Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons
Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic conde...
Saved in:
Published in | Advanced science Vol. 9; no. 30; pp. e2203622 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.10.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology.
Carbon nanodots (CDs) with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. |
---|---|
AbstractList | Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the
π
–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W
−1
and a flat‐panel illumination system with lighting sizes of more than 100 cm
2
are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long-lasting pursuit for CDs. Herein, CDs with near-unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π-electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect-insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light-converting films with a high solid-state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD-polymer films as light conversion layers, CD-based white light-emitting diodes (WLEDs) with a luminous efficiency of 140 lm W-1 and a flat-panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state-of-the-art nanocrystal-based LEDs. These results pave the way toward carbon-based luminescent materials for solid-state lighting technology.Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long-lasting pursuit for CDs. Herein, CDs with near-unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π-electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect-insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light-converting films with a high solid-state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD-polymer films as light conversion layers, CD-based white light-emitting diodes (WLEDs) with a luminous efficiency of 140 lm W-1 and a flat-panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state-of-the-art nanocrystal-based LEDs. These results pave the way toward carbon-based luminescent materials for solid-state lighting technology. Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long-lasting pursuit for CDs. Herein, CDs with near-unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π-electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect-insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light-converting films with a high solid-state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD-polymer films as light conversion layers, CD-based white light-emitting diodes (WLEDs) with a luminous efficiency of 140 lm W and a flat-panel illumination system with lighting sizes of more than 100 cm are achieved, matching state-of-the-art nanocrystal-based LEDs. These results pave the way toward carbon-based luminescent materials for solid-state lighting technology. Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Abstract Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π –electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W −1 and a flat‐panel illumination system with lighting sizes of more than 100 cm 2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π –electron conjugation. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity. Nevertheless, high emission efficiency is a long‐lasting pursuit for CDs. Herein, CDs with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. The short radiative lifetimes (<8 ns) and diffusion lengths (<50 nm) of the CDs imply that excitons can be efficiently localized by radiative recombination centers for a defect‐insensitive emission of CDs. By incorporating the CDs into polystyrene, flexible light‐converting films with a high solid‐state quantum efficiency of 84% and good resistance to water, heating, and UV light are obtained. With the CD–polymer films as light conversion layers, CD‐based white light‐emitting diodes (WLEDs) with a luminous efficiency of 140 lm W−1 and a flat‐panel illumination system with lighting sizes of more than 100 cm2 are achieved, matching state‐of‐the‐art nanocrystal‐based LEDs. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. Carbon nanodots (CDs) with near‐unity emission efficiency are prepared via atomic condensation of doped pyrrolic nitrogen, which can highly localize the excited states thus lead to the formation of bound excitons and the symmetry break of the π–electron conjugation. These results pave the way toward carbon‐based luminescent materials for solid‐state lighting technology. |
Author | Wei, Jianyong Ni, Qingchao Dong, Lin Liu, Kaikai Zhang, Zhuangfei Zang, Jinhao Shen, Chenglong Shen, Weixia Shan, Chong‐Xin Qin, Chaochao Zheng, Guangsong Lou, Qing Niu, Chunyao |
AuthorAffiliation | 2 State Key Laboratory of Advanced Optical Communication Systems and Networks University of Michigan–Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai 200240 China 3 Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications College of Physics and Materials Science Henan Normal University Xinxiang 453007 China 1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics Ministry of Education, and School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 China |
AuthorAffiliation_xml | – name: 3 Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications College of Physics and Materials Science Henan Normal University Xinxiang 453007 China – name: 2 State Key Laboratory of Advanced Optical Communication Systems and Networks University of Michigan–Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai 200240 China – name: 1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices Key Laboratory of Materials Physics Ministry of Education, and School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 China |
Author_xml | – sequence: 1 givenname: Qing surname: Lou fullname: Lou, Qing organization: Zhengzhou University – sequence: 2 givenname: Qingchao surname: Ni fullname: Ni, Qingchao organization: Zhengzhou University – sequence: 3 givenname: Chunyao surname: Niu fullname: Niu, Chunyao organization: Zhengzhou University – sequence: 4 givenname: Jianyong surname: Wei fullname: Wei, Jianyong email: jianyong.wei@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 5 givenname: Zhuangfei surname: Zhang fullname: Zhang, Zhuangfei organization: Zhengzhou University – sequence: 6 givenname: Weixia surname: Shen fullname: Shen, Weixia organization: Zhengzhou University – sequence: 7 givenname: Chenglong surname: Shen fullname: Shen, Chenglong organization: Zhengzhou University – sequence: 8 givenname: Chaochao surname: Qin fullname: Qin, Chaochao organization: Henan Normal University – sequence: 9 givenname: Guangsong surname: Zheng fullname: Zheng, Guangsong organization: Zhengzhou University – sequence: 10 givenname: Kaikai surname: Liu fullname: Liu, Kaikai organization: Zhengzhou University – sequence: 11 givenname: Jinhao surname: Zang fullname: Zang, Jinhao organization: Zhengzhou University – sequence: 12 givenname: Lin orcidid: 0000-0002-4126-6812 surname: Dong fullname: Dong, Lin email: ldong@zzu.edu.cn organization: Zhengzhou University – sequence: 13 givenname: Chong‐Xin surname: Shan fullname: Shan, Chong‐Xin email: cxshan@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36002336$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiJbSK0e0EhcuCf5ae31BqkJaKkVFAoq4WV57tnW0sVt7N2X763FIWrWVEBd_Pu_rmfG8LvZ88FAUbzGaYoTIR23XaUoQIYhyQl4UBwTLekJrxvYerfeLo5SWCCFcUcFw_arYpzzLKeUHxa-Zjk3w5bn2wYY-lbeuvyrPQcduLC-868fypBtChGTA9-W8bZ1x4M1YfgPduTuw5drpchHMbjf_bVwffHpTvGx1l-BoNx8WFyfzH7Mvk8XX07PZ8WJiKiLZhNPaVtKypjHC6oqbhrfGEEsBCGCbE2tRXTUSMTAcowqLGpGqFbTWwljT0MPibOtrg16q6-hWOo4qaKf-HoR4qXTsnelASWZbaDAlAJYBNtJisEgQwSUIIW32-rT1uh6aFdhNxlF3T0yf3nh3pS7DWslK8rqS2eDDziCGmwFSr1YuF67rtIcwJEUE4gLzPGT0_TN0GYboc6kyRWqKWcVIpt49jughlPsPzADbAiaGlCK0Kpdf9y5sAnSdwkhtWkVtWkU9tEqWTZ_J7p3_Kdi9c-s6GP9Dq-PPP78zhhn9A9Zq0Qo |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_03_047 crossref_primary_10_1039_D3TC03211F crossref_primary_10_1002_sstr_202400447 crossref_primary_10_1039_D4NH00093E crossref_primary_10_1186_s12645_022_00144_9 crossref_primary_10_1002_advs_202207229 crossref_primary_10_1002_advs_202404485 crossref_primary_10_1016_j_trechm_2022_10_005 crossref_primary_10_1021_acssuschemeng_2c06892 crossref_primary_10_1021_acs_nanolett_4c03687 crossref_primary_10_1088_1361_6528_acc6d6 crossref_primary_10_1016_j_cej_2024_150196 crossref_primary_10_1016_j_cej_2024_156389 crossref_primary_10_1021_acs_analchem_4c06609 crossref_primary_10_3390_catal13030547 crossref_primary_10_1021_acsanm_3c04915 crossref_primary_10_1002_adma_202210385 crossref_primary_10_1007_s12274_024_6456_1 crossref_primary_10_1016_j_carbon_2023_01_006 crossref_primary_10_1016_j_trac_2024_118050 crossref_primary_10_3390_polym15244693 crossref_primary_10_1016_j_surfin_2023_102760 crossref_primary_10_1515_nanoph_2023_0578 crossref_primary_10_1016_j_jcis_2025_02_043 crossref_primary_10_1038_s41467_024_46668_z crossref_primary_10_1002_adfm_202420587 crossref_primary_10_1016_j_carbon_2024_118906 crossref_primary_10_1039_D4SE00806E crossref_primary_10_1002_smll_202300906 crossref_primary_10_1016_j_cej_2023_146903 crossref_primary_10_1016_j_ijbiomac_2024_138221 crossref_primary_10_1186_s40538_024_00703_9 crossref_primary_10_1021_acs_jpclett_4c00788 crossref_primary_10_1016_j_cej_2025_160815 crossref_primary_10_1002_adma_202210699 crossref_primary_10_1021_acsami_3c17877 crossref_primary_10_1039_D3MH01292A crossref_primary_10_1002_adfm_202303756 crossref_primary_10_1016_j_ijbiomac_2023_126580 crossref_primary_10_1016_j_jhazmat_2024_134637 crossref_primary_10_1002_adma_202302275 crossref_primary_10_1039_D4TA07743A |
Cites_doi | 10.1021/acsnano.1c09999 10.1002/adfm.202110393 10.1021/acsami.8b02379 10.1038/s41467-020-16675-x 10.1038/s41586-018-0691-0 10.1021/acsnano.5b05406 10.1002/adma.201602581 10.1038/s41467-018-04635-5 10.1002/adma.201504891 10.1103/PhysRevB.54.R17312 10.1002/adom.201901938 10.1038/nmat1726 10.1039/C4NR04034A 10.1002/adma.201403635 10.1021/acsami.6b12113 10.1021/acsnano.1c04001 10.1364/OPTICA.5.000793 10.1002/advs.201900766 10.1016/j.jlumin.2018.10.056 10.1038/s41377-018-0090-1 10.1002/adma.201603443 10.1021/acsami.5b00925 10.2139/ssrn.3915001 10.1002/adom.201700416 10.1039/C8TC04468F 10.1021/acsnano.0c02803 10.1021/am508994w 10.1021/acs.nanolett.9b02093 10.1007/s12274-019-2420-x 10.1021/acsami.7b17619 10.1039/C8TC03497D 10.1039/C8NH00247A 10.1002/anie.201300519 10.1039/C8NR01209A 10.1002/adma.201602651 10.1002/adma.201604436 10.1021/ja809073f 10.1021/acsphotonics.7b01010 10.1038/s41566-019-0557-5 10.1063/1.3126703 10.1002/advs.201902230 10.1021/ja062677d 10.1039/C7NR03913A 10.1002/adma.201503380 10.1021/acsnano.0c09053 10.1039/C5NR03014E 10.1039/C7TC04155A 10.1021/acsphotonics.7b00675 10.1002/advs.201802331 10.1021/acs.jpclett.9b01848 10.1016/j.carbon.2018.05.015 10.1002/adma.201104962 10.1002/adma.201702910 10.1021/jacs.8b06051 10.1038/nnano.2015.60 10.1364/OPTICA.2.000347 10.1002/adma.201704740 10.1002/anie.201602445 10.1021/acsnano.1c03886 10.1002/anie.201501193 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202203622 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_94dfeb132eed4e1c9d1ed072769e779d PMC9596859 36002336 10_1002_advs_202203622 ADVS4414 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Henan Province funderid: 212300410078 – fundername: National Natural Science Foundation of China funderid: U2004168; 12074348; 11974317 – fundername: Scientific and Technological Project in Henan Province funderid: 202102210049; 202102210220 – fundername: National Natural Science Foundation of China grantid: U2004168 – fundername: Scientific and Technological Project in Henan Province grantid: 202102210049 – fundername: National Natural Science Foundation of China grantid: 12074348 – fundername: Natural Science Foundation of Henan Province grantid: 212300410078 – fundername: National Natural Science Foundation of China grantid: 11974317 – fundername: Scientific and Technological Project in Henan Province grantid: 202102210220 – fundername: ; grantid: U2004168; 12074348; 11974317 – fundername: ; grantid: 212300410078 – fundername: Scientific and Technological Project in Henan Province grantid: 202102210049; 202102210220 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5294-638d59d4bbc7da56cb6fcc2d3ee2e1d036f085b904ec6105178025f738a7cdcb3 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Thu Aug 21 18:38:53 EDT 2025 Fri Jul 11 12:02:19 EDT 2025 Sat Jul 26 02:37:57 EDT 2025 Mon Jul 21 06:07:55 EDT 2025 Tue Jul 01 03:59:44 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Wed Jan 22 16:22:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | localized exciton symmetry breaking light-emitting diode carbon nanodot |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5294-638d59d4bbc7da56cb6fcc2d3ee2e1d036f085b904ec6105178025f738a7cdcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4126-6812 |
OpenAccessLink | https://www.proquest.com/docview/2728314542?pq-origsite=%requestingapplication% |
PMID | 36002336 |
PQID | 2728314542 |
PQPubID | 4365299 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94dfeb132eed4e1c9d1ed072769e779d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9596859 proquest_miscellaneous_2706716067 proquest_journals_2728314542 pubmed_primary_36002336 crossref_citationtrail_10_1002_advs_202203622 crossref_primary_10_1002_advs_202203622 wiley_primary_10_1002_advs_202203622_ADVS4414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 2 2017; 5 2019; 4 2018; 140 2019; 6 2017; 4 2019; 10 2019; 12 2018; 563 2015; 54 2015; 10 2016; 10 2006; 5 2019; 19 2020; 14 2017; 29 2020; 11 2009; 131 2019; 206 2015; 7 1996; 54 2017; 9 2016; 55 2018; 7 2020; 8 2018; 6 2018; 9 2021; 15 2015; 27 2018; 5 2021 2013; 52 2018; 136 2018; 30 2022; 32 2016; 28 2012; 24 2018; 10 2006; 128 2014; 6 2022; 16 2016; 8 2009; 105 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 37492937 - Adv Sci (Weinh). 2023 Jul;10(20):e2302440. doi: 10.1002/advs.202302440 |
References_xml | – volume: 206 start-page: 97 year: 2019 publication-title: J. Lumin. – volume: 52 start-page: 3953 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 491 year: 2015 publication-title: Nat. Nanotechnol. – year: 2021 – volume: 6 start-page: 9631 year: 2018 publication-title: J. Mater. Chem. C – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 4 start-page: 388 year: 2019 publication-title: Nanoscale Horiz. – volume: 14 start-page: 171 year: 2020 publication-title: Nat. Photonics – volume: 28 start-page: 312 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 4913 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 502 year: 2018 publication-title: ACS Photonics – volume: 14 start-page: 8528 year: 2020 publication-title: ACS Nano – volume: 54 start-page: 5360 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 28 start-page: 9454 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 1579 year: 2021 publication-title: ACS Nano – volume: 10 start-page: 7737 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1389 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 2249 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 1669 year: 2019 publication-title: Nano Res. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 19 start-page: 5553 year: 2019 publication-title: Nano Lett. – volume: 11 start-page: 2871 year: 2020 publication-title: Nat. Commun. – volume: 4 start-page: 2352 year: 2017 publication-title: ACS Photonics – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 5 start-page: 793 year: 2018 publication-title: Optica – volume: 16 start-page: 2910 year: 2022 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: Nanoscale – volume: 563 start-page: 541 year: 2018 publication-title: Nature – volume: 28 start-page: 3516 year: 2016 publication-title: Adv. Mater. – volume: 105 year: 2009 publication-title: J. Appl. Phys. – volume: 10 start-page: 484 year: 2016 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 8659 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 347 year: 2015 publication-title: Optica – volume: 15 year: 2021 publication-title: ACS Nano – volume: 10 start-page: 7155 year: 2018 publication-title: Nanoscale – volume: 5 start-page: 810 year: 2006 publication-title: Nat. Mater. – volume: 10 start-page: 4596 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 55 start-page: 7231 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 128 start-page: 7756 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 91 year: 2018 publication-title: Light: Sci. Appl. – volume: 136 start-page: 359 year: 2018 publication-title: Carbon – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 131 start-page: 4564 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 24 start-page: 1716 year: 2012 publication-title: Adv. Mater. – volume: 28 start-page: 9163 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_12_1 doi: 10.1021/acsnano.1c09999 – ident: e_1_2_9_43_1 doi: 10.1002/adfm.202110393 – ident: e_1_2_9_58_1 doi: 10.1021/acsami.8b02379 – ident: e_1_2_9_47_1 doi: 10.1038/s41467-020-16675-x – ident: e_1_2_9_40_1 doi: 10.1038/s41586-018-0691-0 – ident: e_1_2_9_4_1 doi: 10.1021/acsnano.5b05406 – ident: e_1_2_9_14_1 doi: 10.1002/adma.201602581 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-018-04635-5 – ident: e_1_2_9_33_1 doi: 10.1002/adma.201504891 – ident: e_1_2_9_37_1 doi: 10.1103/PhysRevB.54.R17312 – ident: e_1_2_9_21_1 doi: 10.1002/adom.201901938 – ident: e_1_2_9_35_1 doi: 10.1038/nmat1726 – ident: e_1_2_9_49_1 doi: 10.1039/C4NR04034A – ident: e_1_2_9_41_1 doi: 10.1002/adma.201403635 – ident: e_1_2_9_52_1 doi: 10.1021/acsami.6b12113 – ident: e_1_2_9_13_1 doi: 10.1021/acsnano.1c04001 – ident: e_1_2_9_23_1 doi: 10.1364/OPTICA.5.000793 – ident: e_1_2_9_9_1 doi: 10.1002/advs.201900766 – ident: e_1_2_9_59_1 doi: 10.1016/j.jlumin.2018.10.056 – ident: e_1_2_9_10_1 doi: 10.1038/s41377-018-0090-1 – ident: e_1_2_9_11_1 doi: 10.1002/adma.201603443 – ident: e_1_2_9_26_1 doi: 10.1021/acsami.5b00925 – ident: e_1_2_9_60_1 doi: 10.2139/ssrn.3915001 – ident: e_1_2_9_54_1 doi: 10.1002/adom.201700416 – ident: e_1_2_9_56_1 doi: 10.1039/C8TC04468F – ident: e_1_2_9_46_1 doi: 10.1021/acsnano.0c02803 – ident: e_1_2_9_22_1 doi: 10.1021/am508994w – ident: e_1_2_9_42_1 doi: 10.1021/acs.nanolett.9b02093 – ident: e_1_2_9_30_1 doi: 10.1007/s12274-019-2420-x – ident: e_1_2_9_20_1 doi: 10.1021/acsami.7b17619 – ident: e_1_2_9_57_1 doi: 10.1039/C8TC03497D – ident: e_1_2_9_29_1 doi: 10.1039/C8NH00247A – ident: e_1_2_9_7_1 doi: 10.1002/anie.201300519 – ident: e_1_2_9_25_1 doi: 10.1039/C8NR01209A – ident: e_1_2_9_27_1 doi: 10.1002/adma.201602651 – ident: e_1_2_9_15_1 doi: 10.1002/adma.201604436 – ident: e_1_2_9_18_1 doi: 10.1021/ja809073f – ident: e_1_2_9_32_1 doi: 10.1021/acsphotonics.7b01010 – ident: e_1_2_9_16_1 doi: 10.1038/s41566-019-0557-5 – ident: e_1_2_9_36_1 doi: 10.1063/1.3126703 – ident: e_1_2_9_28_1 doi: 10.1002/advs.201902230 – ident: e_1_2_9_17_1 doi: 10.1021/ja062677d – ident: e_1_2_9_45_1 doi: 10.1039/C7NR03913A – ident: e_1_2_9_50_1 doi: 10.1002/adma.201503380 – ident: e_1_2_9_6_1 doi: 10.1021/acsnano.0c09053 – ident: e_1_2_9_24_1 doi: 10.1039/C5NR03014E – ident: e_1_2_9_55_1 doi: 10.1039/C7TC04155A – ident: e_1_2_9_53_1 doi: 10.1021/acsphotonics.7b00675 – ident: e_1_2_9_5_1 doi: 10.1002/advs.201802331 – ident: e_1_2_9_44_1 doi: 10.1021/acs.jpclett.9b01848 – ident: e_1_2_9_51_1 doi: 10.1016/j.carbon.2018.05.015 – ident: e_1_2_9_48_1 doi: 10.1002/adma.201104962 – ident: e_1_2_9_31_1 doi: 10.1002/adma.201702910 – ident: e_1_2_9_1_1 doi: 10.1021/jacs.8b06051 – ident: e_1_2_9_39_1 doi: 10.1038/nnano.2015.60 – ident: e_1_2_9_38_1 doi: 10.1364/OPTICA.2.000347 – ident: e_1_2_9_2_1 doi: 10.1002/adma.201704740 – ident: e_1_2_9_19_1 doi: 10.1002/anie.201602445 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.1c03886 – ident: e_1_2_9_8_1 doi: 10.1002/anie.201501193 – reference: 37492937 - Adv Sci (Weinh). 2023 Jul;10(20):e2302440. doi: 10.1002/advs.202302440 |
SSID | ssj0001537418 |
Score | 2.4394493 |
Snippet | Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity.... Abstract Carbon nanodots (CDs) have emerged as an alternative option for traditional nanocrystals due to their excellent optical properties and low toxicity.... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2203622 |
SubjectTerms | Carbon carbon nanodot Chromatography Efficiency Light emitting diodes Lighting light‐emitting diode localized exciton Microscopy Nitrogen Quantum dots Semiconductors symmetry breaking |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA_iyYtUre20VlIo2B4GJ1-TybHKLlJaD22FvQ2ZJEMXZFZ2Xan-9b6XzA67VPHS48w8kvA-8n6ZJL9HyCcLaaetvMydMyFHwJsbXri8tKVqmWhCFWsD_rgsL67kt4marJX6wjNhiR44Ke7USN_CfCI4TOYyMGc8C76ArFuaoLXxOPtCzltbTKX7wQJpWVYsjQU_tf4O2bk5brxxvpGFIln_Uwjz34OS6wA2ZqDxK7LbQ0f6NQ15j2yFbp_s9cG5oJ97BukvB2RybufNrKMwdeKqc0Hxbyu9DEhmTBFl3tPx9XI2T1ROdBRpJPAOJv0JuHH6EDy9m1r6HfNcfBr9dRD53eI1uRqPfp9f5H0JhdwpbmQO0eWV8bJpnPZWlQ7v9jjuRQg8MA-6aAFzNaaQwQGQUkxXAIJaLSqrnXeNOCTb3awLbwmtHBOqCtZaBe0ZVyleWCUd4EvWtC5kJF-ptHY9vziWubiuEzMyr9EE9WCCjJwM8jeJWeNZyTO00CCFjNjxBfhJ3ftJ_ZKfZORoZd-6D1PoQgO6YlJJ6OPj8BkCDHdNbBdmS5SBhM5gnacz8ia5wzASgbuaQpQZ0RuOsjHUzS_d9E8k8TbKlJUyoLXoUi-ooAaQ8guQq3z3P3Txnuxgy-lM4hHZvp0vwwfAVrfNcQyjR09CIkM priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kffFFbP1KrbIFQX0IzX4lu49a7ihFi6iFewv7FT0oidz1ivrXO7PJpQ0q4mM2w-6yszPz26_fEPLCQthpdJC59ybmCHhzwwufl7ZUDRMu6pQb8P15eXohzxZqcesVf88PMW64oWUkf40Gbt36-IY01IZrpNvmeJLGwQnv4vtaZM_n8sPNLosSSM-CGeZgdZ0LLeWWubHgx9MqJpEpEfj_CXX-fnnyNqhNUWl-n9wb4CR90-t_j9yJ7T7ZGwx2TV8NrNKvH5DFiV25rqXgTnEluqa4A0vPIxIcU0SeP-j8ctOtenonOkvUEvguk34ELLn8GQO9Xlr6DmNf-pp99-AN2vVDcjGffT45zYe0CrlX3MgcLC4oE6RzvgpWlR7f-3geRIw8sgBj0QAOc6aQ0QO4UqzSAIyaSmhb-eCdeER22q6NTwjVngmlo7VWQX3Ga8ULq6QHzMlc42NG8u2Q1n7gHMfUF5d1z5bMa1RBPaogIy9H-W8928ZfJd-ihkYpZMlOBd3qSz0YXW1kaCAWCQ5AQEbmTWAxFIDYShOryoSMHG71Ww-mC01UgLiYVBLaOBp_g9HhSYptY7dBGQjyDNZ-VUYe99Nh7InAk04hyoxUk4ky6er0T7v8moi9jTKlVgZGLU2pfwxBDcDlE6BZefCf8k_JXSzsryQekp2r1SY-A2h15Z4n6_kFdvIdNg priority: 102 providerName: Wiley-Blackwell |
Title | Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202203622 https://www.ncbi.nlm.nih.gov/pubmed/36002336 https://www.proquest.com/docview/2728314542 https://www.proquest.com/docview/2706716067 https://pubmed.ncbi.nlm.nih.gov/PMC9596859 https://doaj.org/article/94dfeb132eed4e1c9d1ed072769e779d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-x9YUXxPgMG5WRkICHaI1jJ_ET2karCW3VtDGpb5FjO1BpSrZ2nYC_njvHDVR8PSZ2Esfnu_v5bP8O4LVGt1MXVsTGKBcT4I0VH5k405msk7Ryhc8NeDrNji_Fx5mchYDbMmyrXNtEb6htayhGvs9zdISJkIK_v76JKWsUra6GFBpbMEATXODka3A4np6d_4yyyJToWdZsjSO-r-0dsXRzWoDjfMMbedL-PyHN3zdM_gpkvSeaPIQHAUKyg07mO3DPNY9gJyjpkr0NTNLvHsPsSC-qtmFoQmn2uWQUdWVTR6TGjNDmNza5WrWLjtKJjT2dBJ3FZOeIH-ffnWV3c81OyN_5q_FXgxagWT6By8n409FxHFIpxEZyJWLUMiuVFVVlcqtlZuiMj-E2dY67xGJf1Ii9KjUSziCgkkleIBiq87TQubGmSp_CdtM27jmwwiSpLJzWWuL7lCkkH2kpDOLMpKqNiyBed2lpAs84pbu4KjuGZF6SCMpeBBG86etfdwwbf615SBLqaxEztr_RLj6XQdFKJWyN_ifl6PyFS4yyibMjRGmZcnmubAR7a_mWQV3xE_3giuBVX4yKRqsnunHtiuqgY09wvpdH8KwbDn1LUlrdTNMsgnxjoGw0dbOkmX_xZN5KqqyQCnvND6n_dEGJYOUCEax48e_f2IX79Ey363APtm8XK_cS0dNtNYQtLs6GMDj4cHpyMQwKM_SxiB_TCh2C |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPIMFDASCDhE3Th2Eh8QomVXW7pdodJKe0sd24GVqqTsdgvlR_EbmckLVrxOPSZxHMcznvnGj28Anmp0O3lihW-Mcj4BXl_xvvEjHck8CDOXVLkB9yfR6Ei8m8rpGnxvz8LQtsrWJlaG2paG5si3eIyOMBBS8Nenn33KGkWrq20KjVot9tzFFwzZFq9236J8n3E-HBzujPwmq4BvJFfCR4WzUlmRZSa2WkaGjrsYbkPnuAssWvQcYUim-sIZxBYyiBPEBXkcJjo21mQh1nsF1kWIoUwP1rcHk_cHP2d1ZEh0MC07ZJ9vaXtOrOCcFvw4X_F-VZKAPyHb3zdo_gqcK883vAHXG8jK3tQ6tgFrrrgJG41RWLAXDXP1y1sw3dHzrCwYmmyKdheMZnnZxBGJMiN0e8GGJ8tyXlNIsUFFX0FnP9kB4tXZN2fZ-UyzMfnX6mrw1aDFKRa34ehSOvkO9IqycPeAJSYIZeK01hLrUyaRvK-lMIhrgyw3zgO_7dLUNLzmlF7jJK0ZmXlKIkg7EXjwvCt_WjN6_LXkNkmoK0VM3NWNcv4xbQZ2qoTN0d-FHMGGcIFRNnC2j6gwUi6OlfVgs5Vv2pgH_ESnzB486R7jwKbVGl24ckllEEgEGF_GHtyt1aFrSUirqWEYeRCvKMpKU1efFLNPFXm4kipKpMJeq1TqP12QIjj6gIhZ3P_3bzyGq6PD_XE63p3sPYBr9H6943ETemfzpXuIyO0se9QMFwbHlz1CfwA6gVdl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qUwlxQZQ1UMBIIOAQTeLYSXxAiLYzamkZVYVKvaWO7cBIVVJmOoXy0_h1vJcNRmynHpM4juO3fd6-B_BUY9gpUit8Y5TzCfD6igfGj3UsizDKXVrnBnw3ibcPxdsjebQC37uzMLStsvOJtaO2laE58iFPMBCGQgo-LNptEftb49enn33KIEUrrV06jUZFdt3FFxy-zV_tbKGsn3E-Hn3Y3PbbDAO-kVwJH5XPSmVFnpvEahkbOvpiuI2c4y606N0LhCS5CoQziDNkmKSIEYokSnVirMkjrPcKrCY4KgoGsLoxmuwf_JzhkRFRw3RMkQEfantODOGcFv84X4qEdcKAP6Hc3zdr_gqi6yg4vgHXW_jK3jT6tgYrrrwJa62DmLMXLYv1y1twtKlneVUydN808p0zmvFlE0eEyoyQ7gUbnyyqWUMnxUY1lQWdA2UHiF2n35xl51PN9ijW1lejrwa9Tzm_DYeX0sl3YFBWpbsHLDVhJFOntZZYnzKp5IGWwiDGDfPCOA_8rksz03KcU6qNk6xhZ-YZiSDrReDB8778acPu8deSGyShvhSxctc3qtnHrDXyTAlbYOyLOAIP4UKjbOhsgAgxVi5JlPVgvZNv1roK_ESv2B486R-jkdPKjS5dtaAyCCpCHGsmHtxt1KFvSUQrq1EUe5AsKcpSU5eflNNPNZG4kipOpcJeq1XqP12QIVB6j-hZ3P_3bzyGq2iZ2d7OZPcBXKPXm82P6zA4my3cQwRxZ_mj1loYHF-2gf4AJ79bmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+Nanodots+with+Nearly+Unity+Fluorescent+Efficiency+Realized+via+Localized+Excitons&rft.jtitle=Advanced+science&rft.au=Lou%2C+Qing&rft.au=Ni%2C+Qingchao&rft.au=Niu%2C+Chunyao&rft.au=Wei%2C+Jianyong&rft.date=2022-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=30&rft_id=info:doi/10.1002%2Fadvs.202203622&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |