Microenvironment‐Responsive Prodrug‐Induced Pyroptosis Boosts Cancer Immunotherapy

The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 24; pp. e2101840 - n/a
Main Authors Xiao, Yao, Zhang, Tian, Ma, Xianbin, Yang, Qi‐Chao, Yang, Lei‐Lei, Yang, Shao‐Chen, Liang, Mengyun, Xu, Zhigang, Sun, Zhi‐Jun
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.12.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency. A smart tumor microenvironmental reactive oxygen species/glutathione dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel and photosensitizer purpurin 18 loading is designed. Chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment the efficiency of immune checkpoint blockade therapy.
AbstractList The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.
Abstract The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.
The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor-specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual-responsive nano-prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual-responsive system facilitates the nano-prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo-photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo-photodynamic therapy and control-release PTX synergistically induce gasdermin E (GSDME)-related pyroptosis. It is speculated that inspired chemo-photodynamic therapy using the presented nano-prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor-specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual-responsive nano-prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual-responsive system facilitates the nano-prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo-photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo-photodynamic therapy and control-release PTX synergistically induce gasdermin E (GSDME)-related pyroptosis. It is speculated that inspired chemo-photodynamic therapy using the presented nano-prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.
The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency. A smart tumor microenvironmental reactive oxygen species/glutathione dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel and photosensitizer purpurin 18 loading is designed. Chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment the efficiency of immune checkpoint blockade therapy.
Author Ma, Xianbin
Yang, Shao‐Chen
Sun, Zhi‐Jun
Xiao, Yao
Liang, Mengyun
Yang, Qi‐Chao
Xu, Zhigang
Yang, Lei‐Lei
Zhang, Tian
AuthorAffiliation 2 Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy & Chongqing Engineering Research Center for Micro–Nano Biomedical Materials and Devices Southwest University Chongqing 400715 China
1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 China
AuthorAffiliation_xml – name: 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 China
– name: 2 Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy & Chongqing Engineering Research Center for Micro–Nano Biomedical Materials and Devices Southwest University Chongqing 400715 China
Author_xml – sequence: 1
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  organization: Wuhan University
– sequence: 2
  givenname: Tian
  surname: Zhang
  fullname: Zhang, Tian
  organization: Southwest University
– sequence: 3
  givenname: Xianbin
  surname: Ma
  fullname: Ma, Xianbin
  organization: Southwest University
– sequence: 4
  givenname: Qi‐Chao
  surname: Yang
  fullname: Yang, Qi‐Chao
  organization: Wuhan University
– sequence: 5
  givenname: Lei‐Lei
  surname: Yang
  fullname: Yang, Lei‐Lei
  organization: Wuhan University
– sequence: 6
  givenname: Shao‐Chen
  surname: Yang
  fullname: Yang, Shao‐Chen
  organization: Wuhan University
– sequence: 7
  givenname: Mengyun
  surname: Liang
  fullname: Liang, Mengyun
  organization: Southwest University
– sequence: 8
  givenname: Zhigang
  orcidid: 0000-0003-1805-5061
  surname: Xu
  fullname: Xu, Zhigang
  email: zgxu@swu.edu.cn
  organization: Southwest University
– sequence: 9
  givenname: Zhi‐Jun
  orcidid: 0000-0003-0932-8013
  surname: Sun
  fullname: Sun, Zhi‐Jun
  email: sunzj@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34705343$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQgC1URB_0yhGtxIVLgl-7a1-QSnhFKqLi0avltWdTR7t2sHeDcutP4DfyS3BIWrWVECdb9jffjGbmGB344AGhZwRPCcb0lbbrNKWYEkwEx4_QESVSTJjg_ODO_RCdprTEGJOS1ZyIJ-iQ8RqXjLMjdPnJmRjAr10Mvgc__L7-9QXSKvjk1lBcxGDjuMiPc29HA7a42MSwGkJyqXgTQhpSMdPeQCzmfT_6MFxB1KvNU_S41V2C0_15gr6_f_dt9nFy_vnDfHZ2PjEllXxCcc1bwRgYSmtRSmYrXVnMLOONqaRtbFkxw4EKKShhpTTS0IZzbCmIFrfsBM13Xhv0Uq2i63XcqKCd-vsQ4kLpODjTgcK8xRTzShJrOW6tpLSttOGkaYgRANn1eudajU0P1uRmRN3dk97_8e5KLcJaiUoyXLMseLkXxPBjhDSo3iUDXac9hDEpWmYyp2Uioy8eoMswRp9bpWhFKM1guaWe363otpSb8WWA74A8w5QitMq4QQ8ubAt0nSJYbRdFbRdF3S5KDps-CLsx_zNgn-en62DzH1qdvb38mhvC2R8K29JM
CitedBy_id crossref_primary_10_1002_adma_202306748
crossref_primary_10_1002_pat_70050
crossref_primary_10_3389_fonc_2022_896433
crossref_primary_10_1007_s10495_023_01906_5
crossref_primary_10_2147_IJN_S455407
crossref_primary_10_3892_or_2023_8635
crossref_primary_10_1039_D2BM01099B
crossref_primary_10_1016_j_biomaterials_2024_122969
crossref_primary_10_1002_adma_202204034
crossref_primary_10_1016_j_bioactmat_2024_05_009
crossref_primary_10_1021_acs_molpharmaceut_4c01267
crossref_primary_10_1002_smtd_202201614
crossref_primary_10_1186_s12951_024_02763_3
crossref_primary_10_1002_anbr_202200077
crossref_primary_10_1002_ange_202215307
crossref_primary_10_1002_cbic_202200201
crossref_primary_10_1186_s12951_024_02424_5
crossref_primary_10_1002_adfm_202300941
crossref_primary_10_34133_bmr_0077
crossref_primary_10_3390_molecules28165955
crossref_primary_10_1007_s13402_024_01009_6
crossref_primary_10_1038_s41419_023_06382_y
crossref_primary_10_1039_D4SC01147C
crossref_primary_10_1039_D3NR01735D
crossref_primary_10_1007_s00405_023_08022_9
crossref_primary_10_1007_s12274_022_4819_z
crossref_primary_10_3389_fonc_2022_963928
crossref_primary_10_1002_anie_202417899
crossref_primary_10_1038_s41420_024_01982_9
crossref_primary_10_1016_j_ymthe_2023_02_023
crossref_primary_10_1016_j_matdes_2023_112206
crossref_primary_10_1021_acsami_2c19790
crossref_primary_10_3390_pharmaceutics15030784
crossref_primary_10_1002_ange_202115800
crossref_primary_10_1186_s12943_024_02183_9
crossref_primary_10_1016_j_biopha_2023_115575
crossref_primary_10_1021_acsomega_4c10956
crossref_primary_10_1186_s12951_022_01719_9
crossref_primary_10_1002_adfm_202214499
crossref_primary_10_2147_JIR_S341774
crossref_primary_10_1007_s00210_023_02765_2
crossref_primary_10_1021_acs_chemmater_3c02323
crossref_primary_10_1111_nyas_14979
crossref_primary_10_1016_j_ijbiomac_2024_133428
crossref_primary_10_1021_acs_molpharmaceut_2c00452
crossref_primary_10_1021_acsabm_4c00206
crossref_primary_10_1002_EXP_20220115
crossref_primary_10_1021_acsnano_3c11464
crossref_primary_10_1016_j_apsb_2022_02_024
crossref_primary_10_1002_advs_202410145
crossref_primary_10_1016_j_jcis_2024_02_069
crossref_primary_10_3389_fphar_2022_855828
crossref_primary_10_1002_bmm2_12079
crossref_primary_10_34133_bmr_0048
crossref_primary_10_1186_s12920_023_01431_z
crossref_primary_10_3788_LOP232686
crossref_primary_10_1002_adhm_202201233
crossref_primary_10_1002_mabi_202200359
crossref_primary_10_1002_smll_202207604
crossref_primary_10_1007_s00335_024_10038_3
crossref_primary_10_1002_adfm_202213425
crossref_primary_10_3390_pharmaceutics14081589
crossref_primary_10_1002_advs_202203583
crossref_primary_10_1016_j_canlet_2024_216727
crossref_primary_10_1002_anie_202307706
crossref_primary_10_1021_acsami_1c22804
crossref_primary_10_1016_j_biopha_2022_113524
crossref_primary_10_2147_IJN_S432854
crossref_primary_10_1002_advs_202302141
crossref_primary_10_1002_advs_202413201
crossref_primary_10_1021_accountsmr_2c00106
crossref_primary_10_1016_j_biomaterials_2023_122369
crossref_primary_10_1155_2022_5634887
crossref_primary_10_1016_j_ejmech_2023_115780
crossref_primary_10_3390_cancers16050967
crossref_primary_10_1016_j_cej_2023_147085
crossref_primary_10_1002_adfm_202311362
crossref_primary_10_1038_s41467_024_51980_9
crossref_primary_10_1002_ange_202417899
crossref_primary_10_1002_pca_3381
crossref_primary_10_1002_advs_202408415
crossref_primary_10_1016_j_apmt_2022_101363
crossref_primary_10_1016_j_apsb_2024_06_026
crossref_primary_10_1021_acsnano_2c12463
crossref_primary_10_1016_j_actbio_2023_02_011
crossref_primary_10_1016_j_addr_2022_114177
crossref_primary_10_1021_jacsau_2c00591
crossref_primary_10_1002_ange_202311309
crossref_primary_10_1038_s41575_023_00743_w
crossref_primary_10_1186_s12951_024_02585_3
crossref_primary_10_1021_jacs_3c01231
crossref_primary_10_1002_anie_202311309
crossref_primary_10_1016_j_ajps_2022_08_003
crossref_primary_10_1186_s13045_022_01365_6
crossref_primary_10_1016_j_nantod_2022_101727
crossref_primary_10_1186_s11671_023_03899_1
crossref_primary_10_2147_JIR_S478989
crossref_primary_10_1016_j_ijpharm_2023_123512
crossref_primary_10_1021_acsami_2c17579
crossref_primary_10_1002_adhm_202302606
crossref_primary_10_3389_fimmu_2024_1378990
crossref_primary_10_3390_photonics9060408
crossref_primary_10_1021_acsami_2c09064
crossref_primary_10_1002_adma_202300232
crossref_primary_10_3389_fimmu_2025_1531695
crossref_primary_10_1002_advs_202203353
crossref_primary_10_1002_adtp_202300223
crossref_primary_10_1016_j_ccr_2023_215178
crossref_primary_10_1002_adhm_202301641
crossref_primary_10_1155_2022_6905588
crossref_primary_10_1016_j_actbio_2022_05_046
crossref_primary_10_1016_j_jcis_2023_02_088
crossref_primary_10_1002_adfm_202310364
crossref_primary_10_1002_smll_202305526
crossref_primary_10_1016_j_cej_2023_147961
crossref_primary_10_1021_acsanm_4c01125
crossref_primary_10_1016_j_cej_2023_142159
crossref_primary_10_1016_j_bbadis_2025_167690
crossref_primary_10_1016_j_cej_2024_155076
crossref_primary_10_2147_IJN_S457309
crossref_primary_10_1002_smll_202401397
crossref_primary_10_1016_j_molliq_2024_126225
crossref_primary_10_3390_pharmaceutics15071830
crossref_primary_10_1021_acsmaterialslett_3c00790
crossref_primary_10_1021_acs_jmedchem_3c01110
crossref_primary_10_26599_NTM_2022_9130001
crossref_primary_10_1002_INMD_20240057
crossref_primary_10_1002_wnan_1950
crossref_primary_10_1002_smll_202400630
crossref_primary_10_1016_j_mtbio_2024_101191
crossref_primary_10_1080_10717544_2022_2094498
crossref_primary_10_1021_acsanm_3c04532
crossref_primary_10_1016_j_gendis_2022_04_019
crossref_primary_10_1016_j_bioactmat_2024_11_008
crossref_primary_10_1007_s13346_024_01690_y
crossref_primary_10_1186_s40364_022_00391_3
crossref_primary_10_1002_smll_202305101
crossref_primary_10_1002_smsc_202300164
crossref_primary_10_1021_acs_nanolett_2c00899
crossref_primary_10_1002_admi_202201356
crossref_primary_10_1021_acs_chemrev_3c00161
crossref_primary_10_1186_s12967_025_06247_2
crossref_primary_10_1016_j_cej_2023_142495
crossref_primary_10_1016_j_bioactmat_2025_01_006
crossref_primary_10_3389_fimmu_2022_915094
crossref_primary_10_3390_molecules28227679
crossref_primary_10_1002_smll_202203227
crossref_primary_10_1002_mco2_719
crossref_primary_10_1088_1361_6528_ad7c54
crossref_primary_10_1002_ange_202307706
crossref_primary_10_1016_j_jconrel_2024_01_004
crossref_primary_10_1016_j_semcancer_2022_03_009
crossref_primary_10_1016_j_biomaterials_2024_123075
crossref_primary_10_1016_j_cej_2023_143454
crossref_primary_10_1002_smll_202305440
crossref_primary_10_1016_j_apsb_2023_08_012
crossref_primary_10_1016_j_addr_2022_114637
crossref_primary_10_3390_cancers14225505
crossref_primary_10_1002_anie_202115800
crossref_primary_10_4103_cjop_CJOP_D_22_00137
crossref_primary_10_1016_j_nantod_2022_101511
crossref_primary_10_1002_adma_202312124
crossref_primary_10_1007_s10495_024_01980_3
crossref_primary_10_3390_biom14070874
crossref_primary_10_1039_D3TB03017B
crossref_primary_10_1002_advs_202302278
crossref_primary_10_1016_j_ccr_2023_215588
crossref_primary_10_1016_j_talanta_2023_125216
crossref_primary_10_1039_D4CC02565B
crossref_primary_10_1002_advs_202407713
crossref_primary_10_1186_s13045_024_01535_8
crossref_primary_10_3389_fphar_2024_1523052
crossref_primary_10_1080_1061186X_2024_2408721
crossref_primary_10_1016_j_canlet_2023_216206
crossref_primary_10_1021_acsami_4c06283
crossref_primary_10_1039_D2CS00247G
crossref_primary_10_1016_j_matt_2022_08_026
crossref_primary_10_1039_D4BM01023J
crossref_primary_10_1002_adma_202401145
crossref_primary_10_1002_advs_202410336
crossref_primary_10_1002_advs_202306580
crossref_primary_10_1007_s43657_023_00140_y
crossref_primary_10_1002_slct_202203134
crossref_primary_10_1016_j_actbio_2024_09_015
crossref_primary_10_1007_s13273_024_00473_3
crossref_primary_10_3389_fimmu_2024_1447817
crossref_primary_10_7717_peerj_14691
crossref_primary_10_1007_s10495_023_01851_3
crossref_primary_10_1002_adhm_202301266
crossref_primary_10_1038_s41598_022_24879_y
crossref_primary_10_1039_D4AY00363B
crossref_primary_10_1002_smll_202305708
crossref_primary_10_4251_wjgo_v16_i8_3410
crossref_primary_10_3389_fonc_2022_828303
crossref_primary_10_1002_advs_202308632
crossref_primary_10_1002_adma_202108174
crossref_primary_10_3389_fphar_2022_1025618
crossref_primary_10_1016_j_bioactmat_2024_12_018
crossref_primary_10_1111_1759_7714_15180
crossref_primary_10_1002_EXP_20230100
crossref_primary_10_1002_adma_202305073
crossref_primary_10_1002_advs_202500873
crossref_primary_10_1021_acsami_2c13011
crossref_primary_10_1002_adhm_202303412
crossref_primary_10_1016_j_cej_2023_147465
crossref_primary_10_3390_cancers15082286
crossref_primary_10_1016_j_mtbio_2022_100513
crossref_primary_10_1021_acs_chemrev_3c00778
crossref_primary_10_3390_cancers15010026
crossref_primary_10_1021_acsbiomaterials_4c00388
crossref_primary_10_1177_00220345211073072
crossref_primary_10_1002_anie_202215307
crossref_primary_10_1002_adhm_202303305
crossref_primary_10_1021_acs_biomac_4c00442
crossref_primary_10_1186_s12951_024_02297_8
crossref_primary_10_1007_s10495_022_01750_z
crossref_primary_10_1097_MD_0000000000035440
crossref_primary_10_1039_D3CS00063J
Cites_doi 10.1016/j.cell.2016.02.065
10.1038/nature22393
10.1002/adma.201506312
10.1186/s13045-020-00946-7
10.1002/adfm.201907954
10.1016/j.cej.2020.127657
10.1002/anie.201604130
10.1002/adma.201700141
10.1002/anie.202016399
10.1126/science.7878464
10.1021/jacs.0c09482
10.1038/s41586-020-2079-1
10.1002/ijc.31115
10.1038/nature15514
10.1016/j.intimp.2020.106489
10.1002/adfm.201400279
10.1016/j.jconrel.2013.12.037
10.3389/fimmu.2020.576603
10.1016/j.biomaterials.2018.10.005
10.1016/j.tibs.2016.10.004
10.1038/s41467-020-14963-0
10.3389/fonc.2014.00074
10.1038/nri2545
10.1016/j.cell.2020.02.002
10.1016/j.ccell.2014.09.007
10.1021/acsnano.9b04315
10.1002/advs.201901211
10.1038/s42003-020-0811-x
10.3390/ijms22010426
10.1016/j.cellimm.2018.09.008
10.1002/adfm.201901896
10.1038/ni.2768
10.1038/nrc3380
10.1038/s41586-020-2071-9
10.1038/s41577-019-0228-2
10.1002/adfm.202005747
10.1002/anie.202004180
10.1016/j.jhep.2020.07.041
10.1038/s41571-018-0142-8
10.1021/acs.nanolett.9b05265
10.1002/anie.202010281
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202101840
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_04f0204691dd40fd922f6ac41bb1c8ee
PMC8693073
34705343
10_1002_advs_202101840
ADVS3074
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Innovative Research Team of High‐Level Local Universities in Shanghai
  funderid: ZLCX20180500
– fundername: National Key Research and Development Program
  funderid: 2017YFSF090107
– fundername: Natural Science Funds for Distinguished Young Scholar
  funderid: 2017CFA062
– fundername: National Natural Science Foundation of China
  funderid: 82072996; 81874131; 51703187
– fundername: Chongqing Talent Plan for Young Top Notch Talents
  funderid: CQYC202005029
– fundername: National Key Research and Development Program
  grantid: 2017YFSF090107
– fundername: National Natural Science Foundation of China
  grantid: 82072996
– fundername: Innovative Research Team of High-Level Local Universities in Shanghai
  grantid: ZLCX20180500
– fundername: Natural Science Funds for Distinguished Young Scholar
  grantid: 2017CFA062
– fundername: Chongqing Talent Plan for Young Top Notch Talents
  grantid: CQYC202005029
– fundername: National Natural Science Foundation of China
  grantid: 81874131
– fundername: National Natural Science Foundation of China
  grantid: 51703187
– fundername: ;
  grantid: 2017YFSF090107
– fundername: ;
  grantid: 82072996; 81874131; 51703187
– fundername: Innovative Research Team of High‐Level Local Universities in Shanghai
  grantid: ZLCX20180500
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5294-2074f833ec2278593d6a6d03d34bc69dbd563c4e289821359c9c2b440d2e8f0f3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:31:59 EDT 2025
Thu Aug 21 18:40:32 EDT 2025
Fri Jul 11 04:15:21 EDT 2025
Fri Jul 25 05:38:26 EDT 2025
Wed Feb 19 02:25:51 EST 2025
Tue Jul 01 03:59:33 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:26:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords paclitaxel
pyroptosis
prodru gs
tumor microenvironment
immunotherapy
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-2074f833ec2278593d6a6d03d34bc69dbd563c4e289821359c9c2b440d2e8f0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1805-5061
0000-0003-0932-8013
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101840
PMID 34705343
PQID 2612286958
PQPubID 4365299
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_04f0204691dd40fd922f6ac41bb1c8ee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8693073
proquest_miscellaneous_2586992238
proquest_journals_2612286958
pubmed_primary_34705343
crossref_citationtrail_10_1002_advs_202101840
crossref_primary_10_1002_advs_202101840
wiley_primary_10_1002_advs_202101840_ADVS3074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 142
2012 2020; 12 142
2019 2016; 188 55
2021; 22
2021; 420
2020; 84
2009 2020 2016; 9 3 28
2019 2017 2020; 6 29 11
2019; 13
2020; 368
2019 2020; 16 11
2020; 59
2016; 165
2014; 24
2020; 13
2020 2021; 21 74
2019 2014; 29 177
2017 2020 2015; 42 20 526
2014; 4
2020; 30
2020 2020; 579 180
2020; 579
2019; 339
1995; 267
2014 2014; 15 26
2021; 60
2020 2020; 20 30
2017; 547
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_29_1
e_1_2_8_22_3
e_1_2_8_24_2
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
Zhao Q. (e_1_2_8_24_1) 2020; 21
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_16_2
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_19_3
Zhou Z. (e_1_2_8_18_1) 2020; 368
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_12_1
References_xml – volume: 29 177
  start-page: 11
  year: 2019 2014
  publication-title: Adv. Funct. Mater. J. Controlled Release
– volume: 142
  start-page: 999
  year: 2018
  publication-title: Int. J. Cancer
– volume: 13
  start-page: 110
  year: 2020
  publication-title: J. Hematol. Oncol.
– volume: 60
  start-page: 8018
  year: 2021
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 16 11
  start-page: 151
  year: 2019 2020
  publication-title: Nat. Rev. Clin. Oncol. Front. Immunol.
– volume: 579 180
  start-page: 415 941
  year: 2020 2020
  publication-title: Nature Cell
– volume: 339
  start-page: 41
  year: 2019
  publication-title: Cell. Immunol.
– volume: 84
  year: 2020
  publication-title: Int. Immunopharmacol.
– volume: 4
  start-page: 74
  year: 2014
  publication-title: Front. Oncol.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 12 142
  start-page: 860
  year: 2012 2020
  publication-title: Nat. Rev. Cancer J. Am. Chem. Soc.
– volume: 24
  start-page: 4206
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 9093
  year: 2021
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 6 29 11
  start-page: 1126
  year: 2019 2017 2020
  publication-title: Adv. Sci. Adv. Mater. Nat. Commun.
– volume: 188 55
  start-page: 1 9947
  year: 2019 2016
  publication-title: Biomaterials Angew. Chem., Int. Ed. Engl.
– volume: 22
  start-page: 426
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 165
  start-page: 35
  year: 2016
  publication-title: Cell
– volume: 42 20 526
  start-page: 245 143 660
  year: 2017 2020 2015
  publication-title: Trends Biochem. Sci. Nat. Rev. Immunol. Nature
– volume: 21 74
  start-page: 156
  year: 2020 2021
  publication-title: Int. J. Mol. Sci. J. Hepatol.
– volume: 9 3 28
  start-page: 353 85 8912
  year: 2009 2020 2016
  publication-title: Nat. Rev. Immunol. Commun. Biol. Adv. Mater.
– volume: 579
  start-page: 421
  year: 2020
  publication-title: Nature
– volume: 20 30
  start-page: 2514
  year: 2020 2020
  publication-title: Nano Lett. Adv. Funct. Mater.
– volume: 15 26
  start-page: 98 638
  year: 2014 2014
  publication-title: Nat. Immunol. Cancer Cell
– volume: 547
  start-page: 99
  year: 2017
  publication-title: Nature
– volume: 267
  start-page: 1456
  year: 1995
  publication-title: Science
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 368
  year: 2020
  publication-title: Science
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cell.2016.02.065
– ident: e_1_2_8_26_1
  doi: 10.1038/nature22393
– ident: e_1_2_8_3_3
  doi: 10.1002/adma.201506312
– ident: e_1_2_8_5_1
  doi: 10.1186/s13045-020-00946-7
– ident: e_1_2_8_11_2
  doi: 10.1002/adfm.201907954
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cej.2020.127657
– volume: 368
  year: 2020
  ident: e_1_2_8_18_1
  publication-title: Science
– ident: e_1_2_8_14_2
  doi: 10.1002/anie.201604130
– ident: e_1_2_8_22_2
  doi: 10.1002/adma.201700141
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202016399
– ident: e_1_2_8_13_1
  doi: 10.1126/science.7878464
– volume: 21
  year: 2020
  ident: e_1_2_8_24_1
  publication-title: Int. J. Mol. Sci.
– ident: e_1_2_8_8_2
  doi: 10.1021/jacs.0c09482
– ident: e_1_2_8_23_1
  doi: 10.1038/s41586-020-2079-1
– ident: e_1_2_8_29_1
  doi: 10.1002/ijc.31115
– ident: e_1_2_8_19_3
  doi: 10.1038/nature15514
– ident: e_1_2_8_9_1
  doi: 10.1016/j.intimp.2020.106489
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201400279
– ident: e_1_2_8_10_2
  doi: 10.1016/j.jconrel.2013.12.037
– ident: e_1_2_8_1_2
  doi: 10.3389/fimmu.2020.576603
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biomaterials.2018.10.005
– ident: e_1_2_8_19_1
  doi: 10.1016/j.tibs.2016.10.004
– ident: e_1_2_8_22_3
  doi: 10.1038/s41467-020-14963-0
– ident: e_1_2_8_6_1
  doi: 10.3389/fonc.2014.00074
– ident: e_1_2_8_3_1
  doi: 10.1038/nri2545
– ident: e_1_2_8_16_2
  doi: 10.1016/j.cell.2020.02.002
– ident: e_1_2_8_28_2
  doi: 10.1016/j.ccell.2014.09.007
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.9b04315
– ident: e_1_2_8_22_1
  doi: 10.1002/advs.201901211
– ident: e_1_2_8_3_2
  doi: 10.1038/s42003-020-0811-x
– ident: e_1_2_8_7_1
  doi: 10.3390/ijms22010426
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cellimm.2018.09.008
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.201901896
– ident: e_1_2_8_28_1
  doi: 10.1038/ni.2768
– ident: e_1_2_8_8_1
  doi: 10.1038/nrc3380
– ident: e_1_2_8_16_1
  doi: 10.1038/s41586-020-2071-9
– ident: e_1_2_8_19_2
  doi: 10.1038/s41577-019-0228-2
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202005747
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.202004180
– ident: e_1_2_8_24_2
  doi: 10.1016/j.jhep.2020.07.041
– ident: e_1_2_8_1_1
  doi: 10.1038/s41571-018-0142-8
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.nanolett.9b05265
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202010281
SSID ssj0001537418
Score 2.6154246
Snippet The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which...
Abstract The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2101840
SubjectTerms Animals
Antigens
Antineoplastic Agents, Phytogenic - therapeutic use
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Cancer therapies
Cell Line, Tumor
Colonic Neoplasms - therapy
Cytotoxicity
Disease Models, Animal
Drug delivery systems
Drug Liberation
Efficiency
Female
Flow cytometry
Glutathione - therapeutic use
Immunotherapy
Immunotherapy - methods
Mice
Mice, Inbred BALB C
Microscopy
Mitochondria
Nanoparticles
paclitaxel
Paclitaxel - therapeutic use
Photochemotherapy - methods
Photodynamic therapy
Photosensitizing Agents - therapeutic use
Polymerization
prodru gs
Prodrugs - therapeutic use
pyroptosis
Pyroptosis - drug effects
Reactive Oxygen Species - therapeutic use
Response rates
tumor microenvironment
Tumor Microenvironment - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp15K0r84TYsLhSYHE1ka2daxGxrSQkpofsjN2JKcBIId1ruBvfUR8ox5ks7YWuOlCbn0ZJBHthjNSJ_smW8Y-yIRVRBMRkdyEIF1aVRwnUaInR028TJVlO989Cs5PIOfF-piVOqLYsJ6euBecXscKsrfTHRsLfDKaiGqpDAQl2VsMudo9cU9b3SY6vODJdGyLFkaudgr7B2xcwtiqKIvHaNdqCPrfwxh_hsoOQaw3Q50sM5eeegYfuuHvMFeuPo12_DO2YY7nkF69w07P6Iwu1EO28Of-98-GPbOhce4aE7nl9hIhTuMs-HxYtrczpr2ug0nTdPO2nCfrGEa_qD0EZ-ktXjLzg6-n-4fRr6AQmSU0IAekEKVSekMJbwqLW1SJJZLK6E0ibalVYk04PDQlYlYKm20ESUAt8JlFa_kO7ZWN7XbZKHV3AjUA-AFCo2d4zIu8AhagcJ32YBFS4XmxrOLU5GLm7znRRY5TUA-TEDAvg7ytz2vxpOSE5qfQYr4sLsGtJLcW0n-nJUEbHs5u7l3UnwFojuRJVplAfs83Eb3on8mRe2aOcooFMCnSZR53xvDMBIJKS5hIAOWrpjJylBX79TXVx2Fd0YVKFPsGXUG9YwKcoQoJygPW_9DFx_YS3pyH5OzzdZm07n7iMhqVn7qnOgvXO0h7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9sIFUZ6hBQUJCThETfxI7BNiq1YFqdWqUNRblNhOqYSSbbJbqTd-Ar-RX8JM4g274nWKZI_z8Dw8dma-AXjJ0asgNxkVyYlIWJdFRayzCH1nh01xmUnKdz4-SY_OxIdzee4P3DofVrmyib2hto2hM_I9grpiKtVSvZ1fRVQ1iv6u-hIat2ELTbBSE9iaHpzMTn-dskhO8CwrtMaY7RX2mlC6GSFV0YnH2mrUg_b_ydP8PWBy3ZHtV6LDe3DXu5Dhu4Hn23DL1fdh2ytpF772SNJvHsDnYwq3W8tl-_Ht-6kPir124QyNZ7u8wEYq4GGcDWc3bTNfNN1lF06bplt04T5JRRu-pzQSn6x18xDODg8-7R9FvpBCZCTTAjUhE5Xi3BlKfJWa27RIbcwtF6VJtS2tTLkRDjdfiiVcaqMNK4WILXOqiiv-CCZ1U7snEFodG4bzIPAiCo2DkzIpcCtaCYnPsgFEqwnNjUcZp2IXX_MBH5nlxIB8ZEAAr0b6-YCv8VfKKfFnpCJc7L6haS9yr2Z5LCrK9k11Yq2IK6sZq9LCiKQsE6OcC2B3xd3cKys-YhStAF6M3ahm9O-kqF2zRBqJBHg3jjSPB2EY34SLDE2Z4AFkG2Ky8aqbPfXllx7KW1ElygxHRr1A_WcKcnRVPiK9ePrvz9iBOzRmiLrZhcmiXbpn6DstyudeQX4CEEkaiw
  priority: 102
  providerName: ProQuest
Title Microenvironment‐Responsive Prodrug‐Induced Pyroptosis Boosts Cancer Immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101840
https://www.ncbi.nlm.nih.gov/pubmed/34705343
https://www.proquest.com/docview/2612286958
https://www.proquest.com/docview/2586992238
https://pubmed.ncbi.nlm.nih.gov/PMC8693073
https://doaj.org/article/04f0204691dd40fd922f6ac41bb1c8ee
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQe-GCKJ-BdhUkJOAQNbHHSXzsllYFsdWqpai3KLGdthJKqmS3Um_8hP5GfgkziTfdCBDiFMmZfMjj5zw7M28YeyuQVRBNRiBZCMDYJMhDlQTInS02hUUiKd95dhwfncHnc3m-lsXf60MMG26EjG6-JoDnRbt7LxqamxuS2-YkOQW4aN-k_FoK6uMwv99lkYLkWajCHK6uA5ECrJQbQ747vsXoy9QJ-P-Jdf4ePLlOaruv0uFj9sjRSX-v9_8We2CrJ2zLAbb13ztV6Q9P2bcZhd6t5bX9_HF34gJkb6w_x4m0WV5gIxXz0Nb489umvl7U7VXrT-u6XbT-Po2Qxv9EKSUucev2GTs7PPi6fxS4ogqBllwBoiKBMhXCakqClUqYOI9NKIyAQsfKFEbGQoPFhVjKIyGVVpoXAKHhNi3DUjxnG1Vd2ZfMNyrUHPsB8AC5woujIspxWVqCxGcZjwWrDs20Uxynwhffs14rmWfkgGxwgMfeDfbXvdbGXy2n5J_BijSyu4a6ucgc5LIQSsr8jVVkDISlUZyXca4hKopIp9Z6bHvl3cwBFx-BjI-nsZKpx94MpxFy9B8lr2y9RBuJBng3gTYv-sEwvImABKc1EB5LRsNk9KrjM9XVZSfrnVJVygSvDLoB9Y8uyJC2nKI9vPpP-9fsITX2ITnbbGPRLO0OEqtFMemwM2Gbex9nX07xOD04np9Mum2KX2cwIas
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHm6FDASCDhYtXfXjz0gREqrhDZRVFrUm2vvrttKKA5xUpQbP4Ffwo_ilzDjF4l4nXqytJ5d2zuPnV3PfAPwjKNXQW4yKpIRjtAmdBJXhg76zgab3DT0Kd95MAx6x-L9iX-yBt-bXBgKq2xsYmmoda7ojHyboK5YFEg_ejP57FDVKPq72pTQqMRi3yy-4JateN1_h_x9ztje7tFOz6mrCjjKZ1KgWIQiizg3irJAfcl1kATa5ZqLVAVSp9oPuBIGdyIR87gvlVQsFcLVzESZm3Ec9xqsCx64rAPr3d3h6PDXqY7PCQ6mQYd02XaiLwkVnBEyFp2wLK1-ZZGAP3m2vwdoLjvO5cq3dwtu1i6r_baSsQ1YM-PbsFEbhcJ-WSNXv7oDHwcU3reUO_fj67fDOgj30tgjNNbT-Rk2UsEQZbQ9WkzzySwvLgq7m-fFrLB3SAqndp_SVurksMVdOL6SKb4HnXE-Ng_A1tJVDOdB4EUkEjt7qZfg1jcTPj5LW-A0ExqrGtWcimt8iis8ZhYTA-KWARa8aOknFZ7HXym7xJ-WinC4y4Z8ehbXah27IqPs4kB6Wgs305KxLEiU8NLUU5ExFmw13I1r44CPaEXZgqftbVRr-leTjE0-RxofCXA0jjT3K2Fo34SLEE2n4BaEK2Ky8qqrd8YX5yV0eESVL0Ps6ZQC9Z8piNE1-oD0YvPfn_EErveOBgfxQX-4_xBuUP8q4mcLOrPp3DxCv22WPq6VxYbTq9bPn_tdVa4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEOUZKGAkEHCwYu-uH3tAiLSNGkqjqFDUm7F316USikOcFOXGT-D38HP4JczYa5OI16knS-vZtb3z2Nn1zDcAjzl6FeQmoyIZ4QptIjf1ZOSi72ywycuigPKdD0fh_rF4fRKcbMD3JheGwiobm1gZal0oOiPvEdQVi0MZxL3chkWMdwcvp59dqiBFf1qbchq1iByY5RfcvpUvhrvI6yeMDfbe7ey7tsKAqwImBYpIJPKYc6MoIzSQXIdpqD2uuchUKHWmg5ArYXBXEjOfB1JJxTIhPM1MnHs5x3EvwWZEu6IObPb3RuOjXyc8ASdomAYp0mO9VJ8TQjgjlCw6bVlZCauCAX_ycn8P1lx1oqtVcHANrlr31XlVy9sWbJjJddiyBqJ0nlkU6-c34P0hhfqt5NH9-PrtyAbknhtnjIZ7tjjFRioeoox2xstZMZ0X5Vnp9IuinJfODknkzBlSCotNFFvehOMLmeJb0JkUE3MHHC09xXAeBF5EKrGzn_kpboNzEeCzdBfcZkITZRHOqdDGp6TGZmYJMSBpGdCFpy39tMb2-Ctln_jTUhEmd9VQzE4Tq-KJJ3LKNA6lr7Xwci0Zy8NUCT_LfBUb04XthruJNRT4iFasu_CovY0qTv9t0okpFkgTIAGOxpHmdi0M7ZtwEaEZFbwL0ZqYrL3q-p3J2ccKRjymKpgR9nQrgfrPFCToJr1FenH335_xEC6jXiZvhqODe3CFutfBP9vQmc8W5j66cPPsgdUVBz5ctHr-BNmRWeM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microenvironment%E2%80%90Responsive+Prodrug%E2%80%90Induced+Pyroptosis+Boosts+Cancer+Immunotherapy&rft.jtitle=Advanced+science&rft.au=Xiao%2C+Yao&rft.au=Zhang%2C+Tian&rft.au=Ma%2C+Xianbin&rft.au=Yang%2C+Qi%E2%80%90Chao&rft.date=2021-12-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202101840&rft.externalDBID=10.1002%252Fadvs.202101840&rft.externalDocID=ADVS3074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon