A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium‐Mediated Excitotoxicity
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia...
Saved in:
Published in | Advanced science Vol. 9; no. 4; pp. e2103265 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.02.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
In this paper, it is shown how the survival strategy of the worm Caenorhabditis elegans against desiccation, namely, producing glycolic acid at high concentrations, can be used to protect against stroke in mammals. Glycolic acid mitigates the deleterious effects of ischemia/reperfusion by decreasing the glutamate‐dependent abnormal calcium influx to the cells, leading to reduced lesion sizes in mice and swine. |
---|---|
AbstractList | Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in
Caenorhabditis elegans
dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. Abstract Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. In this paper, it is shown how the survival strategy of the worm Caenorhabditis elegans against desiccation, namely, producing glycolic acid at high concentrations, can be used to protect against stroke in mammals. Glycolic acid mitigates the deleterious effects of ischemia/reperfusion by decreasing the glutamate‐dependent abnormal calcium influx to the cells, leading to reduced lesion sizes in mice and swine. Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. In this paper, it is shown how the survival strategy of the worm Caenorhabditis elegans against desiccation, namely, producing glycolic acid at high concentrations, can be used to protect against stroke in mammals. Glycolic acid mitigates the deleterious effects of ischemia/reperfusion by decreasing the glutamate‐dependent abnormal calcium influx to the cells, leading to reduced lesion sizes in mice and swine. |
Author | Dames, Claudia Aillery, Marine Berchtold, Daniel Chovsepian, Alexandra Golubczyk, Dominika Fernandez‐Sanz, Celia Walczak, Piotr Janowski, Miroslaw Dening, Yanina Winek, Katarzyna Falkai, Peter Ramírez Álvarez, Inés Dieterich, Marianne Gajewski, Zdzislaw Meisel, Andreas Weitbrecht, Luis Pan‐Montojo, Francisco Plesnila, Nikolaus Mamrak, Uta |
AuthorAffiliation | 3 Laboratory of Experimental Stroke Research Institute for Stroke and Dementia Research (ISD) University of Munich Medical Center Feodor‐Lynen‐Strasse 17 81377 Munich Germany 4 Department of Neurology Ludwig‐Maximilian University Hospital Marchioninstrasse. 15 81377 Munich Germany 5 Munich Cluster for Systems Neurology (SyNergy) Ludwig‐Maximilian University Munich 81377 Munich Germany 7 Center for Translational Medicine Warsaw University of Life Sciences Warsaw 02‐787 Poland 10 Present address: Present address: Seppic Île‐de‐France La Garenne‐Colombes 92250 France 11 Present address: Present address: Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia PA 19107 USA 2 Department of Neurology NeuroCure Clinical Research Center Center for Stroke Research Charité University Medicine Charitéplatz 1 10117 Berlin Germany 8 Program in Image Guided Neurointerventions Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore MD |
AuthorAffiliation_xml | – name: 8 Program in Image Guided Neurointerventions Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore MD 21201 USA – name: 7 Center for Translational Medicine Warsaw University of Life Sciences Warsaw 02‐787 Poland – name: 11 Present address: Present address: Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia PA 19107 USA – name: 1 Department of Psychiatry and Psychotherapy Ludwig‐Maximilian University Hospital Nussbaumstrasse. 7 80336 Munich Germany – name: 3 Laboratory of Experimental Stroke Research Institute for Stroke and Dementia Research (ISD) University of Munich Medical Center Feodor‐Lynen‐Strasse 17 81377 Munich Germany – name: 4 Department of Neurology Ludwig‐Maximilian University Hospital Marchioninstrasse. 15 81377 Munich Germany – name: 6 Ti‐com LLC Trylinskiego 2 Olsztyn 10‐683 Poland – name: 10 Present address: Present address: Seppic Île‐de‐France La Garenne‐Colombes 92250 France – name: 9 Present address: Present address: Edmond and Lily Safra Center for Brain Sciences Hebrew University of Jerusalem Jerusalem 9190401 Israel – name: 2 Department of Neurology NeuroCure Clinical Research Center Center for Stroke Research Charité University Medicine Charitéplatz 1 10117 Berlin Germany – name: 5 Munich Cluster for Systems Neurology (SyNergy) Ludwig‐Maximilian University Munich 81377 Munich Germany |
Author_xml | – sequence: 1 givenname: Alexandra surname: Chovsepian fullname: Chovsepian, Alexandra organization: Ludwig‐Maximilian University Hospital – sequence: 2 givenname: Daniel orcidid: 0000-0002-7865-4157 surname: Berchtold fullname: Berchtold, Daniel organization: Charité University Medicine – sequence: 3 givenname: Katarzyna orcidid: 0000-0003-3085-9054 surname: Winek fullname: Winek, Katarzyna organization: Charité University Medicine – sequence: 4 givenname: Uta surname: Mamrak fullname: Mamrak, Uta organization: University of Munich Medical Center – sequence: 5 givenname: Inés surname: Ramírez Álvarez fullname: Ramírez Álvarez, Inés organization: Ludwig‐Maximilian University Munich – sequence: 6 givenname: Yanina surname: Dening fullname: Dening, Yanina organization: Ludwig‐Maximilian University Hospital – sequence: 7 givenname: Dominika orcidid: 0000-0001-5692-6329 surname: Golubczyk fullname: Golubczyk, Dominika organization: Ti‐com LLC – sequence: 8 givenname: Luis surname: Weitbrecht fullname: Weitbrecht, Luis organization: Charité University Medicine – sequence: 9 givenname: Claudia surname: Dames fullname: Dames, Claudia organization: Charité University Medicine – sequence: 10 givenname: Marine surname: Aillery fullname: Aillery, Marine organization: Charité University Medicine – sequence: 11 givenname: Celia orcidid: 0000-0002-3437-7792 surname: Fernandez‐Sanz fullname: Fernandez‐Sanz, Celia organization: Ludwig‐Maximilian University Munich – sequence: 12 givenname: Zdzislaw surname: Gajewski fullname: Gajewski, Zdzislaw organization: Warsaw University of Life Sciences – sequence: 13 givenname: Marianne surname: Dieterich fullname: Dieterich, Marianne organization: Ludwig‐Maximilian University Munich – sequence: 14 givenname: Miroslaw surname: Janowski fullname: Janowski, Miroslaw organization: University of Maryland – sequence: 15 givenname: Peter orcidid: 0000-0003-2873-8667 surname: Falkai fullname: Falkai, Peter organization: Ludwig‐Maximilian University Hospital – sequence: 16 givenname: Piotr orcidid: 0000-0002-3733-3322 surname: Walczak fullname: Walczak, Piotr organization: University of Maryland – sequence: 17 givenname: Nikolaus surname: Plesnila fullname: Plesnila, Nikolaus organization: Ludwig‐Maximilian University Munich – sequence: 18 givenname: Andreas orcidid: 0000-0001-7233-5342 surname: Meisel fullname: Meisel, Andreas organization: Charité University Medicine – sequence: 19 givenname: Francisco orcidid: 0000-0002-1647-5196 surname: Pan‐Montojo fullname: Pan‐Montojo, Francisco email: Francisco.Pan-Montojo@med.uni-muenchen.de organization: Ludwig‐Maximilian University Munich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34904402$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxleoiJbSK0dkiQuXBNvr3fVekEJaSqQGEC1crYl3tnXltYu9G5obj8Bz8Fg8CU5ToraXnjyyv_nNH3_Psx3nHWbZS0bHjFL-FpplHHPKGc15WTzJ9jir5SiXQuzciXezgxgvKaWsyCvB5LNsNxc1FYLyvezPhHwJpsMlWDJHfQHOxI74lpx5iwGcRtJ7cojRaA298Y68h4gNScGxXWlvjSYTbRpyCkuM5BMOwbtIjCNz6DqwkbTBd2QW9QV2BshiRb5iM2jjzsnM9QE0WjtYCGQKVpuh-_vr9xwbA30qcnStTe97f23SuXqRPW0TEA9uz_3s24ejs-nH0cnn49l0cjLSBa_FSCwEYKXbsmUtipKBrmTJEZpK0gKAIis4R1FRCrAoeVtjk9etyBtGJdSVzPez2YbbeLhUV2k7EFbKg1E3Fz6cKwi90RaV0KwCXiMvRC14QSU2i7IUoGmqWssqsd5tWFfDosNG43pkew96_8WZC3Xul0pKxqRgCfDmFhD8jwFjrzoT1zsDh36IipfJCZIVdZ6krx9IL_0QXFpVUnEhK1HlRVK9utvRtpX_lkiC8Uagg48xYLuVMKrWtlNr26mt7VKCeJCQfuvGK2kiYx9N-2ksrh4poiaH309TIPJ_kUDuug |
CitedBy_id | crossref_primary_10_2147_DDDT_S411408 crossref_primary_10_1016_j_bbadis_2023_166771 crossref_primary_10_1093_aob_mcae071 crossref_primary_10_26508_lsa_202302535 crossref_primary_10_1002_jimd_12657 crossref_primary_10_4103_1673_5374_375344 crossref_primary_10_1039_D3NR01071F crossref_primary_10_3389_fstro_2023_1165231 crossref_primary_10_3390_ijms25137436 |
Cites_doi | 10.1517/14656566.2010.493558 10.1093/ee/8.1.96 10.1016/S1474-4422(14)70054-7 10.1093/jnci/80.2.84 10.1177/0271678X17700913 10.1002/hbm.23733 10.1186/s40478‐016‐0371‐y 10.1111/j.1471-4159.2008.05473.x 10.1602/neurorx.2.3.396 10.1016/j.pneurobio.2013.11.006 10.1002/path.1645 10.1161/01.STR.28.9.1805 10.1016/j.pneurobio.2004.04.001 10.1007/s00234-009-0551-6 10.3727/096368911X576036 10.2174/1566524043479248 10.1111/j.1471-4159.2009.06098.x 10.1002/jez.1401820203 10.3389/fneur.2020.594672 10.1097/00004647-200002000-00012 10.1016/j.jneumeth.2012.12.021 10.1523/JNEUROSCI.5505-08.2009 10.1101/2021.01.16.426934 10.1161/STROKEAHA.107.489906 10.1021/pr4005103 10.1242/bio.20149399 10.1093/molbev/msw110 10.1523/eneuro.0076‐18.2018 10.1152/ajpregu.00163.2017 10.1088/1742-6596/886/1/012009 10.1161/cir.0000000000000350 10.1056/NEJMoa070240 10.3389/fcell.2020.593890 10.1006/bbrc.2001.5388 10.7554/eLife.13614 10.1016/j.nbd.2018.01.007 10.1038/s41598‐020‐74411‐3 10.1054/mehy.1998.0788 10.4161/worm.19040 10.1371/journal.pone.0082473 10.1016/0022-1759(95)00072-I 10.1161/STROKEAHA.114.007581 10.1038/jcbfm.2012.185 10.1111/j.1471-4159.2007.05043.x 10.1371/journal.pone.0027881 10.1161/STROKEAHA.107.492470 10.1016/S0306-4522(01)00125-7 10.1146/annurev.physiol.62.1.353 10.32607/20758251-2015-7-2-42-47 10.1007/s00335-017-9687-6 10.1371/journal.pone.0033027 10.1002/jez.1401820310 10.1038/sj.jcbfm.9600034 10.1007/BF00690397 10.1038/jcbfm.1993.87 10.1073/pnas.1007075107 10.1016/j.brainres.2009.11.068 10.1038/jcbfm.2013.6 10.1016/S0165-0270(02)00114-0 10.1016/j.pneurobio.2005.03.004 10.1002/jez.1401820202 10.1371/journal.pone.0117190 10.1161/01.STR.0000113692.38574.57 10.1038/jcbfm.2008.88 10.1097/00004647-200006000-00006 10.1097/ANA.0b013e318033da41 10.1016/j.jneumeth.2012.03.003 10.1007/s00425-015-2300-x 10.1016/j.cub.2011.06.064 10.1016/j.bbr.2017.05.042 10.1093/hmg/dds155 10.1155/2013/683920 10.1016/j.expneurol.2006.09.006 10.1042/BST0311343 10.1016/S1474-4422(19)30034-1 10.1016/j.neuint.2016.12.016 10.1523/JNEUROSCI.13-08-03510.1993 10.1083/jcb.151.5.951 10.1016/S0022-1759(00)00233-7 10.1016/j.brainres.2007.11.075 10.1111/j.1469-185X.1952.tb01363.x 10.1038/npre.2012.3492.3 10.1007/978-1-59745-019-5_16 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202103265 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_4c17a29e254942508edb664ac0ac7987 PMC8811841 34904402 10_1002_advs_202103265 ADVS3264 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: German Ministry for Economy and Energy EXIST‐Forschungstransfer funderid: GLYMIPRO‐FKZ03EFLBY173 – fundername: Deutsche Forschungsgemeinschaft funderid: EXC 2145 SyNergy ‐ ID 390857198 – fundername: Deutsche Forschungsgemeinschaft grantid: EXC 2145 SyNergy - ID 390857198 – fundername: German Ministry for Economy and Energy EXIST-Forschungstransfer grantid: GLYMIPRO-FKZ03EFLBY173 – fundername: German Ministry for Economy and Energy EXIST‐Forschungstransfer grantid: GLYMIPRO‐FKZ03EFLBY173 – fundername: ; grantid: EXC 2145 SyNergy ‐ ID 390857198 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5294-4b4ae7cf6f1fe461ac7862ead7805aa0e1522e4700aab62f9ed39f43d108a9783 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:14:20 EDT 2025 Thu Aug 21 18:26:03 EDT 2025 Thu Jul 10 17:52:03 EDT 2025 Sun Jul 13 04:15:37 EDT 2025 Wed Feb 19 02:27:15 EST 2025 Tue Jul 01 03:59:35 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:26:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | glutamate-dependent excitotoxicity Stroke ischemia-reperfusion damage neuroprotection |
Language | English |
License | Attribution 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5294-4b4ae7cf6f1fe461ac7862ead7805aa0e1522e4700aab62f9ed39f43d108a9783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3085-9054 0000-0002-1647-5196 0000-0003-2873-8667 0000-0001-5692-6329 0000-0002-3437-7792 0000-0002-3733-3322 0000-0001-7233-5342 0000-0002-7865-4157 |
OpenAccessLink | https://www.proquest.com/docview/2624874735?pq-origsite=%requestingapplication% |
PMID | 34904402 |
PQID | 2624874735 |
PQPubID | 4365299 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c17a29e254942508edb664ac0ac7987 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811841 proquest_miscellaneous_2610081593 proquest_journals_2624874735 pubmed_primary_34904402 crossref_primary_10_1002_advs_202103265 crossref_citationtrail_10_1002_advs_202103265 wiley_primary_10_1002_advs_202103265_ADVS3264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 11 2008; 1196 1984; 64 2004; 204 2010; 107 2008; 39 2004; 4 2009; 110 2002; 117 2019; 18 2008; 106 2008; 104 2013; 8 2001; 104 2012; 207 2005; 25 2016; 33 2015; 46 2004; 73 2009; 51 2014; 3 1952; 27 2013; 2013 2010; 633 2013; 12 2017; 38 2004; 35 1972; 182 2000; 62 2005; 75 2014; 13 2011; 21 1999; 53 2000; 243 1988; 80 2010; 4 2018; 38 2012; 21 2017; 886 1979; 8 2001; 286 2007; 203 2007; 19 2012 2017; 28 2015; 242 2015; 10 2000; 20 2008 2000; 151 1997; 28 2017; 331 2011; 6 2015; 7 2003; 31 1981; 65 2010; 1312 2014; 115 2009; 29 2007; 357 2016; 5 1993; 13 2012; 1 2013; 33 2018; 315 2021 2020 2015; 112 2018; 112 1942; 2 2011; 50 2018 2013; 213 2016 2013 2005; 2 2011; 47 2012; 7 1995; 184 1967 2017; 107 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Rieger A. M. (e_1_2_10_50_1) 2011; 50 e_1_2_10_91_1 e_1_2_10_93_1 Wourms J. B. (e_1_2_10_80_1) 1967 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 Gourdin M. (e_1_2_10_17_1) 2013 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 Engel O. (e_1_2_10_86_1) 2011; 47 Ramiro J. I. (e_1_2_10_26_1) 2015; 112 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Bacigaluppi M. (e_1_2_10_70_1) 2010; 4 Sullivan J. (e_1_2_10_18_1) 2008 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Lin L. (e_1_2_10_22_1) 2016; 5 Myers G. (e_1_2_10_76_1) 1942; 2 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_47_1 Fenstermacher J. (e_1_2_10_51_1) 1981; 65 e_1_2_10_68_1 e_1_2_10_89_1 |
References_xml | – volume: 203 start-page: 555 year: 2007 publication-title: Exp. Neurol. – volume: 104 start-page: 947 year: 2001 publication-title: Neuroscience – volume: 39 start-page: 433 year: 2008 publication-title: Stroke – volume: 243 start-page: 167 year: 2000 publication-title: J. Immunol. Methods – volume: 182 start-page: 169 year: 1972 publication-title: J. Exp. Zool. – volume: 38 start-page: 5822 year: 2017 publication-title: Hum. Brain Mapp. – volume: 19 start-page: 111 year: 2007 publication-title: J. Neurosurg. Anesthesiol. – volume: 115 start-page: 157 year: 2014 publication-title: Prog. Neurobiol. – volume: 29 start-page: 66 year: 2009 publication-title: J. Cereb. Blood Flow Metab. – volume: 38 start-page: 1500 year: 2018 publication-title: J. Cereb. Blood Flow Metab. – volume: 64 start-page: 319 year: 1984 publication-title: Acta Neuropathol. – volume: 5 start-page: 213 year: 2016 publication-title: Biochem. Pharmacol. – year: 2020 publication-title: Front. Cell and Dev. Biol. – volume: 39 start-page: 205 year: 2008 publication-title: Stroke – year: 2016 publication-title: Circulation – volume: 1196 start-page: 113 year: 2008 publication-title: Brain Res. – volume: 4 start-page: 34 year: 2010 publication-title: Open Neurol. J. – volume: 18 start-page: 439 year: 2019 publication-title: Lancet Neurol. – volume: 117 start-page: 207 year: 2002 publication-title: J. Neurosci. Methods – volume: 20 start-page: 306 year: 2000 publication-title: J. Cereb. Blood Flow Metab. – volume: 182 start-page: 143 year: 1972 publication-title: J. Exp. Zool. – volume: 204 start-page: 428 year: 2004 publication-title: J. Pathol. – volume: 184 start-page: 39 year: 1995 publication-title: J. Immunol. Methods – volume: 331 start-page: 282 year: 2017 publication-title: Behav. Brain Res. – volume: 315 start-page: R165 year: 2018 publication-title: Am. J. Physiol.: Regul., Integr. Comp. Physiol. – volume: 13 start-page: 453 year: 2014 publication-title: Lancet Neurol. – volume: 33 start-page: 846 year: 2013 publication-title: J. Cereb. Blood Flow Metabo. – volume: 80 start-page: 84 year: 1988 publication-title: J. Natl. Cancer Inst. – volume: 13 start-page: 683 year: 1993 publication-title: J. Cereb. Blood Flow Metab. – volume: 357 start-page: 562 year: 2007 publication-title: New Eng. J. Med. – volume: 28 start-page: 324 year: 2017 publication-title: Mamm. Genome – volume: 75 start-page: 342 year: 2005 publication-title: Prog. Neurobiol. – volume: 2 start-page: 396 year: 2005 publication-title: NeuroRx – volume: 46 start-page: 1084 year: 2015 publication-title: Stroke – volume: 35 start-page: 566 year: 2004 publication-title: Stroke – volume: 51 start-page: 661 year: 2009 publication-title: Neuroradiology – volume: 65 start-page: 27 year: 1981 publication-title: Cancer Treat. Rep. – year: 2008 – volume: 2 start-page: 89 year: 1942 publication-title: Stanford Ichthyol. Bull. – volume: 151 start-page: 951 year: 2000 publication-title: J. Cell Biol. – volume: 112 start-page: 136 year: 2015 publication-title: Mo. Med. – volume: 112 start-page: 63 year: 2018 publication-title: Neurobiol. Dis. – volume: 62 start-page: 353 year: 2000 publication-title: Annu. Rev. Physiol. – volume: 1 start-page: 61 year: 2012 publication-title: Worm – volume: 3 start-page: 777 year: 2014 publication-title: Biol. Open – volume: 28 start-page: 1805 year: 1997 publication-title: Stroke – year: 2020 publication-title: Front. Neurol. – volume: 107 start-page: 88 year: 2017 publication-title: Neurochem. Int. – volume: 182 start-page: 389 year: 1972 publication-title: J. Exp. Zool. – year: 2020 publication-title: Scientific Reports – year: 2016 publication-title: Acta Neuropathol. Commun. – volume: 21 start-page: 333 year: 2012 publication-title: Cell Transplant. – volume: 21 start-page: 1331 year: 2011 publication-title: Curr. Biol. – volume: 7 start-page: 42 year: 2015 publication-title: Acta Nat. – year: 2018 publication-title: eneuro – volume: 4 start-page: 131 year: 2004 publication-title: Curr. Mol. Med. – volume: 31 start-page: 1343 year: 2003 publication-title: Biochem. Soc. Trans. – volume: 286 start-page: 292 year: 2001 publication-title: Biochem. Biophys. Res. Commun. – volume: 27 start-page: 50 year: 1952 publication-title: Biol. Rev. – year: 2012 publication-title: Nat. Prec. – volume: 20 start-page: 937 year: 2000 publication-title: J. Cereb. Blood Flow Metab. – volume: 25 start-page: 281 year: 2005 publication-title: J. Cere. Blood Flow Metab. – year: 2021 publication-title: bioRxiv – volume: 633 start-page: 221 year: 2010 publication-title: Methods Molecular Biol. – volume: 7 year: 2012 publication-title: PLoS ONE – volume: 47 year: 2011 publication-title: JoVE – volume: 213 start-page: 179 year: 2013 publication-title: J. Neurosci. Methods – volume: 13 start-page: 3510 year: 1993 publication-title: J. Neurosci. – volume: 1312 start-page: 101 year: 2010 publication-title: Brain Res. – volume: 73 start-page: 61 year: 2004 publication-title: Prog. Neurobiol. – volume: 10 year: 2015 publication-title: PLoS One – volume: 21 start-page: 3215 year: 2012 publication-title: Hum. Mol. Genet. – volume: 29 start-page: 1319 year: 2009 publication-title: J. Neurosci. – volume: 8 year: 2013 publication-title: PLoS ONE – volume: 110 start-page: 12 year: 2009 publication-title: J. Neurochem. – year: 1967 – volume: 8 start-page: 96 year: 1979 publication-title: Environ. Entomol. – volume: 6 year: 2011 publication-title: PLoS One – volume: 207 start-page: 31 year: 2012 publication-title: J. Neurosci. Methods – volume: 11 start-page: 1753 year: 2010 publication-title: Expert Opin. Pharmacother. – volume: 106 start-page: 1248 year: 2008 publication-title: J. Neurochem. – volume: 33 start-page: 330 year: 2013 publication-title: J. Cereb. Blood Flow Metab. – volume: 50 start-page: 2597 year: 2011 publication-title: J. Visualized Exp. – volume: 53 start-page: 380 year: 1999 publication-title: Med. Hypotheses – volume: 886 year: 2017 publication-title: J. Phys.: Conf. Ser. – volume: 242 start-page: 389 year: 2015 publication-title: Planta – volume: 5 year: 2016 publication-title: eLife – volume: 12 start-page: 4462 year: 2013 publication-title: J. Proteome Res. – volume: 2013 start-page: 1 year: 2013 publication-title: Oxid. Med. Cell. Longevity – volume: 33 start-page: 2391 year: 2016 publication-title: Mol. Biol. Evol. – volume: 107 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – year: 2013 – volume: 104 start-page: 1201 year: 2008 publication-title: J. Neurochem. – ident: e_1_2_10_11_1 doi: 10.1517/14656566.2010.493558 – volume: 4 start-page: 34 year: 2010 ident: e_1_2_10_70_1 publication-title: Open Neurol. J. – ident: e_1_2_10_81_1 doi: 10.1093/ee/8.1.96 – ident: e_1_2_10_8_1 doi: 10.1016/S1474-4422(14)70054-7 – ident: e_1_2_10_52_1 doi: 10.1093/jnci/80.2.84 – ident: e_1_2_10_4_1 doi: 10.1177/0271678X17700913 – ident: e_1_2_10_68_1 doi: 10.1002/hbm.23733 – ident: e_1_2_10_31_1 doi: 10.1186/s40478‐016‐0371‐y – ident: e_1_2_10_28_1 doi: 10.1111/j.1471-4159.2008.05473.x – ident: e_1_2_10_29_1 doi: 10.1602/neurorx.2.3.396 – volume: 112 start-page: 136 year: 2015 ident: e_1_2_10_26_1 publication-title: Mo. Med. – ident: e_1_2_10_24_1 doi: 10.1016/j.pneurobio.2013.11.006 – ident: e_1_2_10_34_1 doi: 10.1002/path.1645 – ident: e_1_2_10_58_1 doi: 10.1161/01.STR.28.9.1805 – ident: e_1_2_10_3_1 doi: 10.1016/j.pneurobio.2004.04.001 – ident: e_1_2_10_83_1 doi: 10.1007/s00234-009-0551-6 – ident: e_1_2_10_84_1 doi: 10.3727/096368911X576036 – ident: e_1_2_10_6_1 doi: 10.2174/1566524043479248 – ident: e_1_2_10_10_1 doi: 10.1111/j.1471-4159.2009.06098.x – ident: e_1_2_10_78_1 doi: 10.1002/jez.1401820203 – ident: e_1_2_10_54_1 doi: 10.3389/fneur.2020.594672 – ident: e_1_2_10_73_1 doi: 10.1097/00004647-200002000-00012 – ident: e_1_2_10_92_1 doi: 10.1016/j.jneumeth.2012.12.021 – volume-title: A naturally occurring vertebrate dispersion‐reaggregation system subject to developmental arrest year: 1967 ident: e_1_2_10_80_1 – ident: e_1_2_10_9_1 doi: 10.1523/JNEUROSCI.5505-08.2009 – ident: e_1_2_10_25_1 doi: 10.1101/2021.01.16.426934 – ident: e_1_2_10_38_1 doi: 10.1161/STROKEAHA.107.489906 – ident: e_1_2_10_43_1 doi: 10.1021/pr4005103 – ident: e_1_2_10_19_1 doi: 10.1242/bio.20149399 – ident: e_1_2_10_82_1 doi: 10.1093/molbev/msw110 – ident: e_1_2_10_5_1 doi: 10.1523/eneuro.0076‐18.2018 – ident: e_1_2_10_36_1 doi: 10.1152/ajpregu.00163.2017 – ident: e_1_2_10_66_1 doi: 10.1088/1742-6596/886/1/012009 – ident: e_1_2_10_2_1 doi: 10.1161/cir.0000000000000350 – ident: e_1_2_10_7_1 doi: 10.1056/NEJMoa070240 – ident: e_1_2_10_45_1 doi: 10.3389/fcell.2020.593890 – ident: e_1_2_10_33_1 doi: 10.1006/bbrc.2001.5388 – ident: e_1_2_10_15_1 doi: 10.7554/eLife.13614 – ident: e_1_2_10_32_1 doi: 10.1016/j.nbd.2018.01.007 – ident: e_1_2_10_37_1 doi: 10.1038/s41598‐020‐74411‐3 – ident: e_1_2_10_75_1 doi: 10.1054/mehy.1998.0788 – ident: e_1_2_10_13_1 doi: 10.4161/worm.19040 – ident: e_1_2_10_14_1 doi: 10.1371/journal.pone.0082473 – volume: 47 year: 2011 ident: e_1_2_10_86_1 publication-title: JoVE – ident: e_1_2_10_47_1 doi: 10.1016/0022-1759(95)00072-I – ident: e_1_2_10_67_1 doi: 10.1161/STROKEAHA.114.007581 – ident: e_1_2_10_87_1 doi: 10.1038/jcbfm.2012.185 – ident: e_1_2_10_62_1 doi: 10.1111/j.1471-4159.2007.05043.x – ident: e_1_2_10_64_1 doi: 10.1371/journal.pone.0027881 – ident: e_1_2_10_89_1 doi: 10.1161/STROKEAHA.107.492470 – ident: e_1_2_10_72_1 doi: 10.1016/S0306-4522(01)00125-7 – ident: e_1_2_10_40_1 doi: 10.1146/annurev.physiol.62.1.353 – ident: e_1_2_10_63_1 doi: 10.32607/20758251-2015-7-2-42-47 – ident: e_1_2_10_35_1 doi: 10.1007/s00335-017-9687-6 – ident: e_1_2_10_42_1 doi: 10.1371/journal.pone.0033027 – ident: e_1_2_10_79_1 doi: 10.1002/jez.1401820310 – ident: e_1_2_10_61_1 doi: 10.1038/sj.jcbfm.9600034 – volume: 2 start-page: 89 year: 1942 ident: e_1_2_10_76_1 publication-title: Stanford Ichthyol. Bull. – ident: e_1_2_10_27_1 doi: 10.1007/BF00690397 – ident: e_1_2_10_57_1 doi: 10.1038/jcbfm.1993.87 – ident: e_1_2_10_41_1 doi: 10.1073/pnas.1007075107 – ident: e_1_2_10_71_1 doi: 10.1016/j.brainres.2009.11.068 – volume: 5 start-page: 213 year: 2016 ident: e_1_2_10_22_1 publication-title: Biochem. Pharmacol. – ident: e_1_2_10_30_1 doi: 10.1038/jcbfm.2013.6 – volume: 50 start-page: 2597 year: 2011 ident: e_1_2_10_50_1 publication-title: J. Visualized Exp. – volume-title: Artery Bypass year: 2013 ident: e_1_2_10_17_1 – ident: e_1_2_10_91_1 doi: 10.1016/S0165-0270(02)00114-0 – ident: e_1_2_10_69_1 doi: 10.1016/j.pneurobio.2005.03.004 – ident: e_1_2_10_77_1 doi: 10.1002/jez.1401820202 – ident: e_1_2_10_44_1 doi: 10.1371/journal.pone.0117190 – ident: e_1_2_10_93_1 doi: 10.1161/01.STR.0000113692.38574.57 – ident: e_1_2_10_60_1 doi: 10.1038/jcbfm.2008.88 – ident: e_1_2_10_74_1 doi: 10.1097/00004647-200006000-00006 – ident: e_1_2_10_53_1 doi: 10.1097/ANA.0b013e318033da41 – ident: e_1_2_10_55_1 doi: 10.1016/j.jneumeth.2012.03.003 – ident: e_1_2_10_16_1 doi: 10.1007/s00425-015-2300-x – ident: e_1_2_10_12_1 doi: 10.1016/j.cub.2011.06.064 – ident: e_1_2_10_90_1 doi: 10.1016/j.bbr.2017.05.042 – ident: e_1_2_10_21_1 doi: 10.1093/hmg/dds155 – ident: e_1_2_10_46_1 doi: 10.1155/2013/683920 – ident: e_1_2_10_88_1 doi: 10.1016/j.expneurol.2006.09.006 – ident: e_1_2_10_20_1 doi: 10.1042/BST0311343 – ident: e_1_2_10_1_1 doi: 10.1016/S1474-4422(19)30034-1 – ident: e_1_2_10_65_1 doi: 10.1016/j.neuint.2016.12.016 – ident: e_1_2_10_23_1 doi: 10.1523/JNEUROSCI.13-08-03510.1993 – volume: 65 start-page: 27 year: 1981 ident: e_1_2_10_51_1 publication-title: Cancer Treat. Rep. – volume-title: Bad Things Happen in Ischemia year: 2008 ident: e_1_2_10_18_1 – ident: e_1_2_10_49_1 doi: 10.1083/jcb.151.5.951 – ident: e_1_2_10_48_1 doi: 10.1016/S0022-1759(00)00233-7 – ident: e_1_2_10_59_1 doi: 10.1016/j.brainres.2007.11.075 – ident: e_1_2_10_39_1 doi: 10.1111/j.1469-185X.1952.tb01363.x – ident: e_1_2_10_56_1 doi: 10.1038/npre.2012.3492.3 – ident: e_1_2_10_85_1 doi: 10.1007/978-1-59745-019-5_16 |
SSID | ssj0001537418 |
Score | 2.287254 |
Snippet | Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy,... Abstract Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2103265 |
SubjectTerms | Acids Apoptosis Free radicals Glucose glutamate‐dependent excitotoxicity Ischemia ischemia–reperfusion damage Metabolism neuroprotection Stroke Variance analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb5RAEN-YPvlirH_R1oyJifpAyi7LAo_XprU1OWNsm_SN7D8iyQHGu2t6b_0Ifg4_lp_EGeDIXdT0xScIbGCZ-Q0zAzu_YewNzwwiI8vDzCYqlJ670DhpQq3QKnNufRxTcfL0kzq9lB-vkquNVl-0JqynB-4FdyAtT7XIPSUyiK8o884oJbWNtE0xYaa3L_q8jWSqrw-OiZZlzdIYiQPtromdWxCBHHmSDS_UkfX_LcL8c6HkZgDbeaCTh-zBEDrCpJ_yLrvnm0dsdzDOObwbGKTfP2Y_J_CZaPsRRTD1VNtbzWtoS7hoZ546aXhYtIApZ2X7L3ZwiM7MAe58mK0sUQXDxFYOzvU1Xrkj8GjmUDUw1XWNgAWqSoEzzIx9XWkwK_hCFLDoBuGMnoF-B9D6VjjSM1st61-3P6ZdTxC8yfGNxbfIor2pcLt6wi5Pji-OTsOhKUNoE5HLUBqpfWpLVfLSS8VRC5gUIR6pOYLWkceAQHiZRpHWRoky9y7OSxk7HmWavjM9ZTtN2_jnDIx1XHrhlXMYFyWp5kmGGYwvlUlcnvKAhWslFXZgLKfGGbOi51oWBSm1GJUasLfj-G89V8c_Rx6SzsdRxLHdHUDkFQPyiruQF7C9NWKKwfDxFkpgCkj9nAP2ejyNJkuC141vlzSGGJUwjowD9qwH2DiTWObUBFwELN2C3tZUt8801deOFjzLMFmUJLUOpHeIoMCw5xx35Iv_IYuX7L6gupBuOfse21l8X_p9jNYW5lVnmL8Bjm899g priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEIAtKBcuqOU3tKBBQgIOURPHcZLjtmppkRZVtJV6i_wXiLRJUHe36t54BJ6Dx-JJmEmyaSNAiNNGGys_nhl7xvF8w9jrMNWoGWnmpyaWvnCh9bUV2lcSrTILjYsiSk6efpRH5-LDRXxxK4u_40MMC25kGe14TQau9Hz3Bhqq7BXhtjkR4WR8l92j_Fra1MfFyc0qSxwRnoUqzGF07UepEGtyY8B3x5cYzUwtwP9PXufvmydvO7XtrHS4yR707iRMOvlvsTuufsi2eoOdw9ueKv3uEfsxgRNC-aNmwdRRvm85r6Ap4KyZOaqu4WDRAIahpelW8WAPJzgLePB-tjKED4aJKS2cqiu8cgv1qOdQ1jBVVYVKDJSpAscYLbuqVKBX8ImwsDg1wjG9A30ioD2vsK9mplxWP799n7Z1QvAmB9cGR5ZFc13i7-oxOz88ONs_8vtCDb6JeSZ8oYVyiSlkERZOyFCZBAMl1FEqmKBU4NBJ4E4kQaCUlrzInI2yQkQ2DFJFa09P2Ebd1O4ZA21sKBx30lr0leJEhXGKUY0rpI5tloQe89dCyk1PMadiGrO84y_znISaD0L12Juh_deO3_HXlnsk86EVcbfbP5rLz3lvxrkwYaJ45iisxtEuSJ3VUgplAnznLE08trPWmLwfDPAWkmNYSDWePfZqOI1mTB2vatcsqQ1RltC3jDz2tFOw4UkikVFhcO6xZKR6o0cdn6nLLy0qPE0xgBTUa62S_qMLcnSFTvFAPP_P9tvsPqe0kHY3-w7bWFwu3Qt01hb6ZWuPvwDh8DqI priority: 102 providerName: Wiley-Blackwell |
Title | A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium‐Mediated Excitotoxicity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202103265 https://www.ncbi.nlm.nih.gov/pubmed/34904402 https://www.proquest.com/docview/2624874735 https://www.proquest.com/docview/2610081593 https://pubmed.ncbi.nlm.nih.gov/PMC8811841 https://doaj.org/article/4c17a29e254942508edb664ac0ac7987 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZY-8ILYlwDozISEvAQLXEcx3lC7ejYEJ2qXaS9RY7tjEhtMtZ2Wt_4CfwOfha_hHNSN6zi9hQrtpLY535if4eQV6HMgTNk6ksdC5_b0Pi54bmvBEhlGmobRXg4eXQkDs74x_P43CXcZm5b5VonNora1Bpz5LtMMPCtsVDuu8svPlaNwr-rroTGFumCCpayQ7qD4dH4-FeWJY4QnmWN1hiwXWWuEaWbIZAcWpRb1qgB7f-Tp_n7hsnbjmxjifbvk3vOhaT9Fc23yR1bPSDbTkhn9I1Dkn77kHzv0zHC9wM30ZHFM77lbErrgp7WE4sVNSyd1xRCz1KvMnd0AEbNUGh8mCw1QgbTvi4NPVHX8OQGyKOa0bKiIzWdAuNSPJ1CDyFCttNS0XxJjxEKFswhPcQ54G8B3OdK99REl4vpj6_fRk1tEHjJ8EaDNpnXNyVcl4_I2f7wdO_Ad8UZfB2zlPs858omuhBFWFguQqUTCI6AL7FIglKBBceAWZ4EgVK5YEVqTZQWPDJhIBXmmx6TTlVX9imhuTYht8wKY8A_ihMVxhIiGVuIPDZpEnrEXxMp0w65HAtoTLIV5jLLkKhZS1SPvG7HX64wO_46coA0b0ch1nZzo766yJzoZlyHiWKpxVAaNFwgrcmF4EoHMOdUJh7ZWXNM5hQAvKJlV4-8bLtBdHHhVWXrBY5BZCXwJyOPPFkxWPslEU-xGDjzSLLBehufutlTlZ8beHApIWjkuGoNk_5nCTJwf06gwZ_9exrPyV2GJz-aDes7pDO_WtgX4I_N8x7ZYnzcI93--9Gnk54TwV6T3fgJGJ864g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9AAXRPk1FFgkEHCwaq_Xa_uAUFJSEtpEVZtKvZn17hosJXZpktLceASegwMPxZMwYzumEX-nnmzZK9u7Mzs_653vI-SpGyagGWFkh8oXNjeuthPNE1sKmJWRq4znYXHyYCh6R_zdsX-8Rr4va2FwW-XSJpaGWhcK18i3mGAQWyNR7uuTTzayRuHf1SWFRqUWu2bxGVK26av-G5DvM8Z2uqPtnl2zCtjKZxG3ecKlCVQqUjc1XLhSBRDVw4Aiur-UjgGPxgwPHEfKRLA0MtqLUu5p1wklLpTAc6-Qde4Jh7XIeqc73D_4tarjewgHs0SHdNiW1GeICs4QuA492AXvV5IE_Cmy_X2D5sXAufR8OzfI9Tpkpe1KxzbImslvko3aKEzpixq5-uUt8q1N95EuALSXDgzWFGfTCS1SOirGBhk8DJ0VFFLdTFUrhbQDTlRTOHk7XiiEKKZtlWl6KM_gySVwSD6lWU4HcjKBiUKxGob2ISM3k0zSZEEPEHoW3C_tYx_wNwTuq6Xbcqyy-eTHl6-DkosEXtI9V2C9ZsV5BsfFbXJ0KWK7Q1p5kZt7hCZKu9wwI7SGeMwPpOuHkDmZVCS-jgLXIvZSSLGqkdKRsGMcVxjPLEahxo1QLfK8aX9SYYT8tWUHZd60Qmzv8kJx-iGuTUXMlRtIFhlM3cGiOqHRiRBcKgf6HIWBRTaXGhPXBgde0UwPizxpboOpwIGXuSnm2AaRnCB-9Sxyt1Kw5ks8HiH5OLNIsKJ6K5-6eifPPpZw5GEISSrHUSuV9D9DEEO4dQgn_P6_u_GYXO2NBnvxXn-4-4BcY1h1Um6W3ySt2encPIRYcJY8qicgJe8ve87_BICfdGM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVEJsEOXpUmCQQMDCij0evxYIJW1CQ0kU9SF1Z8YzY2opsUuTlGbHJ_AdfAKfw5dwr1804rXqypY9sj1z3-N7zyXkmR3EwBlBaAbS9UyubWXGisem8EAqQ1tqx8Hi5OHI2z3i747d4zXyva6FwbTKWicWilrlEvfI28xj4Ftjo9x2UqVFjHf6b04_mdhBCv-01u00ShbZ08vPEL7NXg92gNbPGev3Drd3zarDgCldFnKTx1xoXyZeYieae7aQPnj4sLiI9C-EpcG6Mc19yxIi9lgSauWECXeUbQUCN03gudfIuo9RUYusd3uj8f6vHR7XQWiYGinSYm2hzhEhnCGIHVqzS5awaBjwJy_392TNy050YQX7t8jNyn2lnZLfNsiazm6TjUpBzOjLCsX61R3yrUPH2DoAOJkONdYXp7MpzRN6mE80dvPQdJ5TCHtTWe4a0i4YVEXh5O1kKRGumHZkquiBOIcnFyAi2YymGR2K6RSEhmJlDB1AdK6nqaDxku4jDC2YYjrAOeAvCcyxpdtiItPF9MeXr8OiLwm8pHchQZPN84sUjsu75OhKyHaPtLI80w8IjaWyuWbaUwp8M9cXthtAFKUTL3ZV6NsGMWsiRbJCTcfmHZOoxHtmERI1aohqkBfN-NMSL-SvI7tI82YU4nwXF_Kzj1GlNiIubV-wUGMYD9rVCrSKPY8LacGcw8A3yFbNMVGlfOAVjagY5GlzG9QGLrzIdL7AMYjqBL6sY5D7JYM1X-LwEBuRM4P4K6y38qmrd7L0pIAmDwIIWDmuWsGk_1mCCFyvAzjhm_-exhNyHWQ9ej8Y7T0kNxgWoBR581ukNT9b6EfgFs7jx5X8UfLhqkX-J8cMeJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Primeval+Mechanism+of+Tolerance+to+Desiccation+Based+on+Glycolic+Acid+Saves+Neurons+in+Mammals+from+Ischemia+by+Reducing+Intracellular+Calcium%E2%80%90Mediated+Excitotoxicity&rft.jtitle=Advanced+science&rft.au=Chovsepian%2C+Alexandra&rft.au=Berchtold%2C+Daniel&rft.au=Winek%2C+Katarzyna&rft.au=Mamrak%2C+Uta&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Fadvs.202103265&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |