A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium‐Mediated Excitotoxicity

Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 4; pp. e2103265 - n/a
Main Authors Chovsepian, Alexandra, Berchtold, Daniel, Winek, Katarzyna, Mamrak, Uta, Ramírez Álvarez, Inés, Dening, Yanina, Golubczyk, Dominika, Weitbrecht, Luis, Dames, Claudia, Aillery, Marine, Fernandez‐Sanz, Celia, Gajewski, Zdzislaw, Dieterich, Marianne, Janowski, Miroslaw, Falkai, Peter, Walczak, Piotr, Plesnila, Nikolaus, Meisel, Andreas, Pan‐Montojo, Francisco
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.02.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. In this paper, it is shown how the survival strategy of the worm Caenorhabditis elegans against desiccation, namely, producing glycolic acid at high concentrations, can be used to protect against stroke in mammals. Glycolic acid mitigates the deleterious effects of ischemia/reperfusion by decreasing the glutamate‐dependent abnormal calcium influx to the cells, leading to reduced lesion sizes in mice and swine.
AbstractList Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Abstract Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. In this paper, it is shown how the survival strategy of the worm Caenorhabditis elegans against desiccation, namely, producing glycolic acid at high concentrations, can be used to protect against stroke in mammals. Glycolic acid mitigates the deleterious effects of ischemia/reperfusion by decreasing the glutamate‐dependent abnormal calcium influx to the cells, leading to reduced lesion sizes in mice and swine.
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia‐induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate‐dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients. In this paper, it is shown how the survival strategy of the worm Caenorhabditis elegans against desiccation, namely, producing glycolic acid at high concentrations, can be used to protect against stroke in mammals. Glycolic acid mitigates the deleterious effects of ischemia/reperfusion by decreasing the glutamate‐dependent abnormal calcium influx to the cells, leading to reduced lesion sizes in mice and swine.
Author Dames, Claudia
Aillery, Marine
Berchtold, Daniel
Chovsepian, Alexandra
Golubczyk, Dominika
Fernandez‐Sanz, Celia
Walczak, Piotr
Janowski, Miroslaw
Dening, Yanina
Winek, Katarzyna
Falkai, Peter
Ramírez Álvarez, Inés
Dieterich, Marianne
Gajewski, Zdzislaw
Meisel, Andreas
Weitbrecht, Luis
Pan‐Montojo, Francisco
Plesnila, Nikolaus
Mamrak, Uta
AuthorAffiliation 3 Laboratory of Experimental Stroke Research Institute for Stroke and Dementia Research (ISD) University of Munich Medical Center Feodor‐Lynen‐Strasse 17 81377 Munich Germany
4 Department of Neurology Ludwig‐Maximilian University Hospital Marchioninstrasse. 15 81377 Munich Germany
5 Munich Cluster for Systems Neurology (SyNergy) Ludwig‐Maximilian University Munich 81377 Munich Germany
7 Center for Translational Medicine Warsaw University of Life Sciences Warsaw 02‐787 Poland
10 Present address: Present address: Seppic Île‐de‐France La Garenne‐Colombes 92250 France
11 Present address: Present address: Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia PA 19107 USA
2 Department of Neurology NeuroCure Clinical Research Center Center for Stroke Research Charité University Medicine Charitéplatz 1 10117 Berlin Germany
8 Program in Image Guided Neurointerventions Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore MD
AuthorAffiliation_xml – name: 8 Program in Image Guided Neurointerventions Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore MD 21201 USA
– name: 7 Center for Translational Medicine Warsaw University of Life Sciences Warsaw 02‐787 Poland
– name: 11 Present address: Present address: Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia PA 19107 USA
– name: 1 Department of Psychiatry and Psychotherapy Ludwig‐Maximilian University Hospital Nussbaumstrasse. 7 80336 Munich Germany
– name: 3 Laboratory of Experimental Stroke Research Institute for Stroke and Dementia Research (ISD) University of Munich Medical Center Feodor‐Lynen‐Strasse 17 81377 Munich Germany
– name: 4 Department of Neurology Ludwig‐Maximilian University Hospital Marchioninstrasse. 15 81377 Munich Germany
– name: 6 Ti‐com LLC Trylinskiego 2 Olsztyn 10‐683 Poland
– name: 10 Present address: Present address: Seppic Île‐de‐France La Garenne‐Colombes 92250 France
– name: 9 Present address: Present address: Edmond and Lily Safra Center for Brain Sciences Hebrew University of Jerusalem Jerusalem 9190401 Israel
– name: 2 Department of Neurology NeuroCure Clinical Research Center Center for Stroke Research Charité University Medicine Charitéplatz 1 10117 Berlin Germany
– name: 5 Munich Cluster for Systems Neurology (SyNergy) Ludwig‐Maximilian University Munich 81377 Munich Germany
Author_xml – sequence: 1
  givenname: Alexandra
  surname: Chovsepian
  fullname: Chovsepian, Alexandra
  organization: Ludwig‐Maximilian University Hospital
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-7865-4157
  surname: Berchtold
  fullname: Berchtold, Daniel
  organization: Charité University Medicine
– sequence: 3
  givenname: Katarzyna
  orcidid: 0000-0003-3085-9054
  surname: Winek
  fullname: Winek, Katarzyna
  organization: Charité University Medicine
– sequence: 4
  givenname: Uta
  surname: Mamrak
  fullname: Mamrak, Uta
  organization: University of Munich Medical Center
– sequence: 5
  givenname: Inés
  surname: Ramírez Álvarez
  fullname: Ramírez Álvarez, Inés
  organization: Ludwig‐Maximilian University Munich
– sequence: 6
  givenname: Yanina
  surname: Dening
  fullname: Dening, Yanina
  organization: Ludwig‐Maximilian University Hospital
– sequence: 7
  givenname: Dominika
  orcidid: 0000-0001-5692-6329
  surname: Golubczyk
  fullname: Golubczyk, Dominika
  organization: Ti‐com LLC
– sequence: 8
  givenname: Luis
  surname: Weitbrecht
  fullname: Weitbrecht, Luis
  organization: Charité University Medicine
– sequence: 9
  givenname: Claudia
  surname: Dames
  fullname: Dames, Claudia
  organization: Charité University Medicine
– sequence: 10
  givenname: Marine
  surname: Aillery
  fullname: Aillery, Marine
  organization: Charité University Medicine
– sequence: 11
  givenname: Celia
  orcidid: 0000-0002-3437-7792
  surname: Fernandez‐Sanz
  fullname: Fernandez‐Sanz, Celia
  organization: Ludwig‐Maximilian University Munich
– sequence: 12
  givenname: Zdzislaw
  surname: Gajewski
  fullname: Gajewski, Zdzislaw
  organization: Warsaw University of Life Sciences
– sequence: 13
  givenname: Marianne
  surname: Dieterich
  fullname: Dieterich, Marianne
  organization: Ludwig‐Maximilian University Munich
– sequence: 14
  givenname: Miroslaw
  surname: Janowski
  fullname: Janowski, Miroslaw
  organization: University of Maryland
– sequence: 15
  givenname: Peter
  orcidid: 0000-0003-2873-8667
  surname: Falkai
  fullname: Falkai, Peter
  organization: Ludwig‐Maximilian University Hospital
– sequence: 16
  givenname: Piotr
  orcidid: 0000-0002-3733-3322
  surname: Walczak
  fullname: Walczak, Piotr
  organization: University of Maryland
– sequence: 17
  givenname: Nikolaus
  surname: Plesnila
  fullname: Plesnila, Nikolaus
  organization: Ludwig‐Maximilian University Munich
– sequence: 18
  givenname: Andreas
  orcidid: 0000-0001-7233-5342
  surname: Meisel
  fullname: Meisel, Andreas
  organization: Charité University Medicine
– sequence: 19
  givenname: Francisco
  orcidid: 0000-0002-1647-5196
  surname: Pan‐Montojo
  fullname: Pan‐Montojo, Francisco
  email: Francisco.Pan-Montojo@med.uni-muenchen.de
  organization: Ludwig‐Maximilian University Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34904402$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxleoiJbSK0dkiQuXBNvr3fVekEJaSqQGEC1crYl3tnXltYu9G5obj8Bz8Fg8CU5ToraXnjyyv_nNH3_Psx3nHWbZS0bHjFL-FpplHHPKGc15WTzJ9jir5SiXQuzciXezgxgvKaWsyCvB5LNsNxc1FYLyvezPhHwJpsMlWDJHfQHOxI74lpx5iwGcRtJ7cojRaA298Y68h4gNScGxXWlvjSYTbRpyCkuM5BMOwbtIjCNz6DqwkbTBd2QW9QV2BshiRb5iM2jjzsnM9QE0WjtYCGQKVpuh-_vr9xwbA30qcnStTe97f23SuXqRPW0TEA9uz_3s24ejs-nH0cnn49l0cjLSBa_FSCwEYKXbsmUtipKBrmTJEZpK0gKAIis4R1FRCrAoeVtjk9etyBtGJdSVzPez2YbbeLhUV2k7EFbKg1E3Fz6cKwi90RaV0KwCXiMvRC14QSU2i7IUoGmqWssqsd5tWFfDosNG43pkew96_8WZC3Xul0pKxqRgCfDmFhD8jwFjrzoT1zsDh36IipfJCZIVdZ6krx9IL_0QXFpVUnEhK1HlRVK9utvRtpX_lkiC8Uagg48xYLuVMKrWtlNr26mt7VKCeJCQfuvGK2kiYx9N-2ksrh4poiaH309TIPJ_kUDuug
CitedBy_id crossref_primary_10_2147_DDDT_S411408
crossref_primary_10_1016_j_bbadis_2023_166771
crossref_primary_10_1093_aob_mcae071
crossref_primary_10_26508_lsa_202302535
crossref_primary_10_1002_jimd_12657
crossref_primary_10_4103_1673_5374_375344
crossref_primary_10_1039_D3NR01071F
crossref_primary_10_3389_fstro_2023_1165231
crossref_primary_10_3390_ijms25137436
Cites_doi 10.1517/14656566.2010.493558
10.1093/ee/8.1.96
10.1016/S1474-4422(14)70054-7
10.1093/jnci/80.2.84
10.1177/0271678X17700913
10.1002/hbm.23733
10.1186/s40478‐016‐0371‐y
10.1111/j.1471-4159.2008.05473.x
10.1602/neurorx.2.3.396
10.1016/j.pneurobio.2013.11.006
10.1002/path.1645
10.1161/01.STR.28.9.1805
10.1016/j.pneurobio.2004.04.001
10.1007/s00234-009-0551-6
10.3727/096368911X576036
10.2174/1566524043479248
10.1111/j.1471-4159.2009.06098.x
10.1002/jez.1401820203
10.3389/fneur.2020.594672
10.1097/00004647-200002000-00012
10.1016/j.jneumeth.2012.12.021
10.1523/JNEUROSCI.5505-08.2009
10.1101/2021.01.16.426934
10.1161/STROKEAHA.107.489906
10.1021/pr4005103
10.1242/bio.20149399
10.1093/molbev/msw110
10.1523/eneuro.0076‐18.2018
10.1152/ajpregu.00163.2017
10.1088/1742-6596/886/1/012009
10.1161/cir.0000000000000350
10.1056/NEJMoa070240
10.3389/fcell.2020.593890
10.1006/bbrc.2001.5388
10.7554/eLife.13614
10.1016/j.nbd.2018.01.007
10.1038/s41598‐020‐74411‐3
10.1054/mehy.1998.0788
10.4161/worm.19040
10.1371/journal.pone.0082473
10.1016/0022-1759(95)00072-I
10.1161/STROKEAHA.114.007581
10.1038/jcbfm.2012.185
10.1111/j.1471-4159.2007.05043.x
10.1371/journal.pone.0027881
10.1161/STROKEAHA.107.492470
10.1016/S0306-4522(01)00125-7
10.1146/annurev.physiol.62.1.353
10.32607/20758251-2015-7-2-42-47
10.1007/s00335-017-9687-6
10.1371/journal.pone.0033027
10.1002/jez.1401820310
10.1038/sj.jcbfm.9600034
10.1007/BF00690397
10.1038/jcbfm.1993.87
10.1073/pnas.1007075107
10.1016/j.brainres.2009.11.068
10.1038/jcbfm.2013.6
10.1016/S0165-0270(02)00114-0
10.1016/j.pneurobio.2005.03.004
10.1002/jez.1401820202
10.1371/journal.pone.0117190
10.1161/01.STR.0000113692.38574.57
10.1038/jcbfm.2008.88
10.1097/00004647-200006000-00006
10.1097/ANA.0b013e318033da41
10.1016/j.jneumeth.2012.03.003
10.1007/s00425-015-2300-x
10.1016/j.cub.2011.06.064
10.1016/j.bbr.2017.05.042
10.1093/hmg/dds155
10.1155/2013/683920
10.1016/j.expneurol.2006.09.006
10.1042/BST0311343
10.1016/S1474-4422(19)30034-1
10.1016/j.neuint.2016.12.016
10.1523/JNEUROSCI.13-08-03510.1993
10.1083/jcb.151.5.951
10.1016/S0022-1759(00)00233-7
10.1016/j.brainres.2007.11.075
10.1111/j.1469-185X.1952.tb01363.x
10.1038/npre.2012.3492.3
10.1007/978-1-59745-019-5_16
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202103265
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4c17a29e254942508edb664ac0ac7987
PMC8811841
34904402
10_1002_advs_202103265
ADVS3264
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Ministry for Economy and Energy EXIST‐Forschungstransfer
  funderid: GLYMIPRO‐FKZ03EFLBY173
– fundername: Deutsche Forschungsgemeinschaft
  funderid: EXC 2145 SyNergy ‐ ID 390857198
– fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2145 SyNergy - ID 390857198
– fundername: German Ministry for Economy and Energy EXIST-Forschungstransfer
  grantid: GLYMIPRO-FKZ03EFLBY173
– fundername: German Ministry for Economy and Energy EXIST‐Forschungstransfer
  grantid: GLYMIPRO‐FKZ03EFLBY173
– fundername: ;
  grantid: EXC 2145 SyNergy ‐ ID 390857198
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5294-4b4ae7cf6f1fe461ac7862ead7805aa0e1522e4700aab62f9ed39f43d108a9783
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:14:20 EDT 2025
Thu Aug 21 18:26:03 EDT 2025
Thu Jul 10 17:52:03 EDT 2025
Sun Jul 13 04:15:37 EDT 2025
Wed Feb 19 02:27:15 EST 2025
Tue Jul 01 03:59:35 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Jan 22 16:26:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords glutamate-dependent excitotoxicity
Stroke
ischemia-reperfusion damage
neuroprotection
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-4b4ae7cf6f1fe461ac7862ead7805aa0e1522e4700aab62f9ed39f43d108a9783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3085-9054
0000-0002-1647-5196
0000-0003-2873-8667
0000-0001-5692-6329
0000-0002-3437-7792
0000-0002-3733-3322
0000-0001-7233-5342
0000-0002-7865-4157
OpenAccessLink https://www.proquest.com/docview/2624874735?pq-origsite=%requestingapplication%
PMID 34904402
PQID 2624874735
PQPubID 4365299
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_4c17a29e254942508edb664ac0ac7987
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8811841
proquest_miscellaneous_2610081593
proquest_journals_2624874735
pubmed_primary_34904402
crossref_primary_10_1002_advs_202103265
crossref_citationtrail_10_1002_advs_202103265
wiley_primary_10_1002_advs_202103265_ADVS3264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 11
2008; 1196
1984; 64
2004; 204
2010; 107
2008; 39
2004; 4
2009; 110
2002; 117
2019; 18
2008; 106
2008; 104
2013; 8
2001; 104
2012; 207
2005; 25
2016; 33
2015; 46
2004; 73
2009; 51
2014; 3
1952; 27
2013; 2013
2010; 633
2013; 12
2017; 38
2004; 35
1972; 182
2000; 62
2005; 75
2014; 13
2011; 21
1999; 53
2000; 243
1988; 80
2010; 4
2018; 38
2012; 21
2017; 886
1979; 8
2001; 286
2007; 203
2007; 19
2012
2017; 28
2015; 242
2015; 10
2000; 20
2008
2000; 151
1997; 28
2017; 331
2011; 6
2015; 7
2003; 31
1981; 65
2010; 1312
2014; 115
2009; 29
2007; 357
2016; 5
1993; 13
2012; 1
2013; 33
2018; 315
2021
2020
2015; 112
2018; 112
1942; 2
2011; 50
2018
2013; 213
2016
2013
2005; 2
2011; 47
2012; 7
1995; 184
1967
2017; 107
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Rieger A. M. (e_1_2_10_50_1) 2011; 50
e_1_2_10_91_1
e_1_2_10_93_1
Wourms J. B. (e_1_2_10_80_1) 1967
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
Gourdin M. (e_1_2_10_17_1) 2013
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
Engel O. (e_1_2_10_86_1) 2011; 47
Ramiro J. I. (e_1_2_10_26_1) 2015; 112
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Bacigaluppi M. (e_1_2_10_70_1) 2010; 4
Sullivan J. (e_1_2_10_18_1) 2008
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Lin L. (e_1_2_10_22_1) 2016; 5
Myers G. (e_1_2_10_76_1) 1942; 2
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_47_1
Fenstermacher J. (e_1_2_10_51_1) 1981; 65
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – volume: 203
  start-page: 555
  year: 2007
  publication-title: Exp. Neurol.
– volume: 104
  start-page: 947
  year: 2001
  publication-title: Neuroscience
– volume: 39
  start-page: 433
  year: 2008
  publication-title: Stroke
– volume: 243
  start-page: 167
  year: 2000
  publication-title: J. Immunol. Methods
– volume: 182
  start-page: 169
  year: 1972
  publication-title: J. Exp. Zool.
– volume: 38
  start-page: 5822
  year: 2017
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 111
  year: 2007
  publication-title: J. Neurosurg. Anesthesiol.
– volume: 115
  start-page: 157
  year: 2014
  publication-title: Prog. Neurobiol.
– volume: 29
  start-page: 66
  year: 2009
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 38
  start-page: 1500
  year: 2018
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 64
  start-page: 319
  year: 1984
  publication-title: Acta Neuropathol.
– volume: 5
  start-page: 213
  year: 2016
  publication-title: Biochem. Pharmacol.
– year: 2020
  publication-title: Front. Cell and Dev. Biol.
– volume: 39
  start-page: 205
  year: 2008
  publication-title: Stroke
– year: 2016
  publication-title: Circulation
– volume: 1196
  start-page: 113
  year: 2008
  publication-title: Brain Res.
– volume: 4
  start-page: 34
  year: 2010
  publication-title: Open Neurol. J.
– volume: 18
  start-page: 439
  year: 2019
  publication-title: Lancet Neurol.
– volume: 117
  start-page: 207
  year: 2002
  publication-title: J. Neurosci. Methods
– volume: 20
  start-page: 306
  year: 2000
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 182
  start-page: 143
  year: 1972
  publication-title: J. Exp. Zool.
– volume: 204
  start-page: 428
  year: 2004
  publication-title: J. Pathol.
– volume: 184
  start-page: 39
  year: 1995
  publication-title: J. Immunol. Methods
– volume: 331
  start-page: 282
  year: 2017
  publication-title: Behav. Brain Res.
– volume: 315
  start-page: R165
  year: 2018
  publication-title: Am. J. Physiol.: Regul., Integr. Comp. Physiol.
– volume: 13
  start-page: 453
  year: 2014
  publication-title: Lancet Neurol.
– volume: 33
  start-page: 846
  year: 2013
  publication-title: J. Cereb. Blood Flow Metabo.
– volume: 80
  start-page: 84
  year: 1988
  publication-title: J. Natl. Cancer Inst.
– volume: 13
  start-page: 683
  year: 1993
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 357
  start-page: 562
  year: 2007
  publication-title: New Eng. J. Med.
– volume: 28
  start-page: 324
  year: 2017
  publication-title: Mamm. Genome
– volume: 75
  start-page: 342
  year: 2005
  publication-title: Prog. Neurobiol.
– volume: 2
  start-page: 396
  year: 2005
  publication-title: NeuroRx
– volume: 46
  start-page: 1084
  year: 2015
  publication-title: Stroke
– volume: 35
  start-page: 566
  year: 2004
  publication-title: Stroke
– volume: 51
  start-page: 661
  year: 2009
  publication-title: Neuroradiology
– volume: 65
  start-page: 27
  year: 1981
  publication-title: Cancer Treat. Rep.
– year: 2008
– volume: 2
  start-page: 89
  year: 1942
  publication-title: Stanford Ichthyol. Bull.
– volume: 151
  start-page: 951
  year: 2000
  publication-title: J. Cell Biol.
– volume: 112
  start-page: 136
  year: 2015
  publication-title: Mo. Med.
– volume: 112
  start-page: 63
  year: 2018
  publication-title: Neurobiol. Dis.
– volume: 62
  start-page: 353
  year: 2000
  publication-title: Annu. Rev. Physiol.
– volume: 1
  start-page: 61
  year: 2012
  publication-title: Worm
– volume: 3
  start-page: 777
  year: 2014
  publication-title: Biol. Open
– volume: 28
  start-page: 1805
  year: 1997
  publication-title: Stroke
– year: 2020
  publication-title: Front. Neurol.
– volume: 107
  start-page: 88
  year: 2017
  publication-title: Neurochem. Int.
– volume: 182
  start-page: 389
  year: 1972
  publication-title: J. Exp. Zool.
– year: 2020
  publication-title: Scientific Reports
– year: 2016
  publication-title: Acta Neuropathol. Commun.
– volume: 21
  start-page: 333
  year: 2012
  publication-title: Cell Transplant.
– volume: 21
  start-page: 1331
  year: 2011
  publication-title: Curr. Biol.
– volume: 7
  start-page: 42
  year: 2015
  publication-title: Acta Nat.
– year: 2018
  publication-title: eneuro
– volume: 4
  start-page: 131
  year: 2004
  publication-title: Curr. Mol. Med.
– volume: 31
  start-page: 1343
  year: 2003
  publication-title: Biochem. Soc. Trans.
– volume: 286
  start-page: 292
  year: 2001
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 27
  start-page: 50
  year: 1952
  publication-title: Biol. Rev.
– year: 2012
  publication-title: Nat. Prec.
– volume: 20
  start-page: 937
  year: 2000
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 25
  start-page: 281
  year: 2005
  publication-title: J. Cere. Blood Flow Metab.
– year: 2021
  publication-title: bioRxiv
– volume: 633
  start-page: 221
  year: 2010
  publication-title: Methods Molecular Biol.
– volume: 7
  year: 2012
  publication-title: PLoS ONE
– volume: 47
  year: 2011
  publication-title: JoVE
– volume: 213
  start-page: 179
  year: 2013
  publication-title: J. Neurosci. Methods
– volume: 13
  start-page: 3510
  year: 1993
  publication-title: J. Neurosci.
– volume: 1312
  start-page: 101
  year: 2010
  publication-title: Brain Res.
– volume: 73
  start-page: 61
  year: 2004
  publication-title: Prog. Neurobiol.
– volume: 10
  year: 2015
  publication-title: PLoS One
– volume: 21
  start-page: 3215
  year: 2012
  publication-title: Hum. Mol. Genet.
– volume: 29
  start-page: 1319
  year: 2009
  publication-title: J. Neurosci.
– volume: 8
  year: 2013
  publication-title: PLoS ONE
– volume: 110
  start-page: 12
  year: 2009
  publication-title: J. Neurochem.
– year: 1967
– volume: 8
  start-page: 96
  year: 1979
  publication-title: Environ. Entomol.
– volume: 6
  year: 2011
  publication-title: PLoS One
– volume: 207
  start-page: 31
  year: 2012
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 1753
  year: 2010
  publication-title: Expert Opin. Pharmacother.
– volume: 106
  start-page: 1248
  year: 2008
  publication-title: J. Neurochem.
– volume: 33
  start-page: 330
  year: 2013
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 50
  start-page: 2597
  year: 2011
  publication-title: J. Visualized Exp.
– volume: 53
  start-page: 380
  year: 1999
  publication-title: Med. Hypotheses
– volume: 886
  year: 2017
  publication-title: J. Phys.: Conf. Ser.
– volume: 242
  start-page: 389
  year: 2015
  publication-title: Planta
– volume: 5
  year: 2016
  publication-title: eLife
– volume: 12
  start-page: 4462
  year: 2013
  publication-title: J. Proteome Res.
– volume: 2013
  start-page: 1
  year: 2013
  publication-title: Oxid. Med. Cell. Longevity
– volume: 33
  start-page: 2391
  year: 2016
  publication-title: Mol. Biol. Evol.
– volume: 107
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2013
– volume: 104
  start-page: 1201
  year: 2008
  publication-title: J. Neurochem.
– ident: e_1_2_10_11_1
  doi: 10.1517/14656566.2010.493558
– volume: 4
  start-page: 34
  year: 2010
  ident: e_1_2_10_70_1
  publication-title: Open Neurol. J.
– ident: e_1_2_10_81_1
  doi: 10.1093/ee/8.1.96
– ident: e_1_2_10_8_1
  doi: 10.1016/S1474-4422(14)70054-7
– ident: e_1_2_10_52_1
  doi: 10.1093/jnci/80.2.84
– ident: e_1_2_10_4_1
  doi: 10.1177/0271678X17700913
– ident: e_1_2_10_68_1
  doi: 10.1002/hbm.23733
– ident: e_1_2_10_31_1
  doi: 10.1186/s40478‐016‐0371‐y
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1471-4159.2008.05473.x
– ident: e_1_2_10_29_1
  doi: 10.1602/neurorx.2.3.396
– volume: 112
  start-page: 136
  year: 2015
  ident: e_1_2_10_26_1
  publication-title: Mo. Med.
– ident: e_1_2_10_24_1
  doi: 10.1016/j.pneurobio.2013.11.006
– ident: e_1_2_10_34_1
  doi: 10.1002/path.1645
– ident: e_1_2_10_58_1
  doi: 10.1161/01.STR.28.9.1805
– ident: e_1_2_10_3_1
  doi: 10.1016/j.pneurobio.2004.04.001
– ident: e_1_2_10_83_1
  doi: 10.1007/s00234-009-0551-6
– ident: e_1_2_10_84_1
  doi: 10.3727/096368911X576036
– ident: e_1_2_10_6_1
  doi: 10.2174/1566524043479248
– ident: e_1_2_10_10_1
  doi: 10.1111/j.1471-4159.2009.06098.x
– ident: e_1_2_10_78_1
  doi: 10.1002/jez.1401820203
– ident: e_1_2_10_54_1
  doi: 10.3389/fneur.2020.594672
– ident: e_1_2_10_73_1
  doi: 10.1097/00004647-200002000-00012
– ident: e_1_2_10_92_1
  doi: 10.1016/j.jneumeth.2012.12.021
– volume-title: A naturally occurring vertebrate dispersion‐reaggregation system subject to developmental arrest
  year: 1967
  ident: e_1_2_10_80_1
– ident: e_1_2_10_9_1
  doi: 10.1523/JNEUROSCI.5505-08.2009
– ident: e_1_2_10_25_1
  doi: 10.1101/2021.01.16.426934
– ident: e_1_2_10_38_1
  doi: 10.1161/STROKEAHA.107.489906
– ident: e_1_2_10_43_1
  doi: 10.1021/pr4005103
– ident: e_1_2_10_19_1
  doi: 10.1242/bio.20149399
– ident: e_1_2_10_82_1
  doi: 10.1093/molbev/msw110
– ident: e_1_2_10_5_1
  doi: 10.1523/eneuro.0076‐18.2018
– ident: e_1_2_10_36_1
  doi: 10.1152/ajpregu.00163.2017
– ident: e_1_2_10_66_1
  doi: 10.1088/1742-6596/886/1/012009
– ident: e_1_2_10_2_1
  doi: 10.1161/cir.0000000000000350
– ident: e_1_2_10_7_1
  doi: 10.1056/NEJMoa070240
– ident: e_1_2_10_45_1
  doi: 10.3389/fcell.2020.593890
– ident: e_1_2_10_33_1
  doi: 10.1006/bbrc.2001.5388
– ident: e_1_2_10_15_1
  doi: 10.7554/eLife.13614
– ident: e_1_2_10_32_1
  doi: 10.1016/j.nbd.2018.01.007
– ident: e_1_2_10_37_1
  doi: 10.1038/s41598‐020‐74411‐3
– ident: e_1_2_10_75_1
  doi: 10.1054/mehy.1998.0788
– ident: e_1_2_10_13_1
  doi: 10.4161/worm.19040
– ident: e_1_2_10_14_1
  doi: 10.1371/journal.pone.0082473
– volume: 47
  year: 2011
  ident: e_1_2_10_86_1
  publication-title: JoVE
– ident: e_1_2_10_47_1
  doi: 10.1016/0022-1759(95)00072-I
– ident: e_1_2_10_67_1
  doi: 10.1161/STROKEAHA.114.007581
– ident: e_1_2_10_87_1
  doi: 10.1038/jcbfm.2012.185
– ident: e_1_2_10_62_1
  doi: 10.1111/j.1471-4159.2007.05043.x
– ident: e_1_2_10_64_1
  doi: 10.1371/journal.pone.0027881
– ident: e_1_2_10_89_1
  doi: 10.1161/STROKEAHA.107.492470
– ident: e_1_2_10_72_1
  doi: 10.1016/S0306-4522(01)00125-7
– ident: e_1_2_10_40_1
  doi: 10.1146/annurev.physiol.62.1.353
– ident: e_1_2_10_63_1
  doi: 10.32607/20758251-2015-7-2-42-47
– ident: e_1_2_10_35_1
  doi: 10.1007/s00335-017-9687-6
– ident: e_1_2_10_42_1
  doi: 10.1371/journal.pone.0033027
– ident: e_1_2_10_79_1
  doi: 10.1002/jez.1401820310
– ident: e_1_2_10_61_1
  doi: 10.1038/sj.jcbfm.9600034
– volume: 2
  start-page: 89
  year: 1942
  ident: e_1_2_10_76_1
  publication-title: Stanford Ichthyol. Bull.
– ident: e_1_2_10_27_1
  doi: 10.1007/BF00690397
– ident: e_1_2_10_57_1
  doi: 10.1038/jcbfm.1993.87
– ident: e_1_2_10_41_1
  doi: 10.1073/pnas.1007075107
– ident: e_1_2_10_71_1
  doi: 10.1016/j.brainres.2009.11.068
– volume: 5
  start-page: 213
  year: 2016
  ident: e_1_2_10_22_1
  publication-title: Biochem. Pharmacol.
– ident: e_1_2_10_30_1
  doi: 10.1038/jcbfm.2013.6
– volume: 50
  start-page: 2597
  year: 2011
  ident: e_1_2_10_50_1
  publication-title: J. Visualized Exp.
– volume-title: Artery Bypass
  year: 2013
  ident: e_1_2_10_17_1
– ident: e_1_2_10_91_1
  doi: 10.1016/S0165-0270(02)00114-0
– ident: e_1_2_10_69_1
  doi: 10.1016/j.pneurobio.2005.03.004
– ident: e_1_2_10_77_1
  doi: 10.1002/jez.1401820202
– ident: e_1_2_10_44_1
  doi: 10.1371/journal.pone.0117190
– ident: e_1_2_10_93_1
  doi: 10.1161/01.STR.0000113692.38574.57
– ident: e_1_2_10_60_1
  doi: 10.1038/jcbfm.2008.88
– ident: e_1_2_10_74_1
  doi: 10.1097/00004647-200006000-00006
– ident: e_1_2_10_53_1
  doi: 10.1097/ANA.0b013e318033da41
– ident: e_1_2_10_55_1
  doi: 10.1016/j.jneumeth.2012.03.003
– ident: e_1_2_10_16_1
  doi: 10.1007/s00425-015-2300-x
– ident: e_1_2_10_12_1
  doi: 10.1016/j.cub.2011.06.064
– ident: e_1_2_10_90_1
  doi: 10.1016/j.bbr.2017.05.042
– ident: e_1_2_10_21_1
  doi: 10.1093/hmg/dds155
– ident: e_1_2_10_46_1
  doi: 10.1155/2013/683920
– ident: e_1_2_10_88_1
  doi: 10.1016/j.expneurol.2006.09.006
– ident: e_1_2_10_20_1
  doi: 10.1042/BST0311343
– ident: e_1_2_10_1_1
  doi: 10.1016/S1474-4422(19)30034-1
– ident: e_1_2_10_65_1
  doi: 10.1016/j.neuint.2016.12.016
– ident: e_1_2_10_23_1
  doi: 10.1523/JNEUROSCI.13-08-03510.1993
– volume: 65
  start-page: 27
  year: 1981
  ident: e_1_2_10_51_1
  publication-title: Cancer Treat. Rep.
– volume-title: Bad Things Happen in Ischemia
  year: 2008
  ident: e_1_2_10_18_1
– ident: e_1_2_10_49_1
  doi: 10.1083/jcb.151.5.951
– ident: e_1_2_10_48_1
  doi: 10.1016/S0022-1759(00)00233-7
– ident: e_1_2_10_59_1
  doi: 10.1016/j.brainres.2007.11.075
– ident: e_1_2_10_39_1
  doi: 10.1111/j.1469-185X.1952.tb01363.x
– ident: e_1_2_10_56_1
  doi: 10.1038/npre.2012.3492.3
– ident: e_1_2_10_85_1
  doi: 10.1007/978-1-59745-019-5_16
SSID ssj0001537418
Score 2.287254
Snippet Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy,...
Abstract Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2103265
SubjectTerms Acids
Apoptosis
Free radicals
Glucose
glutamate‐dependent excitotoxicity
Ischemia
ischemia–reperfusion damage
Metabolism
neuroprotection
Stroke
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb5RAEN-YPvlirH_R1oyJifpAyi7LAo_XprU1OWNsm_SN7D8iyQHGu2t6b_0Ifg4_lp_EGeDIXdT0xScIbGCZ-Q0zAzu_YewNzwwiI8vDzCYqlJ670DhpQq3QKnNufRxTcfL0kzq9lB-vkquNVl-0JqynB-4FdyAtT7XIPSUyiK8o884oJbWNtE0xYaa3L_q8jWSqrw-OiZZlzdIYiQPtromdWxCBHHmSDS_UkfX_LcL8c6HkZgDbeaCTh-zBEDrCpJ_yLrvnm0dsdzDOObwbGKTfP2Y_J_CZaPsRRTD1VNtbzWtoS7hoZ546aXhYtIApZ2X7L3ZwiM7MAe58mK0sUQXDxFYOzvU1Xrkj8GjmUDUw1XWNgAWqSoEzzIx9XWkwK_hCFLDoBuGMnoF-B9D6VjjSM1st61-3P6ZdTxC8yfGNxbfIor2pcLt6wi5Pji-OTsOhKUNoE5HLUBqpfWpLVfLSS8VRC5gUIR6pOYLWkceAQHiZRpHWRoky9y7OSxk7HmWavjM9ZTtN2_jnDIx1XHrhlXMYFyWp5kmGGYwvlUlcnvKAhWslFXZgLKfGGbOi51oWBSm1GJUasLfj-G89V8c_Rx6SzsdRxLHdHUDkFQPyiruQF7C9NWKKwfDxFkpgCkj9nAP2ejyNJkuC141vlzSGGJUwjowD9qwH2DiTWObUBFwELN2C3tZUt8801deOFjzLMFmUJLUOpHeIoMCw5xx35Iv_IYuX7L6gupBuOfse21l8X_p9jNYW5lVnmL8Bjm899g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEIAtKBcuqOU3tKBBQgIOURPHcZLjtmppkRZVtJV6i_wXiLRJUHe36t54BJ6Dx-JJmEmyaSNAiNNGGys_nhl7xvF8w9jrMNWoGWnmpyaWvnCh9bUV2lcSrTILjYsiSk6efpRH5-LDRXxxK4u_40MMC25kGe14TQau9Hz3Bhqq7BXhtjkR4WR8l92j_Fra1MfFyc0qSxwRnoUqzGF07UepEGtyY8B3x5cYzUwtwP9PXufvmydvO7XtrHS4yR707iRMOvlvsTuufsi2eoOdw9ueKv3uEfsxgRNC-aNmwdRRvm85r6Ap4KyZOaqu4WDRAIahpelW8WAPJzgLePB-tjKED4aJKS2cqiu8cgv1qOdQ1jBVVYVKDJSpAscYLbuqVKBX8ImwsDg1wjG9A30ioD2vsK9mplxWP799n7Z1QvAmB9cGR5ZFc13i7-oxOz88ONs_8vtCDb6JeSZ8oYVyiSlkERZOyFCZBAMl1FEqmKBU4NBJ4E4kQaCUlrzInI2yQkQ2DFJFa09P2Ebd1O4ZA21sKBx30lr0leJEhXGKUY0rpI5tloQe89dCyk1PMadiGrO84y_znISaD0L12Juh_deO3_HXlnsk86EVcbfbP5rLz3lvxrkwYaJ45iisxtEuSJ3VUgplAnznLE08trPWmLwfDPAWkmNYSDWePfZqOI1mTB2vatcsqQ1RltC3jDz2tFOw4UkikVFhcO6xZKR6o0cdn6nLLy0qPE0xgBTUa62S_qMLcnSFTvFAPP_P9tvsPqe0kHY3-w7bWFwu3Qt01hb6ZWuPvwDh8DqI
  priority: 102
  providerName: Wiley-Blackwell
Title A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium‐Mediated Excitotoxicity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202103265
https://www.ncbi.nlm.nih.gov/pubmed/34904402
https://www.proquest.com/docview/2624874735
https://www.proquest.com/docview/2610081593
https://pubmed.ncbi.nlm.nih.gov/PMC8811841
https://doaj.org/article/4c17a29e254942508edb664ac0ac7987
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZY-8ILYlwDozISEvAQLXEcx3lC7ejYEJ2qXaS9RY7tjEhtMtZ2Wt_4CfwOfha_hHNSN6zi9hQrtpLY535if4eQV6HMgTNk6ksdC5_b0Pi54bmvBEhlGmobRXg4eXQkDs74x_P43CXcZm5b5VonNora1Bpz5LtMMPCtsVDuu8svPlaNwr-rroTGFumCCpayQ7qD4dH4-FeWJY4QnmWN1hiwXWWuEaWbIZAcWpRb1qgB7f-Tp_n7hsnbjmxjifbvk3vOhaT9Fc23yR1bPSDbTkhn9I1Dkn77kHzv0zHC9wM30ZHFM77lbErrgp7WE4sVNSyd1xRCz1KvMnd0AEbNUGh8mCw1QgbTvi4NPVHX8OQGyKOa0bKiIzWdAuNSPJ1CDyFCttNS0XxJjxEKFswhPcQ54G8B3OdK99REl4vpj6_fRk1tEHjJ8EaDNpnXNyVcl4_I2f7wdO_Ad8UZfB2zlPs858omuhBFWFguQqUTCI6AL7FIglKBBceAWZ4EgVK5YEVqTZQWPDJhIBXmmx6TTlVX9imhuTYht8wKY8A_ihMVxhIiGVuIPDZpEnrEXxMp0w65HAtoTLIV5jLLkKhZS1SPvG7HX64wO_46coA0b0ch1nZzo766yJzoZlyHiWKpxVAaNFwgrcmF4EoHMOdUJh7ZWXNM5hQAvKJlV4-8bLtBdHHhVWXrBY5BZCXwJyOPPFkxWPslEU-xGDjzSLLBehufutlTlZ8beHApIWjkuGoNk_5nCTJwf06gwZ_9exrPyV2GJz-aDes7pDO_WtgX4I_N8x7ZYnzcI93--9Gnk54TwV6T3fgJGJ864g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9AAXRPk1FFgkEHCwaq_Xa_uAUFJSEtpEVZtKvZn17hosJXZpktLceASegwMPxZMwYzumEX-nnmzZK9u7Mzs_653vI-SpGyagGWFkh8oXNjeuthPNE1sKmJWRq4znYXHyYCh6R_zdsX-8Rr4va2FwW-XSJpaGWhcK18i3mGAQWyNR7uuTTzayRuHf1SWFRqUWu2bxGVK26av-G5DvM8Z2uqPtnl2zCtjKZxG3ecKlCVQqUjc1XLhSBRDVw4Aiur-UjgGPxgwPHEfKRLA0MtqLUu5p1wklLpTAc6-Qde4Jh7XIeqc73D_4tarjewgHs0SHdNiW1GeICs4QuA492AXvV5IE_Cmy_X2D5sXAufR8OzfI9Tpkpe1KxzbImslvko3aKEzpixq5-uUt8q1N95EuALSXDgzWFGfTCS1SOirGBhk8DJ0VFFLdTFUrhbQDTlRTOHk7XiiEKKZtlWl6KM_gySVwSD6lWU4HcjKBiUKxGob2ISM3k0zSZEEPEHoW3C_tYx_wNwTuq6Xbcqyy-eTHl6-DkosEXtI9V2C9ZsV5BsfFbXJ0KWK7Q1p5kZt7hCZKu9wwI7SGeMwPpOuHkDmZVCS-jgLXIvZSSLGqkdKRsGMcVxjPLEahxo1QLfK8aX9SYYT8tWUHZd60Qmzv8kJx-iGuTUXMlRtIFhlM3cGiOqHRiRBcKgf6HIWBRTaXGhPXBgde0UwPizxpboOpwIGXuSnm2AaRnCB-9Sxyt1Kw5ks8HiH5OLNIsKJ6K5-6eifPPpZw5GEISSrHUSuV9D9DEEO4dQgn_P6_u_GYXO2NBnvxXn-4-4BcY1h1Um6W3ySt2encPIRYcJY8qicgJe8ve87_BICfdGM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVEJsEOXpUmCQQMDCij0evxYIJW1CQ0kU9SF1Z8YzY2opsUuTlGbHJ_AdfAKfw5dwr1804rXqypY9sj1z3-N7zyXkmR3EwBlBaAbS9UyubWXGisem8EAqQ1tqx8Hi5OHI2z3i747d4zXyva6FwbTKWicWilrlEvfI28xj4Ftjo9x2UqVFjHf6b04_mdhBCv-01u00ShbZ08vPEL7NXg92gNbPGev3Drd3zarDgCldFnKTx1xoXyZeYieae7aQPnj4sLiI9C-EpcG6Mc19yxIi9lgSauWECXeUbQUCN03gudfIuo9RUYusd3uj8f6vHR7XQWiYGinSYm2hzhEhnCGIHVqzS5awaBjwJy_392TNy050YQX7t8jNyn2lnZLfNsiazm6TjUpBzOjLCsX61R3yrUPH2DoAOJkONdYXp7MpzRN6mE80dvPQdJ5TCHtTWe4a0i4YVEXh5O1kKRGumHZkquiBOIcnFyAi2YymGR2K6RSEhmJlDB1AdK6nqaDxku4jDC2YYjrAOeAvCcyxpdtiItPF9MeXr8OiLwm8pHchQZPN84sUjsu75OhKyHaPtLI80w8IjaWyuWbaUwp8M9cXthtAFKUTL3ZV6NsGMWsiRbJCTcfmHZOoxHtmERI1aohqkBfN-NMSL-SvI7tI82YU4nwXF_Kzj1GlNiIubV-wUGMYD9rVCrSKPY8LacGcw8A3yFbNMVGlfOAVjagY5GlzG9QGLrzIdL7AMYjqBL6sY5D7JYM1X-LwEBuRM4P4K6y38qmrd7L0pIAmDwIIWDmuWsGk_1mCCFyvAzjhm_-exhNyHWQ9ej8Y7T0kNxgWoBR581ukNT9b6EfgFs7jx5X8UfLhqkX-J8cMeJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Primeval+Mechanism+of+Tolerance+to+Desiccation+Based+on+Glycolic+Acid+Saves+Neurons+in+Mammals+from+Ischemia+by+Reducing+Intracellular+Calcium%E2%80%90Mediated+Excitotoxicity&rft.jtitle=Advanced+science&rft.au=Chovsepian%2C+Alexandra&rft.au=Berchtold%2C+Daniel&rft.au=Winek%2C+Katarzyna&rft.au=Mamrak%2C+Uta&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Fadvs.202103265&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon