Microenvironment‐Responsive Prodrug‐Induced Pyroptosis Boosts Cancer Immunotherapy
The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially...
Saved in:
Published in | Advanced science Vol. 8; no. 24; pp. e2101840 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.12.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.
A smart tumor microenvironmental reactive oxygen species/glutathione dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel and photosensitizer purpurin 18 loading is designed. Chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment the efficiency of immune checkpoint blockade therapy. |
---|---|
AbstractList | The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency. Abstract The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency. The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor-specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual-responsive nano-prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual-responsive system facilitates the nano-prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo-photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo-photodynamic therapy and control-release PTX synergistically induce gasdermin E (GSDME)-related pyroptosis. It is speculated that inspired chemo-photodynamic therapy using the presented nano-prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor-specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual-responsive nano-prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual-responsive system facilitates the nano-prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo-photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo-photodynamic therapy and control-release PTX synergistically induce gasdermin E (GSDME)-related pyroptosis. It is speculated that inspired chemo-photodynamic therapy using the presented nano-prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency. The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage‐associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor‐specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual‐responsive system facilitates the nano‐prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo‐photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo‐photodynamic therapy and control‐release PTX synergistically induce gasdermin E (GSDME)‐related pyroptosis. It is speculated that inspired chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency. A smart tumor microenvironmental reactive oxygen species/glutathione dual‐responsive nano‐prodrug (denoted as MCPP) with high paclitaxel and photosensitizer purpurin 18 loading is designed. Chemo‐photodynamic therapy using the presented nano‐prodrug strategy can be a smart strategy to trigger pyroptosis and augment the efficiency of immune checkpoint blockade therapy. |
Author | Ma, Xianbin Yang, Shao‐Chen Sun, Zhi‐Jun Xiao, Yao Liang, Mengyun Yang, Qi‐Chao Xu, Zhigang Yang, Lei‐Lei Zhang, Tian |
AuthorAffiliation | 2 Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy & Chongqing Engineering Research Center for Micro–Nano Biomedical Materials and Devices Southwest University Chongqing 400715 China 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 China |
AuthorAffiliation_xml | – name: 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan 430079 China – name: 2 Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy & Chongqing Engineering Research Center for Micro–Nano Biomedical Materials and Devices Southwest University Chongqing 400715 China |
Author_xml | – sequence: 1 givenname: Yao surname: Xiao fullname: Xiao, Yao organization: Wuhan University – sequence: 2 givenname: Tian surname: Zhang fullname: Zhang, Tian organization: Southwest University – sequence: 3 givenname: Xianbin surname: Ma fullname: Ma, Xianbin organization: Southwest University – sequence: 4 givenname: Qi‐Chao surname: Yang fullname: Yang, Qi‐Chao organization: Wuhan University – sequence: 5 givenname: Lei‐Lei surname: Yang fullname: Yang, Lei‐Lei organization: Wuhan University – sequence: 6 givenname: Shao‐Chen surname: Yang fullname: Yang, Shao‐Chen organization: Wuhan University – sequence: 7 givenname: Mengyun surname: Liang fullname: Liang, Mengyun organization: Southwest University – sequence: 8 givenname: Zhigang orcidid: 0000-0003-1805-5061 surname: Xu fullname: Xu, Zhigang email: zgxu@swu.edu.cn organization: Southwest University – sequence: 9 givenname: Zhi‐Jun orcidid: 0000-0003-0932-8013 surname: Sun fullname: Sun, Zhi‐Jun email: sunzj@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34705343$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQgC1URB_0yhGtxIVLgl-7a1-QSnhFKqLi0avltWdTR7t2sHeDcutP4DfyS3BIWrWVECdb9jffjGbmGB344AGhZwRPCcb0lbbrNKWYEkwEx4_QESVSTJjg_ODO_RCdprTEGJOS1ZyIJ-iQ8RqXjLMjdPnJmRjAr10Mvgc__L7-9QXSKvjk1lBcxGDjuMiPc29HA7a42MSwGkJyqXgTQhpSMdPeQCzmfT_6MFxB1KvNU_S41V2C0_15gr6_f_dt9nFy_vnDfHZ2PjEllXxCcc1bwRgYSmtRSmYrXVnMLOONqaRtbFkxw4EKKShhpTTS0IZzbCmIFrfsBM13Xhv0Uq2i63XcqKCd-vsQ4kLpODjTgcK8xRTzShJrOW6tpLSttOGkaYgRANn1eudajU0P1uRmRN3dk97_8e5KLcJaiUoyXLMseLkXxPBjhDSo3iUDXac9hDEpWmYyp2Uioy8eoMswRp9bpWhFKM1guaWe363otpSb8WWA74A8w5QitMq4QQ8ubAt0nSJYbRdFbRdF3S5KDps-CLsx_zNgn-en62DzH1qdvb38mhvC2R8K29JM |
CitedBy_id | crossref_primary_10_1002_adma_202306748 crossref_primary_10_1002_pat_70050 crossref_primary_10_3389_fonc_2022_896433 crossref_primary_10_1007_s10495_023_01906_5 crossref_primary_10_2147_IJN_S455407 crossref_primary_10_3892_or_2023_8635 crossref_primary_10_1039_D2BM01099B crossref_primary_10_1016_j_biomaterials_2024_122969 crossref_primary_10_1002_adma_202204034 crossref_primary_10_1016_j_bioactmat_2024_05_009 crossref_primary_10_1021_acs_molpharmaceut_4c01267 crossref_primary_10_1002_smtd_202201614 crossref_primary_10_1186_s12951_024_02763_3 crossref_primary_10_1002_anbr_202200077 crossref_primary_10_1002_ange_202215307 crossref_primary_10_1002_cbic_202200201 crossref_primary_10_1186_s12951_024_02424_5 crossref_primary_10_1002_adfm_202300941 crossref_primary_10_34133_bmr_0077 crossref_primary_10_3390_molecules28165955 crossref_primary_10_1007_s13402_024_01009_6 crossref_primary_10_1038_s41419_023_06382_y crossref_primary_10_1039_D4SC01147C crossref_primary_10_1039_D3NR01735D crossref_primary_10_1007_s00405_023_08022_9 crossref_primary_10_1007_s12274_022_4819_z crossref_primary_10_3389_fonc_2022_963928 crossref_primary_10_1002_anie_202417899 crossref_primary_10_1038_s41420_024_01982_9 crossref_primary_10_1016_j_ymthe_2023_02_023 crossref_primary_10_1016_j_matdes_2023_112206 crossref_primary_10_1021_acsami_2c19790 crossref_primary_10_3390_pharmaceutics15030784 crossref_primary_10_1002_ange_202115800 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_1016_j_biopha_2023_115575 crossref_primary_10_1021_acsomega_4c10956 crossref_primary_10_1186_s12951_022_01719_9 crossref_primary_10_1002_adfm_202214499 crossref_primary_10_2147_JIR_S341774 crossref_primary_10_1007_s00210_023_02765_2 crossref_primary_10_1021_acs_chemmater_3c02323 crossref_primary_10_1111_nyas_14979 crossref_primary_10_1016_j_ijbiomac_2024_133428 crossref_primary_10_1021_acs_molpharmaceut_2c00452 crossref_primary_10_1021_acsabm_4c00206 crossref_primary_10_1002_EXP_20220115 crossref_primary_10_1021_acsnano_3c11464 crossref_primary_10_1016_j_apsb_2022_02_024 crossref_primary_10_1002_advs_202410145 crossref_primary_10_1016_j_jcis_2024_02_069 crossref_primary_10_3389_fphar_2022_855828 crossref_primary_10_1002_bmm2_12079 crossref_primary_10_34133_bmr_0048 crossref_primary_10_1186_s12920_023_01431_z crossref_primary_10_3788_LOP232686 crossref_primary_10_1002_adhm_202201233 crossref_primary_10_1002_mabi_202200359 crossref_primary_10_1002_smll_202207604 crossref_primary_10_1007_s00335_024_10038_3 crossref_primary_10_1002_adfm_202213425 crossref_primary_10_3390_pharmaceutics14081589 crossref_primary_10_1002_advs_202203583 crossref_primary_10_1016_j_canlet_2024_216727 crossref_primary_10_1002_anie_202307706 crossref_primary_10_1021_acsami_1c22804 crossref_primary_10_1016_j_biopha_2022_113524 crossref_primary_10_2147_IJN_S432854 crossref_primary_10_1002_advs_202302141 crossref_primary_10_1002_advs_202413201 crossref_primary_10_1021_accountsmr_2c00106 crossref_primary_10_1016_j_biomaterials_2023_122369 crossref_primary_10_1155_2022_5634887 crossref_primary_10_1016_j_ejmech_2023_115780 crossref_primary_10_3390_cancers16050967 crossref_primary_10_1016_j_cej_2023_147085 crossref_primary_10_1002_adfm_202311362 crossref_primary_10_1038_s41467_024_51980_9 crossref_primary_10_1002_ange_202417899 crossref_primary_10_1002_pca_3381 crossref_primary_10_1002_advs_202408415 crossref_primary_10_1016_j_apmt_2022_101363 crossref_primary_10_1016_j_apsb_2024_06_026 crossref_primary_10_1021_acsnano_2c12463 crossref_primary_10_1016_j_actbio_2023_02_011 crossref_primary_10_1016_j_addr_2022_114177 crossref_primary_10_1021_jacsau_2c00591 crossref_primary_10_1002_ange_202311309 crossref_primary_10_1038_s41575_023_00743_w crossref_primary_10_1186_s12951_024_02585_3 crossref_primary_10_1021_jacs_3c01231 crossref_primary_10_1002_anie_202311309 crossref_primary_10_1016_j_ajps_2022_08_003 crossref_primary_10_1186_s13045_022_01365_6 crossref_primary_10_1016_j_nantod_2022_101727 crossref_primary_10_1186_s11671_023_03899_1 crossref_primary_10_2147_JIR_S478989 crossref_primary_10_1016_j_ijpharm_2023_123512 crossref_primary_10_1021_acsami_2c17579 crossref_primary_10_1002_adhm_202302606 crossref_primary_10_3389_fimmu_2024_1378990 crossref_primary_10_3390_photonics9060408 crossref_primary_10_1021_acsami_2c09064 crossref_primary_10_1002_adma_202300232 crossref_primary_10_3389_fimmu_2025_1531695 crossref_primary_10_1002_advs_202203353 crossref_primary_10_1002_adtp_202300223 crossref_primary_10_1016_j_ccr_2023_215178 crossref_primary_10_1002_adhm_202301641 crossref_primary_10_1155_2022_6905588 crossref_primary_10_1016_j_actbio_2022_05_046 crossref_primary_10_1016_j_jcis_2023_02_088 crossref_primary_10_1002_adfm_202310364 crossref_primary_10_1002_smll_202305526 crossref_primary_10_1016_j_cej_2023_147961 crossref_primary_10_1021_acsanm_4c01125 crossref_primary_10_1016_j_cej_2023_142159 crossref_primary_10_1016_j_bbadis_2025_167690 crossref_primary_10_1016_j_cej_2024_155076 crossref_primary_10_2147_IJN_S457309 crossref_primary_10_1002_smll_202401397 crossref_primary_10_1016_j_molliq_2024_126225 crossref_primary_10_3390_pharmaceutics15071830 crossref_primary_10_1021_acsmaterialslett_3c00790 crossref_primary_10_1021_acs_jmedchem_3c01110 crossref_primary_10_26599_NTM_2022_9130001 crossref_primary_10_1002_INMD_20240057 crossref_primary_10_1002_wnan_1950 crossref_primary_10_1002_smll_202400630 crossref_primary_10_1016_j_mtbio_2024_101191 crossref_primary_10_1080_10717544_2022_2094498 crossref_primary_10_1021_acsanm_3c04532 crossref_primary_10_1016_j_gendis_2022_04_019 crossref_primary_10_1016_j_bioactmat_2024_11_008 crossref_primary_10_1007_s13346_024_01690_y crossref_primary_10_1186_s40364_022_00391_3 crossref_primary_10_1002_smll_202305101 crossref_primary_10_1002_smsc_202300164 crossref_primary_10_1021_acs_nanolett_2c00899 crossref_primary_10_1002_admi_202201356 crossref_primary_10_1021_acs_chemrev_3c00161 crossref_primary_10_1186_s12967_025_06247_2 crossref_primary_10_1016_j_cej_2023_142495 crossref_primary_10_1016_j_bioactmat_2025_01_006 crossref_primary_10_3389_fimmu_2022_915094 crossref_primary_10_3390_molecules28227679 crossref_primary_10_1002_smll_202203227 crossref_primary_10_1002_mco2_719 crossref_primary_10_1088_1361_6528_ad7c54 crossref_primary_10_1002_ange_202307706 crossref_primary_10_1016_j_jconrel_2024_01_004 crossref_primary_10_1016_j_semcancer_2022_03_009 crossref_primary_10_1016_j_biomaterials_2024_123075 crossref_primary_10_1016_j_cej_2023_143454 crossref_primary_10_1002_smll_202305440 crossref_primary_10_1016_j_apsb_2023_08_012 crossref_primary_10_1016_j_addr_2022_114637 crossref_primary_10_3390_cancers14225505 crossref_primary_10_1002_anie_202115800 crossref_primary_10_4103_cjop_CJOP_D_22_00137 crossref_primary_10_1016_j_nantod_2022_101511 crossref_primary_10_1002_adma_202312124 crossref_primary_10_1007_s10495_024_01980_3 crossref_primary_10_3390_biom14070874 crossref_primary_10_1039_D3TB03017B crossref_primary_10_1002_advs_202302278 crossref_primary_10_1016_j_ccr_2023_215588 crossref_primary_10_1016_j_talanta_2023_125216 crossref_primary_10_1039_D4CC02565B crossref_primary_10_1002_advs_202407713 crossref_primary_10_1186_s13045_024_01535_8 crossref_primary_10_3389_fphar_2024_1523052 crossref_primary_10_1080_1061186X_2024_2408721 crossref_primary_10_1016_j_canlet_2023_216206 crossref_primary_10_1021_acsami_4c06283 crossref_primary_10_1039_D2CS00247G crossref_primary_10_1016_j_matt_2022_08_026 crossref_primary_10_1039_D4BM01023J crossref_primary_10_1002_adma_202401145 crossref_primary_10_1002_advs_202410336 crossref_primary_10_1002_advs_202306580 crossref_primary_10_1007_s43657_023_00140_y crossref_primary_10_1002_slct_202203134 crossref_primary_10_1016_j_actbio_2024_09_015 crossref_primary_10_1007_s13273_024_00473_3 crossref_primary_10_3389_fimmu_2024_1447817 crossref_primary_10_7717_peerj_14691 crossref_primary_10_1007_s10495_023_01851_3 crossref_primary_10_1002_adhm_202301266 crossref_primary_10_1038_s41598_022_24879_y crossref_primary_10_1039_D4AY00363B crossref_primary_10_1002_smll_202305708 crossref_primary_10_4251_wjgo_v16_i8_3410 crossref_primary_10_3389_fonc_2022_828303 crossref_primary_10_1002_advs_202308632 crossref_primary_10_1002_adma_202108174 crossref_primary_10_3389_fphar_2022_1025618 crossref_primary_10_1016_j_bioactmat_2024_12_018 crossref_primary_10_1111_1759_7714_15180 crossref_primary_10_1002_EXP_20230100 crossref_primary_10_1002_adma_202305073 crossref_primary_10_1002_advs_202500873 crossref_primary_10_1021_acsami_2c13011 crossref_primary_10_1002_adhm_202303412 crossref_primary_10_1016_j_cej_2023_147465 crossref_primary_10_3390_cancers15082286 crossref_primary_10_1016_j_mtbio_2022_100513 crossref_primary_10_1021_acs_chemrev_3c00778 crossref_primary_10_3390_cancers15010026 crossref_primary_10_1021_acsbiomaterials_4c00388 crossref_primary_10_1177_00220345211073072 crossref_primary_10_1002_anie_202215307 crossref_primary_10_1002_adhm_202303305 crossref_primary_10_1021_acs_biomac_4c00442 crossref_primary_10_1186_s12951_024_02297_8 crossref_primary_10_1007_s10495_022_01750_z crossref_primary_10_1097_MD_0000000000035440 crossref_primary_10_1039_D3CS00063J |
Cites_doi | 10.1016/j.cell.2016.02.065 10.1038/nature22393 10.1002/adma.201506312 10.1186/s13045-020-00946-7 10.1002/adfm.201907954 10.1016/j.cej.2020.127657 10.1002/anie.201604130 10.1002/adma.201700141 10.1002/anie.202016399 10.1126/science.7878464 10.1021/jacs.0c09482 10.1038/s41586-020-2079-1 10.1002/ijc.31115 10.1038/nature15514 10.1016/j.intimp.2020.106489 10.1002/adfm.201400279 10.1016/j.jconrel.2013.12.037 10.3389/fimmu.2020.576603 10.1016/j.biomaterials.2018.10.005 10.1016/j.tibs.2016.10.004 10.1038/s41467-020-14963-0 10.3389/fonc.2014.00074 10.1038/nri2545 10.1016/j.cell.2020.02.002 10.1016/j.ccell.2014.09.007 10.1021/acsnano.9b04315 10.1002/advs.201901211 10.1038/s42003-020-0811-x 10.3390/ijms22010426 10.1016/j.cellimm.2018.09.008 10.1002/adfm.201901896 10.1038/ni.2768 10.1038/nrc3380 10.1038/s41586-020-2071-9 10.1038/s41577-019-0228-2 10.1002/adfm.202005747 10.1002/anie.202004180 10.1016/j.jhep.2020.07.041 10.1038/s41571-018-0142-8 10.1021/acs.nanolett.9b05265 10.1002/anie.202010281 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202101840 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_04f0204691dd40fd922f6ac41bb1c8ee PMC8693073 34705343 10_1002_advs_202101840 ADVS3074 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Innovative Research Team of High‐Level Local Universities in Shanghai funderid: ZLCX20180500 – fundername: National Key Research and Development Program funderid: 2017YFSF090107 – fundername: Natural Science Funds for Distinguished Young Scholar funderid: 2017CFA062 – fundername: National Natural Science Foundation of China funderid: 82072996; 81874131; 51703187 – fundername: Chongqing Talent Plan for Young Top Notch Talents funderid: CQYC202005029 – fundername: National Key Research and Development Program grantid: 2017YFSF090107 – fundername: National Natural Science Foundation of China grantid: 82072996 – fundername: Innovative Research Team of High-Level Local Universities in Shanghai grantid: ZLCX20180500 – fundername: Natural Science Funds for Distinguished Young Scholar grantid: 2017CFA062 – fundername: Chongqing Talent Plan for Young Top Notch Talents grantid: CQYC202005029 – fundername: National Natural Science Foundation of China grantid: 81874131 – fundername: National Natural Science Foundation of China grantid: 51703187 – fundername: ; grantid: 2017YFSF090107 – fundername: ; grantid: 82072996; 81874131; 51703187 – fundername: Innovative Research Team of High‐Level Local Universities in Shanghai grantid: ZLCX20180500 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5294-2074f833ec2278593d6a6d03d34bc69dbd563c4e289821359c9c2b440d2e8f0f3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:59 EDT 2025 Thu Aug 21 18:40:32 EDT 2025 Fri Jul 11 04:15:21 EDT 2025 Fri Jul 25 05:38:26 EDT 2025 Wed Feb 19 02:25:51 EST 2025 Tue Jul 01 03:59:33 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:26:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | paclitaxel pyroptosis prodru gs tumor microenvironment immunotherapy |
Language | English |
License | Attribution 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5294-2074f833ec2278593d6a6d03d34bc69dbd563c4e289821359c9c2b440d2e8f0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1805-5061 0000-0003-0932-8013 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101840 |
PMID | 34705343 |
PQID | 2612286958 |
PQPubID | 4365299 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_04f0204691dd40fd922f6ac41bb1c8ee pubmedcentral_primary_oai_pubmedcentral_nih_gov_8693073 proquest_miscellaneous_2586992238 proquest_journals_2612286958 pubmed_primary_34705343 crossref_citationtrail_10_1002_advs_202101840 crossref_primary_10_1002_advs_202101840 wiley_primary_10_1002_advs_202101840_ADVS3074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 142 2012 2020; 12 142 2019 2016; 188 55 2021; 22 2021; 420 2020; 84 2009 2020 2016; 9 3 28 2019 2017 2020; 6 29 11 2019; 13 2020; 368 2019 2020; 16 11 2020; 59 2016; 165 2014; 24 2020; 13 2020 2021; 21 74 2019 2014; 29 177 2017 2020 2015; 42 20 526 2014; 4 2020; 30 2020 2020; 579 180 2020; 579 2019; 339 1995; 267 2014 2014; 15 26 2021; 60 2020 2020; 20 30 2017; 547 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_29_1 e_1_2_8_22_3 e_1_2_8_24_2 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 Zhao Q. (e_1_2_8_24_1) 2020; 21 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_16_2 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_19_3 Zhou Z. (e_1_2_8_18_1) 2020; 368 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_12_1 |
References_xml | – volume: 29 177 start-page: 11 year: 2019 2014 publication-title: Adv. Funct. Mater. J. Controlled Release – volume: 142 start-page: 999 year: 2018 publication-title: Int. J. Cancer – volume: 13 start-page: 110 year: 2020 publication-title: J. Hematol. Oncol. – volume: 60 start-page: 8018 year: 2021 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 16 11 start-page: 151 year: 2019 2020 publication-title: Nat. Rev. Clin. Oncol. Front. Immunol. – volume: 579 180 start-page: 415 941 year: 2020 2020 publication-title: Nature Cell – volume: 339 start-page: 41 year: 2019 publication-title: Cell. Immunol. – volume: 84 year: 2020 publication-title: Int. Immunopharmacol. – volume: 4 start-page: 74 year: 2014 publication-title: Front. Oncol. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 12 142 start-page: 860 year: 2012 2020 publication-title: Nat. Rev. Cancer J. Am. Chem. Soc. – volume: 24 start-page: 4206 year: 2014 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 9093 year: 2021 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 6 29 11 start-page: 1126 year: 2019 2017 2020 publication-title: Adv. Sci. Adv. Mater. Nat. Commun. – volume: 188 55 start-page: 1 9947 year: 2019 2016 publication-title: Biomaterials Angew. Chem., Int. Ed. Engl. – volume: 22 start-page: 426 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 165 start-page: 35 year: 2016 publication-title: Cell – volume: 42 20 526 start-page: 245 143 660 year: 2017 2020 2015 publication-title: Trends Biochem. Sci. Nat. Rev. Immunol. Nature – volume: 21 74 start-page: 156 year: 2020 2021 publication-title: Int. J. Mol. Sci. J. Hepatol. – volume: 9 3 28 start-page: 353 85 8912 year: 2009 2020 2016 publication-title: Nat. Rev. Immunol. Commun. Biol. Adv. Mater. – volume: 579 start-page: 421 year: 2020 publication-title: Nature – volume: 20 30 start-page: 2514 year: 2020 2020 publication-title: Nano Lett. Adv. Funct. Mater. – volume: 15 26 start-page: 98 638 year: 2014 2014 publication-title: Nat. Immunol. Cancer Cell – volume: 547 start-page: 99 year: 2017 publication-title: Nature – volume: 267 start-page: 1456 year: 1995 publication-title: Science – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 368 year: 2020 publication-title: Science – ident: e_1_2_8_2_1 doi: 10.1016/j.cell.2016.02.065 – ident: e_1_2_8_26_1 doi: 10.1038/nature22393 – ident: e_1_2_8_3_3 doi: 10.1002/adma.201506312 – ident: e_1_2_8_5_1 doi: 10.1186/s13045-020-00946-7 – ident: e_1_2_8_11_2 doi: 10.1002/adfm.201907954 – ident: e_1_2_8_17_1 doi: 10.1016/j.cej.2020.127657 – volume: 368 year: 2020 ident: e_1_2_8_18_1 publication-title: Science – ident: e_1_2_8_14_2 doi: 10.1002/anie.201604130 – ident: e_1_2_8_22_2 doi: 10.1002/adma.201700141 – ident: e_1_2_8_27_1 doi: 10.1002/anie.202016399 – ident: e_1_2_8_13_1 doi: 10.1126/science.7878464 – volume: 21 year: 2020 ident: e_1_2_8_24_1 publication-title: Int. J. Mol. Sci. – ident: e_1_2_8_8_2 doi: 10.1021/jacs.0c09482 – ident: e_1_2_8_23_1 doi: 10.1038/s41586-020-2079-1 – ident: e_1_2_8_29_1 doi: 10.1002/ijc.31115 – ident: e_1_2_8_19_3 doi: 10.1038/nature15514 – ident: e_1_2_8_9_1 doi: 10.1016/j.intimp.2020.106489 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201400279 – ident: e_1_2_8_10_2 doi: 10.1016/j.jconrel.2013.12.037 – ident: e_1_2_8_1_2 doi: 10.3389/fimmu.2020.576603 – ident: e_1_2_8_14_1 doi: 10.1016/j.biomaterials.2018.10.005 – ident: e_1_2_8_19_1 doi: 10.1016/j.tibs.2016.10.004 – ident: e_1_2_8_22_3 doi: 10.1038/s41467-020-14963-0 – ident: e_1_2_8_6_1 doi: 10.3389/fonc.2014.00074 – ident: e_1_2_8_3_1 doi: 10.1038/nri2545 – ident: e_1_2_8_16_2 doi: 10.1016/j.cell.2020.02.002 – ident: e_1_2_8_28_2 doi: 10.1016/j.ccell.2014.09.007 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.9b04315 – ident: e_1_2_8_22_1 doi: 10.1002/advs.201901211 – ident: e_1_2_8_3_2 doi: 10.1038/s42003-020-0811-x – ident: e_1_2_8_7_1 doi: 10.3390/ijms22010426 – ident: e_1_2_8_4_1 doi: 10.1016/j.cellimm.2018.09.008 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.201901896 – ident: e_1_2_8_28_1 doi: 10.1038/ni.2768 – ident: e_1_2_8_8_1 doi: 10.1038/nrc3380 – ident: e_1_2_8_16_1 doi: 10.1038/s41586-020-2071-9 – ident: e_1_2_8_19_2 doi: 10.1038/s41577-019-0228-2 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202005747 – ident: e_1_2_8_20_1 doi: 10.1002/anie.202004180 – ident: e_1_2_8_24_2 doi: 10.1016/j.jhep.2020.07.041 – ident: e_1_2_8_1_1 doi: 10.1038/s41571-018-0142-8 – ident: e_1_2_8_11_1 doi: 10.1021/acs.nanolett.9b05265 – ident: e_1_2_8_15_1 doi: 10.1002/anie.202010281 |
SSID | ssj0001537418 |
Score | 2.6154246 |
Snippet | The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which... Abstract The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy.... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2101840 |
SubjectTerms | Animals Antigens Antineoplastic Agents, Phytogenic - therapeutic use Antineoplastic Combined Chemotherapy Protocols - therapeutic use Cancer therapies Cell Line, Tumor Colonic Neoplasms - therapy Cytotoxicity Disease Models, Animal Drug delivery systems Drug Liberation Efficiency Female Flow cytometry Glutathione - therapeutic use Immunotherapy Immunotherapy - methods Mice Mice, Inbred BALB C Microscopy Mitochondria Nanoparticles paclitaxel Paclitaxel - therapeutic use Photochemotherapy - methods Photodynamic therapy Photosensitizing Agents - therapeutic use Polymerization prodru gs Prodrugs - therapeutic use pyroptosis Pyroptosis - drug effects Reactive Oxygen Species - therapeutic use Response rates tumor microenvironment Tumor Microenvironment - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp15K0r84TYsLhSYHE1ka2daxGxrSQkpofsjN2JKcBIId1ruBvfUR8ox5ks7YWuOlCbn0ZJBHthjNSJ_smW8Y-yIRVRBMRkdyEIF1aVRwnUaInR028TJVlO989Cs5PIOfF-piVOqLYsJ6euBecXscKsrfTHRsLfDKaiGqpDAQl2VsMudo9cU9b3SY6vODJdGyLFkaudgr7B2xcwtiqKIvHaNdqCPrfwxh_hsoOQaw3Q50sM5eeegYfuuHvMFeuPo12_DO2YY7nkF69w07P6Iwu1EO28Of-98-GPbOhce4aE7nl9hIhTuMs-HxYtrczpr2ug0nTdPO2nCfrGEa_qD0EZ-ktXjLzg6-n-4fRr6AQmSU0IAekEKVSekMJbwqLW1SJJZLK6E0ibalVYk04PDQlYlYKm20ESUAt8JlFa_kO7ZWN7XbZKHV3AjUA-AFCo2d4zIu8AhagcJ32YBFS4XmxrOLU5GLm7znRRY5TUA-TEDAvg7ytz2vxpOSE5qfQYr4sLsGtJLcW0n-nJUEbHs5u7l3UnwFojuRJVplAfs83Eb3on8mRe2aOcooFMCnSZR53xvDMBIJKS5hIAOWrpjJylBX79TXVx2Fd0YVKFPsGXUG9YwKcoQoJygPW_9DFx_YS3pyH5OzzdZm07n7iMhqVn7qnOgvXO0h7w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9sIFUZ6hBQUJCThETfxI7BNiq1YFqdWqUNRblNhOqYSSbbJbqTd-Ar-RX8JM4g274nWKZI_z8Dw8dma-AXjJ0asgNxkVyYlIWJdFRayzCH1nh01xmUnKdz4-SY_OxIdzee4P3DofVrmyib2hto2hM_I9grpiKtVSvZ1fRVQ1iv6u-hIat2ELTbBSE9iaHpzMTn-dskhO8CwrtMaY7RX2mlC6GSFV0YnH2mrUg_b_ydP8PWBy3ZHtV6LDe3DXu5Dhu4Hn23DL1fdh2ytpF772SNJvHsDnYwq3W8tl-_Ht-6kPir124QyNZ7u8wEYq4GGcDWc3bTNfNN1lF06bplt04T5JRRu-pzQSn6x18xDODg8-7R9FvpBCZCTTAjUhE5Xi3BlKfJWa27RIbcwtF6VJtS2tTLkRDjdfiiVcaqMNK4WILXOqiiv-CCZ1U7snEFodG4bzIPAiCo2DkzIpcCtaCYnPsgFEqwnNjUcZp2IXX_MBH5nlxIB8ZEAAr0b6-YCv8VfKKfFnpCJc7L6haS9yr2Z5LCrK9k11Yq2IK6sZq9LCiKQsE6OcC2B3xd3cKys-YhStAF6M3ahm9O-kqF2zRBqJBHg3jjSPB2EY34SLDE2Z4AFkG2Ky8aqbPfXllx7KW1ElygxHRr1A_WcKcnRVPiK9ePrvz9iBOzRmiLrZhcmiXbpn6DstyudeQX4CEEkaiw priority: 102 providerName: ProQuest |
Title | Microenvironment‐Responsive Prodrug‐Induced Pyroptosis Boosts Cancer Immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101840 https://www.ncbi.nlm.nih.gov/pubmed/34705343 https://www.proquest.com/docview/2612286958 https://www.proquest.com/docview/2586992238 https://pubmed.ncbi.nlm.nih.gov/PMC8693073 https://doaj.org/article/04f0204691dd40fd922f6ac41bb1c8ee |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQe-GCKJ-BdhUkJOAQNbHHSXzsllYFsdWqpai3KLGdthJKqmS3Um_8hP5GfgkziTfdCBDiFMmZfMjj5zw7M28YeyuQVRBNRiBZCMDYJMhDlQTInS02hUUiKd95dhwfncHnc3m-lsXf60MMG26EjG6-JoDnRbt7LxqamxuS2-YkOQW4aN-k_FoK6uMwv99lkYLkWajCHK6uA5ECrJQbQ747vsXoy9QJ-P-Jdf4ePLlOaruv0uFj9sjRSX-v9_8We2CrJ2zLAbb13ztV6Q9P2bcZhd6t5bX9_HF34gJkb6w_x4m0WV5gIxXz0Nb489umvl7U7VXrT-u6XbT-Po2Qxv9EKSUucev2GTs7PPi6fxS4ogqBllwBoiKBMhXCakqClUqYOI9NKIyAQsfKFEbGQoPFhVjKIyGVVpoXAKHhNi3DUjxnG1Vd2ZfMNyrUHPsB8AC5woujIspxWVqCxGcZjwWrDs20Uxynwhffs14rmWfkgGxwgMfeDfbXvdbGXy2n5J_BijSyu4a6ucgc5LIQSsr8jVVkDISlUZyXca4hKopIp9Z6bHvl3cwBFx-BjI-nsZKpx94MpxFy9B8lr2y9RBuJBng3gTYv-sEwvImABKc1EB5LRsNk9KrjM9XVZSfrnVJVygSvDLoB9Y8uyJC2nKI9vPpP-9fsITX2ITnbbGPRLO0OEqtFMemwM2Gbex9nX07xOD04np9Mum2KX2cwIas |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHm6FDASCDhYtXfXjz0gREqrhDZRVFrUm2vvrttKKA5xUpQbP4Ffwo_ilzDjF4l4nXqytJ5d2zuPnV3PfAPwjKNXQW4yKpIRjtAmdBJXhg76zgab3DT0Kd95MAx6x-L9iX-yBt-bXBgKq2xsYmmoda7ojHyboK5YFEg_ejP57FDVKPq72pTQqMRi3yy-4JateN1_h_x9ztje7tFOz6mrCjjKZ1KgWIQiizg3irJAfcl1kATa5ZqLVAVSp9oPuBIGdyIR87gvlVQsFcLVzESZm3Ec9xqsCx64rAPr3d3h6PDXqY7PCQ6mQYd02XaiLwkVnBEyFp2wLK1-ZZGAP3m2vwdoLjvO5cq3dwtu1i6r_baSsQ1YM-PbsFEbhcJ-WSNXv7oDHwcU3reUO_fj67fDOgj30tgjNNbT-Rk2UsEQZbQ9WkzzySwvLgq7m-fFrLB3SAqndp_SVurksMVdOL6SKb4HnXE-Ng_A1tJVDOdB4EUkEjt7qZfg1jcTPj5LW-A0ExqrGtWcimt8iis8ZhYTA-KWARa8aOknFZ7HXym7xJ-WinC4y4Z8ehbXah27IqPs4kB6Wgs305KxLEiU8NLUU5ExFmw13I1r44CPaEXZgqftbVRr-leTjE0-RxofCXA0jjT3K2Fo34SLEE2n4BaEK2Ky8qqrd8YX5yV0eESVL0Ps6ZQC9Z8piNE1-oD0YvPfn_EErveOBgfxQX-4_xBuUP8q4mcLOrPp3DxCv22WPq6VxYbTq9bPn_tdVa4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEOUZKGAkEHCwYu-uH3tAiLSNGkqjqFDUm7F316USikOcFOXGT-D38HP4JczYa5OI16knS-vZtb3z2Nn1zDcAjzl6FeQmoyIZ4QptIjf1ZOSi72ywycuigPKdD0fh_rF4fRKcbMD3JheGwiobm1gZal0oOiPvEdQVi0MZxL3chkWMdwcvp59dqiBFf1qbchq1iByY5RfcvpUvhrvI6yeMDfbe7ey7tsKAqwImBYpIJPKYc6MoIzSQXIdpqD2uuchUKHWmg5ArYXBXEjOfB1JJxTIhPM1MnHs5x3EvwWZEu6IObPb3RuOjXyc8ASdomAYp0mO9VJ8TQjgjlCw6bVlZCauCAX_ycn8P1lx1oqtVcHANrlr31XlVy9sWbJjJddiyBqJ0nlkU6-c34P0hhfqt5NH9-PrtyAbknhtnjIZ7tjjFRioeoox2xstZMZ0X5Vnp9IuinJfODknkzBlSCotNFFvehOMLmeJb0JkUE3MHHC09xXAeBF5EKrGzn_kpboNzEeCzdBfcZkITZRHOqdDGp6TGZmYJMSBpGdCFpy39tMb2-Ctln_jTUhEmd9VQzE4Tq-KJJ3LKNA6lr7Xwci0Zy8NUCT_LfBUb04XthruJNRT4iFasu_CovY0qTv9t0okpFkgTIAGOxpHmdi0M7ZtwEaEZFbwL0ZqYrL3q-p3J2ccKRjymKpgR9nQrgfrPFCToJr1FenH335_xEC6jXiZvhqODe3CFutfBP9vQmc8W5j66cPPsgdUVBz5ctHr-BNmRWeM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microenvironment%E2%80%90Responsive+Prodrug%E2%80%90Induced+Pyroptosis+Boosts+Cancer+Immunotherapy&rft.jtitle=Advanced+science&rft.au=Xiao%2C+Yao&rft.au=Zhang%2C+Tian&rft.au=Ma%2C+Xianbin&rft.au=Yang%2C+Qi%E2%80%90Chao&rft.date=2021-12-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202101840&rft.externalDBID=10.1002%252Fadvs.202101840&rft.externalDocID=ADVS3074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |