doi: 10.1002/adma.201702910
– ident: e_1_2_9_1_1
  doi: 10.1021/jacs.8b06051
– ident: e_1_2_9_39_1
  doi: 10.1038/nnano.2015.60
– ident: e_1_2_9_38_1
  doi: 10.1364/OPTICA.2.000347
– ident: e_1_2_9_2_1
  doi: 10.1002/adma.201704740
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.201602445
– ident: e_1_2_9_34_1
  doi: 10.1021/acsnano.1c03886
– ident: e_1_2_9_8_1
  doi: 10.1002/anie.201501193
– reference: 37492937 - Adv Sci (Weinh). 2023 Jul;10(20):e2302440. doi: 10.1002/advs.202302440
SSID ssj0001537418
Score 2.4394493
Snippet Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity....
Abstract Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2203622
SubjectTerms Carbon
carbon nanodot
Chromatography
Efficiency
Light emitting diodes
Lighting
light‐emitting diode
localized exciton
Microscopy
Nitrogen
Quantum dots
Semiconductors
symmetry breaking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA_iyYtUre20VlIo2B4GJ1-TybHKLlJaD22FvQ2ZJEMXZFZ2Xan-9b6XzA67VPHS48w8kvA-8n6ZJL9HyCcLaaetvMydMyFHwJsbXri8tKVqmWhCFWsD_rgsL67kt4marJX6wjNhiR44Ke7USN_CfCI4TOYyMGc8C76ArFuaoLXxOPtCzltbTKX7wQJpWVYsjQU_tf4O2bk5brxxvpGFIln_Uwjz34OS6wA2ZqDxK7LbQ0f6NQ15j2yFbp_s9cG5oJ97BukvB2RybufNrKMwdeKqc0Hxbyu9DEhmTBFl3tPx9XI2T1ROdBRpJPAOJv0JuHH6EDy9m1r6HfNcfBr9dRD53eI1uRqPfp9f5H0JhdwpbmQO0eWV8bJpnPZWlQ7v9jjuRQg8MA-6aAFzNaaQwQGQUkxXAIJaLSqrnXeNOCTb3awLbwmtHBOqCtZaBe0ZVyleWCUd4EvWtC5kJF-ptHY9vziWubiuEzMyr9EE9WCCjJwM8jeJWeNZyTO00CCFjNjxBfhJ3ftJ_ZKfZORoZd-6D1PoQgO6YlJJ6OPj8BkCDHdNbBdmS5SBhM5gnacz8ia5wzASgbuaQpQZ0RuOsjHUzS_d9E8k8TbKlJUyoLXoUi-ooAaQ8guQq3z3P3Txnuxgy-lM4hHZvp0vwwfAVrfNcQyjR09CIkM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kffFFbP1KrbIFQX0IzX4lu49a7ihFi6iFewv7FT0oidz1ivrXO7PJpQ0q4mM2w-6yszPz26_fEPLCQthpdJC59ybmCHhzwwufl7ZUDRMu6pQb8P15eXohzxZqcesVf88PMW64oWUkf40Gbt36-IY01IZrpNvmeJLGwQnv4vtaZM_n8sPNLosSSM-CGeZgdZ0LLeWWubHgx9MqJpEpEfj_CXX-fnnyNqhNUWl-n9wb4CR90-t_j9yJ7T7ZGwx2TV8NrNKvH5DFiV25rqXgTnEluqa4A0vPIxIcU0SeP-j8ctOtenonOkvUEvguk34ELLn8GQO9Xlr6DmNf-pp99-AN2vVDcjGffT45zYe0CrlX3MgcLC4oE6RzvgpWlR7f-3geRIw8sgBj0QAOc6aQ0QO4UqzSAIyaSmhb-eCdeER22q6NTwjVngmlo7VWQX3Ga8ULq6QHzMlc42NG8u2Q1n7gHMfUF5d1z5bMa1RBPaogIy9H-W8928ZfJd-ihkYpZMlOBd3qSz0YXW1kaCAWCQ5AQEbmTWAxFIDYShOryoSMHG71Ww-mC01UgLiYVBLaOBp_g9HhSYptY7dBGQjyDNZ-VUYe99Nh7InAk04hyoxUk4ky6er0T7v8moi9jTKlVgZGLU2pfwxBDcDlE6BZefCf8k_JXSzsryQekp2r1SY-A2h15Z4n6_kFdvIdNg
  priority: 102
  providerName: Wiley-Blackwell
Title Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202203622
https://www.ncbi.nlm.nih.gov/pubmed/36002336
https://www.proquest.com/docview/2728314542
https://www.proquest.com/docview/2706716067
https://pubmed.ncbi.nlm.nih.gov/PMC9596859
https://doaj.org/article/94dfeb132eed4e1c9d1ed072769e779d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-x9YUXxPgMG5WRkICHaI1jJ_ET2karCW3VtDGpb5FjO1BpSrZ2nYC_njvHDVR8PSZ2Esfnu_v5bP8O4LVGt1MXVsTGKBcT4I0VH5k405msk7Ryhc8NeDrNji_Fx5mchYDbMmyrXNtEb6htayhGvs9zdISJkIK_v76JKWsUra6GFBpbMEATXODka3A4np6d_4yyyJToWdZsjSO-r-0dsXRzWoDjfMMbedL-PyHN3zdM_gpkvSeaPIQHAUKyg07mO3DPNY9gJyjpkr0NTNLvHsPsSC-qtmFoQmn2uWQUdWVTR6TGjNDmNza5WrWLjtKJjT2dBJ3FZOeIH-ffnWV3c81OyN_5q_FXgxagWT6By8n409FxHFIpxEZyJWLUMiuVFVVlcqtlZuiMj-E2dY67xGJf1Ii9KjUSziCgkkleIBiq87TQubGmSp_CdtM27jmwwiSpLJzWWuL7lCkkH2kpDOLMpKqNiyBed2lpAs84pbu4KjuGZF6SCMpeBBG86etfdwwbf615SBLqaxEztr_RLj6XQdFKJWyN_ifl6PyFS4yyibMjRGmZcnmubAR7a_mWQV3xE_3giuBVX4yKRqsnunHtiuqgY09wvpdH8KwbDn1LUlrdTNMsgnxjoGw0dbOkmX_xZN5KqqyQCnvND6n_dEGJYOUCEax48e_f2IX79Ey363APtm8XK_cS0dNtNYQtLs6GMDj4cHpyMQwKM_SxiB_TCh2C
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPIMFDASCDhE3Th2Eh8QomVXW7pdodJKe0sd24GVqqTsdgvlR_EbmckLVrxOPSZxHMcznvnGj28Anmp0O3lihW-Mcj4BXl_xvvEjHck8CDOXVLkB9yfR6Ei8m8rpGnxvz8LQtsrWJlaG2paG5si3eIyOMBBS8Nenn33KGkWrq20KjVot9tzFFwzZFq9236J8n3E-HBzujPwmq4BvJFfCR4WzUlmRZSa2WkaGjrsYbkPnuAssWvQcYUim-sIZxBYyiBPEBXkcJjo21mQh1nsF1kWIoUwP1rcHk_cHP2d1ZEh0MC07ZJ9vaXtOrOCcFvw4X_F-VZKAPyHb3zdo_gqcK883vAHXG8jK3tQ6tgFrrrgJG41RWLAXDXP1y1sw3dHzrCwYmmyKdheMZnnZxBGJMiN0e8GGJ8tyXlNIsUFFX0FnP9kB4tXZN2fZ-UyzMfnX6mrw1aDFKRa34ehSOvkO9IqycPeAJSYIZeK01hLrUyaRvK-lMIhrgyw3zgO_7dLUNLzmlF7jJK0ZmXlKIkg7EXjwvCt_WjN6_LXkNkmoK0VM3NWNcv4xbQZ2qoTN0d-FHMGGcIFRNnC2j6gwUi6OlfVgs5Vv2pgH_ESnzB486R7jwKbVGl24ckllEEgEGF_GHtyt1aFrSUirqWEYeRCvKMpKU1efFLNPFXm4kipKpMJeq1TqP12QIjj6gIhZ3P_3bzyGq6PD_XE63p3sPYBr9H6943ETemfzpXuIyO0se9QMFwbHlz1CfwA6gVdl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qUwlxQZQ1UMBIIOAQTeLYSXxAiLYzamkZVYVKvaWO7cBIVVJmOoXy0_h1vJcNRmynHpM4juO3fd6-B_BUY9gpUit8Y5TzCfD6igfGj3UsizDKXVrnBnw3ibcPxdsjebQC37uzMLStsvOJtaO2laE58iFPMBCGQgo-LNptEftb49enn33KIEUrrV06jUZFdt3FFxy-zV_tbKGsn3E-Hn3Y3PbbDAO-kVwJH5XPSmVFnpvEahkbOvpiuI2c4y606N0LhCS5CoQziDNkmKSIEYokSnVirMkjrPcKrCY4KgoGsLoxmuwf_JzhkRFRw3RMkQEfantODOGcFv84X4qEdcKAP6Hc3zdr_gqi6yg4vgHXW_jK3jT6tgYrrrwJa62DmLMXLYv1y1twtKlneVUydN808p0zmvFlE0eEyoyQ7gUbnyyqWUMnxUY1lQWdA2UHiF2n35xl51PN9ijW1lejrwa9Tzm_DYeX0sl3YFBWpbsHLDVhJFOntZZYnzKp5IGWwiDGDfPCOA_8rksz03KcU6qNk6xhZ-YZiSDrReDB8778acPu8deSGyShvhSxctc3qtnHrDXyTAlbYOyLOAIP4UKjbOhsgAgxVi5JlPVgvZNv1roK_ESv2B486R-jkdPKjS5dtaAyCCpCHGsmHtxt1KFvSUQrq1EUe5AsKcpSU5eflNNPNZG4kipOpcJeq1XqP12QIVB6j-hZ3P_3bzyGq2iZ2d7OZPcBXKPXm82P6zA4my3cQwRxZ_mj1loYHF-2gf4AJ79bmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+Nanodots+with+Nearly+Unity+Fluorescent+Efficiency+Realized+via+Localized+Excitons&rft.jtitle=Advanced+science&rft.au=Lou%2C+Qing&rft.au=Ni%2C+Qingchao&rft.au=Niu%2C+Chunyao&rft.au=Wei%2C+Jianyong&rft.date=2022-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=30&rft_id=info:doi/10.1002%2Fadvs.202203622&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon